
Java Socket Programming

• Exploring the world of sockets

• Learning how to program your network

• Java Stream and filter Programming

• Understanding client sockets

• Discovering server sockets

Chapter 1

4040c01.qxd 1/23/02 3:06 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

2

T he Internet is built of many related protocols, and more complex protocols are layered on
top of system level protocols. A protocol is an agreed-upon means of communicating used

by two or more systems. Most users think of the Web when they think of the Internet, but
the Web is just a protocol built on top of the Hypertext Transfer Protocol (HTTP). HTTP,
in turn, is built on top of the Transmission Control Protocol/Internet Protocol (TCP/IP),
also known as the sockets protocol.

Most of this book will deal with the Web and its facilitating protocol, HTTP. But before
we can discuss HTTP, we must first examine TCP/IP socket programming.

Frequently, the terms socket and TCP/IP programming are used interchangeably both in the
real world and in this chapter. Technically, socket-based programming allows for more pro-
tocols than just TCP/IP. With the proliferation of TCP/IP systems in recent years, however,
TCP/IP is the only protocol that is commonly used with socket programming.

The World of Sockets
Spiders, bots, and aggregators are programs that browse the Internet. If you are to learn how to
create these programs, which is one of the primary purposes of this book, you must first learn
how to browse the Internet. By this, I don’t mean browsing in the typical sense as a user does;
instead, I mean browsing in the way that a computer application, such as Internet Explorer,
browses.

Browsers work by requesting documents using the Hypertext Transfer Protocol (HTTP),
which is a documented protocol that facilitates nearly all of the communications done by a
browser. (Though HTTP is mentioned in connection with sockets in this chapter, it is dis-
cussed in more detail in Chapter 2, “Examining the Hypertext Transfer Protocol.”) This
chapter deals with sockets, the protocol that underlies HTTP.

Sockets in Hiding
When sockets are used to connect to TCP/IP networks, they become the foundation of the
Internet. But because sockets function beneath the surface, not unlike the foundation of a
house, they are often the lowest level of the network that most Internet programmers ever deal
with. In fact, many programmers who write Internet applications remain blissfully ignorant of
sockets. This is because programmers often deal with higher-level components that act as
intermediaries between the programmer and the actual socket commands. Because of this, the
programmer remains unaware of the protocol being used and how sockets are used to imple-
ment that protocol. In addition, these programmers remain unaware of the layer of the network
that exists below sockets—the more hardware-oriented world of routers, switches, and hubs.

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 2

3

Sockets are not concerned with the format of the data; they and the underlying TCP/IP
protocol just want to ensure that this data reaches the proper destination. Sockets work much
like the postal service in that they are used to dispatch messages to computer systems all over
the world. Higher-level protocols, such as HTTP, are used to give some meaning to the data
being transferred. If a system is accepting a HTTP-type message, it knows that that message
adheres to HTTP, and not some other protocol, such as the Simple Mail Transfer Protocol
(SMTP), which is used to send e-mail messages.

The Bot package that comes with this book (see the companion CD) hides this world from
you in a manner similar to the way in which networks hide their socket commands behind
intermediaries—this package allows the programmer to create advanced bot applications
without knowing what a socket is. But this chapter does cover the lower-level aspects of how
to actually communicate at the lowest “socket level.” These details show you exactly how an
HTTP request can be transmitted using sockets, and how the server responds. If, at this time,
you are only interested in creating bots and not how Internet protocols are constructed, you
can safely skip this chapter.

TCP/IP Networks
When you are using sockets, you are almost always dealing with a TCP/IP network. Sockets
are built so that they could abstract the differences between TCP/IP and other low-level net-
work protocols. An example of this is the Internetwork Packet Exchange (IPX) protocol. IPX
is the protocol that Novell developed to create the first local area network (LAN). Using sockets,
programs could be constructed that could communicate using either TCP/IP or IPX. The
socket protocol isolated the program from the differences between IPX and TCP/IP, thus
making it so a single program could operate with either protocol.

NOTE Although other protocols can be used with sockets, they have very limited Internet brows-
ing capabilities, and therefore, they will not be discussed in this book.

When it was first introduced, TCP/IP was a radical departure from existing network struc-
tures because it did not follow the typical hierarchical pattern that was used before. Unlike
other network structures, such as Systems Network Architecture (SNA), TCP/IP makes no
distinction between client and server at the machine level, instead, it has a single computer
that functions as client, server, or both. Each computer on the network is given a single address,
and no address is greater than another. Because of this, a supercomputer running at a govern-
ment research institute has an IP address, and a personal computer sitting in a teenager’s bed-
room also has an IP address; there is no difference between these two.

The name for this type of network is a peer-to-peer network. All computers on a TCP/IP
network are considered peers, and it is very common for machines on this network to function

The World of Sockets

4040c01.qxd 1/23/02 3:06 PM Page 3

4

both as client and server. In a peer-to-peer network, a client is the program that sent the first
network packet, and a server is the program that received the first packet. A packet is one net-
work transmission; many packets pass between a client and server in the form of requests and
responses.

Network Programming
You will now see how to actually program sockets and deal with socket protocols. Collectively,
this is known as network programming. Before you learn the socket commands to affect such
communications, however, you will first need to examine the protocols. It makes sense to
know what you want to transmit before you learn how to transmit it.

You will begin this process by first seeing how a server can determine what protocol is being
used. This is done by using common network ports and services.

Common Network Ports and Services
Each computer on a network has many sockets that it makes available to computer programs.
These sockets, which are called ports, are numbered, and these numbers are very important.
(A particularly important one is port 80, the HTTP socket that will be used extensively
throughout this book.) Nearly every example in this book will deal with web access, and
therefore makes use of port 80. On any one computer, the server programs must specify the
numbers of the ports they would like to “listen to” for connections, and the client programs
must specify the numbers of the ports they would like to seek connections from.

You may be wondering if these ports can be shared. For instance, if a web user has established
a connection to port 80 of a web server, can another user establish a connection to port 80 as
well? The answer is yes. Multiple clients can attach to the same server’s port. However, only
one program at a time can listen on the same server port. Think of these ports as television
stations. Many television sets (clients) can be tuned to a broadcast on a particular channel
(server), but it is impossible for several stations (servers) to broadcast on the same channel.

Table 1.1 lists common port assignments and their corresponding Request for Comments
(RFC) numbers. RFC numbers specify a document that describes the rules of this protocol.
We will examine RFCs in much greater detail later in this chapter.

TABLE 1.1: Common Port Assignments and Corresponding RFC Numbers

Port Common Name RFC# Purpose

7 Echo 862 Echoes data back. Used mostly for testing.

9 Discard 863 Discards all data sent to it. Used mostly for testing.

Continued on next page

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 4

5

TABLE 1.1 CONTINUED: Common Port Assignments and Corresponding RFC Numbers

Port Common Name RFC# Purpose

13 Daytime 867 Gets the date and time.

17 Quotd 865 Gets the quote of the day.

19 Chargen 864 Generates characters. Used mostly for testing.

20 ftp-data 959 Transfers files. FTP stands for File Transfer Protocol.

21 ftp 959 Transfers files as well as commands.

23 telnet 854 Logs on to remote systems.

25 SMTP 821 Transfers Internet mail. Stands for Simple Mail Transfer Protocol.

37 Time 868 Determines the system time on computers.

43 whois 954 Determines a user’s name on a remote system.

70 gopher 1436 Looks up documents, but has been mostly replaced by HTTP.

79 finger 1288 Determines information about users on other systems.

80 http 1945 Transfer documents. Forms the foundation of the Web.

110 pop3 1939 Accesses message stored on servers. Stands for Post Office
Protocol, version 3.

443 https n/a Allows HTTP communications to be secure. Stands for Hypertext
Transfer Protocol over Secure Sockets Layer (SSL).

What Is an IP Address?
The TCP/IP protocol is actually a combination of two protocols: the Transmission Control
Protocol (TCP) and the Internet Protocol (IP). The IP component of TCP/IP is responsible
for moving packets of data from node to node, and TCP is responsible for verifying the correct
delivery of data from client to server.

An IP address looks like a series of four numbers separated by dots. These addresses are
called IP addresses because the actual address is transferred with the IP portion of the protocol.
For example, the IP address of my own site is 216.122.248.53. Each of these four numbers is a
byte and can, therefore, hold numbers between zero and 255. The entire IP address is a 4-byte,
or 32-bit, number. This is the same size as the Java primitive data type of int.

Why represent an IP address as four numbers separated by periods? If it’s really just an
unsigned 32-bit integer, why not just represent IP addresses as their true numeric identities?
Actually, you can: the IP address 216.122.248.53 can also be represented by 3631937589.
If you point a browser at http://216.122.248.53 it should take you to the same location as if
you pointed it to http://3631937589.

