
C H A P T E R

on
e

CO
PYRIG

HTED
 M

ATERIA
L



ActionScript for Non-Programmers

For many of us, making the transition from user to pro-

grammer—from working “manually” with an application program’s inter-

face to building scripts that automate complex operations—can be an

intimidating prospect. Coding, the common name for writing scripts in a

programming language, seems to imply a set of cryptic, inflexible rules that

may take ages to learn. 

It’s true that there is a lot to learn, and your scripts do need to follow

the rules in order to work. But Flash MX provides an interface to Action-

Script that does some of the work of creating scripts for you. Learning to

write Flash MX scripts will be much less intimidating once you become

familiar with the ActionScript environment and its core mode of operation.

You’ll gain this familiarity as you work through the examples in this book.

The most important tool that Flash MX provides for working with

ActionScript is the Actions panel. It is your interface for creating simple to

complex scripts. It allows you to drag and drop commonly used code lines

into your script, as well as to enter code directly. In this chapter, you’ll

become familiar with the Actions panel and learn how to use its many use-

ful and timesaving features. You’ll learn how to take advantage of features

like the Actions toolbox, the Reference panel, auto-formatting, code hints,

and the View Line Numbers option. You’ll also begin to learn some nuts

and bolts about how ActionScript works.



Getting Comfortable with the Actions Panel 
For many designers, the Actions panel can be somewhat intimidating. It’s not as scary as it
seems—even when you’re working in the dreaded Expert mode. In this book, you’ll be
spending all of your time in Expert mode. Most of the coding in this book is infeasible (or
awkward at best) in Normal mode.

The main difference between Expert and Normal mode is that in Expert mode, you can
type in the code directly, as well as drag it from the Actions toolbox. In Normal mode, you
can only drag and drop code from the Actions toolbox; you cannot enter code manually.

In many ways, this book is about making anyone who is not experienced with program-
ming comfortable in Expert mode. You’ll start to see the blank, white space in the Actions
panel as a doorway to endless possibilities, rather than as a members-only door accessible
only to a select few.

Adding ActionScript in the Actions Panel
This is a book in which you’ll learn by doing. Throughout this book, you’ll be building
scripts, testing the results, and analyzing what the elements of each script do. By following the
examples here, and by continuing to practice on your own, you’ll develop firsthand knowl-
edge of how ActionScript works. In this first example, however, you’ll just start exploring the
Actions panel. In the second half of the chapter, you’ll try your hand at scripting.

1. Open the File

Begin by opening the file named Chapter1_Start.fla in Flash MX (1.1). If you haven’t already
downloaded this book’s sample movie clips from the Web, see the Introduction for a complete

2 c h a p t e r 1 ■ ActionScript for Non-Programmers

1.1: The Chapter1_Start.fla file in Flash MX



description. Save the file to your local hard drive with the name Chapter1_Modified.fla. (To
see a finished version of this movie, open Chapter1_Final.fla.)

Going from the bottom to the top of the timeline, you can see that the Chapter1_
Start.fla file has five layers: Background, MC1, MC2, MC3, and Actions. The MC1, MC2,
and MC3 layers contain the same movie clip, named Fading Spoke. The Fading Spoke movie
clip fades a graphic symbol named Spoke Graphic from 100% alpha to 0% alpha.

2. Test the Movie

Test the movie before you enter any code. Press Cmd/Ctrl+Enter or choose Control ➢ Test
Movie to see what the animation does.

Each instance of the animation goes through the alpha fade transition. The movie clips
appear on the timeline in a staggered manner. The instance of the Fading Spoke movie clip
on the MC1 layer is always visible, but the instance on the MC2 layer is visible only from
frame 7 through frame 21, and the instance on layer MC3 shows up on frame 14 and plays
through to frame 21. 

You will see why we constructed the file this way in a moment. Now let’s get ready to
enter some simple ActionScript. Whenever you want to write or edit ActionScript, you will need
to access the Actions panel. By default, the Actions panel is nested below the stage in Flash MX. 

3. Toggle the Actions Panel

Close the Test Movie window and then open the Actions panel. To open the Actions panel,
press F9 (1.2). This keystroke toggles the Actions panel between open or expanded and
closed or minimized. 

■ Getting Comfortable with the Actions Panel 3

Actions palette

1.2: The F9 key toggles the Actions panel.



