
Understanding
Visual Basic .NET

• The .NET Framework

• The .NET languages

• Command-line compilation

• Visual Studio .NET requirements

Chapter 1

4038ch01.qxd 03/21/02 2:20 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

2

T his chapter explains important background material related to Visual Basic .NET (VB
.NET). If you are the hasty type and want to dive right into programming, there’s no

need to start with this chapter. (Although you may want to check the “Visual Studio .NET
Requirements” section at the end of the chapter, to make sure you have all the tools you
need.) You can skip right over it and go on to Chapter 2, “Introducing Projects, Forms, and
Buttons.” (The sample project in the “For the Very First Time” section of Chapter 2 will get
you up and running with a Windows program in the blink of an eye.) As you go on with VB
.NET, understanding some of the concepts behind it will become important. You can then
come back to this chapter for a dose of background information.

On the other hand, if you prefer to have your ducks in a row before you get to program-
ming with VB .NET, you can start right here. Armed with the conceptual understanding pro-
vided in this chapter, you should be able to make good progress as a VB .NET programmer.

The chapter includes an important preliminary topic: command-line compilation. You
would probably be pretty foolish to try to create Windows or web programs outside the
world-class Visual Studio integrated development environment (IDE). But it’s important to
know that you can, and that Visual Studio, which is used throughout the rest of this book, is
optional. You should clearly understand that VB .NET (the language) is complementary but
not identical to Visual Studio .NET (the IDE).

What Is .NET?
The term .NET is somewhat confusing because it is commonly used in a variety of contexts.
Some of these contexts are mostly marketing in nature, rather than the kind of precise lan-
guage needed when attempting to understand technology. Here are some of the ways in
which .NET has been used:

� To mean the .NET Framework, a runtime platform and programming framework largely
consisting of class libraries

� To include Visual Studio .NET, a professional IDE optimized for working with .NET
Framework languages, including VB .NET and C# .NET

� To refer to .NET Enterprise Servers, a set of enterprise server products such as Biztalk
Server, Exchange Server, Mobile Information Server, and SQL Server, which have been
given the .NET moniker for marketing purposes

� To describe .NET My Services, also sometimes called Hailstorm, which is a vision for
creating services—such as lists, contacts, schedule information, and more—that can be
accessed in a platform- and language-independent way

Chapter 1 • Understanding Visual Basic .NET

4038ch01.qxd 03/21/02 2:20 PM Page 2

3

This book is mostly concerned with the first two of these meanings: the .NET Framework
and Visual Studio .NET. The focus in this chapter is understanding the .NET Framework.

The .NET Framework
The .NET Framework consists of two main parts:

� The Common Language Runtime (CLR), which is a platform that manages code execu-
tion (discussed in detail in the next section)

� The .NET Framework class libraries

The relationship of the two parts of the .NET Framework to the operating platform and
to Visual Studio .NET is shown in Figure 1.1.

As you’ll see in the “Using a Text Editor to Create VB .NET Programs” section later in
this chapter, it’s possible to create, compile, and run VB .NET programs without using Visual
Studio .NET. However, as programs get more complex, this quickly becomes cumbersome.
Except for the one example in this chapter, this book will show you how to create VB .NET
applications using Visual Studio, because it’s the simplest way to go most of the time. But it’s
important that you be aware that Visual Studio is not integral to the definition of the .NET
Framework.

F I G U R E 1 . 1 :
The two parts of the
.NET Framework have
different functions:
the Framework class
libraries are used to
build applications, and
the CLR layers on top
of the operating
system manage
execution of a
program.

What Is .NET?

4038ch01.qxd 03/21/02 2:21 PM Page 3

4

The .NET Framework Base Class Library is a large set of types, classes, and interfaces
that form the basis, or blueprint, for objects that can be used programmatically to create
applications, including Windows forms, web forms, and web services applications. The
.NET Framework types form the basis for building .NET applications, components, and
controls. .NET Framework types perform many functions, such as representing value
types for variables, performing input-output (I/O) operations, and providing data access.
An example of a value type that is probably familiar to most programmers is the Integer,
which in the .NET Framework is called an Int32 and used to type values that contain a
signed 32-bit integer number.