If you are not familiar with the byte-order representation of numbers, the transformation
from 216.122.248.53 to 3631937589 may seem somewhat confusing. The conversion can
easily be accomplished with any scientific calculator or even the calculator that comes with

Network Programming

4040c01.qxd 1/23/02 3:06 PM Page 5

6

Windows (in scientific mode). To make the conversion, you must convert each of the byte
components of the address 216.122.248.53 into its hexadecimal equivalent. You can easily do
the conversion by switching the Windows calculator to decimal mode, entering the number,
and then switching to hexadecimal mode. When you do this, the results will mirror these:

Decimal Hexadecimal

216 D8

122 7A

248 F8

53 35

Now that each byte is hexadecimal, you must create one single hexadecimal number that is
the composite of all four bytes concatenated together. Just list each byte one right after the
other, as shown here:

D8 7A F8 35 or D87AF835

You now have the numeric equivalent of the IP address. The only problem is that this
number is in hexadecimal. No problem, your scientific calculator can easily convert hexadeci-
mal back into decimal. When you do so, you will get the number 3,631,937,589. This same
number can now be used in the URL: http://3631937589.

Why do we need two forms of IP addresses? What does 216.122.248.53 add that 3631937589
does not? Mainly, the former is easier to memorize. Though neither number is terribly appeal-
ing to memorize, the designers of the Internet thought that period-separated byte notation
(216.122.248.53) was easier to remember than the lengthy numeric notation (3631937589). In
reality, though, the end user generally sees neither form. This is because IP addresses are
almost always tied to hostnames.

What Is a Hostname?
Hostnames are used because addresses such as 216.122.248.53, or 3631937589, are too hard
for the average computer user to remember. For example, my hostname, www.heat-on.com, is
set to point to 216.122.248.53. It is much easier for a human to remember www.heat-on.com
than it is to remember 216.122.248.53.

A hostname should not be confused with a Uniform Resource Locator (URL). A hostname
is just one component of a URL. For example, one page on my site may have the URL of
http://www.jeffheaton.com/java/advanced/. The hostname is only the www.jeffheaton.com
portion of that URL. It specifies the server that will transmit the requested files. A hostname
only identifies an IP address belonging to a server; a URL specifies some specific file on a
server. There are other components to the URL that will be examined in Chapter 2.

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 6

7

The relationship between hostnames and IP addresses is not a one-to-one but a many-to-
many relationship. First, let’s examine the relationship of many hostnames to one IP address.
Very often, people want to host several sites from one server. This server can only have one
IP address, but it can allow several hostnames to point to it. This is the case with my own site.
In addition to www.heat-on.com, I also have www.jeffheaton.com. Both of these hostnames are
set to provide the exact same IP address. I said that the relationship between hostnames and
IP addresses was many-to-many. Is there a case where one single hostname can have multiple IP
addresses? Usually this is not the case, but very large volume sites will often have large arrays of
servers called webfarms or server farms. Each of these servers will often have its own individual
IP address. Yet the entire server farm is accessible through one hostname.

It is very easy to determine the IP address from a hostname. There is a command that most
operating systems have called Ping. The Ping command has many uses. It can tell you if the
specified site is up or down; it can also tell you the IP address of a host. The format of the Ping
command is PING <hostname | IP>. You can give Ping either a hostname or an IP address.
Below is a Ping that was given the hostname of heat-on.com. As heat-on.com is pinged, its IP
address is returned.

C:\>ping heat-on.com

Pinging heat-on.com [216.122.248.53] with 32 bytes of data:

Reply from 216.122.248.53: bytes=32 time=150ms TTL=241
Reply from 216.122.248.53: bytes=32 time=70ms TTL=241
Reply from 216.122.248.53: bytes=32 time=131ms TTL=241
Reply from 216.122.248.53: bytes=32 time=120ms TTL=241

This command can also be used to prove that my site with the hostname jeffheaton.com
really has the same address as my site with the hostname heat-on.com. The following Ping
command demonstrates this:

C:\>ping jeffheaton.com

Pinging jeffheaton.com [216.122.248.53] with 32 bytes of data:

Reply from 216.122.248.53: bytes=32 time=80ms TTL=241
Reply from 216.122.248.53: bytes=32 time=80ms TTL=241
Reply from 216.122.248.53: bytes=32 time=90ms TTL=241
Reply from 216.122.248.53: bytes=32 time=70ms TTL=241

The distinction between hostnames and URLs is very important when dealing with Ping.
Ping only accepts IP addresses or hostnames. A URL is not an acceptable input to the Ping
command. Attempting to ping http://www.heat-on.com will not work, as demonstrated here:

C:\>ping http://www.heat-on.com/
Bad IP address http://www.heat-on.com/.

Network Programming

4040c01.qxd 1/23/02 3:06 PM Page 7

8

Ping does have some programming to make it more intelligent. If you were to just ping
http://www.heat-on.com without the trailing “/” and other path specifiers, the Windows
version of Ping will take the hostname from the URL.

WARNING Like nearly every example in this book, the Ping command requires that you be connected
to the Internet for this example to work.

How DNS Resolves a Hostname to an IP Address
Socket connections can only be established using an IP address. Because of this, it is necessary
to convert a hostname to an IP address. How exactly is a hostname resolved to an IP address?
Depending on how your computer is configured, it could be done in several ways, but most
systems use domain name service (DNS) to provide this translation. In this section, we will
examine this process. First, we will explore how DNS transforms a hostname into an IP address.

DNS and IP Addresses
DNS servers are server machines that return the IP addresses associated with particular host-
names. There is not just one central DNS server, however; resolving hostnames is handled
by a huge, diverse array of DNS servers that are set up throughout the world.

When your computer is configured to access the Internet, it must be given the IP addresses
of two DNS servers. Usually these are configured by your network administrator or provided
by your Internet service provider (ISP). The DNS servers may have hostnames too, but you
cannot use these when you are configuring the servers. Your computer must have a DNS
server in order to resolve an IP address. If the DNS server you have was presented using a
hostname, however, you’re in trouble. This is because the computer doesn’t have a DNS
server to use to look up the IP address of the one DNS server you do have. As you can see, it’s
really a chicken and egg–type of problem.

But requiring computer users to enter two DNS servers as IP addresses can be cumbersome.
If the user enters any piece of this information incorrectly, they will be unable to connect to
any sites using a hostname. Because of this, the Dynamic Host Configuration Protocol (DHCP)
was created.

Using the Dynamic Host Configuration Protocol
Very often, computer systems use DHCP instead of forcing the user to specify most network
configuration information (such as IP addresses and DNS servers). The purpose of DHCP is
to enable individual computers on an IP network to obtain their initial configurations from a
DHCP server or servers, rather than making users perform this configuration themselves. The
network administrator can set up all the DNS information on one central machine, the DNS

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 8

9

server. The DHCP server then disseminates this configuration information to all user comput-
ers. This provides conformity and alleviates the users from having to enter network configura-
tion information. The DHCP server has no exact information about the individual computers
until they request this configuration information. The user computers will request this infor-
mation when they first connect to the network. The overall purpose of this is to reduce the
work necessary to administer a large IP network. The most significant piece of information
distributed in this manner is the DNS servers that the user computer should use.

DHCP was created by the Internet Architecture Board (IAB) of the Internet Engineering
Task Force (IETF; a volunteer organization that defines protocols for use on the Internet).
Because of this, the definition of DHCP is recorded in an Internet RFC, and the IAB is
asserting its status as to Internet Standardization.

Many broadband ISPs, such as cable modems and DSL, use DHCP directly from their broad-
band modem. When the broadband modem is connected to the computer using Ethernet, the
DHCP server can be built into the broadband modem so that it can correctly configure the
user’s computer.

Resolving Addresses Using Java Methods
Earlier, you saw that Ping could be used to determine the IP address of a hostname. In order
for this to work, you will need a way for a Java program to programmatically determine the
IP address of a site, without having to call the external Ping command. If you know the IP
address of the site, you can validate it, or differentiate it from other sites that may be hosted
at the same computer. This validation can be completed by using methods from the Java
InetAddress class.

The most commonly used method in the InetAddress class is the getByName method. This
static method accepts a String parameter that can be an IP address (216.122.248.53) or a
hostname (www.heat-on.com). This is shown in Listing 1.1, which also shows how an IP
address can be converted to a hostname or vice versa.

➲ Listing 1.1 Lookup Addresses (Lookup.java)

import java.net.*;

/**
* Example program from Chapter 1
* Programming Spiders, Bots and Aggregators in Java
*
* A simple class used to lookup a hostname using either
* an IP address or a hostname and to display the IP
* address and hostname for this address. This class can
* be used both to display the IP address for a hostname,
* as well as do a reverse IP lookup and * give the host

Network Programming

4040c01.qxd 1/23/02 3:06 PM Page 9

10

* name for an IP address.

*
* @author Jeff Heaton
* @version 1.0
*/
public class Lookup {

/**
* The main function.
*
* @param args The first argument should be the
* address to lookup.
*/
public static void main(String[] args)
{
try {
if (args.length==0) {
System.out.println(

“Call with one parameter that specifies the host “ +
“to lookup.”);

} else {
InetAddress address = InetAddress.getByName(args[0]);
System.out.println(address);

}
} catch (Exception e) {
System.out.println(“Could not find “ + args[0]);

}
}

}

The actual address resolution in Listing 1.1 occurs during the execution of the following
two lines:

InetAddress address = InetAddress.getByName(args[0]);
System.out.println(address);

First, the input address (held by arg[0]) is passed to getByName to construct a new Inet-
Address object. This will create a new InetAddress object, based on the host specified by
args[0]. The program should be called by specifying the address to resolve. For example,
looking up the IP address for www.heat-on.com will result in the following:

C:\Lookup>java Lookup www.heat-on.com
www.heat-on.com/216.122.248.53

Reverse DNS Lookup
Another very powerful ability that is contained in the InetAddress class is reverse DNS lookup.
If you know only the IP address, as you do in certain network operations, you can pass this IP
address to the getByName method, and from there, you can retrieve the associated hostname.