Notice that when you open the Actions panel, it partly obscures the stage; this makes
the ability to toggle the panel on and off quite useful. You can toggle it on and off by choos-
ing Window ➢ Actions.

The first time you open the Actions panel, it will be in Normal mode (as in 1.2). You
will not be using the Normal mode in this book. Go directly to Expert mode.

4. Select Expert Mode

Click anywhere within the Actions panel to make sure it is selected, and then press
Cmd+Shift+E (Mac) / Ctrl+Shift+E (Win) to go to Expert mode. (Using the keyboard short-
cut for switching to Expert mode will have no effect if the Actions panel is not selected.) When
you switch to Expert mode, you’ll see that the white area on the right side of the Actions
panel (called the script window) takes up much more space than it did in Normal mode.

On the left side of the Actions panel, you see the Actions toolbox (1.3). It contains a
list of actions, organized in folders of categories—such as Operators, Functions, Constants,
Properties, and so on. You can use the Actions toolbox to select actions. You won’t be using
the Actions toolbox for most of the examples in this book, because it’s generally quicker to
type commands than to work through the categories to select them. However, the toolbox
can be useful until you’re familiar with ActionScript syntax or if you need a reminder of
which ActionScript commands are available. So let’s take a few minutes to explore some of
the useful aspects of the Actions toolbox.

5. Expand Categories in the Actions Toolbox

Select frame 21 of the Actions layer. Click the Actions folder in the Actions toolbox to expand
the category. You’ll now see a list of subcategories such as Movie Control, Browser/Network,
Movie Clip Control, and so on. Click the Movie Control folder to expand the Movie Control
subcategory, and you’ll see a list of actions for controlling a movie.

6. Double-click the Stop Action

Double-click the stop action in the Actions toolbox (1.4). Flash will add the following line to
the script window on the right: 

stop();

4 c h a p t e r 1 ■ ActionScript for Non-Programmers

Actions toolbox

1.3: The Actions toolbox organizes actions in categories. 1.4: Double-click the stop action in the Actions toolbox to
add it to the script window.



7. Test the Movie

Now press Cmd/Ctrl+Enter to test your movie again. You’ll notice that the spokes stagger
onto the stage, but once they get there, they each cycle through the fade at a different time and
keep repeating. That’s because even though you’ve told the main timeline to stop in frame 21,
each Spokes Fade movie clip timeline continues to cycle through the frames within each movie
clip. Each animation started on a different frame of the main timeline, so even though they
are all the same movie clip, they are going through their fading cycle at different times. 

On the positive side, the value of using the Actions toolbox for entering ActionScript in
the Actions panel is that you are assured of getting the syntax correct. The downside is that
it would be very taxing on your time to need to hunt down the actions all the time. Usually,
you’ll want to use the Actions toolbox to enter code only if you’re having trouble recalling
the syntax of a certain line of ActionScript.

Getting Quick Information about Actions
A particularly useful aspect of the Actions toolbox is that it can give you some quick infor-
mation about actions. Let’s look at an action that’s not as obvious as the stop() action (in
terms of what it does or what it is used for) to demonstrate this feature:

1. Close the Test Movie window, and then click the Movie Control folder in the Actions
toolbox to minimize it.

2. Click the Conditions/Loops folder. 
3. Roll the cursor over the default action. Don’t

click; just place the cursor over the action and
hold it there. After a second or two, you’ll see
some pop-up text explaining what the default
action is used for (1.5). In this particular case,
unless you know about switch statements, the
explanation only brings up more questions.

Flash MX provides information about Action-
Script and specific actions in several ways. Later in this
chapter, you’ll use the Reference panel, code hints, and
syntax coloring, all of which provide different kinds of
information. While you’re learning how to use Action-
Script, these features will be invaluable. First, however,
let’s finish looking at the Actions toolbox.

Resizing and Closing the Actions Toolbox
If you plan to use the Actions toolbox regularly, you can minimize how much space it takes
up. Hold your mouse over the gray bar that separates the Actions toolbox from the script
window. Don’t place it over the button with the left-pointing arrow (that’s the minimize/max-
imize button, as you’ll see in a moment). When you see the cursor change to two lines with
arrows pointing left and right, you can click and drag to resize the window. Drag the bar to
the left to make the Actions toolbox smaller (1.6).

■ Getting Comfortable with the Actions Panel 5

1.5: Roll your mouse over an action to get a brief explana-
tion of what it does.