NOTE The .NET languages are interoperable, which means that one language can use class
libraries in another. For example, a VB .NET program can use a class developed in C#
.NET, or vice versa. To ensure this interoperability, the .NET Framework types are compli-
ant with the Common Language Specification (CLS). They can be used by any language
that conforms to the CLS.

The .NET Framework uses a dot operator (.) syntax to designate hierarchies. Related types
are grouped into namespaces, so that they can be more easily found. (See the “Namespaces”
section later in this chapter for more details.)

Reading left to right, the first part of a type, up to the first dot, is the namespace name.
The last part of the name, to the right of the final period, is the type name. For example
System.Boolean designates a Boolean value-type in the System namespace. System.Windows
.Forms.MessageBox designates the MessageBox class with the Forms namespace, which is
part of the Windows namespace, which is part of System.

TIP When you are referring to a member of the System namespace, you can usually leave off
System. So, for example, the variable declaration Dim IsEmployee As Boolean is the
equivalent of Dim IsEmployee As System.Boolean.

As these examples suggest, the System namespace is the root namespace for all types within
the .NET Framework. All base data types used by all applications are included in the System
namespace or the Microsoft namespace.

One of the most important types within the System namespace is System.Object. System
.Object, also called the Object class. The Object class is the root of the .NET type hierarchy
and the ultimate parent (or superclass) of all classes in the .NET Framework. This implies that
the members of the Object class—such as GetType() and ToString()— are contained in all
.NET classes.

Chapter 1 • Understanding Visual Basic .NET

4038ch01.qxd 03/21/02 2:21 PM Page 4

5

NOTE Don’t let this talk of objects, types, classes, and hierarchies throw you! It all works out in a
fairly intuitive way once you start programming. But if you want to jump ahead, the Object
Browser, the best tool for learning about class hierarchies, is explained in Chapter 14,
“Using the Object Browser.” Object-oriented programming concepts, including some of the
terminology used in this section, are explained and further defined in Chapter 15, “Object-
Oriented Programming in VB .NET.”

The Common Language Runtime (CLR)
The CLR manages execution of compiled .NET programs. The role of the CLR is comparable
to Sun’s Java Virtual Machine (JVM) and the VB runtime library that shipped with older ver-
sions of VB.

The CLR is a runtime for all .NET languages. Its job is to execute and manage all code
written in any language that has targeted the .NET platform.

When you write an application in .NET, you can choose from a number of languages.
Primarily these are VB and C# (pronounced “see sharp”). You can also build .NET applica-
tions using languages such as COBOL, Eiffel, Pascal, and even Java. Each of these languages
will include its own compiler, written by third parties. However, instead of compiling into
machine code, as compilers typically do, the language-specific just-in-time (JIT) compiler
translates the code (whether it is VB, C#, or any other language) into another language
called Microsoft Intermediate Language (MSIL, or even just IL for short). The IL is what
you actually deploy and execute.

Upon execution, the CLR uses another compiler to turn the IL into machine code that is
specific to the platform where it’s running. In other words, the CLR may compile the IL into
one thing on a machine that runs on an AMD processor and into something else on a machine
with a Pentium processor.

TIP Intermediate Language (IL) is, in fact, fairly easy to read and understand. You’ll find that
documentation for doing this is part of the .NET Framework Software Development Kit
(SDK). In addition, you may find it interesting to know about a program named
ILDasm.exe, which ships with the .NET framework. ILDasm is an Intermediate Language
disassembler. You can run any .NET compiled program through ILDasm, including impor-
tant parts of the .NET Framework itself. ILDasm will output the IL code that has been cre-
ated, along with other information, including namespaces, types, and interfaces used.

What Is .NET?