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 10

11

For example, if you know the address 216.122.248.53 accessed your web server but you don’t
know to whom this IP address belongs, you could pass this address to the InetAddress object
for reverse lookup:

C:\Lookup>java Lookup 216.122.248.53
heat-on.com/216.122.248.53

With the basics of Internet addressing out of the way, you are now almost ready to learn
how to program sockets, but first you must learn a bit of background information about
sockets’ place in Java’s complex I/O handling system. You will first be shown how to use the
Java I/O system and how it relates to sockets.

Java I/O Programming
Java has some of the most complex input/output (I/O) capabilities of any programming lan-
guage. This has two consequences: first, because it is complex, it is quite capable of many
amazing things (such as reading ZIP and other complex file formats); second, and somewhat
unfortunately, because it is complex, it is somewhat difficult for a programmer to learn, at
least initially.

But don’t be put off by this initial difficulty because Java has an extensive array of I/O sup-
port classes, which are all contained in the java.io package. Java’s I/O classes are made up of
input streams, output streams, readers, writers, and filters. These are merely categories of object,
and there are several examples of each type. These categories will now be examined in detail.

NOTE Because the primary focus of this book is to teach you the Java network communication
you will need in order to program spiders, bots, and aggregators, we will examine Java’s
I/O classes as they relate to network communications. However, much of the information
could also easily apply to file-based I/O under Java. If you are already familiar with file
programming in Java, much of this material will be review. Conversely, if you are unfamiliar
with Java file programming, the techniques learned in this chapter will also directly apply
to file programming.

Output Streams
There are many types of output streams provided by Java. All output streams share a common
base class, java.io.OutputStream. This base class is declared as abstract and, therefore, it can-
not be directly instantiated. This class provides several fundamental methods that are needed
to write data. This section will show you how to create, use, and close output streams.

Java I/O Programming

4040c01.qxd 1/23/02 3:06 PM Page 11

12

Creating Output Streams
The OutputStream class provided by Java is abstract, and it is meant only to be overridden to
provide OutputStreams for such things as socket- and disk-based output. The OutputStream
provided by Java provides the following methods:

public abstract void write(int b)
throws IOException

public void write(byte[] b)
throws IOException

public void write(byte[] b, int off, int len)
throws IOException

public void flush()
throws IOException

public void close()
throws IOException

NOTE Other Java output streams extend this class to provide functionality. If you would like to
create an output stream or filter, you will need to extend this class as well.

We will first see how the abstract write method can be used to create an output stream of
your own. After that, the next section describes how to use the other methods.

Creating an output stream is relatively easy. You should create an output stream any time
you would like to implement a data consumer. A data consumer is any class that accepts data
and does something with that data. What is done with the data is left up to the implementa-
tion of the output stream.

Creating an output stream is easy if you keep in mind what an output stream does—it out-
puts bytes. This is the only functionality that you must provide to create an output stream.
To create the new output stream, you must override the single byte version of the write
method (void write(int b)). This method is used to consume a single byte of data. Once
you have overridden this method, you must do with that byte whatever makes sense for the
class you are creating (examples include writing the byte to a file or encrypting the byte).

An example of using an output stream to encrypt will be shown in Chapter 3, “Securing
Communications with HTTPS.” In Chapter 3, we will need to create a class that implements
a base64 encoder. Base64 is a method of encoding text so that it is not easily recognized. We
will create a filter that will accept incoming text and output it as encoded base64 data. This
encoder works by creating an output stream (actually a filter) capable of outputting base64-
encoded text. This class works by providing just the single byte version of write.

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 12

13

There are many other examples of output streams provided by Java. When you open a con-
nection to a socket, you can request an output stream to which you can transmit information.
Other streams support more traditional I/O. For instance, Java supports a FileOutputStream
to deal with disk files. Other OutputStream descendants are provided for other output streams.
Now, you will be shown how to use output streams using some of the other methods of the
OutputStream class.

Using Output Streams
Output streams exist to allow data to be written to some data consumer; what sort of consumer
is unimportant because the output stream objects define methods that allow data to be sent to
any sort of data consumer.

The write method only works with the byte data type. Bytes are usually an inconvenient
data type to deal with because most data types are larger numbers or strings. Most program-
mers deal with the higher-level data types that are composed of bytes. Later in this chapter,
we will examine filters, which will allow you to write higher-level data types, such as strings,
to output streams without the need to manually convert these data types to bytes.

NOTE Even though the write methods specify that they accept ints, they are actually accepting
bytes. Only the lower 8 bytes of the int are actually used.

The following example shows you how to write an array of bytes to an output stream.
Assume that the variable output is an output stream. You will be shown how to actually
obtain an output stream later in this chapter.

byte b = new byte[100]; // creates a byte array
output.write(b); // writes the byte array

Now that you have seen how to use output streams, you will be shown how to read
them more efficiently. By adding buffering to an output stream, data can be read in much
larger, more efficient blocks.

Handling Buffering in Output Streams
It is very inefficient for a programming language to write data out in very small blocks. A
considerable overhead occurs every time a write method is invoked. If your program uses
many write method calls, each of which writes only a single byte, much time will be lost just
dealing with the overhead of writing each byte independently. To alleviate this problem, Java
uses a technique called buffering, which is the process of storing bytes for later transmission.

Buffering takes many small write method calls and combines them into one large block of
data to be written. The size of this eventual block of data is system defined and controlled by
Java. Buffering occurs in the background, without the programmer being directly aware of it.

Java I/O Programming

4040c01.qxd 1/23/02 3:06 PM Page 13

14

But sometimes the programmer must be directly aware of buffering. Sometimes it is neces-
sary to make sure that the data has actually been written and is not just sitting in a buffer.
Writing data without regard to buffering is not practical when you are dealing with network
streams such as sockets. This is because the server computer is waiting for a complete message
from the client before it responds. But how can it ever respond if the client is waiting to send
more data? In fact, if you just write the data, you can quickly enter a deadlock situation with
each of the components acting as follows:

Client Has just sent some data to the server and is now waiting for a response.

Output Stream (buffered) Received the data, but it is now waiting for a bit more infor-
mation before it transmits the data it has already received over the network.

Server Waiting for client to send the request; will time out soon.

To alleviate this problem, the output stream provides a flush method, which allows the
programmer to force the output stream to write any data that is stored in the buffer. The
flush method ensures that data is definitely written. If only a few bytes are written, they may
be held in a temporary buffer before being transmitted. These bytes will later be transmitted
when there is a certain, system-defined amount. This allows Java to make more efficient use
of transfer bandwidth. Programmers should explicitly call the flush method when they are
working with OutputStream objects. This will ensure that any data that has not been trans-
mitted yet will be transmitted.

If you’re dumping a certain amount of data to a file object, buffering is less important. For
disk-based output, you simply dump the data to the file and then close it. It really does not
matter when the data is actually written—you just know that it is all written once you issue
the close command on the file output stream.

Closing an Output Stream
A close method is also provided to every output stream. It is important to call this method
when you are done with the OutputStream class to ensure that the stream is properly closed
and to make sure any file data is flushed out of the stream. If you fail to call the close method,
Java will discard the memory taken by the actual OutputStream object when it goes out of
scope, but Java will not actually close the object.

WARNING Not calling the close method can often cause your program to leak resources. Resource
leaks are operating system objects, such as sockets, that are left open if the close
method is not called.

If an output stream is an abstract class, where does it come from? How do you instantiate
an OutputStream class? OutputStream objects are never obtained directly by using the new

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 14

15

operator. Rather, OutputStream objects are usually obtained from other objects. For example,
the Socket class contains a method called getOutputStream. Calling the getOutputStream
method will return an OutputStream object that will be used to write to the socket. Other
output streams are obtained by different means.

Input Streams
Like output streams, there are many types of input streams provided by Java, which share a
common base class, java.io.InputStream. This base class is declared as abstract and, there-
fore, cannot be directly instantiated. This class provides several fundamental methods that
are needed to read data. This section will show how to create, use, and close input streams.

Creating Input Streams
The InputStream class provided by Java is abstract, and it is only meant to be overridden to
provide InputStream classes for such things as socket- and disk-based input. The InputStream
provided by Java provides the following methods:

public abstract int read()
throws IOException

public int read(byte[] b)
throws IOException

public int read(byte[] b, int off, int len)
throws IOException

public long skip(long n)
throws IOException

public int available()
throws IOException

public void close()
throws IOException

public void mark(int readlimit)

public void reset()
throws IOException

public boolean markSupported()

We will first see how the abstract read method can be used to create an input stream of
your own. After that, the next section describes how to use the other methods.