Resizing the Actions toolbox is temporary. If you minimize and then maximize the
Action toolbox, Flash does not remember the position of the resized Actions
toolbox. Similarly, Flash will not remember the position of the Actions toolbox if
you close and reopen Flash. However, minimizing the Actions toolbox is retained.

While the Actions toolbox has its uses, it will often be more trouble than it’s worth. As
you become more proficient with ActionScript, the space that it takes up will probably be
more valuable to you than using it to enter actions or to find information about actions. For-
tunately, you can close, or minimize, the Actions toolbox. To minimize the Actions toolbox,
just click the small button in the
middle of the bar that separates the
Action toolbox from the script
window (1.6).

When the Actions toolbox is
not minimized, the arrow on this
button will point left. When the
Actions toolbox is minimized, the
arrow will point right (1.7). You
can expand the Actions toolbox by
clicking the button again. You’re
going to leave the Actions toolbox
minimized from now on.

Writing a Simple Script
At this point, this chapter’s example consists of three instances of the Fading Spoke clip, each
fading at different times. Now you’ll make it more interesting by adding some code. What
this simple demonstration program does, however, is not as important as what it can show
you about the Flash MX interface to ActionScript. You’ll use these few lines of code to
become more familiar with the Actions panel. In particular, you’ll explore two more features
that provide information: the Reference panel and code hints.

In the first exercise, you applied some simple ActionScript to a keyframe on the time-
line (by double-clicking the stop action in the Actions toolbox). In this exercise, you’ll also
use another way of applying ActionScript.

6 c h a p t e r 1 ■ ActionScript for Non-Programmers

Hold the cursor over the divider bar 
until this cursor appears.

Minimize/maximize button (don't 
put your mouse here for resizing).

Click and drag this bar to resize 
the window.

1.6: Resizing the Actions toolbox

1.7: Minimizing the Actions toolbox



Keyframes on a timeline (both on the main timeline or on a timeline within a movie
clip) are one of three places that you can assign ActionScript. The other places that you can
apply ActionScript are directly on movie clips or buttons. As you will see in this exercise,
when you apply ActionScript to a movie clip, you can control how that movie clip behaves
programmatically. 

Beginning the Script
In this example, you’re going to write a relatively simple script that will control the Fading
Spoke movie clips in two ways. First, the code will scale the movie clip instances, and then it
will randomly rotate the movie clip instances. You will use the same script for all three
instances of the Fading Spoke movie clip.

1. Select the Movie Clip

Move to frame 1 on the main timeline and select the Fading Spoke movie clip instance on the
MC1 layer. You will apply ActionScript to this movie clip.

2. Assign ActionScript to Movie Clip

If the Actions panel is not open, press F9 to open it. Notice that the Actions panel is now
labeled Actions - Movie Clip (1.8). This is an affirmation that you’re now assigning Action-
Script to a movie clip, rather than to a keyframe. 

If the Actions panel is labeled Actions - Frame, you will be assigning the ActionScript
to the keyframe on frame 1 on the MC1 layer, not the movie clip on frame 1. Make
sure the Actions panel says Actions - Movie Clip before continuing with the exercise.

Enter the following code in
the Actions panel:

onClipEvent() {

This is the first line of your
code. Before you finish entering the
code, let’s look at a few useful fea-
tures in the Actions panel.

Using the Actions Panel
for Reference

If you are wondering what
onClipEvent() does, Flash MX
offers an easy way to find out. The
Reference panel, accessed by click-
ing the Reference button in the
Actions panel, lets you look up
what a particular action does. 

■ Writing a Simple Script 7

1.8: Make sure you that you are assigning the code to the movie clip instead of
the keyframe.



1. Use the Reference Panel

Use your mouse to drag over just the text onClipEvent() (don’t select the parentheses and
the open bracket).

Click the Reference button, which is the button with a little blue book icon on the right
side of the Actions panel toolbar panel (see the sidebar “Un-nesting the Actions Panel”).
When you click the Reference button with an ActionScript keyword selected, Flash will open
the Reference panel with that code already selected (1.9).

The left side of the Reference panel works similarly to the Actions toolbox in the
Actions panel. You can select any action to get detailed information about it. The right panel
displays information about that action. 