4038ch01.qxd 03/21/02 2:21 PM Page 5

6

The CLR handles, or manages, some other very important aspects of the life of a program:

Type, version, and dependency information .NET compilers produce not only IL,
but also metadata that describes the types contained within an EXE or DLL and version
and dependency information. This means that the CLR can resolve references between
application files at runtime. In addition, the Windows system Registry is no longer needed
for keeping track of programs and components. One way of thinking of the CLR is as an
object-oriented replacement for the Win32 Application Programming Interface (API) and
Component Object Model (COM, used for component interoperability). Placing the CLR
as a kind of abstraction layer on top of Windows has neatly solved a great many of the
technical problems with Windows programming. This approach has worked to the benefit
of VB programmers, since much of the Win32 functionality was not available to us. All of
the functionality of the CLR and its class libraries are exposed as objects and classes, whose
methods can be used in your programs.

Garbage collection Garbage collection means that memory is automatically managed.
You instantiate and use objects, but you do not explicitly destroy them. The CLR takes
care of releasing the memory used by objects when they are no longer referenced or
used. It is understandable that some programmers like to manage memory themselves,
but this practice, particularly in large team projects, inevitably produces memory leaks.
The CLR’s automatic garbage collection solves the problem of memory leaks.

NOTE There is no way to determine when the CLR will release unused memory. In other words,
you do not know when an object will be destroyed (also called nondeterministic finaliza-
tion). To say the same thing in yet another way, just because there are no more in-scope
references to an object, you cannot assume that it has been destroyed. Therefore, you can-
not place code in an object’s destructor and expect deterministic execution of the code.

Code verification Code verification is a process that takes place before a program is exe-
cuted. It is designed to ensure that a program is safe to run and does not perform an illegal
operation, such as dividing by zero or accessing an invalid memory location. If the program
does include code that does something naughty, the CLR intercepts the flawed commands
and throws an exception before any harm can be done.

Code-access security Code-access security lets you set very granular permissions for
an application based on “evidence.” For example, you can configure an application that is
installed on the local machine to access local resources such as the filesystem, Registry,
and so on. However, the same application, if run from the intranet, can be denied those
permissions. If it tries to perform an operation for which it does not have permissions, the
CLR will prevent the operation.

Chapter 1 • Understanding Visual Basic .NET

4038ch01.qxd 03/21/02 2:21 PM Page 6

7

Managed Code
The first step in the managed-code process is to compile a .NET project to IL, which also
generates the required metadata. At execution, a JIT compiler translates the IL code to native
machine code. During this translation process, the code is also verified as safe. This verifica-
tion process checks for the following:

� Any reference to a type is strictly compatible with the type.

� Only appropriately defined operations are performed on an object.

� Identities are what they claim to be.

� IL code is well-formed.

� Code can access memory locations and call methods only through properly defined types.

If a program fails this verification process, an exception is thrown and execution is halted.
Otherwise, the CLR provides the infrastructure that actually executes the native code.

The managed-execution processes, and services provided by the CLR such as memory
garbage collection, are collectively referred to as managed code.

Programming in the .NET Framework
Fundamentally, programming in the .NET Framework means making use of the classes,
objects, and members exposed by the Framework, building your own classes on top of these,
and manipulating the resulting objects using familiar programming language and syntax. (If
you are unfamiliar with programming languages altogether, don’t worry—starting in Chap-
ter 2, each step will be explained as we go along.)

NOTE One of the goals of the .NET Framework is to make programming more standardized
across languages. Thus, you can create and use objects based on the same classes,
whether you are programming in VB .NET, C# .NET, or Managed C++.

This section explains some of the key building blocks and concepts of the .NET Frame-
work that will be helpful for you to understand as you begin creating VB .NET programs:
assemblies, namespaces, and objects.

Assemblies
Assemblies are the fundamental unit for deployment, version control, security, and more for a
.NET application. Every time you build an executable (EXE) or a library (DLL) file in .NET,
you are creating an assembly. An assembly contains the information about an application that
used to be stored in a type library file in previous versions of VB, and you use the contents of
assemblies and add references to them much as you would manage a type library.