Java I/O Programming

4040c01.qxd 1/23/02 3:06 PM Page 15

16

Creating an input stream is relatively easy. You should create an input stream any time you
would like to implement a data producer. A data producer is any class that provides data that it
got from somewhere. Where this data comes from is left up to the implementation of the
output stream.

Creating an input stream is easy if you keep in mind what an input stream does—it reads
bytes. This is the only functionality that you must provide to create an input stream. To cre-
ate the new input stream, you must override the single byte version of the read method (int
read()). This method is used to produce a single byte of data. Once you have overridden this
method, you must do with that byte whatever makes sense for the class you are creating
(examples include writing the byte to a file or encrypting the byte).

Usually you will be using input streams rather than creating them. The next section
describes how to use input streams.

Using Input Streams
There are many examples of overridden input streams provided by Java. For example, when
you open a connection to a socket, you can request an input stream from which you can
receive information. Java also supports a FileInputStream to deal with disk files. Still other
InputStream descendants are provided for other input streams.

The InputStream class uses several methods to transmit data. By using these methods, you
can transmit data to a data consumer. The exact nature of this data consumer is unimportant
to the input stream; the input stream is only concerned with the function of moving the data.
What is done with the data is left up to which type of input stream you’re using, such as a
socket- or disk-based file. These methods will now be described.

The read methods allow you to read data in bytes. Even though the abstract read method
shown in the previous section returns an int, the method is only reading a byte at a time. For
performance reasons, whenever reasonably possible, you should try to use the read methods
that accept an array. This will allow more data to be read from the underlying device at a time.

NOTE Note even though the read methods specify that they return ints, they are actually
returning bytes. Only the lower 8 bytes of the int are actually used.

The skip method allows a specified number of bytes to be skipped. This is often more effi-
cient than just reading bytes and discarding their values. The available method is also pro-
vided to show how many bytes are available to be read.

Java also supports two methods called mark and reset. I do not generally recommend their
use because they have two weaknesses that are hard to overcome. Specifically, not all streams

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 16

17

support mark and reset, and those streams that do support them generally impose range lim-
itations that restrict how far you can “rewind.” The idea is that you can call a mark at some
point as you are reading data from the InputStream and then you continue reading. If you
ever need to return to the point in the stream when the mark method was called, you can call
reset and return to that position. This would allow your program to reread data it has
already seen. In many ways, this is a rewind feature for an input stream.

Closing Input Streams
Just like output streams, input streams must be closed when you are done with them. Input
streams do not have the buffering issues that output streams do, however. This is because
input streams are just reading data, not saving it. Since the data is already saved, the input
stream cannot cause any of it to be lost. For example, reading only half of a file won’t in any-
way change or damage that file.

Input streams do share the resource-leaking issues of output streams, though. If you do not
explicitly close an input stream, you run the risk of the underlying operating system resource
not being closed. If this is done enough, your program will run out of streams to allocate.

Filter streams are built on the concept of input and output streams. Filter streams can be
layered on top of input and output streams to provide additional functionality. Filters will be
discussed in the next section.

Filter Streams, Readers, and Writers
Any I/O operation can be accomplished with the InputStream and OutputStream classes.
These classes are like atoms: you can build anything with them, but they are very basic build-
ing blocks. The InputStream and OutputStream classes only give you access to the raw bytes
of the connection. It’s up to you to determine whether the underlying meaning of these bytes
is a string, an IEEE754 floating point number, Unicode text, or some other binary construct.

Filters are generally used as a sort of attachment to the InputStream and OutputStream
classes to hide the low-level complexity of working solely with bytes. There are two primary
types of filters. The first is the basic filter, which is used to transform the underlying binary
numbers into meaningful data types. Many different basic filters have been created; there are
filters to compress, encrypt, and perform various translations on data. Table 1.2 shows a listing
of some of the more useful filters available.

Java I/O Programming

4040c01.qxd 1/23/02 3:06 PM Page 17

18

TABLE 1.2: Some Java Filters

Read Filter Write Filter Purpose

BufferedInputStream BufferedOutputStream These filters implement a buffered input and output
stream. By setting up such a stream, an application can
read/write bytes from a stream without necessarily caus-
ing a call to the underlying system for each byte that is
read/written. The data is read/written by blocks into a
buffer. This often produces more efficient reading and
writing. This is a normal filter and can be used in a chain.

DataInputStream DataOutputStream A data input/output stream filter allows an application to
read/write primitive Java data types from an underlying
input/output stream in a machine-independent way.

GZIPInputStream GZIPOutputStream This filter implements a stream filter for reading or writing
data compressed in the GZIP format.

ZipInputStream ZipOutputStream This filter implements input/output filter streams for
reading and writing files in the ZIP file format. This class
includes support for both compressed and uncom-
pressed entries.

n/a PrintWriter This filter prints formatted representations of objects to
a text-output stream. This class implements all of the
print methods found in PrintStream. It does not con-
tain methods for writing raw bytes, for which a program
should use unencoded byte streams.

The second type of filter is really a set of filters that work together; the filters that compose
this set are called readers and writers. The remainder of this section will focus on readers and
writers. These filters are designed to handle the differences between various methods of text
encoding. Readers and writers, for example, can handle text encoded in such formats as ASCII
Encoding (UTF-8) and Unicode (UTF-16).

Filters themselves are extended from the FilterInputStream and FilterOutputStream
classes. These two classes inherit from InputStream and OutputStream classes respectively.
Because of this, filters function exactly like the low-level InputStream and OutputStream
classes. Every FilterInputStream must implement at least a read method. Likewise, every
FilterOutputStream must implement at least a write method. By overriding these methods,
the filters may modify data, as it is being read or written. Many filter streams will provide
many more methods. But some, for example the BufferedInputStream and BufferedOutput-
Stream, provide no new methods and merely keep the same interface as InputStream and
OutputStream.

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 18

19

Chaining Filters Together
One very important feature of filters is their ability to chain themselves together. A basic filter
can be layered on top of either an input/output stream or another filter. A reader/writer can
be layered on top of an input/output stream or another filter but never on another reader/
writer. Readers and writers must always be the last filter in a chain.

Filters are layered by passing the underlying filter or stream into the constructor of the
new stream. For example, to open a file with a BufferedInputStream, the following code
should be used:

FileInputStream fin = new FileInputStream(“myfile.txt”);
BufferedInputStream bis = new BufferedInputStream(fin);

It is very important that the underlying InputStream not be discarded. If the fin variable in
the preceding code were reassigned or set to null, an error would result when the Buffered-
InputStream was used.

Proxy Issues
One very important aspect of TCP/IP networking is that no two computers can have the
same IP address. Proxies and firewalls allow many computers to access the Internet through
one single IP address, though. This is often the situation in large corporate environments.
The users will access one single computer, called a proxy server, rather than directly connect-
ing to the Internet. This access is generally sufficient for most users.

The primary difference between a direct connection and this type of connection is that when
a computer is directly connected to the Internet, that computer has one or more IP addresses
all to itself. In a proxy situation, any number of computers could be sharing the same outbound
proxy IP address. When the computer hooked to the proxy is using client-side sockets, this
does not present a problem. The server that is acting as the proxy server can conceivably
support any number of outbound connections.

Problems occur when a computer connected through the proxy wants to become a server.
If the computer hooked to the proxy network sets itself to become a server on a specific port,
then it can only accept connections on the internal proxy network. If a computer from the
outside attempts to connect back to the computer behind the proxy, it will end up trying to
connect to the proxy computer, which will likely refuse the connection.

Most of the programs presented in this book are clients. Because of this, they can be run
from behind a proxy server with little trouble. The only catch is that they have to know that
they are connected through a proxy. For example, before you can use Microsoft Internet
Explorer (IE) from behind a proxy server, you must configure it to know that it is being run

Proxy Issues

4040c01.qxd 1/23/02 3:06 PM Page 19

20

in this configuration. In the case of IE, you can select Tools and then Internet Options to do
this. From the resulting menu, select Connections and then choose the LAN Settings button.
A screen similar to the one in Figure 1.1 will appear. This screen shows you how to configure
IE for the correct proxy settings.

NOTE This book assumes that you have a working Internet connection. You will need the infor-
mation presented here to allow Java to use your proxy server. Just having the settings in
IE does not configure every network service on your computer to use the proxy server.
Each application must generally be configured separately.

Configuring Java to Use a Proxy Server
There are two ways to configure Java to use a proxy server. The proxy configuration can be
either set by the Java code itself, or it can be set as parameters to the Java Virtual Machine
(JVM) when the application is first started. The proxy settings for Java are contained in system
properties and can be specified from the command line or can be set by the program. Table 1.3
shows a list of some of the more common proxy-related system properties. Like any system
property, proxy-related properties can be set in two different ways. The first is by specifying
them on the command line to the JVM. For example, to execute a program called UseProxy
.class, you could use the following command:

java –Dhttp.ProxyHost=socks.myhost.com -Dhttp.ProxyPort=1080 UseProxy

If you would prefer to set the proxy information programmatically from your program,
you can use the following section of code to accomplish the same thing. You do not need to
use both methods—one will suffice.

