
Adapted from Mastering Java 2, J2SE 1.4
by John Zukowski

ISBN 0-7821-4022-X $49.99

Chapter 1
Getting Started with

the Java 2 SDK

J ava programs come in many forms. Originally, there were
just two: applets, which are Java programs that run in

the Web browser, and applications, which don’t. Since then,
many other varieties of Java programs have joined the ranks.
Servlets are Java programs that run in Web servers; midlets run
on mobile information devices; and there are many more types.
This chapter describes the specific differences between applets
and applications and describes how to create them with the
Java Software Development Kit.

Originally known as the Java Development Kit (JDK), the
Java 2 Software Development Kit (SDK) is what you use to cre-
ate programs for the Java 2 Platform, Standard Edition (J2SE).
The SDK includes all the tools and standard Java libraries
needed to create applets and applications. If you want to create
server-side programs, servlets and other server-side programs,
you’ll need to get the Java 2 Enterprise Edition (J2EE), which
works on top of the J2SE. And for developing midlets and wire-
less applications, there is the Java 2 Micro Edition (J2ME).

P
ar

t
I

CO
PYRIG

HTED
 M

ATERIA
L

The SDK is full of command-line tools for creating and executing Java
programs. You’ll find a compiler to convert your Java source code into
executable programs. You’ll also find the means for documenting, debug-
ging, and integrating Java programs with C/C++-based programs as well
as CORBA applications. In this chapter, you’ll learn how to set up your
initial development environment and construct basic applets and appli-
cations. You’ll get your first taste of Java source code and learn how to
run programs in a Java Runtime Environment. From editing all the way
through compiling and running, all these development tasks can be done
for free—there are no costs involved with any of them, at least on the
reference platforms supported by Sun.

NOTE
The reference platforms available from Sun are Solaris SPARC/x86, Linux x86,
and Microsoft Windows. For other platforms, you will most likely need to visit
the vendor of the OS and/or hardware.

Applets vs. Applications
The word applet usually makes one think of a “small” application. In
truth, there is no such restriction on size for applets—the actual defining
factor is that the applet is started by a Web browser loading an HTML
file. However, since applets are downloaded over the Web, developers
usually don’t make their applets that big, in consideration of the down-
load lag to receive the files from the Web server and then start them up
in the browser.

Applications, on the other hand, are installed on the client, get started
from the command line, and suffer from no download limitations. With
applications, the Java version running in the browser matters not at all.

The Java Runtime Environment
Before we jump into exploring differences between applets and applica-
tions, it’s important to make sure you understand the concept of the Java
Runtime Environment (JRE). As its name suggests, the JRE is the environ-
ment in which your Java programs run. For applets, the browser vendor
provides that environment. Though you can replace that environment
with the Java Plug-in (http://java.sun.com/products/plugin/), for
the most part you’ll use what the browser vendor provides for running

Chapter 14

Internet-deployed applets. On the other hand, for applications you can
deliver the JRE with your programs, or you can rely on the user’s having
one already installed. The JRE is easy to replace for applications, and you’ll
be able to make sure your user is using a version with which you’ve tested
your program.

The JRE is freely downloadable from http://java.sun.com/j2se
/1.4/jre/. You don’t have to have it for creating Java programs, and
distribution is free when it comes time to deploy your applications.

Here’s the sticky point for you readers: While this book is about devel-
oping programs for the Java 1.4 platform, the JRE version found in most
Java-enabled browsers is only Java 1.1.x. So if you try to use any new and
interesting features added to the libraries since Java 1.1, your resulting
applet won’t work in any version of Internet Explorer. As far as Netscape
browsers go, your applet won’t work in Netscape Navigator/Communica-
tor 4.x and only has a chance of working with Netscape 6, because that
browser relies on the previously mentioned Java Plug-in for its JRE,
shipping with none.

NOTE
It’s very important to keep in mind, though, that while the JRE found in browsers
is based on Java 1.1, you can still run applets in browsers created from the Java 2
SDK version 1.4. You just can’t use any features that weren’t around during
Java 1.1 time. The trick is knowing what the differences are! The easiest way to
know the differences is to view the documentation for the older version of the
Java runtime at http://java.sun.com/products/jdk/1.1/docs.html,
while you’re using the newer compiler.

Applets and Applications: What’s the
Difference?

Think of where an applet runs and where an application runs, and you’ll
understand nearly all the differences between them. Applets run inside
browsers, and applications don’t.

When it comes to using an applet, always think of downloading a
program from over the Internet. Because an applet can be downloaded
whenever you visit a web site, browsers must provide a tightly controlled
environment to run that applet. You’ll hear that area called a sandbox.
The sandbox provides a secure environment, restricting the applet from
accessing anything on the client machine and only permitting the applet

Getting Started with the Java 2 SDK 5

P
ar

t
I

to communicate with the server it came from. In addition, the browser
tells the applet when to initialize itself, when to draw itself, when to acti-
vate or deactivate itself, as well as when to unload. Lastly, the browser
supplies an area within an HTML page for the applet’s display, and that’s
the area used by the applet for drawing.