Programming in the .NET Framework

4038ch01.qxd 03/21/02 2:21 PM Page 7

8

The Assembly Manifest
When you start a new VB project, it is the basis of an assembly. Within each built assembly is
a manifest, which is part of the executable or library. In VB .NET, some of the general mani-
fest information is contained in a file that is part of the project named AssemblyInfo.vb. Fig-
ure 1.2 shows a small project in the Visual Studio Solution Explorer with AssemblyInfo.vb
selected, and Figure 1.3 shows the contents of a sample AssemblyInfo.vb file when opened
with the Visual Studio editor.

TIP To open the AssemblyInfo.vb module, double-click it within the Solution Explorer. Using
the Solution Explorer is covered in Chapter 2.

F I G U R E 1 . 3 :
The assembly
manifest contains
information about
content, version, and
dependencies, so that
VB .NET applications
do not depend on
Registry values to
function properly.

F I G U R E 1 . 2 :
Each VB .NET project
includes a file that
is the assembly
manifest.

Chapter 1 • Understanding Visual Basic .NET

4038ch01.qxd 03/21/02 2:21 PM Page 8

9

The assembly manifest can be thought of as a table of contents for an application. It
includes the following information:

� The assembly’s name and version number

� A file table listing and describing the files that make up the assembly

� An assembly reference list, which is a catalog of external dependencies

The external dependencies in the assembly reference list may be library files created by
someone else, and likely some of them are part of the .NET Framework.

Assembly References
To use an assembly, or an object within an assembly, it must be referenced in your project.
Depending on the type of project, you’ll find that many of the assemblies that are part of the
.NET Framework are referenced by default.

Different project types have different default references. The references that come “out-of-
the-box” for a Windows forms project are not the same as those for a web forms project,
although both do reference certain important .NET assemblies such as System.dll.

You can see which assemblies are already referenced in a project by expanding the Refer-
ences node in the Solution Explorer, as shown in Figure 1.4.

If you need to reference an assembly that is not already included in your project, follow
these steps:

1. Open the Visual Studio Project menu and click Add Reference (select Project ➢ Add Ref-
erence). The Add Reference dialog will open, as shown in Figure 1.5.

2. Click the Browse button in the upper-right corner of the Add Reference dialog. The
Select Component dialog will open.

3. Locate the assembly to be added and click Open. The assembly will be added to the
Selected Components panel of the Add Reference dialog.

4. Click OK to add the reference to your project.

F I G U R E 1 . 4 :
You can view the
references in a
project in the
Solution Explorer.

Programming in the .NET Framework

4038ch01.qxd 03/21/02 2:21 PM Page 9

10

Once a reference to an assembly has been added to a project, you’ll need to reference an
item you want to use using the namespace it is in. You’ll find more information about work-
ing with references in Chapter 15, “Object-Oriented Programming in VB .NET.”

Namespaces
Namespaces are used to organize the objects (such as classes) within an assembly. Assemblies
can contain many namespaces, which, in turn, can contain other namespaces. Namespaces
are used to make it easier to refer to items, to avoid ambiguity, and to simplify references
when large groups of objects are involved (for example, in a class library).

By default, every executable file you create in VB .NET contains a namespace with the
same name as your project, although you can change this default name.

You should also know that namespaces can span multiple assemblies. In other words, if two
assemblies both define classes within a namespace myspace, then the myspace namespace is
treated as a single set of names.

F I G U R E 1 . 5 :
The Add Reference
dialog is used to add
a reference to a
project.

Chapter 1 • Understanding Visual Basic .NET

4038ch01.qxd 03/21/02 2:21 PM Page 10

11

Namespace References
There are several ways to refer to an item within a namespace once the assembly containing
the item you are interested in has been referenced. You can use the fully qualified name of the
item, as in this example:

Dim myBox As New System.Windows.Forms.TextBox

Alternatively, you can place an Imports statement at the beginning of a code module, as
shown here:

Imports System.Windows.Forms

After you add an Imports statement, all of the names in the imported namespace can be
used (provided they are unique to your project), like this:

Dim myBox As New TextBox

Important VB .NET Namespaces
Table 1.1 lists some of the namespaces that are important to VB .NET developers. For more
information about creating and using namespaces, see Chapter 15.