F I G U R E 1 . 1 :
Proxy settings in
Internet Explorer

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 20

21

public class UseProxy
{
public static void main(String args[])
{
System.setProperty(“http.proxySet”,true);
System.setProperty(“http.proxyHost”,”socks.myhost.com”);
System.setProperty(“http.proxyPort”,”1080”);
// program continues here

}
}

WARNING If you are connecting to the Internet through a proxy server, you must use one of the
above methods to let Java know about your proxy settings. If you fail to do this, the programs
in this book will not be able to connect to the Internet.

TABLE 1.3: Common Command Line Proxy Settings in Java

System Property Values Purpose

FtpProxySet true/false Set to true if a proxy is to be used for FTP connections.

FtpProxyHost hostname The host address for a proxy server to be used for FTP connections.

FtpProxyPort port number The port to be used on the specified hostname to be used for FTP con-
nections.

gopherProxySet true/false Set to true if a proxy is to be used for Gopher connections.

gopherProxyHost hostname The host address for a proxy server to be used for Gopher connections.

gopherProxyPort port number The port to be used on the specified hostname to be used for Gopher
connections.

http.proxySet true/false Set to true if a proxy is to be used for HTTP connections.

http.proxyHost hostname The host address for a proxy server to be used for HTTP connections.

http.proxyPort port number The port to be used on the specified hostname to be used for HTTP
connections.

https.proxySet true/false Set to true if a proxy is to be used for HTTPS connections.

https.proxyHost hostname The host address for a proxy server to be used for HTTPS connections.

https.proxyPort port number The port to be used on the specified hostname to be used for HTTPS
connections.

Socket Programming in Java
Java has greatly simplified socket programming, especially when compared to the requirements
and constructs of many other programming languages. Java defines two classes that are of par-
ticular importance to socket programming: Socket and ServerSocket. If the program you are

Socket Programming in Java

4040c01.qxd 1/23/02 3:06 PM Page 21

22

writing is to play the role of server, it should use ServerSocket. If the program is to connect to
a server, and thus play the role of client, it should use the Socket class.

The Socket class, whether server (when done through the child class ServerSocket) or client,
is only used to initially start the connection. Once the connection is established, input and out-
put streams are used to actually facilitate the communication between the client and server.
Once the connection is made, the distinction between client and server is purely arbitrary.
Either side may read from or write to the socket.

All socket reading is done through a Java InputStream class, and all socket writing is done
through a Java OutputStream class. These are low-level streams provide only the most rudi-
mentary input methods. All communication with the InputStream and the OutputStream
must be done with bytes—bytes are the only data type recognized by these classes. Because
of this, the InputStream and OutputStream classes are often paired with higher-level Java
input classes. Two such classes for InputStream are the DataInputStream and the Buffered-
Reader. The DataInputStream allows your program to read binary elements, such as 16- or
32-bit integers from the socket stream. The BufferedReader allows you to read lines of text
from the socket. For OutputStream, the two possible classes are DataOutputStream and the
PrintWriter. The DataOutputStream allows your program to write binary elements, such as
16- or 32-bit integers from the socket stream. The PrintWriter allows you to write lines of
text from the socket.

As mentioned earlier, sockets form the lowest-level protocol that most programmers ever
deal with. Layered on top of sockets are a host of other protocols used to implement Internet
standards. These socket protocols are documented in RFCs. You will now learn about RFCs
and how they document socket protocols.

Socket Protocols and RFCs
Sockets merely define a way to have a two-way communication between programs. These two
programs can write any sort of data, be it binary or textual, to/from each other. If there is to be
any order to this, though, there must be an established protocol. Any protocol will define how
each side should communicate and what is to be accomplished by this communication.

Every Internet protocol is documented in a RFC—RFCs will be quoted as sources of infor-
mation throughout this book. RFCs are numbered; for example, HTTP is documented in
RFC1945. A complete set of RFCs can be found at http://www.rfc-editor.org.

RFC numbers are never reused or edited. Once an RFC is published, it will not be modified.
The only way to effectively modify an RFC is to publish a new RFC that makes the old RFC
obsolete.

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 22

23

NOTE To see which RFC number applies to protocols such as HTTP, SMTP, FTP, and other Internet
protocols, refer back to Table 1.1.

For the remainder of the chapter, we will be examining client sockets and server sock-
ets. These will be described in detail through the use of two RFCs. First, you’ll look at
RFC821, which defines SMTP and shows a client implementation. Second, you will
examine RFC1945, which defines HTTP and shows a simple web server implementation.

Client Sockets
Client sockets are used to establish a connection to server sockets, and they are the type of
sockets that will be used for the majority of socket examples throughout this book. To
demonstrate client sockets, we will look at an example of SMTP. You will be shown SMTP
through the use of an example program that sends an e-mail.

The Simple Mail Transfer Protocol
The Simple Mail Transfer Protocol (SMTP) forms the foundation of all e-mail delivery by the
Internet. As you can see from Table 1.1, SMTP uses port 25 and is documented by RFC821.

When you install an Internet e-mail program, such as Microsoft Outlook Express or Eudora
Mail, you must specify a SMTP server to process outgoing mail. This SMTP server is set up
to receive mail messages formatted by Eudora or similar programs. When an SMTP server
receives an e-mail, it first examines the message to determine who it is for. If the SMTP server
controls the mailbox of the receiver, then the message is delivered. If the message is for some-
one on another SMTP server, then the message is forwarded to that SMTP server.

NOTE For the purposes of this chapter, you do not care whether the SMTP server is going to for-
ward the e-mail or handle the e-mail itself. Your only concern is that you have handed the
e-mail off to an SMTP server, and you assume that the server will handle it appropriately.
You will not be aware of it if the e-mail needs to be forwarded or processed.

The SMTP protocol that RFC821 defines is nothing more than a series of requests and
responses. The SMTP client opens a connection to the server. Once the connection is estab-
lished, the client can issue any of the commands shown in Table 1.4.

NOTE Table 1.4 does not show a complete set of SMTP commands, just the commands needed
for this chapter. For a complete list of commands refer to RFC821.

Client Sockets

4040c01.qxd 1/23/02 3:06 PM Page 23

24

TABLE 1.4: Selected SMTP Commands

Command Purpose

HELO [client name] Should be the first command, and should identify the client computer.

MAIL FROM [user name] Should specify who the message is from, and should be a valid e-mail
address.

RCPT TO [user name] Should specify the receiver of this message, and should be a valid e-mail
address.

DATA Should be sent just before the body of the e-mail message. To end this
command, you must send a period (“.”) as a single line.

Here, you can see a typical communication session, including the commands discussed in
Table 1.4, between an RFC client and the RFC server:

1. The client opens the connection. The server responds with
220 heat-on.com ESMTP Sendmail 8.11.0/8.11.0; Mon, 28 May 2001 15:41:26
-0500 (CDT)

2. The client sends its first command (the HELO command) to identify itself, followed by the
hostname:

HELO JeffSComputer

Sometimes the hostname is used for security purposes, but generally it is just logged. By
convention, the hostname of the client computer should be displayed after the HELO com-
mand as seen here.

3. The server responds with
250 heat-on.com Hello SC1-178.charter-stl.com [24.217.160.175], pleased to
meet you

4. The client sends its second command:
MAIL FROM: thesender@senderhost.com

It is here that the e-mail sender is specified. Some SMTP severs will verify that the person
the e-mail is from is a valid user for this system. This is to prevent certain bulk e-mailers
from fraudulently sending large quantities of unwanted e-mail from an unsuspecting
SMTP server.

5. The server responds with
250 2.1.0 thesenderj@senderhost.com... Sender ok

6. The client sends its third command:
RCPT TO: touser@tohost.com

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 24

25

This command specifies to whom the e-mail is being sent. The SMTP server looks at this
command to determine what to do with the e-mail. If the user specified here is in the same
domain handled by the SMTP server, then it sends the message to the correct mailbox. If
the user specified here is elsewhere, then it forwards the mail message to the server that
handles mail for that user.

7. The server responds with:
250 2.1.5 touserj@tohost.com... Recipient ok

8. The client now begins to send data:
DATA

9. The server responds with
354 Enter mail, end with “.” on a line by itself

10. The client sends its data and ends it with a single “.” on a line by itself:
This is a test message.
.

11. Finally, the server responds with
250 2.0.0 f4SKfQH59504 Message accepted for delivery

12. The session is complete and the connection is closed.

From this description, it should be obvious that security is at a minimum with SMTP. You
can specify essentially any address you wish with the MAIL FROM command. This makes it very
easy to forge an e-mail. Of course, a savvy Internet user can spot a forgery by comparing the
e-mail headers to a known valid e-mail from that person. SMTP servers will always show the
path that the e-mail went through in the headers. But to an unsuspecting user, such e-mails
can be very confusing and misleading. Bulk e-mailers, who seek to hide their true e-mail
addresses, often use such tactics. This is why when you attempt to reply to a bulk e-mail, the
message usually bounces.

