

Chapter

1

Routing Policy

JNCIS EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

�

Describe JUNOS software routing policy design

considerations—import; export; terms; match criteria;

actions; default actions

�

Identify the operation of community regular expressions

�

Identify the operation of AS Path regular expressions

�

Evaluate the outcome of a policy using a subroutine

�

Evaluate the outcome of a policy using a policy expression

4072.book Page 1 Tuesday, March 16, 2004 3:57 PM

CO
PYRIG

HTED
 M

ATERIA
L

Before reading this chapter, you should be very familiar with the
functionality of a routing policy in the JUNOS software and when
it might be appropriate to use one. You should also understand

how a multiterm policy uses match criteria and actions to perform its functions. Finally, the use
of route filters and their associated match types is assumed knowledge.

In this chapter, we’ll explore the use of routing policies within the JUNOS software. We first
examine the multiple methods of altering the processing of a policy, including policy chains, sub-
routines, and expressions. We then discuss the use of a routing policy to locate routes using Border
Gateway Protocol (BGP) community values and Autonomous System (AS) Path information.

Throughout the chapter, we see examples of constructing and applying routing policies. We
also explore some methods for verifying the effectiveness of your policies before implementing
them on the router using the

test policy

 command.

Routing policy basics are covered extensively in

JNCIA: Juniper Networks

Certified Internet Associate Study Guide

 (Sybex, 2003).

Routing Policy Processing

One of the advantages (or disadvantages depending on your viewpoint) of the JUNOS software
policy language is its great flexibility. Generally speaking, you often have four to five methods
for accomplishing the same task. A single policy with multiple terms is one common method for
constructing an advanced policy. In addition, the JUNOS software allows you to use a policy
chain, a subroutine, a prefix list, and a policy expression to complete the same task. Each of
these methods is unique in its approach and attacks the problem from a different angle. Let’s
examine each of these in some more detail.

Policy Chains

We first explored the concept of a

policy chain

 in the

JNCIA Study Guide

. Although it sounds
very formal, a policy chain is simply the application of multiple policies within a specific section
of the configuration. An example of a policy chain can be seen on the Merlot router as:

[edit protocols bgp]

user@Merlot#

show

4072.book Page 2 Tuesday, March 16, 2004 3:57 PM

Routing Policy Processing

3

group Internal-Peers {

 type internal;

 local-address 192.168.1.1;

 export [adv-statics adv-large-aggregates adv-small-aggregates];

 neighbor 192.168.2.2;

 neighbor 192.168.3.3;

}

The

adv-statics

,

adv-large-aggregates

, and

adv-small-aggregates

 policies, in
addition to the default BGP policy, make up the policy chain applied to the BGP peers of Merlot.
When we look at the currently applied policies, we find them to be rather simple:

[edit policy-options]

user@Merlot#

show

policy-statement adv-statics {

 term statics {

 from protocol static;

 then accept;

 }

}

policy-statement adv-large-aggregates {

 term between-16-and-18 {

 from {

 protocol aggregate;

 route-filter 192.168.0.0/16 upto /18;

 }

 then accept;

 }

}

policy-statement adv-small-aggregates {

 term between-19-and-24 {

 from {

 protocol aggregate;

 route-filter 192.168.0.0/16 prefix-length-range /19-/24;

 }

 then accept;

 }

}

You could easily make an argument for just converting this policy chain into a single multi-
term policy for the internal BGP (IBGP) peers. While this is certainly true, one of the advantages
of a policy chain would be lost: the ability to reuse policies for different purposes.

4072.book Page 3 Tuesday, March 16, 2004 3:57 PM

4

Chapter 1 �

Routing Policy

Figure 1.1 displays the Merlot router with its IBGP peers of Muscat and Chablis. There are
also external BGP (EBGP) connections to the Cabernet router in AS 65010 and the Zinfandel
router in AS 65030. The current administrative policy within AS 65020 is to send the cus-
tomer static routes only to other IBGP peers. Any EBGP peer providing transit service should
only receive aggregate routes whose mask length is smaller than 18 bits. Any EBGP peer pro-
viding peering services should receive all customer routes and all aggregates whose mask
length is larger than 19 bits. Each individual portion of these administrative policies is coded
into a separate routing policy within the

[edit policy-opitons]

 configuration hierarchy.
They then provide the administrators of AS 65020 with a multitude of configuration options
for advertising routes to its peers.

F I G U R E 1 . 1

Policy chain network map

Cabernet is providing transit service to AS 65020, which allows it to advertise
their assigned routing space to the Internet at large. On the other hand, the
peering service provided by Zinfandel allows AS 65020 to route traffic directly

between the Autonomous Systems for all customer routes.

The EBGP peering sessions to Cabernet and Zinfandel are first configured and established:

[edit]

user@Merlot#

show protocols bgp

group Internal-Peers {

 type internal;

 local-address 192.168.1.1;

 export [adv-statics adv-large-aggregates adv-small-aggregates];

 neighbor 192.168.2.2;

 neighbor 192.168.3.3;

Cabernet

AS 65010

Muscat

Merlot Chablis

AS 65020

Zinfandel

AS 65030

4072.book Page 4 Tuesday, March 16, 2004 3:57 PM

Routing Policy Processing

5

}

group Ext-AS65010 {

 type external;

 peer-as 65010;

 neighbor 10.100.10.2;

}

group Ext-AS65030 {

 type external;

 peer-as 65030;

 neighbor 10.100.30.2;

}

[edit]

user@Merlot#

run show bgp summary

Groups: 3 Peers: 4 Down peers: 0

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 12 10 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State

192.168.2.2 65020 170 172 0 0 1:22:50 5/6/0

192.168.3.3 65020 167 170 0 0 1:21:39 5/6/0

10.100.10.2 65010 30 32 0 0 12:57 0/0/0

10.100.30.2 65030 55 57 0 0 24:49 0/0/0

The

adv-large-aggregates

 policy is applied to Cabernet to advertise the aggregate routes
with a subnet mask length between 16 and 18 bits. After committing the configuration, we
check the routes being sent to AS 65010:

[edit protovols bgp]

user@Merlot#

set group Ext-AS65010 export adv-large-aggregates

[edit protovols bgp]

user@Merlot#

commit

[edit protocols bgp]

user@Merlot#

run show route advertising-protocol bgp 10.100.10.2

inet.0: 32 destinations, 36 routes (32 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

192.168.0.0/16 Self I

192.168.2.0/24 Self I

192.168.2.16/28 Self I

192.168.2.32/28 Self I

4072.book Page 5 Tuesday, March 16, 2004 3:57 PM

6

Chapter 1 �

Routing Policy

192.168.2.48/28 Self I

192.168.2.64/28 Self I

192.168.3.0/24 Self I

192.168.3.16/28 Self I

192.168.3.32/28 Self I

192.168.3.48/28 Self I

192.168.3.64/28 Self I

The 192.168.0.0 /16 aggregate route is being sent as per the administrative policy, but a
number of other routes with larger subnet masks are also being sent to Cabernet. Let’s first ver-
ify that we have the correct policy applied:

[edit protocols bgp]

user@Merlot#

show group Ext-AS65010

type external;

export adv-large-aggregates;

peer-as 65010;

neighbor 10.100.10.2;

The

adv-large-aggregates

 policy is correctly applied. Let’s see if we can find where the
other routes are coming from. The

show route

 command provides a vital clue:

[edit]

user@Merlot#

run show route 192.168.3.16/28

inet.0: 32 destinations, 36 routes (32 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

192.168.3.16/28 *[BGP/170] 05:51:24, MED 0, localpref 100, from 192.168.3.3

 AS path: I

 > via so-0/1/1.0

Merlot has learned this route via its BGP session with Chablis. Since it is an active BGP
route, it is automatically advertised by the BGP default policy. Remember that the default
policy is always applied to the end of every policy chain in the JUNOS software. What we
need is a policy to block the more specific routes from being advertised. We create a policy
called

not-larger-than-18

 that rejects all routes within the 192.168.0.0 /16 address
space that have a subnet mask length greater than or equal to 19 bits. This ensures that all
aggregates with a mask between 16 and 18 bits are advertised—exactly the goal of our
administrative policy.

[edit policy-options]

user@Merlot#

show policy-statement not-larger-than-18

term reject-greater-than-18-bits {

4072.book Page 6 Tuesday, March 16, 2004 3:57 PM

Routing Policy Processing

7

 from {

 route-filter 192.168.0.0/16 prefix-length-range /19-/32;

 }

 then reject;

}

[edit policy-options]

user@Merlot#

top edit protocols bgp

[edit protocols bgp]

user@Merlot#

set group Ext-AS65010 export not-larger-than-18

[edit protocols bgp]

user@Merlot#

show group Ext-AS65010

type external;

export [adv-large-aggregates not-larger-than-18];

peer-as 65010;

neighbor 10.100.10.2;

[edit protocols bgp]

user@Merlot#

commit

commit complete

[edit protocols bgp]

user@Merlot#

run show route advertising-protocol bgp 10.100.10.2

inet.0: 32 destinations, 36 routes (32 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

192.168.0.0/16 Self I

It appears as if our policy chain is working correctly—only the 192.168.0.0 /16 route is
advertised to Cabernet. In fact, as long as the

not-larger-than-18

 policy appears before the
BGP default policy in our policy chain we achieve the desired results.

We now shift our focus to Zinfandel, our EBGP peer in AS 65030. Our administrative policy
states that this peer should receive only aggregate routes larger than 18 bits in length and all cus-
tomer routes. In anticipation of encountering a similar problem, we create a policy called

not-
smaller-than-18

 that rejects all aggregates with mask lengths between 16 and 18 bits. In addi-
tion, we apply the

adv-statics

 and

adv-small-aggregates

 policies to announce those par-
ticular routes to the peer:

[edit policy-options]

user@Merlot#

show policy-statement not-smaller-than-18

4072.book Page 7 Tuesday, March 16, 2004 3:57 PM

8

Chapter 1 �

Routing Policy

term reject-less-than-18-bits {

 from {

 protocol aggregate;

 route-filter 192.168.0.0/16 upto /18;

 }

 then reject;

}

[edit policy-options]

user@Merlot# top edit protocols bgp

[edit protocols bgp]

user@Merlot# set group Ext-AS65030 export adv-small-aggregates

user@Merlot# set group Ext-AS65030 export adv-statics

user@Merlot# set group Ext-AS65030 export not-smaller-than-18

[edit protocols bgp]

user@Merlot# show group Ext-AS65030

type external;

export [adv-small-aggregates adv-statics not-smaller-than-18];

peer-as 65030;

neighbor 10.100.30.2;

[edit protocols bgp]

user@Merlot# commit

commit complete

[edit protocols bgp]

user@Merlot# run show route advertising-protocol bgp 10.100.30.2

inet.0: 32 destinations, 36 routes (32 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

192.168.1.0/24 Self I

192.168.1.16/28 Self 0 I

192.168.1.32/28 Self 0 I

192.168.1.48/28 Self 0 I

192.168.1.64/28 Self 0 I

192.168.2.0/24 Self I

192.168.2.16/28 Self I

192.168.2.32/28 Self I

4072.book Page 8 Tuesday, March 16, 2004 3:57 PM

Routing Policy Processing 9

192.168.2.48/28 Self I

192.168.2.64/28 Self I

192.168.3.0/24 Self I

192.168.3.16/28 Self I

192.168.3.32/28 Self I

192.168.3.48/28 Self I

192.168.3.64/28 Self I

192.168.20.0/24 Self 0 I

It looks like this policy chain is working as designed as well. In fact, after configuring our indi-
vidual policies, we can use them in any combination on the router. Another useful tool for reusing
portions of your configuration is a policy subroutine, so let’s investigate that concept next.

Policy Subroutines

The JUNOS software policy language is similar to a programming language. This similarity also
includes the concept of nesting your policies into a policy subroutine. A subroutine in a software
program is a section of code that you reference on a regular basis. A policy subroutine works
in the same fashion—you reference an existing policy as a match criterion in another policy. The
router first evaluates the subroutine and then finishes its processing of the main policy. Of
course, there are some details that greatly affect the outcome of this evaluation.

First, the evaluation of the subroutine simply returns a true or false Boolean result to the
main policy. Because you are referencing the subroutine as a match criterion, a true result means
that the main policy has a match and can perform any configured actions. A false result from
the subroutine, however, means that the main policy does not have a match. Let’s configure a
policy called main-policy that uses a subroutine:

 [edit policy-options policy-statement main-policy]

user@Merlot# show

term subroutine-as-a-match {

 from policy subroutine-policy;

 then accept;

}

term nothing-else {

 then reject;

}

Of course, we can’t commit our configuration since we reference a policy we haven’t yet
created. We create the subroutine-policy and check our work:

[edit policy-options policy-statement main-policy]

user@Merlot# commit

Policy error: Policy subroutine-policy referenced but not defined

4072.book Page 9 Tuesday, March 16, 2004 3:57 PM

10 Chapter 1 � Routing Policy

error: configuration check-out failed

[edit policy-options policy-statement main-policy]

user@Merlot# up

[edit policy-options]

user@Merlot# edit policy-statement subroutine-policy

[edit policy-options policy-statement subroutine-policy]

user@Merlot# set term get-routes from protocol static

user@Merlot# set term get-routes then accept

[edit policy-options policy-statement subroutine-policy]

user@Merlot# show

term get-routes {

 from protocol static;

 then accept;

}

[edit policy-options policy-statement subroutine-policy]

user@Merlot# commit

commit complete

The router evaluates the logic of main-policy in a defined manner. The match criterion
of from policy subroutine-policy allows the router to locate the subroutine. All terms of
the subroutine are evaluated, in order, following the normal policy processing rules. In our
example, all static routes in the routing table match the subroutine with an action of accept.
This returns a true result to the original, or calling, policy which informs the router that a pos-
itive match has occurred. The actions in the calling policy are executed and the route is accepted.
All other routes in the routing table do not match the subroutine and should logically return a
false result to the calling policy. The router should evaluate the second term of main-policy
and reject the routes.