TABLE 1.1: Selected .NET Framework Namespaces

Namespace Description

Microsoft.VisualBasic Contains the runtime used with the VB .NET language, as well as
classes that support VB .NET compilation and code generation

System Contains fundamental classes that define types, events, event handlers,
interfaces, data-type conversion, mathematics, and much more

System.Collections Includes a set of classes that lets you manage collections of objects

System.Data Includes the classes that comprise the ADO.NET architecture

System.Diagnostics Provides classes used for debugging, tracing, and interacting with sys-
tem processes, event logs, and performance counters

System.Drawing Provides access to GDI+ basic graphics functionality (namespaces
hierarchically beneath System.Drawing—including System.Drawing
.Drawing2D and System.Drawing.Text—provide more advanced and
specific GDI+ graphics functionality)

System.IO Contains types used for reading and writing to data streams and files

System.Reflection Contains classes and interfaces that provide type inspection and the
ability to dynamically bind objects

System.Web Contains the classes that are used to facilitate browser-server communi-
cation and other web-related functionality

System.Web.Services Contains the classes used to build and consume web services

System.Windows.Forms Contains the classes for creating a Windows-based user interface

System.XML Provides support for processing XML

Programming in the .NET Framework

4038ch01.qxd 03/21/02 2:21 PM Page 11

12

Objects and Classes
It’s important to understand the distinction between objects and classes. An object is a unit of
code and data created using a class as its blueprint. Each object in VB .NET is defined by a
class, which specifies the properties, methods, and events—collectively referred to as members—
of the objects based on the class.

Objects, which can themselves contain other objects, are manipulated by the following:

� Setting and retrieving property values

� Invoking object methods

� Executing code when an object event has occurred

Once you have defined the class, you can create as many objects as you need based on the
class. The process of creating an object based on a class is called instantiation.

A metaphor that is often used is that of cookie cutters and cookies. The cookie cutter is the
class, and it defines the characteristics of the cookie, such as its size and shape. Each cookie is
an object based on the cookie-cutter class.

Each object, which is called an instance of a class, is identical to other objects based on the
same class when it is created. Once objects exist, they will likely be loaded with different val-
ues than other instances of the same class. The class might specify that each Employee object
has Name and Salary properties. Once the Employee objects are instantiated, each will prob-
ably have a distinct name and may have a different salary.

The controls in the Toolbox in VB .NET are representations of classes. When a control is
dragged from the Toolbox to a form, an object that is an instance of the control class is cre-
ated. (See Chapter 2 and Chapter 7, “Working with Windows Form Controls,” for informa-
tion about working with the Toolbox.)

A form, which represents an application window that you work with at design time, is a
class. When you run the project containing the form, VB .NET creates an instance of the
form’s class. (The following chapters explain the use of Windows forms in detail.)

When one class inherits from another class—which can be done in code using the Inherits
keyword or, in some circumstances, by using visual inheritance—the blueprint for the mem-
bers of the parent class is now transferred and becomes the blueprint for the members of the
newly created child class. With this inherited blueprint as a starting place, the members of the
class can be extended and changed, and new members can be added. As I mentioned earlier in
this chapter, the System.Object class is the ancestor, or superparent, of almost all classes you
will use in VB .NET.

Programming in VB .NET is an exercise in the use of objects and classes, so you will find
information about them and how to work with them in every chapter of this book. For infor-
mation about the theory and background of object-oriented programming, see Chapter 15.

Chapter 1 • Understanding Visual Basic .NET

4038ch01.qxd 03/21/02 2:21 PM Page 12

13

The .NET Languages
Visual Studio .NET is specifically designed to help programmers develop applications in VB
.NET, C# .NET, and C++. VB .NET and C++ are the next generation of languages that have
been in use for years. C# .NET is an entirely new language developed for .NET. Since much
of the .NET Framework is written in C#, it is in some sense the “native” language of .NET.

NOTE Programs written in VB .NET and C# .NET produce CLR-managed code. (An exception to
this is if an old-style COM component is added to a project.) Programs written in C++ pro-
duce unmanaged code, unless the C++ Managed Extensions are used (by selecting a
Managed C++ project type).