Using SMTP
Now that we have reviewed SMTP, we will create an example program that implements an
SMTP client. This example program will allow the user to send an e-mail using SMTP. This
program is shown running in Figure 1.2, and its source code is show in Listing 1.2. The source
code is rather extensive; we’ll review it in detail following the code listing.

Client Sockets

4040c01.qxd 1/23/02 3:06 PM Page 25

26

➲ Listing 1.2 A Client to Send SMTP Mail (SendMail.java)

import java.awt.*;
import javax.swing.*;

/**
* Example program from Chapter 1
* Programming Spiders, Bots and Aggregators in Java
* Copyright 2001 by Jeff Heaton
*
* SendMail is an example of client sockets. This program
* presents a simple dialog box that prompts the user for
* information about how to send a mail.
*
* @author Jeff Heaton
* @version 1.0
*/
public class SendMail extends javax.swing.JFrame {

/**
* The constructor. Do all basic setup for this
* application.
*/
public SendMail()
{
//{{INIT_CONTROLS
setTitle(“SendMail Example”);
getContentPane().setLayout(null);
setSize(736,312);
setVisible(false);
JLabel1.setText(“From:”);
getContentPane().add(JLabel1);
JLabel1.setBounds(12,12,36,12);
JLabel2.setText(“To:”);
getContentPane().add(JLabel2);

F I G U R E 1 . 2 :
SMTP example
program

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 26

27

JLabel2.setBounds(12,48,36,12);
JLabel3.setText(“Subject:”);
getContentPane().add(JLabel3);
JLabel3.setBounds(12,84,48,12);
JLabel4.setText(“SMTP Server:”);
getContentPane().add(JLabel4);
JLabel4.setBounds(12,120,84,12);
getContentPane().add(_from);
_from.setBounds(96,12,300,24);
getContentPane().add(_to);
_to.setBounds(96,48,300,24);
getContentPane().add(_subject);
_subject.setBounds(96,84,300,24);
getContentPane().add(_smtp);
_smtp.setBounds(96,120,300,24);
getContentPane().add(_scrollPane2);
_scrollPane2.setBounds(12,156,384,108);
_body.setText(“Enter your message here.”);
_scrollPane2.getViewport().add(_body);
_body.setBounds(0,0,381,105);
Send.setText(“Send”);
Send.setActionCommand(“Send”);
getContentPane().add(Send);
Send.setBounds(60,276,132,24);
Cancel.setText(“Cancel”);
Cancel.setActionCommand(“Cancel”);
getContentPane().add(Cancel);
Cancel.setBounds(216,276,120,24);
getContentPane().add(_scrollPane);
_scrollPane.setBounds(408,12,312,288);
getContentPane().add(_output);
_output.setBounds(408,12,309,285);
//}}

//{{INIT_MENUS
//}}

//{{REGISTER_LISTENERS
SymAction lSymAction = new SymAction();
Send.addActionListener(lSymAction);
Cancel.addActionListener(lSymAction);
//}}

_output.setModel(_model);
_model.addElement(“Server output displayed here:”);
_scrollPane.getViewport().setView(_output);
_scrollPane2.getViewport().setView(_body);

}

/**
* Moves the app to the correct position

Client Sockets

4040c01.qxd 1/23/02 3:06 PM Page 27

28

* when it is made visible.
*
* @param b True to make visible, false to make
* invisible.
*/
public void setVisible(boolean b)
{
if (b)
setLocation(50, 50);

super.setVisible(b);
}

/**
* The main function basically just creates a new object,
* then shows it.
*
* @param args Command line arguments.
* Not used in this application.
*/
static public void main(String args[])
{
(new SendMail()).show();

}

/**
* Created by VisualCafe. Sets the window size.
*/
public void addNotify()
{
// Record the size of the window prior to
// calling parents addNotify.
Dimension size = getSize();

super.addNotify();

if (frameSizeAdjusted)
return;

frameSizeAdjusted = true;

// Adjust size of frame according to the
// insets and menu bar
Insets insets = getInsets();
javax.swing.JMenuBar menuBar =
getRootPane().getJMenuBar();

int menuBarHeight = 0;
if (menuBar != null)
menuBarHeight = menuBar.getPreferredSize().height;

setSize(insets.left
+ insets.right
+ size.width,
insets.top
+ insets.bottom

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 28

29

+ size.height
+ menuBarHeight);

}

// Used by addNotify
boolean frameSizeAdjusted = false;

//{{DECLARE_CONTROLS

/**
* A label.
*/
javax.swing.JLabel JLabel1 =
new javax.swing.JLabel();

/**
* A label.
*/
javax.swing.JLabel JLabel2 =
new javax.swing.JLabel();

/**
* A label.
*/
javax.swing.JLabel JLabel3 =
new javax.swing.JLabel();

/**
* A label.
*/
javax.swing.JLabel JLabel4 =
new javax.swing.JLabel();

/**
* Who this message is from.
*/
javax.swing.JTextField _from =
new javax.swing.JTextField();

/**
* Who this message is to.
*/
javax.swing.JTextField _to =
new javax.swing.JTextField();

/**
* The subject of this message.
*/
javax.swing.JTextField _subject =
new javax.swing.JTextField();

/**

Client Sockets

4040c01.qxd 1/23/02 3:06 PM Page 29

30

* The SMTP server to use to send this message.
*/
javax.swing.JTextField _smtp =
new javax.swing.JTextField();

/**
* A scroll pane.
*/
javax.swing.JScrollPane _scrollPane2 =
new javax.swing.JScrollPane();

/**
* The body of this email message.
*/
javax.swing.JTextArea _body =
new javax.swing.JTextArea();

/**
* The send button.
*/
javax.swing.JButton Send =
new javax.swing.JButton();

/**
* The cancel button.
*/
javax.swing.JButton Cancel =
new javax.swing.JButton();

/**
* A scroll pain.
*/
javax.swing.JScrollPane _scrollPane
= new javax.swing.JScrollPane();

/**
* The output area. Server messages
* are displayed here.
*/
javax.swing.JList _output =
new javax.swing.JList();

//}}

/**
* The list of items added to the output
* list box.
*/
javax.swing.DefaultListModel _model
= new javax.swing.DefaultListModel();

/**
* Input from the socket.

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 30

31

*/
java.io.BufferedReader _in;

/**
* Output to the socket.
*/
java.io.PrintWriter _out;

//{{DECLARE_MENUS
//}}

/**
* Internal class created by VisualCafe to
* route the events to the correct functions.
*
* @author VisualCafe
* @version 1.0
*/
class SymAction
implements java.awt.event.ActionListener {

/**
* Route the event to the correction method.
*
* @param event The event.
*/
public void actionPerformed
(java.awt.event.ActionEvent event)

{
Object object = event.getSource();
if (object == Send)
Send_actionPerformed(event);

else if (object == Cancel)
Cancel_actionPerformed(event);

}
}

/**
* Called to actually send a string of text to the
* socket. This method makes note of the text sent
* and the response in the JList output box. Pass a
* null value to simply wait for a response.
*
* @param s A string to be sent to the socket.
* null to just wait for a response.
* @exception java.io.IOException
*/
protected void send(String s) throws java.io.IOException
{
// Send the SMTP command
if (s!=null) {

Client Sockets

4040c01.qxd 1/23/02 3:06 PM Page 31

32

_model.addElement(“C:”+s);
_out.println(s);
_out.flush();

}
// Wait for the response
String line = _in.readLine();
if (line!=null) {
_model.addElement(“S:”+line);

}
}

/**
* Called when the send button is clicked. Actually
* sends the mail message.
*
* @param event The event.
*/
void Send_actionPerformed(java.awt.event.ActionEvent event)
{
try {

java.net.Socket s
= new java.net.Socket(_smtp.getText(),25);
_out = new java.io.PrintWriter(s.getOutputStream());
_in = new java.io.BufferedReader(
new java.io.InputStreamReader(s.getInputStream()));

send(null);
send(“HELO “ +

java.net.InetAddress.getLocalHost().getHostName());
send(“MAIL FROM: “ + _from.getText());
send(“RCPT TO: “ + _to.getText());
send(“DATA”);
_out.println(“Subject:” + _subject.getText());
_out.println(_body.getText());
send(“.”);
s.close();

} catch (Exception e) {
_model.addElement(“Error: “ + e);

}

}

/**
* Called when cancel is clicked. End the application.
*
* @param event The event.
*/
void Cancel_actionPerformed(java.awt.event.ActionEvent event)
{

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 32

33

System.exit(0);

}
}

Using the SMTP Program
To use the program in Listing 1.2, you must know the address of an SMTP server—usually
provided by your ISP. If you are unsure of your SMTP server, you should contact your ISP’s
customer service. In order for outbound e-mail messages to be sent, your e-mail program must
have this address. Once it does, you can enter who is sending the e-mail (if you are sending it,
you would type your e-mail address in) and who will be on the receiving end. This is usually
entered under the Reply To field of your e-mail program. Both of these addresses must be valid.
If they are invalid, the e-mail may not be sent. After you have entered these addresses, you
should continue by entering the subject, writing the actual message, and then clicking send.

NOTE For more information on how to compile examples in this book, see Appendix E “How to
Compile Examples Under Windows.”