Keep in mind that the actions in the subroutine do not actually accept or reject
a specific route. They are only translated into a true or a false result. Actions
that modify a route’s attribute, however, are applied to the route regardless of
the outcome of the subroutine.

Figure 1.2 shows AS 65020 now connected to the Chardonnay router in AS 65040. The pol-
icy subroutine of main-policy is applied as an export policy to Chardonnay. After establishing
the BGP session, we verify that Merlot has static routes to send:

4072.book Page 10 Tuesday, March 16, 2004 3:57 PM

Routing Policy Processing 11

F I G U R E 1 . 2 Policy subroutine network map

[edit]

user@Merlot# show protocols bgp group Ext-AS65040

type external;

peer-as 65040;

neighbor 10.100.40.2;

[edit]

user@Merlot# run show bgp summary

Groups: 4 Peers: 5 Down peers: 0

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 12 10 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State

192.168.2.2 65020 2284 2285 0 0 19:00:15 5/6/0

192.168.3.3 65020 2275 2275 0 0 18:55:29 5/6/0

10.100.10.2 65010 2292 2294 0 0 19:03:50 0/0/0

10.100.30.2 65030 2293 2295 0 0 19:03:46 0/0/0

10.100.40.2 65040 23 25 0 0 9:01 0/0/0

[edit]

user@Merlot# run show route protocol static terse

Chardonnay

AS 65040

Cabernet

AS 65010
Muscat

Merlot Chablis

AS 65020

Zinfandel

AS 65030

4072.book Page 11 Tuesday, March 16, 2004 3:57 PM

12 Chapter 1 � Routing Policy

inet.0: 33 destinations, 37 routes (33 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path

* 192.168.1.16/28 S 5 0 Discard

* 192.168.1.32/28 S 5 0 Discard

* 192.168.1.48/28 S 5 0 Discard

* 192.168.1.64/28 S 5 0 Discard

After applying the policy subroutine to Chardonnay, we check to see if only four routes are
sent to the EBGP peer:

[edit protocols bgp]

user@Merlot# set group Ext-AS65040 export main-policy

[edit]

user@Merlot# run show route advertising-protocol bgp 10.100.40.2

inet.0: 32 destinations, 36 routes (32 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

192.168.1.16/28 Self 0 I

192.168.1.32/28 Self 0 I

192.168.1.48/28 Self 0 I

192.168.1.64/28 Self 0 I

192.168.2.0/24 Self I

192.168.2.16/28 Self I

192.168.2.32/28 Self I

192.168.2.48/28 Self I

192.168.2.64/28 Self I

192.168.3.0/24 Self I

192.168.3.16/28 Self I

192.168.3.32/28 Self I

192.168.3.48/28 Self I

192.168.3.64/28 Self I

The four local static routes are being sent to Chardonnay, but additional routes are being
advertised as well. Let’s see if we can figure out where these routes are coming from:

[edit]

user@Merlot# run show route 192.168.2.16/28

inet.0: 32 destinations, 36 routes (32 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

4072.book Page 12 Tuesday, March 16, 2004 3:57 PM

Routing Policy Processing 13

192.168.2.16/28 *[BGP/170] 19:06:01, MED 0, localpref 100, from 192.168.2.2

 AS path: I

 > via so-0/1/0.0

The 192.168.2.16 /28 route is in the routing table as an IBGP-learned route from the Muscat
router. We saw a similar problem in the “Policy Chains” section earlier in the chapter when the
BGP default policy was advertising “extra” routes. The default policy is affecting the outcome
in this case as well, but not in the way that you might think.

The currently applied policy chain for Chardonnay is main-policy followed by the BGP
default policy. The terms of main-policy account for all routes with an explicit accept or
reject action, so the BGP default policy is not evaluated as a part of the policy chain. It is being
evaluated, however, as a part of the subroutine, which brings up the second important concept
concerning a policy subroutine. The default policy of the protocol where the subroutine is
applied is always evaluated as a part of the subroutine itself. In our case, the BGP default policy
is evaluated along with subroutine-policy to determine a true or false result.

The actions of the default policy within the subroutine mean that you are actually evalu-
ating a policy chain at all times. When you combine the BGP default policy with the terms of
subroutine-policy, we end up with a subroutine that looks like the following:

policy-options {

 policy-statement subroutine-policy {

 term get-routes {

 from protocol static;

 then accept;

 }

 term BGP-default-policy-part-1 {

 from protocol bgp;

 then accept;

 }

 term BGP-default-policy-part-2 {

 then reject;

 }

 }

}

Using this new concept of a subroutine alters the logic evaluation of the subroutine. All static
and BGP routes in the routing table return a true result to the calling policy while all other routes
return a false result to the calling policy. This clearly explains the routes currently being adver-
tised to Chardonnay. To achieve the result we desire, we need to eliminate the BGP default pol-
icy from being evaluated within the subroutine. This is easily accomplished by adding a new
term to subroutine-policy as follows:

[edit policy-options policy-statement subroutine-policy]

user@Merlot# show

4072.book Page 13 Tuesday, March 16, 2004 3:57 PM

14 Chapter 1 � Routing Policy

term get-routes {

 from protocol static;

 then accept;

}

term nothing-else {

 then reject;

}

When we check the results of this new subroutine, we see that only the local static routes are
advertised to Chardonnay:

[edit]

user@Merlot# run show route advertising-protocol bgp 10.100.40.2

inet.0: 32 destinations, 36 routes (32 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

192.168.1.16/28 Self 0 I

192.168.1.32/28 Self 0 I

192.168.1.48/28 Self 0 I

192.168.1.64/28 Self 0 I

Determining the Logic Result of a Subroutine

It is worth noting again that the configured actions within a subroutine do not in any way affect
whether a particular route is advertised by the router. The subroutine actions are used only to
determine the true or false result. To illustrate this point, assume that main-policy is applied
as we saw in the “Policy Subroutines” section. In this instance, however, the policies are
altered as so:

[edit policy-options]

user@Merlot# show policy-statement main-policy

term subroutine-as-a-match {

 from policy subroutine-policy;

 then accept;

}

[edit policy-options]

user@Merlot# show policy-statement subroutine-policy

term get-routes {

 from protocol static;

 then accept;

}

4072.book Page 14 Tuesday, March 16, 2004 3:57 PM

Routing Policy Processing 15

term no-BGP-routes {

 from protocol bgp;

 then reject;

}

We are now aware of the protocol default policy being evaluated within the subroutine, so
subroutine-policy now has an explicit term rejecting all BGP routes. Because they are rejected
within the subroutine, there is no need within main-policy for an explicit then reject term.
You may already see the flaw in this configuration, but let’s follow the logic.

The router evaluates the first term of main-policy and finds a match criterion of from policy
subroutine-policy. It then evaluates the first term of the subroutine and finds that all static
routes have an action of then accept. This returns a true result to main-policy, where the
subroutine-as-a-match term has a configured action of then accept. The static routes are now
truly accepted and are advertised to the EBGP peer.

When it comes to the BGP routes in the routing table, things occur a bit differently. When the
router enters the subroutine, it finds the no-BGP-routes term where all BGP routes are rejected.
This returns a false result to main-policy, which means that the criterion in the subroutine-as-
a-match term doesn’t match. This causes the routes to move to the next configured term in main-
policy, which has no other terms. The router then evaluates the next policy in the policy chain—
the BGP default policy. The default policy, of course, accepts all BGP routes, and they are adver-
tised to the EBGP peer. We can prove this logic with a show route command on Merlot:

user@Merlot> show route advertising-protocol bgp 10.100.40.2

inet.0: 32 destinations, 36 routes (32 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

192.168.1.16/28 Self 0 I

192.168.1.32/28 Self 0 I

192.168.1.48/28 Self 0 I

192.168.1.64/28 Self 0 I

192.168.2.0/24 Self I

192.168.2.16/28 Self I

192.168.2.32/28 Self I

192.168.2.48/28 Self I

192.168.2.64/28 Self I

192.168.3.0/24 Self I

192.168.3.16/28 Self I

192.168.3.32/28 Self I

192.168.3.48/28 Self I

192.168.3.64/28 Self I

4072.book Page 15 Tuesday, March 16, 2004 3:57 PM

16 Chapter 1 � Routing Policy

Prefix Lists

The use of the policy subroutine in the previous section was one method of advertising a set of routes
by configuring a single section of code. The JUNOS software provides other methods of accomplish-
ing the same task, and a prefix list is one of them. A prefix list is a listing of IP prefixes that represent
a set of routes that are used as match criteria in an applied policy. Such a list might be useful for rep-
resenting a list of customer routes in your AS.

A prefix list is given a name and is configured within the [edit policy-options] config-
uration hierarchy. Using Figure 1.2 as a guide, each router in AS 65020 has customer routes that
fall into the 24-bit subnet defined by their loopback address. This means that Merlot, whose
loopback address is 192.168.1.1 /32, assigns customer routes within the 192.168.1.0 /24 sub-
net. The Muscat and Chablis routers assign customer routes within the 192.168.2.0 /24 and
192.168.3.0 /24 subnets, respectively.

Merlot has been designated the central point in AS 65020 to maintain a complete list of cus-
tomer routes. It configures a prefix list called all-customers as so:

[edit]

user@Merlot# show policy-options prefix-list all-customers

192.168.1.16/28;

192.168.1.32/28;

192.168.1.48/28;

192.168.1.64/28;

192.168.2.16/28;

192.168.2.32/28;

192.168.2.48/28;

192.168.2.64/28;

192.168.3.16/28;

192.168.3.32/28;

192.168.3.48/28;

192.168.3.64/28;

As you look closely at the prefix list you see that there are no match types configured with
each of the routes (as you might see with a route filter). This is an important point when using
a prefix list in a policy. The JUNOS software evaluates each address in the prefix list as an exact
route filter match. In other words, each route in the list must appear in the routing table exactly
as it is configured in the prefix list. You reference the prefix list as a match criterion within a pol-
icy like this:

[edit]

user@Merlot# show policy-options policy-statement customer-routes

term get-routes {

4072.book Page 16 Tuesday, March 16, 2004 3:57 PM

Routing Policy Processing 17

 from {

 prefix-list all-customers;

 }

 then accept;

}

term nothing-else {

 then reject;

}

All the routes in the all-customers prefix list appear in the current routing table:

[edit]

user@Merlot# run show route 192.168/16 terse

inet.0: 32 destinations, 36 routes (32 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path

* 192.168.0.0/16 A 130 Reject

 B 170 100 >so-0/1/0.0 I

 B 170 100 >so-0/1/1.0 I

* 192.168.1.0/24 A 130 Reject

* 192.168.1.1/32 D 0 >lo0.0

* 192.168.1.16/28 S 5 0 Discard

* 192.168.1.32/28 S 5 0 Discard

* 192.168.1.48/28 S 5 0 Discard

* 192.168.1.64/28 S 5 0 Discard

* 192.168.2.0/24 B 170 100 >so-0/1/0.0 I

* 192.168.2.2/32 O 10 1 >so-0/1/0.0

* 192.168.2.16/28 B 170 100 0 >so-0/1/0.0 I

* 192.168.2.32/28 B 170 100 0 >so-0/1/0.0 I

* 192.168.2.48/28 B 170 100 0 >so-0/1/0.0 I

* 192.168.2.64/28 B 170 100 0 >so-0/1/0.0 I

* 192.168.3.0/24 B 170 100 >so-0/1/1.0 I

* 192.168.3.3/32 O 10 1 >so-0/1/1.0

* 192.168.3.16/28 B 170 100 0 >so-0/1/1.0 I

* 192.168.3.32/28 B 170 100 0 >so-0/1/1.0 I

* 192.168.3.48/28 B 170 100 0 >so-0/1/1.0 I

* 192.168.3.64/28 B 170 100 0 >so-0/1/1.0 I

4072.book Page 17 Tuesday, March 16, 2004 3:57 PM

18 Chapter 1 � Routing Policy

After applying the customer-routes policy to the EBGP peer of Zinfandel, as seen in Figure 1.2,
we see that only the customer routes are advertised:

[edit protocols bgp]

user@Merlot# show group Ext-AS65030

type external;

export customer-routes;

peer-as 65030;

neighbor 10.100.30.2;

[edit protocols bgp]

user@Merlot# run show route advertising-protocol bgp 10.100.30.2

inet.0: 32 destinations, 36 routes (32 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

192.168.1.16/28 Self 0 I

192.168.1.32/28 Self 0 I

192.168.1.48/28 Self 0 I

192.168.1.64/28 Self 0 I

192.168.2.16/28 Self I

192.168.2.32/28 Self I

192.168.2.48/28 Self I

192.168.2.64/28 Self I

192.168.3.16/28 Self I

192.168.3.32/28 Self I

192.168.3.48/28 Self I

192.168.3.64/28 Self I

Policy Expressions

In the “Policy Subroutines” section earlier in the chapter, we compared the JUNOS soft-
ware policy language to a programming language. This comparison also holds true when we
discuss a policy expression. A policy expression within the JUNOS software is the combina-
tion of individual policies together with a set of logical operators. This expression is applied
as a portion of the policy chain. To fully explain how the router uses a policy expression,
we need to discuss the logical operators themselves as well as the evaluation logic when each
operator is used. Then, we look at some examples of policy expressions in a sample network
environment.

4072.book Page 18 Tuesday, March 16, 2004 3:57 PM

Routing Policy Processing 19

Logical Operators

You can use four logical operators in conjunction with a policy expression. In order of prece-
dence, they are a logical NOT, a logical AND, a logical OR, and a group operator. You can
think of the precedence order as being similar to arithmetic, where multiplication is performed
before addition. In the case of the logical operators, a NOT is performed before an OR. Let’s
look at the function of each logical operator, as well as an example syntax:

Logical NOT The logical NOT (!) reverses the normal logic evaluation of a policy. A true
result becomes a false and a false result becomes a true. This is encoded in the JUNOS software
as !policy-name.