In addition to these three core development languages, it is expected that programmers
will use Visual Studio for working with ancillary language tools, including the following:

HTML The ASP web forms editor provides excellent Hypertext Markup Language
(HTML) support. See Chapter 19, “ASP.NET Web Applications” for details.

JScript JScript is essentially JavaScript and is used in web applications (see Chapter 19
for an example) and for some kinds of application customization.

SQL Structured Query Language (SQL) is used for interacting with databases. Visual
Studio provides tools for automatically generating SQL, as explained in Chapter 17,
“Working with Data and ADO.NET.”

XML eXtensible Markup Language (XML) is used to describe structured data, and
.NET uses XML as a primary technology for interoperability. See Chapter 18, “Working
with XML in VB .NET,” for details.

Upcoming .NET Languages
A number of third parties (companies other than Microsoft) are creating CLS-compliant ver-
sions of languages that target the CLR and the .NET platform. Time will tell whether any of
these other languages—which range from research languages to products intended for com-
mercial development—gain any traction. However, the very existence of these languages
speaks to the scope of the ambition of the .NET platform. .NET languages in the works
include the following:

� APL

� COBOL

� Eiffel#

� FORTRAN

� Mondrian

The .NET Languages

4038ch01.qxd 03/21/02 2:21 PM Page 13

14

� Oberon

� Perl

� Python

� Smalltalk

From VB6 to VB .NET
Some VB users will feel that VB .NET is so different from Visual Basic version 6 (VB6) that
it counts as an entirely new language. There is some truth to this, because many things have
changed. But another way of looking at the transition to VB .NET is that you can go on
writing VB code in very much the way you always have.

TIP In order to make it easier for VB6 programmers, Microsoft has provided a whole special
set of classes in the Microsoft.VisualBasic.Compatability.VB6 namespace.

Readers who are new to VB need not worry about how VB .NET differs from its predeces-
sors. They will find an intuitive, easy-to-use, robust language that is fully object-oriented (as
explained in Chapter 15). The language can be strongly typed, which is the best program-
ming practice, or perform implicit type conversions, if you prefer. VB .NET is a true peer
to the other .NET languages; there’s really no reason to choose VB over C#, or vice versa,
other than personal preference.

The CLR/.NET Framework is a comparable mechanism to the JVM, although undoubt-
edly, the extent to which .NET is deployed on platforms other than Windows will be limited
by technology and industry politics.

If you are a VB6 programmer interested in migrating applications from VB6 to VB .NET,
you’ll find some useful information in Appendix B, “Migrating Applications from VB6 to VB
.NET.” You’ll also find information about some of the language differences between VB6 and
VB .NET in Appendix C, “Key Syntax Differences Between VB6 and VB .NET.”

The History of Visual Basic
The BASIC (Beginner’s All-Purpose Symbolic Instruction Code) programming language was
invented in the early 1960s by two Dartmouth College professors, John G. Kemeny and
Thomas Kurtz. They wanted to create a language that was good for teaching computer pro-
gramming, and they succeeded wildly in meeting that goal.

From its earliest years, BASIC was very easy to understand because it is English-like and
unstructured—meaning not too fussy about how you organize programs and how you type
variables. (Of course, this is no longer true about VB .NET!)

Continued on next page

Chapter 1 • Understanding Visual Basic .NET

4038ch01.qxd 03/21/02 2:21 PM Page 14

15

A trade-off for this ease of use was speed of execution. Early versions of BASIC were slow
because they were interpreted (translated into machine code on the fly), rather than com-
piled (run as a stand-alone program that has already been converted to machine code). The
current incarnation, VB .NET, is really “neither fish nor fowl” in this respect, since it is just-in-
time compiled, but its performance characteristics are really quite good.

Microsoft has a long history of commitment to BASIC (and the languages that descended
from BASIC). In the 1980s, Microsoft shipped various versions of the BASIC language, such
as QuickBasic (shipped in 1982) and QBasic, part of the MS-DOS 6 product.