As stated earlier, to send an e-mail with this program, you must enter who is sending the
message. You may be thinking that you could enter any e-mail address you want here, right?
Yes, this is true; as long as the SMTP server allows it, this program will allow you to imper-
sonate anyone you enter into the To address field. However, as previously stated, a savvy
Internet user can tell whether the e-mail address is fake.

After the mention of possible misrepresentation of identity on the sender’s end, you may
now be asking yourself, “Is this program dangerous?” This program is no more dangerous
than any e-mail client (such as Microsoft Outlook Express or Eudora) that also requires you
to tell it who you are. In general, all e-mail programs must request both your identity and
that of the SMTP server.

Examining the SMTP Server
You will now be shown how this program works. We will begin by looking at how a client
socket is created. When the client socket is first instantiated, you must specify two parameters.
First, you must specify the host to connect to; second, you must specify the port number (e.g.,
80) you would like to connect on. These two items are generally passed into the constructor.
The following line of code (from Listing 1.2) accomplishes this:

java.net.Socket s =new java.net.Socket(_smtp.getText(),25);

This line of code creates a new socket, named s. The first parameter to the constructor, _smtp
.getText(), specifies the address to connect to. Here it is being read directly from a text field.
The second parameter specifies the port to connect to. (The port for SMTP is 25.) Table 1.1

Client Sockets

4040c01.qxd 1/23/02 3:06 PM Page 33

34

shows a listing of the ports associated with most Internet services. The hostname is retrieved
from the _smtp class level variable, which is the JTextField control that the SMTP hostname
is entered into.

If any errors occur while you are making the connection to the specified host, the Socket
constructor will throw an IOException. Once this connection is made, input and output
streams are obtained from the Socket.getInputStream and Socket.getOutputStream methods.
This is done with the following lines of code from Listing 1.2:

_out = new java.io.PrintWriter(s.getOutputStream());
_in = new java.io.BufferedReader(new
java.io.InputStreamReader(s.getInputStream()));

These low-level stream types are only capable of reading binary data. Because this data is
needed in text format, filters are used to wrap the lower-level input and output streams
obtained from the socket.

In the code above, the output stream has been wrapped in a PrintWriter object. This is
because PrintWriter allows the program to output text to the socket in a similar manner to
the way an application would write data to the System.out object—by using the print and
println methods. The application presented here uses the println method to send commands
to the SMTP server. As you can see in the code, the InputStream object has also been wrapped;
in this case, it has been wrapped in a BufferedReader. Before this could happen, however, this
object must first have been wrapped in an InputStreamReader object as shown here:

_in = new java.io.BufferedReader(new
java.io.InputStreamReader(s.getInputStream()));

This is done because the BufferedReader object provides reads that are made up of lines of
text instead of individual bytes. This way, the program can read text up to a carriage return
without having to parse the individual characters. This is done with the readLine method.

You will now be shown how each command is sent to the SMTP server. Each of these com-
mands that is sent results in a response being issued from the SMTP server. For the protocol to
work correctly, each response must be read by the SMTP client program. These responses start
with a number and then they give a textual description of what the result was. A full-featured
SMTP client should examine these codes and ensure that no error has occurred.

For the purposes of the SendMail example, we will simple ignore these responses because
most are informational and not needed. Instead, for our purposes, the response will be read in
and displayed to the _output list box. Commands that have been sent to the server are dis-
played in this list with a C: prefix to indicate that they are from the client. Responses returned
from the SMTP server will be displayed with the S: prefix.

To accomplish this, the example program will use the send method. The send method
accepts a single String parameter to indicate the SMTP command to be issued. Once this

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 34

35

command is sent, the send method awaits a response from the SMTP host. The portion of
Listing 1.2 that contains the send method is displayed here:

protected void send(String s) throws java.io.IOException
{
// Send the SMTP command
if(s!=null)
{
_model.addElement(“C:”+s);
_out.println(s);
_out.flush();

}
// Wait for the response
String line = _in.readLine();
if(line!=null)
{
_model.addElement(“S:”+line);

}
}

As you can see, the send method does not handle the exceptions that might occur from its
commands. Instead, they are thrown to the calling method as indicated by the throws clause
of the function declaration. The variable s is checked to see if it is null. If s is null, then no
command is to be sent and only a response is sought. If s is not null, then the value of s is
logged and then sent to the socket. After this happens, the flush command is given to the
socket to ensure that the command was actually sent and not just buffered. Once the command
is sent, the readLine method is called to await the response from the server. If a response is
sent, then it is logged.

Once the socket is created and the input and output objects are created, the SMTP session
can begin. The following commands manage the entire SMTP session:

send(null);
send(“HELO “ +
java.net.InetAddress.getLocalHost().getHostName());

send(“MAIL FROM: “ + _from.getText());
send(“RCPT TO: “ + _to.getText());
send(“DATA”);
_out.println(“Subject:” + _subject.getText());
_out.println(_body.getText());
send(“.”);
s.close();

TIP Refer to Table 1.4 in the preceding section to review the details of what each of the SMTP
commands actually means.

Client Sockets

4040c01.qxd 1/23/02 3:06 PM Page 35

36

The rest of the SendMail program (as seen in Listing 1.2) is a typical Swing application. The
graphical user interface (GUI) layout for this application was created using VisualCafé.
The VisualCafé comments have been left in to allow the form’s GUI layout to be edited by
VisualCafé if you are using it. If you are using an environment other than VisualCafé, you may
safely delete the VisualCafé comments (lines starting in //). The VisualCafé code only consists
of comments and does not need to be deleted to run on other platforms.

Server Sockets
Server sockets form the side of the TCP/IP connection to which client sockets connect. Once
the connection is established, there is little distinction between the server sockets and client
sockets. Both use exactly the same commands to send and retrieve data. Server sockets are
represented by the ServerSocket class, which is a specialized version of the Socket class. The
Socket class is the same class that was discussed in the earlier section about client sockets.

The Hypertext Transfer Protocol
Unlike SMTP, which is used to send e-mail messages, HTTP forms the foundation of all
web browsing on the Internet. HTTP differs from SMTP in one very important way: SMTP
is made up of a series of single-line packets (or communications) between the client and
server, but the typical HTTP request has only two packets—the request and the response. In
HTTP, the client sends a series of lines that specify what the client is requesting, and the
server then responds with the response as one single packet. Listed below, you can see a typi-
cal HTTP client request for the page http://www.heat-on.com,

GET / HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-
excel, application/msword, application/vnd.ms-powerpoint, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0
Host: WWW.HEAT-ON.COM

which is followed by the corresponding server response:
HTTP/1.1 200 OK
Server: Microsoft-IIS/4.0
Date: Thu, 02 Nov 2000 02:30:16 GMT
Content-Type: text/html
Set-Cookie: ASPSESSIONIDGGGGQRZC=KCGDKDABODIEPLJPHAMBMOFB; path=/
Cache-control: private

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2//EN”>

<HTML>

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 36

37

<HEAD>
<TITLE>Jeff Heaton</TITLE>

…. The rest of the HTML document …..

The request and response packets shown here have similar formats. Each one has two areas:
the header and the body. The first blank line is the border between the header area and the
body area. Usually requests will not have a body, so they end with the first blank line. The body
portion of the response is generally the only portion that is actually seen by the user. The head-
ers control information that the client and server send to each other. The body contains the
actual HTML code that will be displayed, and it begins immediately after the first blank line.

NOTE The meanings of the headers in HTTP are important. We will discuss them in greater
detail in Chapter 2. The section in Appendix B, “HTTP Headers,” lists most of the HTTP
headers that will be used throughout this book.

The first line of the request is the most important because it specifies the document that is
being requested. In the previous example, the server assumes that the browser has been asked to
retrieve the URL http://www.heat-on.com. The first line GET / HTTP/1.0 says three important
things about this request: what type of request it is, what document is being requested, and what
version of HTTP is needed. This line will usually be either GET, POST, or HEAD; in this case, this is
a GET request. GET simply requests a document and sends a little information to the server. This
request is mostly used when you click any link you may find on a web page. The POST request is
used when you submit a form, but this rule does not always apply because JavaScript can alter
this behavior (JavaScript can allow POSTs to be linked to nearly any user event, such as clicking a
hyperlink). The / indicates the document that being requested. Specifying / means that the root
document is being requested, not a specific document. Finally HTTP/1.0 just specifies the HTTP
version that is needed.

NOTE For more information on the HEAD request, refer to Chapter 2.

After the GET or POST request is received by the web server, a response is sent back. A
sample response is shown in the second part of the previous example. There are two parts to
this response. The first is the mention of HTTP headers, with the first line of the HTTP
headers specifying the status of the request. The second part of the response is the body, the
HTML returned from the server to the browser. The status is shown here:

HTTP/1.1 200 OK

This first line of the HTTP headers starts with a numeric error code; some of the common
ones are listed here. (The section in Appendix B, “HTTP Status Codes,” lists the standard
meanings of each of these responses.)

100-199 Is an informational message and is not generally used.

Server Sockets

4040c01.qxd 1/23/02 3:06 PM Page 37

38

200-299 Means a successful request.

300-399 Indicates that the requested resource has been moved. These are often used for
redirection.