Logical AND The logical AND (&&) operates on two routing policies. Should the result of the
first policy be a true result, then the next policy is evaluated. However, if the result of the first pol-
icy is a false result, then the second policy is skipped. This appears as policy-1 && policy-2.

Logical OR The logical OR (||) also operates on two routing policies. It skips the second pol-
icy when the first policy returns a true result. A false result from the first policy results in the sec-
ond policy being evaluated. This appears as policy-1 || policy-2.

Group operator The group operator, represented by a set of parentheses, is used to override
the default precedence order of the other logical operators. For example, a group operator is
useful when you want to logically OR two policies and then AND the result with a third policy.
The JUNOS software views this as (policy-1 || policy-2) && policy-3.

When parentheses are not used to group policy names, such as policy-1 ||
policy-2 && policy-3, the JUNOS software evaluates the expression using
the default precedence order. This order requires all logical NOT operations to
be performed first, then all logical AND operations, and finally all logical OR
operations. For clarity, we recommend using group operators when more than
two policies are included in an expression.

Logical Evaluation

When the router encounters a policy expression, it must perform two separate steps. The logical
evaluation is calculated first, followed by some actual action on the route. In this respect, the pol-
icy expression logic is similar to a policy subroutine. The two are very different, however, when
it comes to using the protocol default policy. Because the policy expression occupies a single place
in the normal policy chain, the protocol default policy is not evaluated within the expression. It
is evaluated only as a part of the normal policy chain applied to the protocol.

When the router evaluates the individual policies of an expression, it determines whether
the policy returns a true or false result. A true result is found when either the accept or next
policy action is found. The next policy action is either encountered by its explicit configu-
ration within the policy or when the route does not match any terms in the policy. A logical false
result is encountered when the reject action is encountered within the policy.

4072.book Page 19 Tuesday, March 16, 2004 3:57 PM

20 Chapter 1 � Routing Policy

After determining the logical result of the expression, the router performs some action on the
route. This action results from the policy that guaranteed the logical result. This might sound
a bit confusing, so let’s look at some examples to solidify the concept.

OR Operations

The normal rules of OR logic means that when either of the policies returns a true value, then
the entire expression is true. When configured as policy-1 || policy-2, the router first eval-
uates policy-1. If the result of this policy is a true value, then the entire expression becomes
true as per the OR evaluation rules. In this case, policy-2 is not evaluated by the router. The
route being evaluated through the expression has the action defined in policy-1 applied to it
since policy-1 guaranteed the result of the entire expression.

Should the evaluation of policy-1 return a false result, then policy-2 is evaluated. If the
result of policy-2 is true, the entire expression is true. Should the evaluation of policy-2 result
in a false, the entire expression becomes false as well. In either case, policy-2 has guaranteed the
result of the entire expression. Therefore, the action in policy-2 is applied to the route being eval-
uated through the expression.

AND Operations

The rules of AND logic states that both of the policies must return a true value to make the
entire expression true. If either of the policies returns a false value, then the entire expression
becomes false. The configuration of policy-1 && policy-2 results in the router first evalu-
ating policy-1. If the result of this policy is true, then policy-2 is evaluated since the entire
expression is not yet guaranteed. Only when the result of policy-2 is true does the expression
become true. Should the evaluation of policy-2 return a false, the entire expression then
becomes false. Regardless, policy-2 guarantees the result of the entire expression and the
action in policy-2 is applied to the route being evaluated.

Should the evaluation of policy-1 return a false result, then the expression is guaranteed to
have a false result since both policies are not true. In this case, the action in policy-1 is applied
to the route.

NOT Operations

The operation of a logical NOT is performed only on a single policy. When the result of a NOT
evaluation is true, the router transforms that into a false evaluation. This false result tells the
router to reject the route being evaluated. The exact opposite occurs when the NOT evaluation
is false. The router transforms the false into a true result and accepts the route being evaluated.

An Example of Expressions

A policy expression in the JUNOS software occupies a single position in a protocol’s policy
chain, so the protocol in use is an important factor in determining the outcome of the expres-
sion. We’ll use BGP as our protocol using the information in Figure 1.3.

The Merlot router in AS 65020 is peering both with its internal peers of Muscat and Chablis and
with the Cabernet router in AS 65010. The customer routes within the subnets of 192.168.2.0 /24
and 192.168.3.0 /24 are being advertised from Muscat and Chablis, respectively. Two policies are
configured on Merlot to locate these routes:

4072.book Page 20 Tuesday, March 16, 2004 3:57 PM

Routing Policy Processing 21

F I G U R E 1 . 3 Policy expression network map

[edit policy-options]

user@Merlot# show policy-statement Muscat-routes

term find-routes {

 from {

 route-filter 192.168.2.0/24 longer;

 }

 then accept;

}

term nothing-else {

 then reject;

}

[edit policy-options]

user@Merlot# show policy-statement Chablis-routes

term find-routes {

 from {

 route-filter 192.168.3.0/24 longer;

 }

 then accept;

}

By default, the BGP policy advertises the customer routes to Cabernet:

[edit]

user@Merlot# run show route advertising-protocol bgp 10.100.10.2

inet.0: 30 destinations, 32 routes (30 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

192.168.2.16/28 Self I

Cabernet

AS 65010
Muscat

Merlot Chablis

AS 65020

4072.book Page 21 Tuesday, March 16, 2004 3:57 PM

22 Chapter 1 � Routing Policy

192.168.2.32/28 Self I

192.168.2.48/28 Self I

192.168.2.64/28 Self I

192.168.3.16/28 Self I

192.168.3.32/28 Self I

192.168.3.48/28 Self I

192.168.3.64/28 Self I

An OR Example

A logical OR policy expression is configured on the Merlot router. This means that the policy
chain applied to Cabernet becomes the expression followed by the default BGP policy:

[edit protocols bgp]

lab@Merlot# show group Ext-AS65010

type external;

export (Muscat-routes || Chablis-routes);

peer-as 65010;

neighbor 10.100.10.2;

To illustrate the operation of the expression, we select a route from each neighbor. Mer-
lot evaluates the 192.168.2.16 /28 route against the Muscat-routes policy first. The route
matches the criteria in the find-routes term, where the action is accept. This means that
the first policy is a true result and the entire logical OR expression is also true. The config-
ured action of accept in the Muscat-routes policy is applied to the route and it is sent to
Cabernet. We can verify this with the show route command:

user@Merlot> show route advertising-protocol bgp 10.100.10.2 192.168.2.16/28

inet.0: 30 destinations, 32 routes (30 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

192.168.2.16/28 Self I

The 192.168.3.16 /28 route is selected from the Chablis router. As before, Merlot evaluates
the Muscat-routes policy first. This route matches the nothing-else term and returns a false
result to the expression. Because the expression result is not guaranteed yet, Merlot evaluates the
Chablis-routes policy. The route matches the find-routes term in that policy and returns a true
result to the expression. The Chablis-routes policy guaranteed the expression result, so the action
of accept from that policy is applied to the route. Again, we verify that the route is sent to Cabernet:

user@Merlot> show route advertising-protocol bgp 10.100.10.2 192.168.3.16/28

inet.0: 30 destinations, 32 routes (30 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

192.168.3.16/28 Self I

4072.book Page 22 Tuesday, March 16, 2004 3:57 PM

Routing Policy Processing 23

An AND Example

Using the same sample routes and policies, we can explore a logical AND policy expression on
the Merlot router. Again, the expression occupies a single slot in the policy chain:

[edit protocols bgp]

lab@Merlot# show group Ext-AS65010

type external;

export (Muscat-routes && Chablis-routes);

peer-as 65010;

neighbor 10.100.10.2;

Merlot first evaluates the 192.168.2.16 /28 route against the Muscat-routes policy.
The route matches the criteria in the find-routes term and returns a true result to the policy
expression. The expression result is not guaranteed, so the Chablis-routes policy is evaluated.
The route doesn’t match any terms in this policy, which means that the implicit next policy
action is used. This action is interpreted by the expression as a true result. The expression itself
is true, as both policies in the expression are true. The Chablis-routes policy guaranteed the
expression result, so its action is applied to the route. The action was next policy, so Merlot
takes the 192.168.2.16 /28 route and evaluates it against the next policy in the policy chain—
the BGP default policy. The BGP default policy accepts all BGP routes, so the route is advertised
to Cabernet:

user@Merlot> show route advertising-protocol bgp 10.100.10.2 192.168.2.16/28

inet.0: 30 destinations, 32 routes (30 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

192.168.2.16/28 Self I

The evaluation of the 192.168.3.16 /28 route returns a different result. Merlot evaluates the
Muscat-routes policy first, where the route matches the nothing-else term. This returns a
false result to the expression and guarantees a result of false for the entire expression. Since the
Muscat-routes policy guaranteed the result, its action of reject is applied to the route and it
is not advertised to Cabernet:

user@Merlot> show route advertising-protocol bgp 10.100.10.2 192.168.3.16/28

user@Merlot>

A NOT Example

The evaluation and use of the logical NOT operator is a little more straightforward than the OR
and AND operators. As such, we apply only a single policy to the Merlot router:

[edit protocols bgp]

lab@Merlot# show group Ext-AS65010

4072.book Page 23 Tuesday, March 16, 2004 3:57 PM

24 Chapter 1 � Routing Policy

type external;

export (! Muscat-routes);

peer-as 65010;

neighbor 10.100.10.2;

Merlot evaluates the 192.168.2.16 /28 route against the Muscat-routes policy, where it
matches the find-routes term and returns a true result. The NOT operator converts this result
to a false and applies the reject action to the route. It is not advertised to the Cabernet router:

user@Merlot> show route advertising-protocol bgp 10.100.10.2 192.168.2.16/28

user@Merlot>

The 192.168.3.16 /28 route is evaluated by Merlot against the Muscat-routes policy,
where it matches the nothing-else term. This return of a false result by the policy is converted
into a true result by the NOT operator. The true evaluation implies that the accept action is
applied to the route and it is advertised to Cabernet:

user@Merlot> show route advertising-protocol bgp 10.100.10.2 192.168.3.16/28

inet.0: 30 destinations, 32 routes (30 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

192.168.3.16/28 Self I

A Group Example

The purpose of the logical group operator is to override the default precedence of the OR and
AND operators. We can see the functionality of this operator within the network of Figure 1.3.
The administrators of AS 65020 would like to advertise only certain customer routes to the
EBGP peer of Cabernet. These routes are designated by the BGP community value of adv-to-
peers attached to the route. We can see these routes in the local routing table:

user@Merlot> show route terse community-name adv-to-peers

inet.0: 30 destinations, 32 routes (30 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path

* 192.168.2.48/28 B 170 100 0 >so-0/1/0.0 I

* 192.168.2.64/28 B 170 100 0 >so-0/1/0.0 I

* 192.168.3.48/28 B 170 100 0 >so-0/1/1.0 I

* 192.168.3.64/28 B 170 100 0 >so-0/1/1.0 I

We discuss the definition and use of communities within a policy in more detail
in the “Communities” section later in this chapter.

4072.book Page 24 Tuesday, March 16, 2004 3:57 PM

Routing Policy Processing 25

Both Muscat-routes and Chablis-routes now guarantee a true or false result within
the policy through the use of the nothing-else term. We’ve also created a policy called
Check-for-Community to look for the adv-to-peers community value.

[edit policy-options]

user@Merlot# show policy-statement Muscat-routes

term find-routes {

 from {

 route-filter 192.168.2.0/24 longer;

 }

 then accept;

}

term nothing-else {

 then reject;

}

[edit policy-options]

user@Merlot# show policy-statement Chablis-routes

term find-routes {

 from {

 route-filter 192.168.3.0/24 longer;

 }

 then accept;

}

term nothing-else {

 then reject;

}

[edit policy-options]

user@Merlot# show policy-statement Check-for-Community

term find-routes {

 from community adv-to-peers;

 then accept;

}

term nothing-else {

 then reject;

}

In human terms, we want to advertise only routes that match either the Muscat-routes or the
Chablis-routes policy as well as the Check-for-Community policy. To illustrate the usefulness

4072.book Page 25 Tuesday, March 16, 2004 3:57 PM

26 Chapter 1 � Routing Policy

of the group operator, we first apply the policies using just the OR and AND operators to create
a single policy expression (that also occupies a single policy chain spot):

[edit protocols bgp group Ext-AS65010]

lab@Merlot# show

type external;

export (Muscat-routes || Chablis-routes && Check-for-Community);

peer-as 65010;

neighbor 10.100.10.2;

If we assume that our thought process is correct, then the 192.168.2.64 /28 route from the
Muscat router should be advertised to Cabernet by Merlot. Because the AND operator has pre-
cedence over the OR operator, the Chablis-routes and Check-for-Community policies are
evaluated together first. The route doesn’t match the Chablis-routes policy and returns a
false result. This guarantees the result of the expression itself, so the action of reject from that
policy is applied to the route and it is not advertised to Cabernet:

user@Merlot> show route advertising-protocol bgp 10.100.10.2 192.168.2.64/28

user@Merlot>

This is clearly not the result we intended, so it appears that the group operator has some use-
fulness after all! Let’s alter the policy expression on Merlot:

[edit protocols bgp group Ext-AS65010]

lab@Merlot# show

type external;

export ((Muscat-routes || Chablis-routes) && Check-for-Community);

peer-as 65010;

neighbor 10.100.10.2;

The group operator now causes Merlot to evaluate the Muscat-routes and Chablis-routes pol-
icies together before evaluating the Check-for-Community policy. Using the same 192.168.2.64 /28
route, Merlot evaluates the Muscat-routes policy and gets a true result. This guarantees a true result
for the first portion of the expression, so the Chablis-routes policy is skipped and Merlot evaluates
the Check-for-Community policy. This policy also returns a true result based on the find-routes
term, because the route does indeed have the community attached. The Check-for-Community policy
guaranteed the result of the expression, so its action of accept is applied to the route and it is adver-
tised to the Cabernet router:

user@Merlot> show route advertising-protocol bgp 10.100.10.2 192.168.2.64/28

inet.0: 30 destinations, 32 routes (30 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

192.168.2.64/28 Self I

4072.book Page 26 Tuesday, March 16, 2004 3:57 PM

Communities 27

The logic of the group operator applies to all of the routes in the local routing table of Mer-
lot. Only the four routes with the correct community value of adv-to-peers attached are
advertised to Cabernet:

user@Merlot> show route advertising-protocol bgp 10.100.10.2

inet.0: 30 destinations, 32 routes (30 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

192.168.2.48/28 Self I

192.168.2.64/28 Self I

192.168.3.48/28 Self I

192.168.3.64/28 Self I

Communities
A community is a route attribute used by BGP to administratively group routes with similar
properties. We won’t be discussing how to use communities in conjunction with BGP in this
chapter; we cover these details in Chapter 4, “Border Gateway Protocol.” Here we explore how
to define a community, apply or delete a community value, and locate a route using a defined
community name.