You might have noticed that Flash MX does not come with an ActionScript reference
guide. Now you know why: Flash MX has the reference guide built into it. In this example, you
can see that the Reference panel displays a lot of information about onClipEvent(). If you scan
through the information to the end, you’ll notice some cross-linked topics that take you to
information about related actions. 

The Reference panel is particularly useful when you need information about various
parameters for a specific action. For example, in this case, you’ll be using the load parameter
for the onClipEvent() action. Scroll down in the Reference panel until you see the load
parameter and read up on what it does. But don’t type load into the onClipEvent() action
just yet. When you’re finished, close the Reference panel.

Un-nesting the Actions Panel
At this point, you may run into a problem with the new Flash MX interface layout. Macrome-

dia’s redesign of the Flash interface in Flash MX is largely a substantial improvement for workflow
and usability, but there are a few hitches here and there. 

One problem crops up if you’re working in 800×600 or 640×480 screen resolution. When
working in lower screen resolutions, some useful tools in the Actions panel might become hidden.
For instance, the screenshot below shows Flash MX at a screen resolution of 800×600. The illus-
tration points out where some of the tools are hidden.

8 c h a p t e r 1 ■ ActionScript for Non-Programmers

1.9: When you
click the Refer-
ence button with
ActionScript
code selected in
the Actions
panel, Flash MX
displays the Ref-
erence panel
entry for that
command or
other keyword.



Fortunately, you can un-nest the
Actions panel. To do this, click the
small, gray, dotted area in the
upper-left corner of the Actions
panel and drag the Actions panel
away from its nested position. This
can be a little tricky because it’s easy
to inadvertently nest the Actions
panel somewhere else within the
Flash user interface. Try to drag the
upper-left corner toward the center
of the stage. This will keep it from nesting somewhere else. 

After the Actions panel is un-nested, you can move it around by clicking and dragging anywhere
along the top bar. If you want to re-nest the Actions panel, click in the upper-left corner along the
gray bar (next to the minimize/maximize button) and drag the panel back into place. The figure
below shows the Actions panel un-nested. Now you can see the buttons or features that were hid-
den earlier (outlined).

When the Actions panel is not
nested, the F9 shortcut key toggles
the visibility of the Actions panel on
and off. You can also double-click
the top bar to minimize the Actions
panel as much as possible. Clicking
the gray bar also minimizes the
Actions panel, but not as much as
double-clicking the blue bar above
the gray bar.

2. View Code Hints

Now let’s look at another useful feature in the Actions panel—code hints. Clicking the Show
Code Hint button in the Actions panel toolbar produces a hint pop-up window, whose con-
tents depend on the location of your cursor when you click the button. The Show Code Hint
button is particularly useful if you need to know what parameters an action supports.

1. Place your mouse cursor
between the opening and
closing parentheses in the line
of code in the Actions panel:

onClipEvent(){
2. Click the Show Code Hint

button in the Actions panel
toolbar (1.10). In this case,
the code hints show the vari-
ous parameters available for
the onClipEvent() action.

3. Double-click the load param-
eter to select it. 

■ Writing a Simple Script 9

Click here and drag to 
un-nest the Actions panel.

Hidden tools

The hidden tools appear when
the panel is un-nested

1.10: Click the Show Code Hint button to see code hints.

Please check out-
line placement for
G0102. We didn’t
have a sample to
follow.



4. In some cases, clicking the
Show Code Hint button will
show you a series of hints.
For instance, type the follow-
ing in the Actions panel:

do {
} 
for () {
}

5. Place your cursor between
the parentheses after for and
click the Show Code Hint
button. The hint pop-up win-
dow will feature left- and right-pointing buttons that allow you to cycle through two
hints for the for() action (1.11).

6. Delete the do/for code, leaving only the onClipEvent(load) { line of code. 
7. Code hints don’t always provide useful information. For example, type getTimer(),

place your cursor between the parentheses, and click the Show Code Hint button.
Flash will just repeat the action—getTimer()—in the pop-up hint window. 

8. Delete the line getTimer(). 

Usually, you will not see any hints if you click the Show Code Hints button when
the cursor is anywhere outside the parentheses that go with an action that has
parameters. 

Completing the Script
Now that you have explored some of Flash’s features for getting information—the Reference
panel and code hints—let’s return to the sample script. 