400-499 Indicates client errors.

500-599 Indicates server errors.

The remaining lines of the header, repeated here, comprise the actual message.
Server: Microsoft-IIS/4.0
Date: Thu, 02 Nov 2000 02:30:16 GMT
Content-Type: text/html
Set-Cookie: ASPSESSIONIDGGGGQRZC=KCGDKDABODIEPLJPHAMBMOFB; path=/
Cache-control: private

... message continues here ...

Using HTTP
Listing 1.3 shows the example of server sockets for this chapter. In this listing, you are intro-
duced to a very simple web server that would not be practical for any use because it only dis-
plays one page. This example does demonstrate the use of a server socket, however. It also
shows a simple use of HTTP; more complex uses of HTTP will be discussed in Chapter 2.

➲ Listing 1.3 A Simple Web Server (WebServer.java)

import java.net.*;
import java.io.*;

/**
* Example program from Chapter 1
* Programming Spiders, Bots and Aggregators in Java
* Copyright 2001 by Jeff Heaton
*
* WebServer is a very simple web-server. Any request
* is responded with a very simple web-page.
*
* @author Jeff Heaton
* @version 1.0
*/
public class WebServer {

/**
* WebServer constructor.
*/
protected void start()
{
ServerSocket s;

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 38

39

System.out.println(“Webserver starting up on port 80”);
System.out.println(“(press ctrl-c to exit)”);
try {
// create the main server socket
s = new ServerSocket(80);

} catch (Exception e) {
System.out.println(“Error: “ + e);
return;

}

System.out.println(“Waiting for connection”);
for (;;) {
try {
// wait for a connection
Socket remote = s.accept();
// remote is now the connected socket
System.out.println(“Connection, sending data.”);
BufferedReader in = new BufferedReader(
new InputStreamReader(remote.getInputStream()));

PrintWriter out
= new PrintWriter(remote.getOutputStream());

// read the data sent. We basically ignore it,
// stop reading once a blank line is hit. This
// blank line signals the end of the client HTTP
// headers.
String str=”.”;
while (!str.equals(“”))
str = in.readLine();

// Send the response
// Send the headers
out.println(“HTTP/1.0 200 OK”);
out.println(“Content-Type: text/html”);
out.println(“Server: Bot”);
// this blank line signals the end of the headers
out.println(“”);
// Send the HTML page
out.println(
“<H1>Welcome to the Ultra Mini-WebServer</H2>”);
out.flush();
remote.close();

} catch (Exception e) {
System.out.println(“Error: “ + e);

}
}

}

/**
* Start the application.
*

Server Sockets

4040c01.qxd 1/23/02 3:06 PM Page 39

40

* @param args Command line parameters are not used.
*/
public static void main(String args[])
{
WebServer ws = new WebServer();
ws.start();

}
}

Listing 1.3 implements this very simple web server that is shown in Figure 1.3 below. This
listing demonstrates how server sockets are used to listen for requests and then fulfill them.

TIP To use the program in Listing 1.3, you must execute it on a computer that does not
already have a web server running. If there is already a web server running, an error will
be displayed and the example program will terminate. For more information on how to
compile and execute a program, see Appendix E.

Because a full-featured web server would be beyond the scope of this book, the program in
Listing 1.3 will ignore any requests and simply respond with the page shown in Figure 1.3.
Because this program is a web server, to see its output, you must access it with a browser. To
access the server from the same machine that the server is running on, select http://127.0.0.1
as the address that the browser is to look at. The IP address 127.0.0.1 always specifies the local
machine. Alternatively, you can view this page from another computer by pointing its browser
at the IP address of the computer running the web server program.

Examining the Mini Web Server
Server sockets use the ServerSocket object rather than the Socket object that client sockets
use. There are several constructors available with the ServerSocket object. The simplest

F I G U R E 1 . 3 :
The mini web server

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 40

41

constructor accepts only the port number on which the program should be listening. Listening
refers to the mode that a server is in while it waits for clients to connect. The following lines
of code are used in Listing 1.3 to create a new ServerSocket object and reserve port 80 as the
port number on which the web server should listen for connections:

try
{

// create the main server socket
s = new ServerSocket(80);

}
catch(Exception e)
{
System.out.println(“Error: “ + e);
return;

}

The try block is necessary because any number of errors could occur when the program
attempts to register port 80. The most common error that would result is that there is already
a server listening to port 80 on this machine.

WARNING This program will not work on a machine that already has a web server, or some other program,
listening on port 80.

Once the program has port 80 registered, it can begin listening for connections. The follow-
ing line of code is used to wait for a connection:

Socket remote = s.accept();

The Socket object that is returned by accept is exactly the same class that is used for client
sockets. Once the connection is established, the difference between client and server sockets
fade. The primary difference between client and server sockets is the way in which they con-
nect. A client sever connects to something. A server socket waits for something to connect to it.

The accept method is a blocking call, which means the current thread will wait for a con-
nection. This can present problems for your program if there are other tasks it would like to
accomplish while it is waiting for connections. Because of this, it is very common to see the
accept method call placed in a worker thread. This allows the main thread to carry on other
tasks, while the worker thread waits for connections to arrive.

Once a connection is made, the accept method will return a socket object for the new
socket. After this point, reading and writing is the same between client and server sockets.
Many client server programs would create a new thread to handle this new connection.

Now that a connection has been made, a new thread could be created to handle it. This
new worker thread would process all the requests from this client in the background, which
allows the ServerSocket object to wait for and service more connections. However, the example

Server Sockets

4040c01.qxd 1/23/02 3:06 PM Page 41

42

program in Listing 1.3 does not require such programming. As soon as the socket is accepted,
input and output objects are created; this same process was used with the SMTP client. The
following lines from Listing 1.3 show the process of preparing the newly accepted socket for
input and output:

// remote is now the connected socket
System.out.println(“Connection, sending data.”);
BufferedReader in = new BufferedReader(
new InputStreamReader(remote.getInputStream()));

PrintWriter out = new PrintWriter(remote.getOutputStream());

Now that the program has input and output objects, it can process the HTTP request. It
first reads the HTTP request lines. A full-featured server would parse each line and determine
the exact nature of this request, however, our ultra-simple web server just reads in the request
lines and ignores them, as shown here:

// read the data sent. We basically ignore it,
// stop reading once a blank line is hit. This
// blank line signals the end of the
// client HTTP headers.
String str=”.”;
while(!str.equals(“”))
str = in.readLine();

These lines cause the server to read in lines of text from the newly connected socket. Once
a blank line (which indicates the end of the HTTP header) is reached, the loop stops, and the
server stops reading. Now that the HTTP header has been retrieved, the server sends an
HTTP response. The following lines of code accomplish this:

// Send the response
// Send the headers
out.println(“HTTP/1.0 200 OK”);
out.println(“Content-Type: text/html”);
out.println(“Server: Bot”);
// this blank line signals the end of the headers
out.println(“”);// Send the HTML page
out.println(
“<H1>Welcome to the Ultra Mini-WebServer</H2>”);

Status code 200, as shown on line 3 of the preceding code, is used to show that the page was
properly transferred, and that the required HTTP headers were sent. (Refer to Chapter 2 for
more information about HTTP headers.) Following the HTTP headers, the actual HTML
page is transferred. Once the page is transferred, the following lines of code from Listing 1.3
are executed to clean up:

out.flush();
remote.close();

Chapter 1 • Java Socket Programming

4040c01.qxd 1/23/02 3:06 PM Page 42

43

The flush method is necessary to ensure that all data is transferred, and the close method
is necessary to close the socket. Although Java will discard the Socket object, it will not gener-
ally close the socket on most platforms. Because of this, you must close the socket or else you
might eventually get an error indicating that there are no more file handles. This becomes
very important for a program that opens up many connections, including one to a spider.

Summary
Socket programming is an area of Java that many programmers are unaware of. Sockets are
used to implement bidirectional communication channels between programs that are typically
running on different computers. All support for sockets is directly built into the JDK and does
not require the use of third-party class libraries. Sockets are divided into two categories: client
sockets and server sockets. Client sockets initiate the communication between programs;
server sockets wait for clients to connect. Once the user has connected, both types function in
the same manner and both can send and receive data packets.

Keep in mind that server sockets must specify a port on which to listen for connections.
Each computer on the Internet has numeric ports assigned to it, and no two services on the
same machine may share a port number. However, two clients may connect to the same port
on the same machine.

The protocol by which a client and server communicate must also be well defined. The
client and server programs are rarely made by the same vendor, so open standards are very
important. Most Internet standards are documented in Request for Comments (RFCs).
RFCs are never altered or removed once they have been published; instead, to change infor-
mation in a RFC, a new one is published that is said to make the old one obsolete.

Now that you know the basics of socket communication, you can begin to explore HTTP.
Chapter 2 focuses exclusively on implementing the routines necessary to communicate with a
web server. (Web servers are also known as HTTP servers.) The GET and POST methods of
the HTTP protocol will be examined in detail.

Summary

4040c01.qxd 1/23/02 3:06 PM Page 43

4040c01.qxd 1/23/02 3:06 PM Page 44