Regular Communities

A community value is a 32-bit field that is divided into two main sections. The first 16 bits of
the value encode the AS number of the network that originated the community, while the last
16 bits carry a unique number assigned by the AS. This system attempts to guarantee a globally
unique set of community values for each AS in the Internet.

The JUNOS software uses a notation of AS-number:community-value, where each value is
a decimal number. The AS values of 0 and 65,535 are reserved, as are all of the community val-
ues within those AS numbers. Each community, or set of communities, is given a name within
the [edit policy-options] configuration hierarchy. The name of the community uniquely
identifies it to the router and serves as the method by which routes are categorized. For example,
a route with a community value of 65010:1111 might belong to the community named
AS65010-routes, once it is configured. The community name is also used within a routing pol-
icy as a match criterion or as an action. The command syntax for creating a community is:

policy-options {

 community name members [community-ids];

}

4072.book Page 27 Tuesday, March 16, 2004 3:57 PM

28 Chapter 1 � Routing Policy

The community-ids field is either a single community value or multiple community values.
When more than one value is assigned to a community name, the router interprets this as a log-
ical AND of the community values. In other words, a route must have all of the configured val-
ues before being assigned the community name.

F I G U R E 1 . 4 Communities sample network

Figure 1.4 shows the Riesling, Chardonnay, and Shiraz routers as IBGP peers in AS 65020.
The Cabernet router is advertising the 172.16.0.0 /21 address space from AS 65010. The spe-
cific routes received by Riesling include:

user@Riesling> show route receive-protocol bgp 10.100.10.1

inet.0: 28 destinations, 36 routes (28 active, 0 holddown, 0 hidden)

Prefix Nexthop MED Lclpref AS path

172.16.0.0/24 10.100.10.1 0 65010 I

172.16.1.0/24 10.100.10.1 0 65010 I

172.16.2.0/24 10.100.10.1 0 65010 I

172.16.3.0/24 10.100.10.1 0 65010 I

172.16.4.0/24 10.100.10.1 0 65010 I

172.16.5.0/24 10.100.10.1 0 65010 I

172.16.6.0/24 10.100.10.1 0 65010 I

172.16.7.0/24 10.100.10.1 0 65010 I

You view the community values attached to each route, if there are any, by adding the
detail option to the show route command:

user@Riesling> show route receive-protocol bgp 10.100.10.1 detail

inet.0: 28 destinations, 36 routes (28 active, 0 holddown, 0 hidden)

172.16.0.0/24 (2 entries, 1 announced)

AS 65010
172.16.0.0/21

Chardonnay

Shiraz

Riesling

AS 65020

Cabernet

4072.book Page 28 Tuesday, March 16, 2004 3:57 PM

Communities 29

 Nexthop: 10.100.10.1

 MED: 0

 AS path: 65010 I

 Communities: 65010:1111 65010:1234

172.16.1.0/24 (2 entries, 1 announced)

 Nexthop: 10.100.10.1

 MED: 0

 AS path: 65010 I

 Communities: 65010:1111 65010:1234

172.16.2.0/24 (2 entries, 1 announced)

 Nexthop: 10.100.10.1

 MED: 0

 AS path: 65010 I

 Communities: 65010:1234 65010:2222

172.16.3.0/24 (2 entries, 1 announced)

 Nexthop: 10.100.10.1

 MED: 0

 AS path: 65010 I

 Communities: 65010:1234 65010:2222

172.16.4.0/24 (2 entries, 1 announced)

 Nexthop: 10.100.10.1

 MED: 0

 AS path: 65010 I

 Communities: 65010:3333 65010:4321

172.16.5.0/24 (2 entries, 1 announced)

 Nexthop: 10.100.10.1

 MED: 0

 AS path: 65010 I

 Communities: 65010:3333 65010:4321

172.16.6.0/24 (2 entries, 1 announced)

 Nexthop: 10.100.10.1

 MED: 0

 AS path: 65010 I

 Communities: 65010:4321 65010:4444

4072.book Page 29 Tuesday, March 16, 2004 3:57 PM

30 Chapter 1 � Routing Policy

172.16.7.0/24 (2 entries, 1 announced)

 Nexthop: 10.100.10.1

 MED: 0

 AS path: 65010 I

 Communities: 65010:4321 65010:4444

Match Criteria Usage

The administrators of AS 65010 attached a community value of 65010:1234 to all routes for
which they would like to receive user traffic from Riesling. The community value of 65010:4321 is
attached to routes for which AS 65010 would like to receive user traffic from Chardonnay. Routing
policies within AS 65020 are configured using a community match criterion to effect this adminis-
trative goal. The policies change the Local Preference of the received routes to new values that alter
the BGP route-selection algorithm. The policies and communities on Riesling look like this:

[edit]

user@Riesling# show policy-options

policy-statement alter-local-preference {

 term find-Riesling-routes {

 from community out-via-Riesling;

 then {

 local-preference 200;

 }

 }

 term find-Chardonay-routes {

 from community out-via-Chardonnay;

 then {

 local-preference 50;

 }

 }

}

community out-via-Chardonnay members 65010:4321;

community out-via-Riesling members 65010:1234;

A similar policy is configured on Chardonnay with the Local Preference values reversed. The pol-
icy on Riesling is applied as an import policy to alter the attributes as they are received from Cabernet:

[edit protocols bgp]

user@Riesling# show group Ext-AS65010

type external;

import alter-local-preference;

peer-as 65010;

neighbor 10.100.10.1;

4072.book Page 30 Tuesday, March 16, 2004 3:57 PM

Communities 31

We check the success of the policy on the Shiraz router. The 172.16.0.0 /24 route should use
the advertisement from Riesling (192.168.1.1), while the 172.16.4.0 /24 route should use the
advertisement from Chardonnay (192.168.3.3):

user@Shiraz> show route 172.16.0/24

inet.0: 28 destinations, 31 routes (28 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

172.16.0.0/24 *[BGP/170] 00:08:30, MED 0, localpref 200, from 192.168.1.1

 AS path: 65010 I

 > via so-0/1/0.0

user@Shiraz> show route 172.16.4/24

inet.0: 28 destinations, 31 routes (28 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

172.16.4.0/24 *[BGP/170] 00:04:58, MED 0, localpref 200, from 192.168.3.3

 AS path: 65010 I

 > via so-0/1/1.0

It appears the policies are working as designed. We’ve successfully located the BGP routes
using a single community value in the alter-local-preference policies. The JUNOS soft-
ware also allows you to locate routes containing multiple community values. One method of
accomplishing this is to create two community names and reference those names in your routing
policies. Or, you create a single community name with both values and reference that single
name in the policy. Let’s see how these two options work on the Shiraz router.

The administrators of AS 65020 decide that they would like to reject all routes on Shiraz con-
taining both the 65010:4321 and 65010:4444 community values. We first create three separate
community names: one each for the single values and one for the combined values.

[edit policy-options]

user@Shiraz# show

community both-comms members [65010:4321 65010:4444];

community just-4321 members 65010:4321;

community just-4444 members 65010:4444;

We locate the current routes in the routing table that have these values by using the community
or community-name options of the show route command. The community option allows you to
enter a numerical community value and the router outputs all routes containing that value.

user@Shiraz> show route terse community 65010:4321

inet.0: 28 destinations, 31 routes (28 active, 0 holddown, 0 hidden)

4072.book Page 31 Tuesday, March 16, 2004 3:57 PM

32 Chapter 1 � Routing Policy

+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path

* 172.16.4.0/24 B 170 200 0 >so-0/1/1.0 65010 I

* 172.16.5.0/24 B 170 200 0 >so-0/1/1.0 65010 I

* 172.16.6.0/24 B 170 200 0 >so-0/1/1.0 65010 I

* 172.16.7.0/24 B 170 200 0 >so-0/1/1.0 65010 I

user@Shiraz> show route terse community 65010:4444

inet.0: 28 destinations, 31 routes (28 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path

* 172.16.6.0/24 B 170 200 0 >so-0/1/1.0 65010 I

* 172.16.7.0/24 B 170 200 0 >so-0/1/1.0 65010 I

It appears that the 172.16.6.0 /24 and 172.16.7.0 /24 routes have both community values
attached to them. We can confirm this with the show route detail command to view the
actual values, but we have another method at our disposal. The community-name option allows
you to specify a configured name and have the router output the routes matching that commu-
nity value. The both-comms community is configured with multiple members so that only
routes currently containing both community values match this community name.

user@Shiraz> show route terse community-name both-comms

inet.0: 28 destinations, 31 routes (28 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path

* 172.16.6.0/24 B 170 200 0 >so-0/1/1.0 65010 I

* 172.16.7.0/24 B 170 200 0 >so-0/1/1.0 65010 I

We create two different policies on Shiraz and apply them separately as an import policy for
the IBGP peer group. The first policy uses the single community match criteria of both-comms:

[edit policy-options]

user@Shiraz# show

policy-statement single-comm-match {

 term use-just-one-comm {

 from community both-comms;

 then reject;

 }

4072.book Page 32 Tuesday, March 16, 2004 3:57 PM

Communities 33

}

community both-comms members [65010:4321 65010:4444];

community just-4321 members 65010:4321;

community just-4444 members 65010:4444;

[edit protocols bgp]

user@Shiraz# set group Internal-Peers import single-comm-match

[edit]

user@Shiraz# commit and-quit

commit complete

Exiting configuration mode

user@Shiraz> show route 172.16.5/24

inet.0: 28 destinations, 31 routes (26 active, 0 holddown, 2 hidden)

+ = Active Route, - = Last Active, * = Both

172.16.5.0/24 *[BGP/170] 01:27:54, MED 0, localpref 200, from 192.168.3.3

 AS path: 65010 I

 > via so-0/1/1.0

user@Shiraz> show route 172.16.6/24

inet.0: 28 destinations, 31 routes (26 active, 0 holddown, 2 hidden)

user@Shiraz> show route 172.16.7/24

inet.0: 28 destinations, 31 routes (26 active, 0 holddown, 2 hidden)

user@Shiraz>

The routes are no longer in the inet.0 routing table on Shiraz. The logical AND within the
community definition correctly located only the routes containing both community values. We
now create a second policy, called double-comm-match, using the individual community names:

[edit policy-options policy-statement double-comm-match]

user@Shiraz# show

term two-comms {

 from community [just-4321 just-4444];

 then reject;

}

4072.book Page 33 Tuesday, March 16, 2004 3:57 PM

34 Chapter 1 � Routing Policy

[edit policy-options policy-statement double-comm-match]

user@Shiraz# top edit protocols bgp

[edit protocols bgp]

user@Shiraz# show group Internal-Peers

type internal;

local-address 192.168.7.7;

import double-comm-match;

neighbor 192.168.1.1;

neighbor 192.168.2.2;

neighbor 192.168.3.3;

neighbor 192.168.4.4;

neighbor 192.168.5.5;

neighbor 192.168.6.6;

After committing our configuration, we check the success of our new policy:

user@Shiraz> show route 172.16.5/24

inet.0: 28 destinations, 31 routes (24 active, 0 holddown, 4 hidden)

user@Shiraz> show route 172.16.6/24

inet.0: 28 destinations, 31 routes (24 active, 0 holddown, 4 hidden)

user@Shiraz> show route 172.16.7/24

inet.0: 28 destinations, 31 routes (24 active, 0 holddown, 4 hidden)

As you can see, something isn’t right. The 172.16.5.0 /24 route should be active in the rout-
ing table, but it is not there. In addition, we now have four hidden routes whereas we had only
two hidden routes using the single-comm-match policy. Let’s see what routes are now hidden:

user@Shiraz> show route terse hidden

inet.0: 28 destinations, 31 routes (24 active, 0 holddown, 4 hidden)

+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path

 172.16.4.0/24 B 200 0 >so-0/1/1.0 65010 I

 172.16.5.0/24 B 200 0 >so-0/1/1.0 65010 I

4072.book Page 34 Tuesday, March 16, 2004 3:57 PM

Communities 35

 172.16.6.0/24 B 200 0 >so-0/1/1.0 65010 I

 172.16.7.0/24 B 200 0 >so-0/1/1.0 65010 I

Something in the double-comm-match policy is rejecting more routes than we would like.
The policy currently is configured like this:

user@Shiraz> show configuration policy-options

policy-statement single-comm-match {

 term use-just-one-comm {

 from community both-comms;

 then reject;

 }

}

policy-statement double-comm-match {

 term two-comms {

 from community [just-4321 just-4444];

 then reject;