Applications, in contrast, have no such restrictions or automatic
display area. Because applications run locally, they can do anything. An
applet gets an area within the browser for display, but an application pro-
vides no such graphical environment by default. Yes, it can create one,
but it isn’t there automatically. And an applet can get input from the out-
side world from within its HTML page, whereas an application gets input
from the command line.

So when it comes time to write a program, which one do you create?
Well, it depends. There is no clear-cut answer. If you want to use any
features from Java 1.4, 1.3, or even 1.2, you’re pretty much stuck working
with applications. However, if you don’t mind installing the Java Plug-in,
you can use those later versions in applets. Keep in mind that the Plug-in
isn’t small: It’s anywhere from 9MB for Windows to over 21MB for Linux,
up to nearly 30MB for 64-bit Solaris, so think about the consequences of
using it. For an intranet, the Plug-in is a viable option, but for an Internet-
based applet, probably not. Because corporate networks can mandate the
system configuration and usually have high-speed network connections,
the Plug-in may be a realistic option.

If you like the idea of Web-delivery with little to no installation cost,
don’t give up on applications automatically. You can use tools such as
InstallShield or InstallAnywhere, which create multiplatform installable
applications that can be delivered over the Web. And Java Web Start is
a standard option for deploying applications but running them in a
sandbox-like environment.

Working with the Java 2 SDK
When starting out to create Java programs, many developers begin with
Sun’s development kit, the SDK. The price is right—free—and you can
always manage to work with the latest version (assuming your platform
is Windows, Solaris, or Linux). The SDK is a set of command-line tools
for creating Java programs, both applets and applications. All you have
to do is provide an editor of your own choosing, and you have all
you need.

Chapter 16

As part of the development kit, you get the JRE and a set of libraries
for your programs. The combination of the runtime environment and
libraries is frequently called the Java Platform. With each Java release,
the set of libraries changes, but the underlying runtime environment
essentially does not.

The libraries that come with each Java release are essentially what
differentiate Java from most other programming languages. When you
know your Java version, then you know what libraries you can expect.
This is true no matter what platform you are using, whether it’s one of
the reference implementations from Sun or a third-party version from
IBM or the like. Sun has an exhaustive test suite that makes sure any-
thing called “Java” passes its compatibility test. So if a third-party imple-
mentation doesn’t pass, it isn’t Java. Because your own programs are
portable in this fashion, Sun has coined the term Write-Once, Run
Anywhere (WORA) to describe Java programs.

The libraries available with the Java platform allow you to do almost
anything. There is support for graphics, networking, data structures,
XML processing, and disk I/O, among many other technologies. When
you move to other types of runtime environments, such as smart cards
or embedded devices instead of desktop computers, the core API set will
be the same. And Sun maintains well-defined subsets of all the libraries
for these other environments, so you’ll know what isn’t available. For
instance, there is no graphical environment on smart cards, so the graph-
ics libraries aren’t available. As long as you stick to what is available
across these diverse runtime environments, the same Java programs will
run there, too (though usually you’ll know the target runtime equipment
before you start).

SDK Tools
Before we download and install the Java 2 SDK, let’s take a walk through
the tools that come with the kit and see how they work together. There
are 23 utilities, and you’ll use the following eight of them in this book:

javac The Java compiler. Converts source code to byte
codes.

java The Java application launcher. Executes byte
codes for an application.

appletviewer The Java applet launcher. Executes byte codes for
an applet.

Getting Started with the Java 2 SDK 7

P
ar

t
I

javadoc The Java commenting tool. Generates HTML
documentation from Java source files.

jdb The Java debugger. Steps through programs as
they execute, sets breakpoints, and monitors
behavior.

javap The Java disassembler. Examines the byte codes
to display information.

jar Java Archive (JAR) manager. Combines and com-
presses multiple files and directories into one.

javah Header file generator. Used when combining Java
with C/C++ programs.

Assuming you have a text editor that allows you to save Java source
files as raw text—that is, without the kind of formatting information
that’s in Microsoft Word .doc files—you can create and execute Java pro-
grams with these SDK tools. The process of building applications is illus-
trated in Figure 1.1, and Figure 1.2 illustrates the slightly different tasks
involved in creating a working applet. After you download the SDK, you’ll
follow the steps shown in these figures to create your first Java applica-
tion and applet.

FIGURE 1.1: How Java applications are built with the SDK

Text Editor

javadoc

javac

javah

Java Program Outputjava

jdb

Java Source Code
Filename.java

Java Class File
Filename.class

HTML
Documentation
Files

C/C++
Header Files

Chapter 18

FIGURE 1.2: How Java applets are built with the SDK

Following are the remaining 15 SDK tools, listed in logical groupings:

javaw Application launcher without a console.
Executes byte codes for applications but
runs in a windowless console.

extcheck Java Archive (JAR) conflict checker.
Examines JAR files for version conflicts.

native2ascii Unicode converter. Translates files from
one encoding format to another.