In the early 1990s, as Microsoft Windows appeared on the scene, a visual version of BASIC,
Visual Basic 1.0, was created, leaning heavily on the concepts originated by interface
designer Alan Cooper, who has been called the father of Visual Basic (VB). VB added an intu-
itive visual framework for creating an application’s interface and a straightforward mecha-
nism for responding to events to the easy-to-use, unfussy underlying BASIC language.

Possibly on the principle that “anything this easy can’t really be good,” VB got a reputation
as the Rodney Dangerfield of languages—a toy development environment, not really suitable
for serious work, and not worthy of respect. VB programmers responded by pointing out how
much more productive they were using their “toy” language than their hardcore cousins.

By the late 1990s, millions of programmers were using VB, now VB6, more than any other
language. However, its future had become murky. Java, a new language written from the
ground up under the sponsorship of Sun Microsystems, was gaining currency as truly object-
oriented and cross-platform (provided the platform had a Java Virtual Machine). And the rela-
tionship between C++ programmers and VB programmers had settled into a situation in
which C++ programmers wrote the heavy-lifting components and VB coders wrote the user
interfaces that connected to the C++ components. As the time lengthened since the last
release of VB (VB6 came out at the end of 1997), the future of VB became uncertain. VB
.NET is the answer to these concerns.

Using a Text Editor to Create VB .NET Programs
As I’ve mentioned earlier in this chapter, it’s important to understand that the VB .NET lan-
guage is distinct from the Visual Studio .NET development environment. Visual Studio hap-
pens to be by far the best and easiest way to create VB .NET programs. I can’t really imagine
anyone trying to develop a complex Windows application using Notepad, but, in theory, it
could be done, and that is the point.

In this section, you’ll see how to create a simple VB .NET application using Notepad.
Before we get started, you should know about console applications. Console applications typi-
cally have no user interface other than printed text on the screen. They are run from a

Using a Text Editor to Create VB .NET Programs

4038ch01.qxd 03/21/02 2:21 PM Page 15

16

command line, with input and output information being exchanged between the command
prompt and the running application.

TIP You can create a console application from within VB .NET by selecting Console Applica-
tion as the project type from the New Project dialog.

As an example, we’ll use Notepad to create a VB .NET program that prints “Hello,
World!” to the screen and pauses. Next, we’ll compile using the VB .NET command-line
compiler, vbc.exe. Finally, we’ll run the program in the console window.

Creating a VB .NET Program in Notepad
To create our sample program, open Notepad. Type in the program shown in Listing 1.1.

➲ Listing 1.1 A “Hello, World!” Console Application

Module Module1
Sub Main()

System.Console.WriteLine(“Hello, World!”)
System.Console.Read()

End Sub
End Module

When you’re finished, save the file as console.txt, as shown in Figure 1.6.

Let’s take a look at some of the individual lines in Listing 1.1. The first line names the
module:

Module Module1

The module is named Module1, but could instead be named anything you like.

The next line designates the subroutine:
Sub Main()

This is the procedure that is the program’s entry point, or where it starts executing.

F I G U R E 1 . 6 :
The code to be
compiled is saved as
a Notepad text file.

Chapter 1 • Understanding Visual Basic .NET

4038ch01.qxd 03/21/02 2:21 PM Page 16

17

Following Sub Main() is the code to write the text:
System.Console.WriteLine(“Hello, World!”)

This line uses the WriteLine() method of the System.Console object to display a line of text
on the screen.

The last line in the subroutine keeps the text on the screen:
System.Console.Read()

This uses the Read method of the object to pause things so that the text stays on the screen
until you hit a key.

As you can see, you can’t have a much simpler program in VB .NET—or in any other
language!

Compiling the Program
To compile the program, open a command window. Depending on your system, you proba-
bly have a version of cmd.exe available in the Windows\System32 folder. You’ll probably also
find a link that opens a command window on the Windows Program ➢ Accessories menu. In
addition, Visual Studio provides a command prompt window, which you can open from the
Windows programs menu by selecting Microsoft Visual Studio .NET ➢ Visual Studio .NET
Tools ➢ Visual Studio .NET Command Prompt.