 }

}

community both-comms members [65010:4321 65010:4444];

community just-4321 members 65010:4321;

community just-4444 members 65010:4444;

The highlighted portion of the policy is where our problems are arising. Listing multiple val-
ues in square brackets ([]) within the community configuration itself is a logical AND of the
values. We proved this with the both-comms community. The same theory doesn’t hold true
within a routing policy itself, where listing multiple values within a set of square brackets results
in a logical OR operation. The double-comm-match policy is actually locating routes with
either the just-4321 community or the just-4444 community value attached. To effectively
locate the correct routes using the individual community values, we actually require two policies
applied in a policy chain. The first policy locates routes with one of the communities attached
and moves their evaluation to the next policy in the chain. The first policy then accepts all other
routes. The second policy in the chain locates routes with the second community value attached
and rejects them while also accepting all routes. The relevant policies are configured as so:

[edit policy-options]

user@Shiraz# show policy-statement find-4321

term 4321-routes {

 from community just-4321;

 then next policy;

}

term all-other-routes {

 then accept;

4072.book Page 35 Tuesday, March 16, 2004 3:57 PM

36 Chapter 1 � Routing Policy

}

[edit policy-options]

user@Shiraz# show policy-statement find-4444

term 4444-routes {

 from community just-4444;

 then reject;

}

term all-other-routes {

 then accept;

}

We apply the policies to the IBGP peer group in the proper order and verify that the correct
routes are rejected:

[edit protocols bgp]

user@Shiraz# show group Internal-Peers

type internal;

local-address 192.168.7.7;

import [find-4321 find-4444];

neighbor 192.168.1.1;

neighbor 192.168.2.2;

neighbor 192.168.3.3;

neighbor 192.168.4.4;

neighbor 192.168.5.5;

neighbor 192.168.6.6;

[edit]

user@Shiraz# commit and-quit

commit complete

Exiting configuration mode

user@Shiraz> show route 172.16.5/24

inet.0: 28 destinations, 31 routes (26 active, 0 holddown, 2 hidden)

+ = Active Route, - = Last Active, * = Both

172.16.5.0/24 *[BGP/170] 02:00:58, MED 0, localpref 200, from 192.168.3.3

 AS path: 65010 I

 > via so-0/1/1.0

4072.book Page 36 Tuesday, March 16, 2004 3:57 PM

Communities 37

user@Shiraz> show route 172.16.6/24

inet.0: 28 destinations, 31 routes (26 active, 0 holddown, 2 hidden)

user@Shiraz> show route 172.16.7/24

inet.0: 28 destinations, 31 routes (26 active, 0 holddown, 2 hidden)

user@Shiraz>

The 172.16.5.0 /24 route is active in the routing table and neither the 172.16.6.0 /24 or
172.16.7.0 /24 routes are present. The router output of two hidden routes also provides a hint
that the policies are working as designed. While this application might seem a bit complex, the
use of regular expressions (as outlined in the “Regular Expressions” section later in this chapter)
makes the routing policy configuration more straightforward.

Modifying Current Values

Altering the current values attached to a route is the other main use of a community in a routing
policy. You can perform three main actions: you can add, delete, or set a community value. Here
are the details of each policy action:

add The policy action then community add community-name maintains the current list of
communities on the route and adds to it the community values defined in community-name.

delete The policy action then community delete community-name also maintains the
current list of communities on the route while removing all community values defined in
community-name.

set The policy action then community set community-name deletes all of the current com-
munities assigned to the route. In its place, the router installs the community values defined in
community-name.

The administrators of AS 65010 in Figure 1.4 want to alter the community values on the
routes they receive from Riesling. The routes currently in the routing table include:

user@Cabernet> show route protocol bgp

inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

192.168.1.0/24 *[BGP/170] 00:07:34, localpref 100

 AS path: 65020 I

 > to 10.100.10.2 via at-0/1/0.100

192.168.2.0/24 *[BGP/170] 00:07:34, localpref 100

 AS path: 65020 I

 > to 10.100.10.2 via at-0/1/0.100

4072.book Page 37 Tuesday, March 16, 2004 3:57 PM

38 Chapter 1 � Routing Policy

192.168.3.0/24 *[BGP/170] 00:07:34, localpref 100

 AS path: 65020 I

 > to 10.100.10.2 via at-0/1/0.100

Cabernet wants to add a community value of 65010:1 to the 192.168.1.0 /24 route. We con-
figure the appropriate policy and apply it to Riesling after examining the current community
values on the route:

[edit]

user@Cabernet# run show route 192.168.1/24 detail

inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0 hidden)

192.168.1.0/24 (1 entry, 1 announced)

 *BGP Preference: 170/-101

 Source: 10.100.10.2

 Next hop: 10.100.10.2 via at-0/1/0.100, selected

 State: <Active Ext>

 Local AS: 65010 Peer AS: 65020

 Age: 11:15

 Task: BGP_65020.10.100.10.2+2698

 Announcement bits (2): 0-KRT 1-BGP.0.0.0.0+179

 AS path: 65020 I

 Communities: 65020:1 65020:10 65020:100 65020:1000

 Localpref: 100

 Router ID: 192.168.1.1

[edit]

user@Cabernet# show policy-options

policy-statement add-a-community {

 term add-comm {

 from {

 route-filter 192.168.1.0/24 exact;

 }

 then {

 community add comm-1;

 }

 }

}

community comm-1 members 65010:1;

[edit]

user@Cabernet# show protocols bgp

4072.book Page 38 Tuesday, March 16, 2004 3:57 PM

Communities 39

group Ext-AS65020 {

 type external;

 import add-a-community;

 peer-as 65020;

 neighbor 10.100.10.2;

}

user@Cabernet> show route 192.168.1/24 detail

inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0 hidden)

192.168.1.0/24 (1 entry, 1 announced)

 *BGP Preference: 170/-101

 Source: 10.100.10.2

 Next hop: 10.100.10.2 via at-0/1/0.100, selected

 State: <Active Ext>

 Local AS: 65010 Peer AS: 65020

 Age: 12:11

 Task: BGP_65020.10.100.10.2+2698

 Announcement bits (2): 0-KRT 1-BGP.0.0.0.0+179

 AS path: 65020 I

 Communities: 65010:1 65020:1 65020:10 65020:100 65020:1000

 Localpref: 100

 Router ID: 192.168.1.1

The router output clearly shows the 65010:1 community value added to the 192.168.1.0 /24
route as a result of the add-a-community policy. We back out our changes and create a policy to
remove the 65020:200 community value from the 192.168.2.0 /24 route. As before, we view the
route before and after the policy application:

[edit]

user@Cabernet# run show route 192.168.2/24 detail

inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0 hidden)

192.168.2.0/24 (1 entry, 1 announced)

 *BGP Preference: 170/-101

 Source: 10.100.10.2

 Next hop: 10.100.10.2 via at-0/1/0.100, selected

 State: <Active Ext>

 Local AS: 65010 Peer AS: 65020

 Age: 18:23

 Task: BGP_65020.10.100.10.2+2698

 Announcement bits (2): 0-KRT 1-BGP.0.0.0.0+179

4072.book Page 39 Tuesday, March 16, 2004 3:57 PM

40 Chapter 1 � Routing Policy

 AS path: 65020 I

 Communities: 65020:2 65020:20 65020:200 65020:2000

 Localpref: 100

 Router ID: 192.168.1.1

[edit]

user@Cabernet# show policy-options

policy-statement delete-a-community {

 term delete-comm {

 from {

 route-filter 192.168.2.0/24 exact;

 }

 then {

 community delete comm-2;

 }

 }

}

community comm-2 members 65020:200;

[edit]

user@Cabernet# show protocols bgp

group Ext-AS65020 {

 type external;

 import delete-a-community;

 peer-as 65020;

 neighbor 10.100.10.2;

}

user@Cabernet> show route 192.168.2/24 detail

inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0 hidden)

192.168.2.0/24 (1 entry, 1 announced)

 *BGP Preference: 170/-101

 Source: 10.100.10.2

 Next hop: 10.100.10.2 via at-0/1/0.100, selected

 State: <Active Ext>

 Local AS: 65010 Peer AS: 65020

 Age: 18:53

 Task: BGP_65020.10.100.10.2+2698

 Announcement bits (2): 0-KRT 1-BGP.0.0.0.0+179

4072.book Page 40 Tuesday, March 16, 2004 3:57 PM

Communities 41

 AS path: 65020 I

 Communities: 65020:2 65020:20 65020:2000

 Localpref: 100

 Router ID: 192.168.1.1

The delete-a-community policy removed the 65020:200 community value from the
192.168.2.0 /24 route without deleting the other existing values as we expected. We again
back out our changes and use the set community action to remove all community values
attached to the 192.168.3.0 /24 route. In their place, Cabernet adds the 65010:33 community
value to the route:

[edit]

user@Cabernet# run show route 192.168.3/24 detail

inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0 hidden)

192.168.3.0/24 (1 entry, 1 announced)

 *BGP Preference: 170/-101

 Source: 10.100.10.2

 Next hop: 10.100.10.2 via at-0/1/0.100, selected

 State: <Active Ext>

 Local AS: 65010 Peer AS: 65020

 Age: 23:29

 Task: BGP_65020.10.100.10.2+2698

 Announcement bits (2): 0-KRT 1-BGP.0.0.0.0+179

 AS path: 65020 I

 Communities: 65020:3 65020:30 65020:300 65020:3000

 Localpref: 100

 Router ID: 192.168.1.1

[edit]

user@Cabernet# show policy-options

policy-statement set-a-community {

 term set-comm {

 from {

 route-filter 192.168.3.0/24 exact;

 }

 then {

 community set comm-3;

 }

 }

}

community comm-3 members 65010:33;

4072.book Page 41 Tuesday, March 16, 2004 3:57 PM

42 Chapter 1 � Routing Policy

[edit]

user@Cabernet# show protocols bgp

group Ext-AS65020 {

 type external;

 import set-a-community;

 peer-as 65020;

 neighbor 10.100.10.2;

}

user@Cabernet> show route 192.168.3/24 detail

inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0 hidden)

192.168.3.0/24 (1 entry, 1 announced)

 *BGP Preference: 170/-101

 Source: 10.100.10.2

 Next hop: 10.100.10.2 via at-0/1/0.100, selected

 State: <Active Ext>

 Local AS: 65010 Peer AS: 65020

 Age: 23:49

 Task: BGP_65020.10.100.10.2+2698

 Announcement bits (2): 0-KRT 1-BGP.0.0.0.0+179

 AS path: 65020 I

 Communities: 65010:33

 Localpref: 100

 Router ID: 192.168.1.1

As we expected, the set-a-community policy removed the existing community values and
in its place inserted the 65010:33 value.

Extended Communities

Recent networking enhancements, such as virtual private networks (VPN), have functionality
requirements that can be satisfied by an attribute such as a community. (We discuss VPNs in
more detail in Chapter 9, “Layer 2 and Layer 3 Virtual Private Networks.”) However, the exist-
ing 4-octet community value doesn’t provide enough expansion and flexibility to accommodate
the requirements that would be put on it. This leads to the creation of extended communities.
An extended community is an 8-octet value that is also divided into two main sections. The first
2 octets of the community encode a type field while the last 6 octets carry a unique set of data
in a format defined by the type field.

4072.book Page 42 Tuesday, March 16, 2004 3:57 PM

Communities 43

Figure 1.5 shows the format of the extended community attribute. The individual fields are
defined as:

Type (2 octets) The type field designates both the format of the remaining community fields
as well as the actual kind of extended community being used.

The high-order octet uses the two defined values of 0x00 and 0x01. A value of 0x00 denotes a
2-octet administrator field and a 4-octet assigned number field. The 0x01 value results in the
opposite: a 4-octet administrator field and a 2-octet assigned number field.

The low-order octet determines the kind of community used. Two common values are 0x02 (a
route target community) and 0x03 (a route origin community).

Administrator (Variable) The variable-sized administrator field contains information designed
to guarantee the uniqueness of the extended community. The AS number of the network origi-
nating the community is used when 2 octets are available, and an IPv4 prefix is used when 4 octets
are available. The prefix is often the router ID of the device originating the community.

Assigned Number (Variable) The assigned number field is also variably sized to either 2 or 4
octets. It contains a value assigned by the originating network. When combined with the admin-
istrator field, the community value is designed to be unique in the Internet.

F I G U R E 1 . 5 Extended community format

The JUNOS software provides the same command syntax for an extended community as a
regular community. The difference is in the community-id value supplied. An extended com-
munity uses a notation of type:administrator:assigned-number. The router expects you to
use the words target or origin to represent the type field. The administrator field uses a dec-
imal number for the AS or an IPv4 address, while the assigned number field expects a decimal
number no larger than the size of the field (65,535 for 2 octets or 4,294,967,295 for 4 octets).