1. Finish the Code

Complete the code by adding the following ActionScript after the onClipEvent(load) line
(1.12):

_xscale = _yscale = 1;
_rotation = Math.random()*360;
var scale = 1;

}
onClipEvent(enterFrame){

scale += 5;
if (scale > 100){

scale = 1;
_rotation = Math.random()*360;

}
_xscale = _yscale = scale;

}

10 c h a p t e r 1 ■ ActionScript for Non-Programmers

1.11: Some actions have more than one hint associated
with them.



Within the onClipEvent(load) event handler,
you’re setting the scale of the movie clips in both
directions (_xscale and _yscale) to 1%. You’re also
setting the rotation of the movie clip (_rotation) to a
random rotation. This is done only once to set up the
movie clips so they start out looking the way you
want them to (scaled and rotated). 

The onClipEvent(enterFrame) event is where
the actual work takes place. You increase the scale in
both directions by 5%, and then you check if you’ve
scaled past 100%. If you have, you want to start over,
so you set the scale back to 1%. For additional flair,
each time you start the scaling over, you randomly
rotate the movie clip again. 

2. Test the Script

Press Cmd/Ctrl+Enter to test your movie. Notice the outer two spokes look the same, but the
inner spoke grows more and rotates each time it starts at the beginning again. You’ll learn
more about the onClipEvent(load) and onClipEvent(enterFrame) event handlers that make
this happen at the end of this chapter and in the following chapters. 

Using Other Actions Panel Features
Now that you have all of your code, let’s look at a few more features available in the Actions
panel. You’ll learn about line numbering, syntax coloring, and other Preferences settings, as
well as the Find and Replace function.

Adding Line Numbers in the Actions Panel 
Line numbers make it easier to refer to specific lines in
the script. Click the View Options button in the
Actions panel toolbar (the button on the far right side)
and select View Line Numbers. This will add numbers
before every line in your script. (1.13) 

Line numbers are useful for several reasons:

• They make it easier for you to stay oriented
when you’re dealing with a very long script. 

• They are helpful when you’re debugging code.
As you’ll see later in this book, Flash lets you
know which line in the script contains a problem. 

• Line numbers make it easier to collaborate with
other programmers and designers because you can
reference the lines in the script using the numbers.

In our example, you should have 13 lines of
code, including the close bracket on the last line. The line onClipEvent(load) { should be on
line 1, and the line onClipEvent(enterFrame){ should be on line 6.

■ Using Other Actions Panel Features 11

1.12: Complete the ActionScript for the Fading Spoke
movie clip instance.

1.13: Adding line numbers to the Actions panel



Setting Syntax Coloring
Look carefully at the script in the Actions panel and notice that some of the script is colored
dark blue and some of it is colored black. Flash MX automatically colors actions for you as
you write your script. If you prefer, you can specify colors used for syntax coloring.

To see the Syntax Coloring options, open the Actions panel options menu (click the
drop-down button in the top-right corner of gray bar that contains the label Actions - Movie
Clip) and select Preferences (1.14). This opens the Preferences dialog box to the ActionScript
Editor tab. 

Notice that the top two choices on the Actions panel options menu are Normal
Mode and Expert Mode. You can use these menu choices to switch between
Actions panel modes.

There are six options for Syntax Coloring (1.15). Two of the options are Foreground
and Background. The foreground color is the color that you will see for everything in your
script that is not a keyword, identifier, comment, or string. The background color is the color
of the script window.

Notice that the default color for keywords and identifiers is the same (or very similar).
Let’s change that. Click the small color swatch next to the Keywords option and change the
color to bright red (hex value #FF0000). Next click the small color swatch next to the Identi-
fiers option and change the color to dark green (hex value #009900) (1.16). Click the OK
button to apply the changes.

Look at your script in the Actions panel (1.17), and you’ll see that two instances of
onClipEvent() and if have changed to red. Red is the color that you specified for keywords,
so Flash MX recognizes these words or actions in the script as keywords. Other actions have

12 c h a p t e r 1 ■ ActionScript for Non-Programmers

1.14: Select Preferences from the Actions panel options menu.

1.15: The Syntax Coloring default
settings



been changed to green, including load, _xscale, _yscale, random(), and so on. Green is the
color that you specified for identifiers, so Flash MX recognizes these words or actions in the
script as identifiers.

Automatic syntax coloring is useful for several reasons. First, syntax coloring lets you
know which parts of the script are keywords, identifiers, comments, or strings. Because you
can look through your script according to the colors, you can easily find items. For example, if
you want to be able to identify strings in large blocks of scripts, you could change the colors
for strings to stand out more so they are easier to hunt down. 