TIP If you use the Visual Studio .NET Command Prompt, vbc.exe will already be in your path,
which means that you don’t need to know its location or type in its full path to invoke it.

With a command window open, invoke the VB .NET compiler, vbc.exe, with console.txt
as the argument, as shown in Figure 1.7. (You’ll find vbc.exe in one of the folders beneath
Windows\Microsoft. net\framework.) For example, the command line to compile console
.txt might look like this:

c:\windows\Microsoft.net\framework\v1.0.3705\vbc console.txt

F I G U R E 1 . 7 :
You can use vbc.exe,
the command-line VB
.NET compiler, to
create executable
programs.

Using a Text Editor to Create VB .NET Programs

4038ch01.qxd 03/21/02 2:21 PM Page 17

18

Press Enter. A compiled executable named console.exe—the original filename without
the suffix and with .exe added as the filename extension—will be created.

VB Compiler Switches
There are a number of command-line switches you can use with vbc.exe. The /out:filename
option names the executable (as opposed to the default described in this example).

The /target option allows you to specify the type of the output file:

� /target:exe produces a console application executable.

� /target:winexe produces a Windows executable.

� /target:library creates a DLL.

For a full list of VB .NET command-line compiler switches, see the “Visual Basic Compiler
Options” topic in online help.

Running the Application
Run the new application, console.exe, either from the command line or by double-clicking
it in Windows Explorer. The text “Hello, World!” will be displayed in the console.

You’ve now successfully created, compiled, and run a VB .NET program without using
Visual Studio. It’s true that this program doesn’t do much. It’s also true that in the real world,
you’ll probably almost always use Visual Studio for creating and compiling your programs.
But now you know, for once and for all, that the programming language is not the develop-
ment environment—an important insight.

Chapter 1 • Understanding Visual Basic .NET

4038ch01.qxd 03/21/02 2:21 PM Page 18

19

Visual Studio .NET Requirements
Since we’ll be using Visual Studio .NET in the remainder of this book, you’ll need to make
sure that your system meets the requirements for running it. Let’s review the software and
hardware necessary for the projects covered in this book.

Software Requirements
Obviously, you’ll need a copy of Microsoft’s Visual Studio .NET, including the .NET
Framework. You can purchase Visual Studio .NET online (and download the product) at
http://msdn.microsoft.com/vstudio/.

Also, your computer should be running (in either their Professional, Server, or Advanced
Server guises) Microsoft Windows NT 4.0 (with service pack 6A) or Windows 2000 or XP,
with the latest service packs. Note that NT 4.0 Workstation is supported only for client-side
development.

Finally, you will need a copy of Microsoft’s web server, Internet Information Server (IIS)
version 5.0 or later, and Internet Explorer 6.0 or later.

TIP If you don’t have Internet Explorer 6.0, it will be installed when you install Visual Studio .NET.

Hardware Requirements
You will need a computer powerful enough to run your particular mix of software and oper-
ating system. Microsoft’s minimum recommended specifications for Visual Studio .NET are
a 450MHz Pentium II class processor or above, 64MB of RAM, and a 3GB of installation
space available on the hard drive. Microsoft’s recommended specifications are a 733MHz
Pentium III class processor, 128MB of RAM, and a 3GB hard drive for the installation.

As a practical matter, Visual Studio .NET will run very poorly on a system that is as low
in resources as even the Microsoft-recommended system. If at all possible, I suggest using a
system with a 733MHz Pentium III processor, at least 256MB of RAM, and at least a 10GB
hard drive.

Summary
Enough preliminaries! VB .NET is an exciting and elegant language. Familiar because of
its antecedents, in this incarnation, VB really flies! The .NET Framework is a powerful and
radical solution to many development problems.

This chapter has provided background information that will help you to learn the language
faster and be a better VB .NET programmer. Now, let’s get started building programs!

Summary

4038ch01.qxd 03/21/02 2:21 PM Page 19

4038ch01.qxd 03/21/02 2:21 PM Page 20