Security management tools. Allow you
to create applets that break out of the
sandbox.

Tools for working with Remote Method
Invocation (RMI).

Tools for working with CORBA, IDL,
and IIOP.

unregbean Tool to unregister Java Beans components
usable over ActiveX.

idlj, orbd,
servertool,
tnameserv

rmic, rmid,
rmiregistry,
serialver

jarsigner, keytool,
policytool

Text Editor

javadoc

javac

javah

Java Program Output

jdb

Java Source Code
Filename.java

Java Class File
Filename.class

appletviewerHTML Host File
Filename.html

HTML
Documentation
Files

C/C++
Header Files

Text Editor

Getting Started with the Java 2 SDK 9

P
ar

t
I

Downloading and Installing the SDK
To get started working with Java, you need to download the SDK for
Java 1.4. Once you install it on your machine, you’ll be able to work
through the examples in this book.

Downloading the SDK
You can get the 1.4 SDK for Microsoft Windows 95/98/Me/NT4/2000,
Solaris SPARC/x86, or Linux directly from Sun’s site at http://java
.sun.com/j2se/1.4/. For other platforms, you’ll need to visit http:
//java.sun.com/cgi-bin/java-ports.cgi to find a list of third-
party ports. New Java releases are not immediately available on other
platforms, so there may be some delay in availability.

Installing the SDK
The instructions for SDK installation are different for each platform. If
you run into trouble, you can always follow the Installation link from the
original Sun download page for help.

Windows Installation The Windows installation package comes as an
InstallShield installer. Just execute the j2sdk-1_4_0-win.exe file and
follow the prompts, and you’ll get everything placed in C:\j2sdk1.4.0
by default. You don’t have to install the Native Interface Header Files,
Demos, or Java Sources, but at a minimum you should install the last two.

Once the installer is done, update the system PATH. This is a set of
directories the system uses to find programs to run. For the Java tools to
work anywhere, add

C:\j2sdk1.4.0\bin

to the PATH. If there are multiple items in the PATH already, use a semi-
colon (;) as the separator.

The method of updating the system PATH depends on the Windows
version you have. For instance, with Windows 95/98, you can add the
following as the last line of the C:\autoexec.bat file:

SET PATH=C:\j2sdk1.4.0\bin;%PATH%

where the %PATH% means to keep the current path settings and simply
prepend the just-installed JDK bin directory. For Windows NT/2000,

Chapter 110

you use the System icon in the Control Panel to change the PATH. And
Windows Me has a System Configuration Utility buried under Acces-
sories ➢ System Tools ➢ System Information to do the same.

In most cases, after changing the PATH you’ll need to reboot the
machine for the changes to take effect—although you may want to wait
to reboot until after you read the “Understanding CLASSPATH” section
coming up.

Linux Installation Sun’s Linux release runs on Intel platforms run-
ning the 2.2.12 kernel and the 2.1.2-11 or later glibc library. The officially
supported Linux release is RedHat Linux 6.2. You can get either the self-
extracting binary (j2sdk-1_4_0-beta-linux-i386.bin) or RedHat
RPM file (j2sdk-1_4_0-beta-linux-i386-rpm.bin):

8 If you download the self-extracting binary, after running the
script, the SDK will be installed into the j2sdk1.4.0 directory
under the directory where you run the script. First, make the file
executable with chmod a+x, and then execute. Just be sure you
have write permission for whatever directory you’re using.

8 With the RPM file, the SDK will be installed into the
/usr/java/j2sdk1.4.0/ directory. As you do for the self-
extracting binary, make the file executable and run it. However,
running it only creates the j2sdk-1.4.0.i386.rpm file. You’ll
then need to run this as root with rpm -iv to install the SDK.

TIP
The RPM is not relocatable, so if you’d rather install into /usr/local/, don’t
use the RPM file.

Once the SDK is installed, add the bin directory under the installation
directory to your PATH to make the Java tools available.

Solaris Installation For the Solaris 2.6, 7, and 8 platforms, you’ll
need to get the appropriate packed archive file (j2sdk-1_4_0-beta-
solsparc.sh for Solaris/SPARC or j2sdk-1_4_0-beta-solx86.sh for
Solaris/x86) or package bundles (j2sdk-1_4_0-beta-solsparc.tar.Z
or j2sdk-1_4_0-beta-solx86.tar.Z). You may also have to download
patches for your operating system. Combined, the package and the

Getting Started with the Java 2 SDK 11

P
ar

t
I

patches may be as large as 100MB (compressed). Be sure to download
and install the patches first:

8 If you download the packed archive file, after running the script
you’ll have the SDK installed in the j2sdk1.4.0 directory. Just
make the script executable with chmod +x and then run the script
from the directory in which you want j2sdk1.4.0 created. You
can always move the directory later.