Another useful aspect of automatic syntax coloring is that it lets you know if you’ve
gotten the spelling and capitalization right. If actions in your script change color as you enter
each line, you know you’ve written it correctly. Conversely, if they don’t change color when
they should, you know something is wrong. For instance, say you want to add a comment to
your script. If the comment doesn’t change colors, you have a visual clue that your comment
isn’t written properly. (You’ll learn about strings and comments in later chapters.)

In this book, you’ll be using the default colors. Open the Preferences dialog box again
and select Reset to Defaults to return to the default Syntax Coloring settings.

You may find it helpful to temporarily change the syntax coloring colors to check a
script. Just open the Preferences dialog box and set the Syntax Coloring options on
the ActionScript Editor tab as you want. When you’re finished, revert to the
defaults by clicking the Reset to Defaults button in the Preferences dialog box.

Setting Other Actions Panel Preferences
Select Preferences from the Actions panel options menu to open the Preferences dialog box
to the ActionScript Editor tab again (1.15). Along with the Syntax Coloring options dis-
cussed in the previous section, there are several other useful options for working with the
Actions panel. 

■ Using Other Actions Panel Features 13

1.16: Change the color for keywords
to red and the color for identifiers to
green.

1.17: Flash MX changed the colors of portions of the
script according to the Preferences dialog box settings.



The Automatic Indentation option refers to the format of your scripts. You might have
noticed that Flash automatically indented your code for you, because this option is selected
by default. You can change the Tab Size setting (from the default of four spaces) for a smaller
or larger indentation. 

Indenting your script makes it easier to read and navigate through your code. Indent-
ing is also standard programming convention. For example, code that follows an
open curly bracket ({) is indented until the closing curly bracket (}). This shows you
at a glance that the indented code is linked together or on the same level.

The Text options let you change the font and font size for the code in the Actions
panel. This can be useful for those late nights when your eyes are getting tired. Also, as you
learned earlier, Flash can get a little cramped in smaller screen resolutions. If you want to be
able to see the Actions panel and more of your stage contents, you might opt to work at a
higher screen resolution (if your video card supports it) so that you can see more. The ability
to increase the size of the font for the script can come in handy in that case.

In this book, the examples use the default indentation and font settings, but you may
set them according to your own preferences.

Using Find and Replace
There are two more useful features in the Actions panel that should be introduced here: the
Find and Replace functions. As you would expect, these options allow you to locate certain
code elements and replace them if you desire.

To see how the Find function works, click the Find button (the second one on the left,
with the magnifying glass icon) in the Actions panel toolbar to open the Find dialog box.
Enter _rotation in the Find What field, and then click the Find Next button. The first
instance of _rotation in the Actions panel will be selected (1.18). If you click the Find Next
button again, the next instance of _rotation will be selected. 

The Find feature is useful when you need to locate a particular item within a big block
of code. However, if you want to also fix or change what you’re looking for, the Replace fea-
ture might be a godsend. Close the Find dialog box and click the Replace button (to the right

of the Find button) to open the Replace dialog box.
Enter _rotation in the Find What field and _height in
the Replace With field. Now click the Replace All but-
ton. Flash will very quickly replace all of the instances
of _rotation with _height (1.19).

The Find Next and Replace buttons in the
Replace dialog box allow you to choose when you
want to replace instances. You can click Find Next to
jump to the next instance of the script snippet. Then
click Replace if you determine that you want to
replace the instance, or click the Find Next button
again to skip it and move onto the next instance.

The Replace feature is useful for several reasons.
First, it makes it easier to correct mistakes. For
example, let’s say you have determined that there is a
bug in your latest creation and the reason is that

14 c h a p t e r 1 ■ ActionScript for Non-Programmers

1.18: Use the Find feature to find the first instance of the
_rotation property.



you’ve typed an arbitrary variable that you created using two spellings. For instance, some-
times you typed MyVariable and other times you typed MyVariables. You can correct the
problem quickly and easily by using the Replace feature.

Another slick thing you can do is use the Replace feature to experiment with scripts
you’ve downloaded over the Internet. For example, you could replace a property with
another property and see how it affects the code. That is, in fact, what you did when you
replaced _rotation with _height. 