You use the defined community name for an extended community in the same manner as for
a regular community. You can match on a route or modify the route attributes using the add,
delete, or set keywords. Refer back to Figure 1.4 and the Shiraz router in AS 65020. Shiraz
has local static routes representing customer networks, which have existing regular community
values assigned to them. Shiraz adds extended community values to the routes before advertis-
ing them via BGP. The existing routes are:

[edit]

user@Shiraz# show routing-options

static {

32 bits

Extended Community

8 8 8 8

Assigned Number (Variable)
Type Administrator (Variable)

4072.book Page 43 Tuesday, March 16, 2004 3:57 PM

44 Chapter 1 � Routing Policy

 route 192.168.1.0/24 {

 next-hop 10.222.6.1;

 community 65020:1;

 }

 route 192.168.2.0/24 {

 next-hop 10.222.6.1;

 community 65020:2;

 }

 route 192.168.3.0/24 {

 next-hop 10.222.6.1;

 community 65020:3;

 }

 route 192.168.4.0/24 {

 next-hop 10.222.6.1;

 community 65020:4;

 }

}

Shiraz creates four extended communities: one for each possible combination of type, admin-
istrator field size, and assigned number field size. The communities are associated on a one-to-
one basis with a route using an export policy:

[edit]

user@Shiraz# show policy-options

policy-statement set-ext-comms {

 term route-1 {

 from {

 route-filter 192.168.1.0/24 exact;

 }

 then {

 community add target-as;

 accept;

 }

 }

 term route-2 {

 from {

 route-filter 192.168.2.0/24 exact;

 }

 then {

 community add target-ip;

 accept;

 }

 }

4072.book Page 44 Tuesday, March 16, 2004 3:57 PM

Communities 45

 term route-3 {

 from {

 route-filter 192.168.3.0/24 exact;

 }

 then {

 community add origin-as;

 accept;

 }

 }

 term route-4 {

 from {

 route-filter 192.168.4.0/24 exact;

 }

 then {

 community add origin-ip;

 accept;

 }

 }

}

community origin-as members origin:65020:3;

community origin-ip members origin:192.168.7.7:4;

community target-as members target:65020:1;

community target-ip members target:192.168.7.7:2;

[edit]

user@Shiraz# show protocols bgp

group Internal-Peers {

 type internal;

 local-address 192.168.7.7;

 export set-ext-comms;

 neighbor 192.168.1.1;

 neighbor 192.168.2.2;

 neighbor 192.168.3.3;

 neighbor 192.168.4.4;

 neighbor 192.168.5.5;

 neighbor 192.168.6.6;

}

The routes are received on the Riesling router with the correct community values attached:

user@Riesling> show route protocol bgp 192.168/16 detail

4072.book Page 45 Tuesday, March 16, 2004 3:57 PM

46 Chapter 1 � Routing Policy

inet.0: 32 destinations, 32 routes (32 active, 0 holddown, 0 hidden)

192.168.1.0/24 (1 entry, 1 announced)

 *BGP Preference: 170/-101

 Source: 192.168.7.7

 Next hop: 10.222.4.2 via fe-0/0/2.0, selected

 Protocol next hop: 10.222.6.1 Indirect next hop: 85a3000 62

 State: <Active Int Ext>

 Local AS: 65020 Peer AS: 65020

 Age: 1:58 Metric2: 3

 Task: BGP_65020.192.168.7.7+1562

 Announcement bits (3): 0-KRT 1-BGP.0.0.0.0+179 4-Resolve inet.0

 AS path: I

 Communities: 65020:1 target:65020:1

 Localpref: 100

 Router ID: 192.168.7.7

192.168.2.0/24 (1 entry, 1 announced)

 *BGP Preference: 170/-101

 Source: 192.168.7.7

 Next hop: 10.222.4.2 via fe-0/0/2.0, selected

 Protocol next hop: 10.222.6.1 Indirect next hop: 85a3000 62

 State: <Active Int Ext>

 Local AS: 65020 Peer AS: 65020

 Age: 1:58 Metric2: 3

 Task: BGP_65020.192.168.7.7+1562

 Announcement bits (3): 0-KRT 1-BGP.0.0.0.0+179 4-Resolve inet.0

 AS path: I

 Communities: 65020:2 target:192.168.7.7:2

 Localpref: 100

 Router ID: 192.168.7.7

192.168.3.0/24 (1 entry, 1 announced)

 *BGP Preference: 170/-101

 Source: 192.168.7.7

 Next hop: 10.222.4.2 via fe-0/0/2.0, selected

 Protocol next hop: 10.222.6.1 Indirect next hop: 85a3000 62

 State: <Active Int Ext>

 Local AS: 65020 Peer AS: 65020

 Age: 1:58 Metric2: 3

 Task: BGP_65020.192.168.7.7+1562

4072.book Page 46 Tuesday, March 16, 2004 3:57 PM

Communities 47

 Announcement bits (3): 0-KRT 1-BGP.0.0.0.0+179 4-Resolve inet.0

 AS path: I

 Communities: 65020:3 origin:65020:3

 Localpref: 100

 Router ID: 192.168.7.7

192.168.4.0/24 (1 entry, 1 announced)

 *BGP Preference: 170/-101

 Source: 192.168.7.7

 Next hop: 10.222.4.2 via fe-0/0/2.0, selected

 Protocol next hop: 10.222.6.1 Indirect next hop: 85a3000 62

 State: <Active Int Ext>

 Local AS: 65020 Peer AS: 65020

 Age: 1:58 Metric2: 3

 Task: BGP_65020.192.168.7.7+1562

 Announcement bits (3): 0-KRT 1-BGP.0.0.0.0+179 4-Resolve inet.0

 AS path: I

 Communities: 65020:4 origin:192.168.7.7:4

 Localpref: 100

 Router ID: 192.168.7.7

Regular Expressions

The definition of your community within [edit policy-options] can contain decimal val-
ues, as we’ve already done, or a regular expression. A regular expression (regex) uses nondec-
imal characters to represent decimal values. This allows you the flexibility of specifying any
number of community values in a single community name. When used with communities, as
opposed to a BGP AS Path, the JUNOS software uses two different forms—simple and complex.
Let’s explore the difference between these regex types.

Simple Community Expressions

A simple community regular expression uses either the asterisk (*) or the dot (.) to represent
some value. The asterisk represents an entire AS number or an entire community value. Some
examples of a regular expression using the asterisk are:

*:1111 Matches a community with any possible AS number and a community value of 1111.

65010:* Matches a community from AS 65010 with any possible community value.

The dot represents a single decimal place in either the AS number or the community value.
Examples of regular expressions using the dot are:

65010:100. Matches a community with an AS of 65010 and a community value that is four
digits long, whereas the community value begins with 100. These values include 1000, 1001,
1002, …, 1009.

4072.book Page 47 Tuesday, March 16, 2004 3:57 PM

48 Chapter 1 � Routing Policy

65010:2...4 Matches a community from AS 65010 with a community value that is five dig-
its long. The first digit of the community value must be 2 and the last digit must be 4. Some pos-
sible values are 23754, 21114, and 29064.

650.0:4321 Matches a community with a community value of 4321 and an AS number that
is five digits long. The fourth digit of the AS number can be any value. The AS numbers include
65000, 65010, 65020, …, 65090.

To classify as a simple regular expression, the asterisk and the dot must be
used separately. Using them together (.*) results in a complex community reg-
ular expression. We discuss complex expressions in the “Complex Community
Expressions” section later in the chapter.

Refer back to Figure 1.4 as a guide. Here, the Shiraz router is receiving routes within the
172.16.0.0 /21 address space from AS 65010. Those routes currently have the following com-
munity values assigned to them:

user@Shiraz> show route 172.16.0/21 detail | match Communities

 Communities: 65010:1111 65010:1234

 Communities: 65010:1111 65010:1234

 Communities: 65010:1234 65010:2222

 Communities: 65010:1234 65010:2222

 Communities: 65010:3333 65010:4321

 Communities: 65010:3333 65010:4321

 Communities: 65010:4321 65010:4444

 Communities: 65010:4321 65010:4444

At this point we don’t know which values are attached to which routes; we only know the list
of possible values within the address range. We use the show route community community-
value command in conjunction with some simple regular expressions to accomplish this:

user@Shiraz> show route community *:1111

inet.0: 32 destinations, 35 routes (32 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

172.16.0.0/24 *[BGP/170] 22:41:39, MED 0, localpref 200, from 192.168.1.1

 AS path: 65010 I

 > via so-0/1/0.0

172.16.1.0/24 *[BGP/170] 22:41:39, MED 0, localpref 200, from 192.168.1.1

 AS path: 65010 I

 > via so-0/1/0.0

4072.book Page 48 Tuesday, March 16, 2004 3:57 PM

Communities 49

The 172.16.0.0 /24 and the 172.16.1.0 /24 routes have a community attached with a com-
munity value of 1111. The asterisk regex allows the AS number to be any value, although our
previous capture tells us it is 65010. We see the actual communities by adding the detail
option to the command:

user@Shiraz> show route community *:1111 detail

inet.0: 32 destinations, 35 routes (32 active, 0 holddown, 0 hidden)

172.16.0.0/24 (1 entry, 1 announced)

 *BGP Preference: 170/-201

 Source: 192.168.1.1

 Next hop: via so-0/1/0.0, selected

 Protocol next hop: 192.168.1.1 Indirect next hop: 8570738 120

 State: <Active Int Ext>

 Local AS: 65020 Peer AS: 65020

 Age: 22:43:48 Metric: 0 Metric2: 65536

 Task: BGP_65020.192.168.1.1+179

 Announcement bits (2): 0-KRT 4-Resolve inet.0

 AS path: 65010 I

 Communities: 65010:1111 65010:1234

 Localpref: 200

 Router ID: 192.168.1.1

172.16.1.0/24 (1 entry, 1 announced)

 *BGP Preference: 170/-201

 Source: 192.168.1.1

 Next hop: via so-0/1/0.0, selected

 Protocol next hop: 192.168.1.1 Indirect next hop: 8570738 120

 State: <Active Int Ext>

 Local AS: 65020 Peer AS: 65020

 Age: 22:43:48 Metric: 0 Metric2: 65536

 Task: BGP_65020.192.168.1.1+179

 Announcement bits (2): 0-KRT 4-Resolve inet.0

 AS path: 65010 I

 Communities: 65010:1111 65010:1234

 Localpref: 200

 Router ID: 192.168.1.1

The routes on Shiraz with a community from AS 65010 and a community value four digits
long that begins with 4 are:

user@Shiraz> show route community 65010:4...

4072.book Page 49 Tuesday, March 16, 2004 3:57 PM

50 Chapter 1 � Routing Policy

inet.0: 32 destinations, 35 routes (32 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

172.16.4.0/24 *[BGP/170] 20:32:12, MED 0, localpref 50, from 192.168.1.1

 AS path: 65010 I

 > via so-0/1/0.0

172.16.5.0/24 *[BGP/170] 20:32:12, MED 0, localpref 50, from 192.168.1.1

 AS path: 65010 I

 > via so-0/1/0.0

172.16.6.0/24 *[BGP/170] 20:32:12, MED 0, localpref 50, from 192.168.1.1

 AS path: 65010 I

 > via so-0/1/0.0

172.16.7.0/24 *[BGP/170] 20:32:12, MED 0, localpref 50, from 192.168.1.1

 AS path: 65010 I

 > via so-0/1/0.0

The JUNOS software also provides the ability to combine the asterisk and dot regular
expressions. For example, Shiraz displays the routes whose community is from any AS and
whose value is four digits long ending with 1:

user@Shiraz> show route terse community *:...1

inet.0: 32 destinations, 35 routes (32 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path

* 172.16.0.0/24 B 170 200 0 >so-0/1/0.0 65010 I

* 172.16.1.0/24 B 170 200 0 >so-0/1/0.0 65010 I

* 172.16.4.0/24 B 170 50 0 >so-0/1/0.0 65010 I

* 172.16.5.0/24 B 170 50 0 >so-0/1/0.0 65010 I

* 172.16.6.0/24 B 170 50 0 >so-0/1/0.0 65010 I

* 172.16.7.0/24 B 170 50 0 >so-0/1/0.0 65010 I

Complex Community Expressions

A complex community regular expression allows for a more varied set of combinations
than a simple expression does. The complex regex uses both a regular expression term
in conjunction with a regular expression operator. The regex term is any single character
within the community, including both the actual decimal digits and the simple dot (.) regex.
The operator is an optional character that applies to a single term and usually follows that
term. The JUNOS software allows you to combine multiple term-operator pairs within a
single community definition. Table 1.1 displays the regular expression operators supported
by the router.

4072.book Page 50 Tuesday, March 16, 2004 3:57 PM

Communities 51

T A B L E 1 . 1 Community Regular Expression Operators

Operator Description

{m,n} Matches at least m and at most n instances of the term.

{m} Matches exactly m instances of the term.

{m,} Matches m or more instances of the term, up to infinity.

* Matches 0 or more instances of the term, which is similar to {0,}.

+ Matches one or more instances of the term, which is similar to {1,}.

? Matches 0 or 1 instances of the term, which is similar to {0,1}.

| Matches one of the two terms on either side of the pipe symbol, similar to a
logical OR.

^ Matches a term at the beginning of the community attribute.

$ Matches a term at the end of the community attribute.

[] Matches a range or an array of digits. This occupies the space of a single term
within the community attribute.

(…) Groups terms together to be acted on by an additional operator.

An Effective Use of a Simple Expression

The format and design of the community attribute means that each community should be glo-
bally unique. Router implementations, however, don’t provide a sanity check on received
routes looking for communities belonging to your local AS. In other words, some other net-
work may attach a community value that “belongs” to you. To combat this, some network
administrators remove all community values from each received BGP route. Of course, this is
helpful only when your local administrative policy is not expecting community values from a
peer. When this is not the case, you should honor the expected community values before
removing the unexpected values.