8 If you download the package bundles, you’ll need to uncompress
the .tar.Z file with zcat, remove the 1.3 SDK packages with
pkgrm if you installed 1.3 (SUNWj3dmo, SUNWj3man, SUNWj3dev,
and SUNWj3rt), and add the new 1.4 packages with pkgadd. For
SPARC, the new packages are SUNWj3rt, SUNWj3dev, SUNWj3man,
SUNWj3dmo, SUNWj3rtx, and SUNWj3dvx. For Intel, drop the last
two. You’ll wind up with the SDK installed in the /usr/j2se
directory.

Once you’ve got the SDK installed, either add the bin directory under
j2sdk1.4.0, or add /usr/j2se to your PATH so that the Java tools are
available without your having to specify their full path when you need to
run them.

NOTE
For convenience, all directory names in the remainder of this book will be in
DOS (Windows) format, except when it’s necessary to point out specific plat-
form differences.

Understanding CLASSPATH
In addition to the PATH environment variable, Java relies on another vari-
able setting: CLASSPATH. The Java runtime environment will look for user
items to execute (Java classes) in the CLASSPATH environment variable. If
it’s not set properly, you’ll run into lots of problems and go crazy pulling
your hair out trying to solve them. The system does know where to look
for system classes, so you have no chance of interfering with that when
mucking with the CLASSPATH variable.

Under normal circumstances, you don’t have to do anything at all with
your CLASSPATH setting. If it’s not set, the JRE looks in the current direc-
tory for user classes. If CLASSPATH is set, the JRE looks in the current

Chapter 112

directory only if you tell it to, examining just those locations specified by
the variable setting. Normally, you want the JRE to look in the current
directory, because that’s where it can find the classes associated with
the program you’re developing.

Sometimes, previously installed programs will unknowingly set your
CLASSPATH for you. If they have, you’ll need to manually add the current
directory back to the search path. A period (.) in the CLASSPATH repre-
sents the current working directory, so add it to the variable.

On Windows, the CLASSPATH entries are separated by semicolons.
Like PATH, setting this up depends on your platform. The new setting will
look something like the following, although it depends on what else you
have installed for the other entries. The important piece, in any case, is
the trailing semicolon and period, as shown here:

SET CLASSPATH=C:\foo\bar;D:\bar\foo.jar;.

Under Unix (Solaris or Linux), CLASSPATH entries are separated by a
colon. How exactly to set the path depends upon your shell. Here, the
important piece is the colon and the period at the end:

setenv CLASSPATH /usr/foo:. (For c-shell)

CLASSPATH=/usr/foo:. (For bourne shell)

export CLASSPATH

TIP
For additional information on CLASSPATH settings see the following URLs:
http://java.sun.com/j2se/1.4/docs/tooldocs/win32/classpath
.html and http://java.sun.com/j2se/1.4/docs/tooldocs/solaris
/classpath.html.

Once you have everything set and have rebooted if necessary, you
can run the java –version command to see if your PATH is correct
and make sure you’re using the appropriate version of the Java SDK.
Assuming the command comes back and tells you that you’re using the
1.4 release, you’re all set. Otherwise, you’ll have to double-check your
settings. Since the bin directory for Java was added to the front of the
PATH setting, the system should not find any other version in some
other PATH location.

Getting Started with the Java 2 SDK 13

P
ar

t
I

DOWNLOADING THE DOCUMENTATION

In addition to the SDK itself, you should download the SDK docu-
mentation from http://java.sun.com/j2se/1.4/. The 31MB
compressed file (160MB uncompressed) includes usage and
API documentation to help you become a productive developer.
Though you can always look at the information online at
http://java.sun.com/j2se/1.4/docs/, it’s quicker to have
the documentation set installed locally. After unpacking, be sure to
bookmark the index.html file under the top-level docsdirectory.

Creating Java Applications
This section walks through all the steps pictured in Figure 1.1, from edit-
ing, through compilation, to execution, and beyond.

The Hello World Application
To get started with Java development, you need an editor. Unix folks
will find emacs or vi handy, and Windows users can use the standard
Notepad program. Pick whatever editor you’re comfortable with, as long
as it will save your source files as text.

A tip for Windows users: If you’re using Windows Notepad as a
text editor, you may find that it saves .java files with an added .txt
extension—for instance, saving Foo.java as Foo.java.txt. As a short-
term solution, place the filename within double quotes (“Foo.java”) to
save. For the long term, you’ll need to go into the Windows Explorer and
associate .java files with Notepad.

For starters, you’ll create a program that will print a message to the
screen. This little program is typically called Hello World because that is
the message displayed. Place the source code shown in Listing 1.1 in a
file named HelloWorld.java. Java is case sensitive, so be sure to use
the proper case in the filename. It has to match what is inside the
source code.

Listing 1.1: The Hello World Program
public class HelloWorld {
public static void main(String args[]) {

Chapter 114

System.out.println(“Hello, World”);
}

}

Don’t worry about fully understanding the details of the program
yet. You’ll learn more as you work your way through the remainder of
the book. Essentially, this file contains the definition of a class named
HelloWorld. The class contains a method named main(). When you
try to run an application in Java, the runtime environment looks for a
main() method. The main() method must have the keywords public,
static, and void associated with it. In addition, the main() method
must accept an array of String elements as argument.

NOTE
The reference implementation from Sun will run the program even if the public
keyword is missing for main(). This may not work with other runtime
environments, however, so just get in the habit of including the necessary
keywords.

The String args[] part of the main() method declaration refers to
any command-line arguments you pass into the Java program. This is
similar to the C/C++ declaration

int main(int argc, char *argv[0]);

except that with C/C++, a second argument is necessary to pass in the
number of elements in the array. In Java, arrays know their length, so the
first argument here is unnecessary.

Aside from the case differences, Java’s main() method declaration
is practically identical to the C# mechanism to pass in command-line
arguments:

public static void Main(string[] args)

The line System.out.println(“...”); in Listing 1.1 says to send
the message between the quotes to System.out, which happens to
be the console window from which you started the program.

Compiling the Application Source
Following the main path of Figure 1.1, you can see that once you’ve saved
your program with your editor, the next step is to compile it with the
compiler (javac). To compile your program, just enter javac followed by
the case-sensitive source filename. If you haven’t already, you’ll need to

Getting Started with the Java 2 SDK 15

P
ar

t
I

have a command prompt window open and be in the directory where you
saved the file. So enter

javac HelloWorld.java

If the source code is error free, javac generates a file named HelloWorld
.class and immediately returns to the command prompt.

When you’re interested in following the inner workings of compilation,
you can use the -verbose option with javac. On a single class, the
results aren’t too interesting, but you’ll see what the compiler needs in
order to verify that the program is valid. Executing this command

javac -verbose HelloWorld.java

generates the following output:
[parsing started HelloWorld.java]

[parsing completed 203ms]

[loading C:\J2SDK1.4.0\jre\lib\rt.jar(java/lang/Object _
.class)]

[loading C:\J2SDK1.4.0\jre\lib\rt.jar(java/lang _
/String.class)]

[checking HelloWorld]

[loading C:\J2SDK1.4.0\jre\lib\rt.jar(java/lang/System _
.class)]

[loading C:\J2SDK1.4.0\jre\lib\rt.jar(java/io/PrintStream _
.class)]

[loading C:\J2SDK1.4.0\jre\lib\rt.jar(java/io _
/FilterOutputStream.class)]

[loading C:\J2SDK1.4.0\jre\lib\rt.jar(java/io/OutputStream _
.class)]

[wrote HelloWorld.class]

[total 640ms]

If you read through your program’s source code and look in the
documentation for the classes, you’ll find out why each of the classes is
necessary. Unless specified otherwise, classes build from the Object
class. The main() method of the program takes a String argument.
Inside main(), there is a reference to the System class. The out variable
of System happens to be of type PrintStream. The final two loaded
classes have to do with PrintStream, a kind of FilterOutputStream,
which is a kind of OutputStream (which is a kind of Object, but that
is already loaded). With all those classes verified and no errors in the

Chapter 116

source, the compilation is deemed to be a success, so the .class file is
generated.

The generated .class file is a platform-neutral binary formal under-
stood by the Java Virtual Machine (JVM). The JVM is what runs the byte
codes in the JRE. If you are interested in learning more about the format
of the file, you can read the Java Virtual Machine Specification at
http://java.sun.com/docs/books/vmspec/2nd-edition/html
/VMSpecTOC.doc.html.

Running the Application
After you’ve compiled the source code, you can run the program. Use the
Java application launcher, java, to do this. Enter this command:

java HelloWorld

It will display the output “Hello, World” as shown in Figure 1.3.

FIGURE 1.3: A Windows session to compile and execute the HelloWorld class

TIP
When you enter the java command, be sure not to specify the .class at the
end of the class name to be run. Only specify the class name, not the filename.

There are some command-line options that may also be of interest
when running your programs. To see a list of options, pass in -? as the
command-line option, like this:

java -?

Getting Started with the Java 2 SDK 17

P
ar

t
I

It will bring back a list of options you can pass into the launcher, as
shown here (you won’t need to worry about most of these):

Usage: java [-options] class [args...]

(to execute a class)

or java -jar [-options] jarfile [args...]

(to execute a jar file)

where options include:

-hotspot to select the “hotspot” VM

-server to select the “server” VM

If present, the option to select the VM _
must be first.

The default VM is -hotspot.