A typical configuration that might accomplish the removal of all community values is shown in
the delete-all-comms policy:

[edit policy-options]

user@Muscat# show

4072.book Page 51 Tuesday, March 16, 2004 3:57 PM

52 Chapter 1 � Routing Policy

policy-statement delete-all-comms {

 term remove-comms {

 community delete all-comms;

 }

}

community all-comms members *:*;

This policy doesn’t contain any match criteria, so all possible routes match the remove-comms
term. The action is then to delete all communities that match the all-comms community name.
The named community uses a regular expression to match all possible AS numbers and all
possible community values. After applying the delete-all-comms policy as an import from its
EBGP peers, the Muscat router can test its effectiveness:

user@Muscat> show route receive-protocol bgp 10.222.45.1 detail

inet.0: 35 destinations, 35 routes (35 active, 0 holddown, 0 hidden)

* 172.16.1.0/24 (1 entry, 1 announced)

 Nexthop: 10.222.45.1

 AS path: 65030 65020 65010 I

 Communities: 65010:1111 65010:1234

user@Muscat> show route 172.16.1/24 detail

inet.0: 35 destinations, 35 routes (35 active, 0 holddown, 0 hidden)

172.16.1.0/24 (1 entry, 1 announced)

 *BGP Preference: 170/-101

 Source: 10.222.45.1

 Next hop: 10.222.45.1 via so-0/1/1.0, selected

 State: <Active Ext>

 Local AS: 65040 Peer AS: 65030

 Age: 1:42:14

 Task: BGP_65030.10.222.45.1+179

 Announcement bits (2): 0-KRT 1-BGP.0.0.0.0+179

 AS path: 65030 65020 65010 I

 Localpref: 100

 Router ID: 192.168.4.4

The lack of communities in the local inet.0 routing table proves the effectiveness of the regular
expression. If the administrators of Muscat want to use communities within their own AS, they
can easily apply them in a second term or another import policy.

4072.book Page 52 Tuesday, March 16, 2004 3:57 PM

Communities 53

The use of the caret (^) and dollar sign ($) operators as anchors for your com-
munity regular expression is optional. However, we recommend their use for
clarity in creating and using expressions with BGP communities.

Examples of complex regular expressions include the following:

^65000:.{2,3}$ This expression matches a community value where the AS number is
65000. The community value is any two- or three-digit number. Possible matches include
65000:123, 65000:16, and 65000:999.

^65010:45.{2}9$ This expression matches a community value where the AS number is
65010. The community value is a five-digit number that begins with 45 and ends with 9.
The third and fourth digits are any single number repeated twice. Possible matches include
65010:45119, 65010:45999, and 65010:45339.

^65020:.*$ This expression matches a community value where the AS number is 65020. The
community value is any possible combination of values from 0 through 65,535. The .* notation
is useful for representing any value any number of times.

^65030:84+$ This expression matches a community value where the AS number is 65030.
The community value must start with 8 and include between one and four instances of 4.
Matches are 65030:84, 65030:844, 65030:8444, and 65030:84444.

^65040:234?$ This expression matches a community value where the AS number is 65040.
The community value is either 23 or 234, which results in the matches being 65040:23 and
65040:234.

^65050:1|2345$ This expression matches a community value where the AS number is 65050.
The community value is either 1345 or 2345, which results in the matches being 65050:1345 and
65050:2345. You can also write the regex as ^65050:(1|2)345$ for added clarity.

^65060:1[357]9$ This expression matches a community value where the AS number is
65060. The community value is 139, 159, or 179, which results in the matches being 65060:139,
65060:159, and 65060:179.

^65070:1[3-7]9$ This expression matches a community value where the AS number is
65070. The community value is a three-digit number that starts with 1 and ends with 9. The sec-
ond digit is any single value between 3 and 7. The matches for this regex are 65070:139,
65070:149, 65070:159, 65070:169, and 65060:179.

While we explored complex regular expressions only within the community
value, the JUNOS software also allows expressions within the AS number. For
example, ^65.{3}:1234$ matches any private AS number starting with 65 and
a community value of 1234.

4072.book Page 53 Tuesday, March 16, 2004 3:57 PM

54 Chapter 1 � Routing Policy

The Shiraz router in Figure 1.4 has local customer static routes it is advertising to its IBGP
peers. These routes and their communities are:

user@Shiraz> show route protocol static detail

inet.0: 32 destinations, 35 routes (32 active, 0 holddown, 0 hidden)

192.168.1.0/24 (1 entry, 1 announced)

 *Static Preference: 5

 Next hop: 10.222.6.1 via so-0/1/2.0, selected

 State: <Active Int Ext>

 Local AS: 65020

 Age: 1:21

 Task: RT

 Announcement bits (3): 0-KRT 3-BGP.0.0.0.0+179 4-Resolve inet.0

 AS path: I

 Communities: 65020:1 65020:10 65020:11 65020:100 65020:111

192.168.2.0/24 (1 entry, 1 announced)

 *Static Preference: 5

 Next hop: 10.222.6.1 via so-0/1/2.0, selected

 State: <Active Int Ext>

 Local AS: 65020

 Age: 1:21

 Task: RT

 Announcement bits (3): 0-KRT 3-BGP.0.0.0.0+179 4-Resolve inet.0

 AS path: I

 Communities: 65020:2 65020:20 65020:22 65020:200 65020:222

192.168.3.0/24 (1 entry, 1 announced)

 *Static Preference: 5

 Next hop: 10.222.6.1 via so-0/1/2.0, selected

 State: <Active Int Ext>

 Local AS: 65020

 Age: 1:21

 Task: RT

 Announcement bits (3): 0-KRT 3-BGP.0.0.0.0+179 4-Resolve inet.0

 AS path: I

 Communities: 65020:3 65020:30 65020:33 65020:300 65020:333

192.168.4.0/24 (1 entry, 1 announced)

 *Static Preference: 5

4072.book Page 54 Tuesday, March 16, 2004 3:57 PM

Communities 55

 Next hop: 10.222.6.1 via so-0/1/2.0, selected

 State: <Active Int Ext>

 Local AS: 65020

 Age: 1:21

 Task: RT

 Announcement bits (3): 0-KRT 3-BGP.0.0.0.0+179 4-Resolve inet.0

 AS path: I

 Communities: 65020:4 65020:40 65020:44 65020:400 65020:444

To adequately test complex regular expressions, Shiraz creates a policy called test-regex
that locates routes by using a complex regular expression and rejects all other routes. The policy
is configured like this:

[edit]

user@Shiraz# show policy-options policy-statement test-regex

term find-routes {

 from community complex-regex;

 then accept;

}

term reject-all-else {

 then reject;

}

The complex regular expression is currently set to match on community values beginning
with either 1 or 3. Here’s the configuration:

[edit]

user@Shiraz# show policy-options | match members

community complex-regex members "^65020:[13].*$";

The 192.168.1.0 /24 and 192.168.3.0/24 routes both have communities attached that
should match this expression. We test the regex and its policy by using the test policy
policy-name command:

user@Shiraz> test policy test-regex 0/0

inet.0: 32 destinations, 35 routes (32 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

192.168.1.0/24 *[Static/5] 00:31:44

 > to 10.222.6.1 via so-0/1/2.0

192.168.3.0/24 *[Static/5] 00:31:44

 > to 10.222.6.1 via so-0/1/2.0

4072.book Page 55 Tuesday, March 16, 2004 3:57 PM

56 Chapter 1 � Routing Policy

Policy test-regex: 2 prefix accepted, 30 prefix rejected

The complex regular expression is altered to match on any community value containing any
number of instances of the digit 2. The new expression configuration and the associated routes
are shown here:

[edit]

user@Shiraz# show policy-options | match members

community complex-regex members "^65020:2+$";

user@Shiraz> test policy test-regex 0/0

inet.0: 32 destinations, 35 routes (32 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

192.168.2.0/24 *[Static/5] 00:40:28

 > to 10.222.6.1 via so-0/1/2.0

Policy test-regex: 1 prefix accepted, 31 prefix rejected

Autonomous System Paths
An AS Path is also a route attribute used by BGP. The AS Path is used both for route selection
and to prevent potential routing loops. As with the communities, we won’t discuss the details
of using AS Paths within BGP in this chapter; those details are covered in Chapter 4. The topics
concerning us in this chapter are defining regular expressions and using those expressions to
locate a set of routes.

Regular Expressions

An AS Path regular expression also uses a term-operator format similar to the complex com-
munity regular expressions. Unlike the community term, the AS Path regular expression term is
an entire AS number, such as 65000 or 65432. This translates into the simple dot (.) regex rep-
resenting an entire AS number. Table 1.2 displays the AS Path regular expression operators sup-
ported by the router.

Examples of AS Path regular expressions include:

65000 This expression matches an AS Path with a length of 1 whose value is 65000. The
expression uses a single term with no operators.

4072.book Page 56 Tuesday, March 16, 2004 3:57 PM

Autonomous System Paths 57

65010 . 65020 This expression matches an AS Path with a length of 3 where the first AS is
65010 and the last AS is 65020. The AS in the middle of the path can be any single AS number.

65030? This expression matches an AS Path with a length of 0 or 1. A path length of 0 is rep-
resented by the null AS Path. If a value appears, it must be 65030.

. (65040|65050)? This expression matches an AS Path with a length of 1 or 2. The first AS
in the path can be any value. The second AS in the path, if appropriate, must be either 65040
or 65050.

65060 .* This expression matches an AS Path with a length of at least 1. The first AS number must
be 65060, and it may be followed by any other AS number any number of times or no AS numbers.
This expression is often used to represent all BGP routes from a particular neighboring AS network.

.* 65070 This expression matches an AS Path with a length of at least 1. The last AS number must
be 65070, and it may be preceded by any other AS number any number of times or no AS numbers.
This expression is often used to represent all BGP routes that originated from a particular AS network.

T A B L E 1 . 2 AS Path Regular Expression Operators

Operator Description

{m,n} Matches at least m and at most n instances of the term.

{m} Matches exactly m instances of the term.

{m,} Matches m or more instances of the term, up to infinity.

* Matches 0 or more instances of the term, which is similar to {0,}.

+ Matches one or more instances of the term, which is similar to {1,}.

? Matches 0 or 1 instances of the term, which is similar to {0,1}.

| Matches one of the two terms on either side of the pipe symbol, similar to a
logical OR.

- Matches an inclusive range of terms.

^ Matches the beginning of the AS Path. The JUNOS software uses this opera-
tor implicitly and its use is optional.

$ Matches the end of the AS Path. The JUNOS software uses this operator
implicitly and its use is optional.

(…) Groups terms together to be acted on by an additional operator.

() Matches a null value as a term.

4072.book Page 57 Tuesday, March 16, 2004 3:57 PM

58 Chapter 1 � Routing Policy

.* 65080 .* This expression matches an AS Path with a length of at least 1. The 65080 AS
number must appear at least once in the path. It may be followed by or preceded by any other
AS number any number of times. This expression is often used to represent all BGP routes that
have been routed by a particular AS network.

.* (64512-65535) .* This expression matches an AS Path with a length of at least 1. One
of the private AS numbers must appear at least once in the path. It may be followed by or pre-
ceded by any other AS number any number of times. This expression is useful at the edge of a
network to reject routes containing private AS numbers.

() This expression matches an AS Path with a length of 0. The null AS Path represents all BGP
routes native to your local Autonomous System.

F I G U R E 1 . 6 An AS Path sample network map

Figure 1.6 shows several Autonomous Systems connected via EBGP peering sessions. Each
router is generating customer routes within their assigned address space. The Cabernet router
in AS 65010 uses the aspath-regex option of the show route command to locate routes using
regular expressions.

The routes originated by the Zinfandel router in AS 65060 include:

user@Cabernet> show route terse aspath-regex ".* 65060"

AS 65010
10.10.0.0/22

Cabernet

AS 65020
10.20.0.0/22

Chardonnay

AS 65030
10.30.0.0/22

Muscat

AS 65050
10.50.0.0/22

Chablis

AS 65040
10.40.0.0/22

Shiraz

AS 65060
10.60.0.0/22

Zinfandel

4072.book Page 58 Tuesday, March 16, 2004 3:57 PM

Autonomous System Paths 59

inet.0: 27 destinations, 27 routes (27 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path

* 10.60.1.0/24 B 170 100 >10.100.10.6 65020 65050 65060 I

* 10.60.2.0/24 B 170 100 >10.100.10.6 65020 65050 65060 I

* 10.60.3.0/24 B 170 100 >10.100.10.6 65020 65050 65060 I

The routes originating in either AS 65040 or AS 65060 include:

user@Cabernet> show route terse aspath-regex ".* (65040|65060)"

inet.0: 27 destinations, 27 routes (27 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path

* 10.40.1.0/24 B 170 100 >10.100.10.6 65020 65030 65040 I

* 10.40.2.0/24 B 170 100 >10.100.10.6 65020 65030 65040 I

* 10.40.3.0/24 B 170 100 >10.100.10.6 65020 65030 65040 I

* 10.60.1.0/24 B 170 100 >10.100.10.6 65020 65050 65060 I

* 10.60.2.0/24 B 170 100 >10.100.10.6 65020 65050 65060 I

* 10.60.3.0/24 B 170 100 >10.100.10.6 65020 65050 65060 I

The routes using AS 65030 as a transit network include:

user@Cabernet> show route terse aspath-regex ".* 65030 .+"

inet.0: 27 destinations, 27 routes (27 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path

* 10.40.1.0/24 B 170 100 >10.100.10.6 65020 65030 65040 I

* 10.40.2.0/24 B 170 100 >10.100.10.6 65020 65030 65040 I

* 10.40.3.0/24 B 170 100 >10.100.10.6 65020 65030 65040 I

Locating Routes

An AS Path regular expression is used within a routing policy as a match criterion to locate
routes of interest. Much as you saw with communities in the “Match Criteria Usage”
section earlier, you associate an expression with a name in the [edit policy-options]
configuration hierarchy. You then use this name in the from section of the policy to locate
your routes.