-cp -classpath <directories and zip/jar files separated _
by ;>

set search path for application classes _
and resources

-D<name>=<value>

set a system property

-verbose[:class|gc|jni]

enable verbose output

-version print product version and exit

-showversion print product version and continue

-? -help print this help message

-X print help on non-standard options

Listing 1.2 shows some other nonstandard options hidden under the
-X option. These options are nonstandard and subject to change without
notice. That said, some of them are actually more frequently used than
the standard options. For instance, if you’ve created a memory-intensive
program, you may find the need to increase the Java heap space with the
-Xmx option.

Listing 1.2: Nonstandard Options for the java Command
-Xmixed mixed mode execution (default)
-Xint interpreted mode execution only

Chapter 118

-Xbootclasspath:<directories and zip/jar files _
separated by ;>

set search path for bootstrap classes _
and resources

-Xbootclasspath/a:<directories and zip/jar files _
separated by ;>

append to end of bootstrap class path
-Xbootclasspath/p:<directories and zip/jar files _
separated by ;>

prepend in front of bootstrap class path
-Xnoclassgc disable class garbage collection
-Xincgc enable incremental garbage collection
-Xconcgc enable mostly-concurrent garbage _

collection
-Xloggc:<file> log GC status to a file with time stamps
-Xbatch disable background compilation
-Xms<size> set initial Java heap size
-Xmx<size> set maximum Java heap size
-Xss<size> set java thread stack size
-Xprof output cpu profiling data
-Xrunhprof[:help]|[:<option>=<value>, ...]

perform JVMPI heap, cpu, or monitor _
profiling

-Xdebug enable remote debugging
-Xfuture enable strictest checks, anticipating _

future default
-Xrs reduce use of OS signals by Java/VM _

(see documentation)

Documenting the Application
Traveling off the beaten flowchart path a little brings us to the javadoc
command and the important task of commenting code. The SDK for Java
comes with a utility to enable automatic documentation of your source
code. After adding special comments to your source code, you can arrange
for these comments to be automatically transferred into HTML files to
document your program. Any source code comments placed between /**
and */ are considered documentation comments and are added to the
generated files.

Adding a few lines of comments to the original Hello World source file,
as shown in Listing 1.3, enables the testing of the utility.

Getting Started with the Java 2 SDK 19

P
ar

t
I

Listing 1.3: Hello World with Some Comments
/** HelloWorld - This is the first Java program I created. */

public class HelloWorld {

/**
* This is the initial method called by the Java launcher.
* It will print a message to the screen.
*/

public static void main(String args[]) {
System.out.println(“Hello, World”);

}

}

To generate the documentation, pass the javadoc command a list
of source files to process (in this example, there is only one source
code file):

javadoc HelloWorld.java

This will spew out a whole bunch of messages:
Loading source file HelloWorld.java...

Constructing Javadoc information...

Building tree for all the packages and classes...

Building index for all the packages and classes...

Generating overview-tree.html...

Generating index-all.html...

Generating deprecated-list.html...

Building index for all classes...

Generating allclasses-frame.html...

Generating index.html...

Generating packages.html...

Generating HelloWorld.html...

Generating package-list...

Generating help-doc.html...

Generating stylesheet.css...

Chapter 120

All this output is essentially telling you that you have seven new
HTML files and another new file for each source file passed into the
command. There is also a Cascading Style Sheet (CSS) file that contains
the formatting information for the HTML pages. If you open up the class-
specific file, HelloWorld.html, you’ll see the documentation comments
added. This is shown in Figure 1.4.

FIGURE 1.4: Viewing the javadoc-generated HTML file from the
HelloWorld.java source comments

Integrating with C/C++ Code
The javah tool helps you to connect Java programs with C and C++ pro-
grams. This becomes necessary when there are legacy libraries around
that you don’t want to convert to Java but still want to use, or when you
just can’t do something in Java because of some platform-specific needs.
As the standard libraries have grown, and as more capabilities have
become standard in Java, the need to use native C/C++ source has

Getting Started with the Java 2 SDK 21

P
ar

t
I

decreased immeasurably. If you still need to connect, the javah tool is
around to help. Run against a class file, it will generate the necessary
header files to connect to the class.

NOTE
If you find yourself in need of connecting Java and C/C++ code, check
out the online tutorial at http://java.sun.com/docs/books/tutorial
/native1.1/.

Debugging Your Application
The SDK comes with a command-line debugger, jdb. With jdb, you can
execute your programs, examine variable settings, step through the
source, and set breakpoints, among many other tasks. If you plan to use
jdb, you should compile your program with the –g option. However, with
integrated development environments such as Forté for Java (Community
Edition) and JBuilder (Personal Edition) freely available, you’re better off
getting one of those to visually debug your programs. These helpers make
the task much easier.

Disassembling Your Classes
The javap tool allows you to query any class and find out its list of meth-
ods (like main()) or find out the commands executed by the underlying
JVM. You may find that you use javap queries frequently as an easy way
to see what methods are in a class. The latter use of javap, to check on
JVM command execution, is rare and mostly for the curious.

When javap is passed just the class name, like this
javap HelloWorld

it generates a list of visible methods and variables. (In this case, though,
we have no variables in the HelloWorld class.)

Compiled from HelloWorld.java

public class HelloWorld extends java.lang.Object {

public HelloWorld();

public static void main(java.lang.String[]);

}

Two methods are shown here: HelloWorld() and main(). The
HelloWorld() line is what is called a default constructor, a special

Chapter 122

method that enables the creation of the class. Unless you specify other-
wise, a constructor is automatically created for a class. The main()
method is the one you created yourself.

NOTE
For more information on methods and constructors, see Chapter 2.

When you use the –c option with javap
javap –c HelloWorld

the sequence of the underlying byte codes is displayed, in addition to the
prior list of methods. The HelloWorld class is listed just below. Essen-
tially, these commands equate back to the source code in the .java file.

Compiled from HelloWorld.java

public class HelloWorld extends java.lang.Object {

public HelloWorld();

public static void main(java.lang.String[]);

}

Method HelloWorld()

0 aload_0

1 invokespecial #1 <Method java.lang.Object()>

4 return

Method void main(java.lang.String[])

0 getstatic #2 <Field java.io.PrintStream out>

3 ldc #3 <String “Hello World”>

5 invokevirtual #4 <Method void println(java.lang.String)>

8 return

Creating Java Applets
Now that you’ve seen how to create an application, it’s time to learn
how to build an applet. The tasks are almost identical, though for an
applet you have to create an HTML file to load the applet. You can’t just

Getting Started with the Java 2 SDK 23

P
ar

t
I

use the Java launcher. The applet you’re going to create will display a
message passed in from the HTML file, or “Hello, World” if no message
is supplied.

HelloWorld Applet
The process for creating the source code for the applet is identical to that
for an application. Open up a text editor. For the applet, the file in the
editor will be HelloWorldApplet.java.

NOTE
There is no language-level requirement that applet class names must end
with “Applet”.

The source code for the HelloWorldApplet class is in Listing 1.4. It
looks very different from an application and will be explored shortly.

Listing 1.4: HelloWorldApplet Class
import java.awt.Graphics;
import java.applet.Applet;

/** HelloWorldApplet - This is the first Java applet I _
created. */

public class HelloWorldApplet extends Applet {

String msg;

/**
* This is the initial method called by the applet launcher.
*/

public void init() {
msg = getParameter(“message”);
if (msg == null) {
msg = “Hello, World”;

}
}

/**

Chapter 124

* This method will display a message within the browser.
*/

public void paint(Graphics g) {
g.drawString(msg, 20, 30);

}
}

The first thing you might notice is there is no main() method. Applets
have life-cycle methods, instead. Life-cycle methods are the methods of
an applet that you don’t call; the browser calls them for you. And they are
optional, so if nothing special needs to happen, you don’t have to provide
the method. Life-cycle methods are listed in Table 1.1.

TABLE 1.1: Applet Life-Cycle Methods

Method Description

public void init() Initialization method. Called once when
applet first loads.

public void start() Startup method. Called when browser is
ready to execute applet; for instance, after
initialization or when user returns to a page
that had the applet loaded.

public void stop() Deactivation method. Called when browser is
done executing applet, as when user leaves a
web page.

public void destroy() Termination method. Called when browser is
about to unload the applet from memory.

public void paint(Graphics g) Drawing method. Called when part of the
applet’s display area becomes invalid.

In the init() method of the HelloWorldApplet, it checks to see if a
message parameter is present in the HTML loader. If it’s present, the msg
variable is set to the parameter value:

String msg;

. . .

msg = getParameter(“message”);

Getting Started with the Java 2 SDK 25

P
ar

t
I

If the parameter is not set, a default message is used:
if (msg == null) {

msg = “Hello, World”;

}

The paint() method is even simpler. All it does is display the mes-
sage on the screen. The values 20 and 30 represent screen coordinates.
(You’ll find more information on drawing in Chapter 13.)

public void paint(Graphics g) {

g.drawString(msg, 20, 30);

}

The remaining lines deserve a little explanation, too. A line that
begins with import tells the compiler where to look for a class. The
HelloWorldApplet uses the Graphics and Applet classes:

import java.awt.Graphics;

import java.applet.Applet;

NOTE
The HelloWorld application used the system classes String and System
and doesn’t require an import line. These two classes are in a special loca-
tion known by the compiler, so there’s no need for an import.

All applets must “extend” from the Applet class. The applet runtime
environment (the browser) requires this:

public class HelloWorldApplet extends Applet {

Compiling the Applet Source
The javac compiler doesn’t care if the source file is for an applet or
application. You only have to pass the filename to the compiler.
However, to ensure that the generated class will execute in a browser,
use the -target 1.1 command-line option as follows:

javac -target 1.1 HelloWorldApplet.java

As long as the file is error free, you’ll get HelloWorldApplet.class
generated.