4072.book Page 59 Tuesday, March 16, 2004 3:57 PM

60 Chapter 1 � Routing Policy

The administrators of AS 65010 would like to reject all routes originating in AS 65030. An
AS Path regular expression called orig-in-65030 is created and referenced in a policy called
reject-AS65030. The routing policy is then applied as an import policy on the Cabernet
router. The relevant portions of the configuration are:

[edit]

user@Cabernet# show protocols bgp

export adv-statics;

group Ext-AS65020 {

 type external;

 import reject-AS65030;

 peer-as 65020;

 neighbor 10.100.10.6;

}

[edit]

user@Cabernet# show policy-options

policy-statement adv-statics {

 from protocol static;

 then accept;

}

policy-statement reject-AS65030 {

 term find-routes {

 from as-path orig-in-65030;

 then reject;

 }

}

as-path orig-in-65030 ".* 65030";

The Muscat router in AS 65030 is advertising the 10.30.0.0 /22 address space. After com-
mitting the configuration on Cabernet, we check for those routes in the inet.0 routing table:

user@Cabernet> show route protocol bgp 10.30.0/22

inet.0: 27 destinations, 27 routes (24 active, 0 holddown, 3 hidden)

user@Cabernet>

No routes in that address range are present in the routing table. Additionally, we see that
Cabernet has three hidden routes, which indicates a successful rejection of incoming routes. We
verify that the hidden routes are in fact from the Muscat router:

user@Cabernet> show route hidden terse

4072.book Page 60 Tuesday, March 16, 2004 3:57 PM

Autonomous System Paths 61

inet.0: 27 destinations, 27 routes (24 active, 0 holddown, 3 hidden)

+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path

 10.30.1.0/24 B 100 >10.100.10.6 65020 65030 I

 10.30.2.0/24 B 100 >10.100.10.6 65020 65030 I

 10.30.3.0/24 B 100 >10.100.10.6 65020 65030 I

The Cabernet router also wants to reject routes originating in AS 65040 and the Shiraz
router. A new AS Path expression called orig-in-65040 is created and added to the current
import routing policy:

user@Cabernet> show configuration policy-options

policy-statement adv-statics {

 from protocol static;

 then accept;

}

policy-statement reject-AS65030 {

 term find-routes {

 from as-path [orig-in-65030 orig-in-65040];

 then reject;

 }

}

as-path orig-in-65040 ".* 65040";

as-path orig-in-65030 ".* 65030";

The router interprets the configuration of multiple expressions in the reject-AS65030 pol-
icy as a logical OR operation. This locates routes originating in either AS 65030 or AS 65040.
We verify the effectiveness of the policy on the Cabernet router:

user@Cabernet> show route 10.30.0/22

inet.0: 27 destinations, 27 routes (21 active, 0 holddown, 6 hidden)

user@Cabernet> show route 10.40.0/22

inet.0: 27 destinations, 27 routes (21 active, 0 holddown, 6 hidden)

user@Cabernet> show route hidden terse

inet.0: 27 destinations, 27 routes (21 active, 0 holddown, 6 hidden)

+ = Active Route, - = Last Active, * = Both

4072.book Page 61 Tuesday, March 16, 2004 3:57 PM

62 Chapter 1 � Routing Policy

A Destination P Prf Metric 1 Metric 2 Next hop AS path

 10.30.1.0/24 B 100 >10.100.10.6 65020 65030 I

 10.30.2.0/24 B 100 >10.100.10.6 65020 65030 I

 10.30.3.0/24 B 100 >10.100.10.6 65020 65030 I

 10.40.1.0/24 B 100 >10.100.10.6 65020 65030 65040 I

 10.40.2.0/24 B 100 >10.100.10.6 65020 65030 65040 I

 10.40.3.0/24 B 100 >10.100.10.6 65020 65030 65040 I

Once again, it appears we’ve successfully used an expression to locate and reject advertised
BGP routes. Should the administrators in AS 65010 continue this process, they can reject routes
from multiple regular expressions. A potential configuration readability issue does arise, how-
ever, when multiple expressions are referenced in a policy. The output of the router begins to
wrap after reaching the edge of your terminal screen, and reading a policy configuration might
become more difficult. To alleviate this potential issue, the JUNOS software allows you to
group expressions together into an AS Path group.

An AS Path group is simply a named entity in the [edit policy-options] hierarchy within
which you configure regular expressions. The Cabernet router has configured a group called
from-65030-or-65040. Its configuration looks like this:

[edit]

user@Cabernet# show policy-options | find group

as-path-group from-65030-or-65040 {

 as-path from-65030 ".* 65030";

 as-path from-65040 ".* 65040";

}

The group currently contains two expressions—from-65030 and from-65040—which
locate routes originating in each respective AS. The router combines each expression in the AS
Path group together using a logical OR operation. In this fashion, it is identical to referencing
each expression separately in a policy term. The group is used in a routing policy term to locate
routes, and its configuration is similar to a normal regular expression:

[edit]

user@Cabernet# show policy-options

policy-statement adv-statics {

 from protocol static;

 then accept;

}

policy-statement reject-AS65030 {

 term find-routes {

 from as-path [orig-in-65030 orig-in-65040];

 then reject;

 }

4072.book Page 62 Tuesday, March 16, 2004 3:57 PM

Autonomous System Paths 63

}

policy-statement reject-65030-or-65040 {

 term find-routes {

 from as-path-group from-65030-or-65040;

 then reject;

 }

}

as-path orig-in-65040 ".* 65040";

as-path orig-in-65030 ".* 65030";

as-path-group from-65030-or-65040 {

 as-path from-65030 ".* 65030";

 as-path from-65040 ".* 65040";

}

After replacing the current BGP import policy with the reject-65030-or-65040 policy, we
find that the same routes are rejected on the Cabernet router:

user@Cabernet> show configuration protocols bgp

export adv-statics;

group Ext-AS65020 {

 type external;

 import reject-65030-or-65040;

 peer-as 65020;

 neighbor 10.100.10.6;

}

user@Cabernet> show route 10.30.0/22

inet.0: 27 destinations, 27 routes (21 active, 0 holddown, 6 hidden)

user@Cabernet> show route 10.40.0/22

inet.0: 27 destinations, 27 routes (21 active, 0 holddown, 6 hidden)

user@Cabernet> show route hidden terse

inet.0: 27 destinations, 27 routes (21 active, 0 holddown, 6 hidden)

+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path

 10.30.1.0/24 B 100 >10.100.10.6 65020 65030 I

 10.30.2.0/24 B 100 >10.100.10.6 65020 65030 I

4072.book Page 63 Tuesday, March 16, 2004 3:57 PM

64 Chapter 1 � Routing Policy

 10.30.3.0/24 B 100 >10.100.10.6 65020 65030 I

 10.40.1.0/24 B 100 >10.100.10.6 65020 65030 65040 I

 10.40.2.0/24 B 100 >10.100.10.6 65020 65030 65040 I

 10.40.3.0/24 B 100 >10.100.10.6 65020 65030 65040 I

Summary
In this chapter, you saw how the JUNOS software provides multiple methods for processing
routing policies. We explored policy chains in depth and discovered how a policy subroutine
works. We then looked at how to advertise a set of routes using a prefix list. Finally, we dis-
cussed the concept of a policy expression using logical Boolean operators. This complex system
allows you the ultimate flexibility in constructing and advertising routes.

We concluded our chapter with a discussion of two BGP attributes, communities and
AS Paths, and some methods of interacting with those attributes with routing policies. Both
attributes are used as match criteria in a policy, and community values are altered as a policy
action. Regular expressions are an integral part of locating routes, and we examined the con-
struction of these expressions with respect to both communities and AS Paths.

Exam Essentials
Be able to identify the default processing of a policy chain. Multiple polices can be applied
to a particular protocol to form a policy chain. The router evaluates the chain in a left-to-right
fashion until a terminating action is reached. The protocol’s default policy is always implicitly
evaluated at the end of each chain.

Know how to evaluate a policy subroutine. A common policy configuration is referenced
from within another policy as a match criterion. The router processes the subroutine and the
protocol’s default policy to determine a true or false result. This result is returned to the original
policy where a true result is a match and a false result is not a match for the term.

Understand the logical evaluation of a policy expression. Logical Boolean operations of AND,
OR, and NOT are used to combine multiple policies. Each expression occupies one space in a pol-
icy chain. The router first evaluates the expression to determine a true or false result and then uses
that result to take various actions.

Know how to evaluate a prefix list. A prefix list is a set of routes which is applied to a routing
policy as a match criterion. The prefix list is evaluated as a series of exact route matches.

Be able to construct a community regular expression. A regular expression is a pattern-
matching system consisting of a term and an operator. The term for a community is a single

4072.book Page 64 Tuesday, March 16, 2004 3:57 PM

Exam Essentials 65

character, which can be combined with an operator. An expression is used to locate routes as
a match criterion in a policy and to modify the list of communities attached to a BGP route.

Be able to construct an AS Path regular expression. Regular expressions can also be built to
locate routes using the BGP AS Path attribute. The term for an AS Path expression is an entire
AS number, not an individual character. The expression is used as a routing policy match cri-
terion either by itself or within an AS Path group.

4072.book Page 65 Tuesday, March 16, 2004 3:57 PM

66 Chapter 1 � Routing Policy

Review Questions
1. Which policy is always evaluated last in a policy chain?

A. The first configured import policy

B. The last configured import policy

C. The first configured export policy

D. The last configured export policy

E. The protocol default policy

2. What is a possible result of evaluating called-policy when the router encounters a configu-
ration of from policy called-policy?

A. The route is accepted by called-policy.

B. The route is rejected by called-policy.

C. A true or false result is returned to the original policy.

D. Nothing occurs by this evaluation.

3. The policy called outer-policy is applied as an export policy to BGP. What happens to the
10.10.10.0 /24 static route when it is evaluated by this policy?

outer-policy {

 term find-routes {

 from policy inner-policy;

 then accept;

 }

 term reject-all-else {

 then reject;

 }

}

inner-policy {

 term find-routes {

 from protocol static;

 then reject;

 }

}

A. It is accepted by outer-policy.

B. It is rejected by outer-policy.

C. It is accepted by inner-policy.

D. It is rejected by inner-policy.

4072.book Page 66 Tuesday, March 16, 2004 3:57 PM

Review Questions 67

4. Which route filter match type is assumed when a policy evaluates a prefix list?

A. exact

B. longer

C. orlonger

D. upto

5. The policy expression of (policy-1 && policy-2) is applied as an export within BGP. Given
the following policies, what happens when the local router attempts to advertise the 172.16.1.0
/24 BGP route?

policy-1 {

 term accept-routes {

 from {

 route-filter 172.16.1.0/24 exact;

 }

 then accept;

 }

}

policy-2 {

 term reject-routes {

 from {

 route-filter 172.16.1.0/24 exact;

 }

 then reject;

 }

}

A. It is accepted by policy-1.

B. It is rejected by policy-2.

C. It is accepted by the BGP default policy.

D. It is rejected by the BGP default policy.

6. The policy expression of (policy-1 || policy-2) is applied as an export within BGP. Given
the following policies, what happens when the local router attempts to advertise the 172.16.1.0
/24 BGP route?

policy-1 {

 term accept-routes {

 from {

 route-filter 172.16.1.0/24 exact;

 }

 then accept;

 }

4072.book Page 67 Tuesday, March 16, 2004 3:57 PM

68 Chapter 1 � Routing Policy

}

policy-2 {

 term reject-routes {

 from {

 route-filter 172.16.1.0/24 exact;

 }

 then reject;

 }

}

A. It is accepted by policy-1.

B. It is rejected by policy-2.

C. It is accepted by the BGP default policy.

D. It is rejected by the BGP default policy.

7. The regular expression ^6[45][5-9]..:.{2,4}$ matches which community value(s)?

A. 6455:123

B. 64512:1234

C. 64512:12345

D. 65536:1234

8. The regular expression ^*:2+345?$ matches which community value(s)?

A. 65000:12345

B. 65010:2234

C. 65020:22345

D. 65030:23455

9. The regular expression 64512 .+ matches which AS Path?

A. Null AS Path

B. 64512

C. 64512 64567

D. 64512 64567 65000

10. The regular expression 64512 .* matches which AS Path?

A. Null AS Path

B. 64512

C. 64513 64512

D. 65000 64512 64567

4072.book Page 68 Tuesday, March 16, 2004 3:57 PM

Answers to Review Questions 69

Answers to Review Questions
1. E. The default policy for a specific protocol is always evaluated last in a policy chain.

2. C. The evaluation of a policy subroutine only returns a true or false result to the calling policy.
A route is never accepted or rejected by a subroutine policy.

3. B. The policy subroutine returns a false result to outer-policy for the 10.10.10.0 /24 static
route. The find-routes term in that policy then doesn’t have a match, so the route is evaluated
by the reject-all-else term. This term matches all routes and rejects them. This is where the
route is actually rejected.

4. A. A routing policy always assumes a match type of exact when it is evaluating a prefix list as
a match criterion.

5. B. The result of policy-1 is true, but the result of policy-2 is false. This makes the entire
expression false, and policy-2 guaranteed its result. Therefore, the action of then reject in
policy-2 is applied to the route and it is rejected.

6. A. The result of policy-1 is true, which makes the entire expression true. Because policy-1
guaranteed its result, the action of then accept in policy-1 is applied to the route and it is
accepted.

7. B. The first portion of the expression requires a five-digit AS value to be present. Option A
doesn’t fit that criterion. While Option D does, it is an invalid AS number for a community. The
second portion of the expression requires a value between two and four digits long. Of the
remaining choices, only Option B fits that requirement.

8. B and C. The first portion of the expression can be any AS value, so all options are still valid at
this point. The second portion of the expression requires that it begin with one or more instances
of the value 2. Option A begins with 1, so it is not correct. Following that must be 3 and 4, which
each of the remaining options have. The final term requires a value of 5 to be present zero or one
times. Options B and C fit this requirement, but Option D has two instances of the value 5.
Therefore, only Options B and C are valid.

9. C. The expression requires an AS Path length of at least 2, which eliminates Options A and B.
The second AS in the path may be repeated further, but a new AS number is not allowed. Option
D lists two different AS values after 64512, so it does not match the expression. Only Option C
fits all requirements of the regex.

10. B. The expression requires an AS Path length of at least 1, which must be 64512. Other AS
values may or may not appear after 64512. Only Option B fits this criterion.

4072.book Page 69 Tuesday, March 16, 2004 3:57 PM

4072.book Page 70 Tuesday, March 16, 2004 3:57 PM