Chapter 126

NOTE
By default, Java class files are generated for the 1.2 JRE. There were some
optimization changes made to the .class file format after the 1.1 release.

Creating the HTML Loader
In order to run an applet, you can’t just call the Java launcher, like this:

java HelloWorldApplet

If you did, you’d get an error message, because the applet doesn’t include
a main() method:

Exception in thread “main” java.lang.NoSuchMethodError: main

Since applets execute in a browser, you’ll need an HTML file to load
the applet. The tag used to load an applet is <APPLET>, so you’ll need to
place the tag in an HTML file. Any filename will do for the name of the
HTML file, because there is no required mapping from .class file to
.html file as there is between .java and .class.

You put the <APPLET> tag to work by setting three attributes: CODE,
WIDTH, and HEIGHT. The CODE setting is the name of the applet to run—
HelloWorldApplet in this case—and WIDTH and HEIGHT (both in pixels)
are the space the browser reserves for the applet. For instance, the follow-
ing code will load the applet into a 300x200 area and display the default
message:

<APPLET CODE=HelloWorldApplet WIDTH=300 HEIGHT=200>

</APPLET>

NOTE
The <APPLET> tag has many more attributes. You’ll learn about them and see
them used as you work through this book.

Various items can occur between the opening and closing <APPLET>
tags. You can put parameters there, to pass into the applet. Parameters
are specified with the <PARAM> tag. They have two attributes: the NAME of
the parameter and its VALUE. There is no closing </PARAM> tag. In the

Getting Started with the Java 2 SDK 27

P
ar

t
I

HelloWorldApplet, you might pass in a different message by setting the
message attribute:

<APPLET CODE=HelloWorldApplet WIDTH=300 HEIGHT=200>

<PARAM NAME=message VALUE=”Help Me”>

</APPLET>

Another setting that can go between the opening and closing APPLET
tags is an indication of what you want displayed when Java is disabled in
the browser (or just not available). In the following code, we specify the
message “Java is disabled.”

<APPLET CODE=HelloWorldApplet WIDTH=300 HEIGHT=200>

Java is disabled.

</APPLET>

Running the Applet
Once you have an HTML file to load the applet, you can use the
appletviewer tool that comes with the SDK to load the HTML
document (or you can use your browser):

appletviewer Hello.html

Once the HTML file is loaded, you’ll see the applet displayed, as
shown in Figure 1.5 for appletviewer and Figure 1.6 for Netscape
Communicator.

FIGURE 1.5: Using appletviewer to display the HelloWorldApplet
with a custom message

Chapter 128

FIGURE 1.6: Using Netscape Communicator to display the HelloWorldApplet
with a custom message

Let’s compare Figure 1.5 to Figure 1.6. Notice that there happen to be
some additional HTML tags in the loaded file. The appletviewer tool
only understands the <APPLET> tag, though, so appletviewer will
ignore the other tags. Full-blown browsers will not ignore any valid tags,
however. Also, if there are multiple <APPLET> tags in a single HTML file,
appletviewer will open each applet in its own window, whereas a
browser will display them all on the same page.

Documenting the Application
Running javadoc on an applet is no different than for an application—
just pass the source file into the tool. If you pass in multiple source files,
the generated common files will include references to all files. Here’s an
example:

javadoc HelloWorld.java HelloWorldApplet.java

Now, if you bring up the index.html file, not only can you view the
HTML-generated documentation for each individual class, but you also

Getting Started with the Java 2 SDK 29

P
ar

t
I

get an index listing all the available classes. See Figure 1.7. This gets
more useful as the number of classes increases and there are many inter-
connections.

FIGURE 1.7: Viewing the javadoc-generated HTML file for the HelloWorld-
Applet.java source, with the combined index file

Debugging Your Applet
Debugging for applets is available with the help of the jdb debugger, just
as for applications. To start the debugger with an applet, you need to pass
the -debug flag to the appletviewer command:

appletviewer -debug Foo.html

It bears repeating here, as mentioned for applications: For serious
debugging needs, you’re better off with a real debugger in an IDE.

What’s Next
The aspects of applications and applets described in this chapter help
to form the foundation for the rest of the book. You should now have a
rough idea of their differences as well as the similarities involved in
working with them.

Chapter 130

In addition to learning about applications and applets, you now have
a working development environment that you can use for demonstrating
and practicing the examples you’ll encounter in the remaining chapters. If
you prefer an integrated development environment, try out the JBuilder or
Forte for Java tools available from http://www.borland.com/jbuilder/
and http://www.sun.com/forte/ffj/, respectively.

In Chapter 2, be prepared to learn the basics of object-oriented pro-
gramming. We’ve been throwing around some of its terminology already,
so words like classes and methods shouldn’t be totally unfamiliar to you.
We’ll be discussing these elements in much greater detail in the next
chapter, building on the principles you’ve covered so far.

Getting Started with the Java 2 SDK 31

P
ar

t
I