As you become more experienced writing scripts, you’ll see how useful the Find and
Replace functions can be. For now, close the Replace dialog box and press Cmd/Ctrl+Z (Edit
➢ Undo) to undo the Replace results. 

Creating Two Movie Clips
Now that you’re familiar with the Actions panel, let’s copy the code you’ve been working on
from one movie clip to another. Having two movie clips that use the same code will make it a
little easier to learn about how the code works.

1. Copy the Code

The first task is to duplicate the existing code. You’ll copy and paste the code on one layer
onto another layer.

1. Select the Fading Spoke movie clip that has the ActionScript, and then select the
Actions panel.

2. In the Actions panel, press Cmd/Ctrl+A to select all the contents. Then press
Cmd/Ctrl+C to copy the code.

3. With the Actions panel still open, select frame 7 on the MC2 layer in the main timeline.
Notice that the Actions panel has the label Actions – Frame in the upper left.

4. Click the instance of the Fading Spoke movie clip that’s on frame 7 of the MC2 layer.
The Actions panel’s label now has the label Actions – Movie Clip.

■ Creating Two Movie Clips 15

1.19: Use the Replace feature to swap the instances of _rotation with
_height.



5. Click in the Actions panel and press Cmd/Ctrl+V to paste in the code (1.20). 
You’ve just copied and pasted the code from one movie clip to another. When the

movie runs the code, both movie clips will run independently of one another. In other
words, the code that is assigned to the Fading Spoke movie clip on the MC1 layer will
run independently of the code that is assigned to the instance of the Fading Spoke
movie clip that’s on the MC2 layer. 

6. Paste the code onto the Fading Spoke movie clip instance that is on the MC3 layer
(which becomes visible on frame 14). 

When you copy and paste code, or when you write new code that you’re not sure
about, try clicking the Auto Format button on the Actions panel toolbar (the but-
ton to the right of the button with a check mark). If your code is not syntactically
correct, Flash will display a dialog box with an error message that says, “This
script contains syntax errors, so it cannot be Auto Formatted. Fix the errors and
try again.” This is an easy way to check your code and make sure you haven’t
missed something like a closing bracket or a semicolon at the end of a line.

7. Press Cmd/Ctrl+Enter to test the movie (1.21).

Now the movie clips rotate randomly, and their sizes incrementally increase, creating a
more interesting effect. However, notice that the Fading Spoke animations are concentrated in

16 c h a p t e r 1 ■ ActionScript for Non-Programmers

1.20: Copy the code from the Fading Spoke movie clip instance on the MC1 layer to the Fading
Spoke movie clip instance on the MC2 layer.



the center of the stage. They do not take up the whole
stage area. Let’s fix this.

2. Fix the Scaling

To adjust the animation size, you’ll edit the code in the
movie clip instances. After you make these changes,
each movie clip will have slightly different code. 

1. Close the Test Movie window.
2. Select the Fading Spoke movie clip instance that

appears on frame 7 of the MC2 layer and locate
the following line of code:

if (scale > 100){
3. Change 100 to 175, so that the code now looks

like this (1.22):
if (scale > 175){

4. Select the Fading Spoke movie clip instance that
appears on frame 14 of the MC3 layer and edit
the same line of code (1.23). Change 100 to 250.

5. Press Cmd/Ctrl+Enter to test the movie (1.24).
Now the Fading Spoke movie clip instances fill
the pages as they animate.

6. Close the Test movie window. 

■ Creating Two Movie Clips 17

1.21: The Fading Spoke movie clips are a little too small
for the stage size.

1.22: On the MC2 layer, increase the number from 100 to 175 within the if statement.



The main point of this example is to demonstrate how each movie clip uses its own
code (it doesn’t matter whether it’s the same code or different code). This is a simple example
of so-called object-oriented code in Flash. Each object acts independently of the other, and
the code on each object executes independently of the code on the other objects.

Now let’s take a closer look at what the code is doing in this example. There are two
main sections of the code: the onClipEvent(load) section and the onClipEvent(enterFrame)
section. The curly brackets after each onClipEvent() is where the real action takes place.
Curly brackets are used in Flash to designate the beginning and ending of chunks of code.
These cannot be used arbitrarily.

The onClipEvent(load) is executed when the movie clip is first drawn on the stage,
and it is executed only once. Within the onClipEvent(load) is the initialization code. Since it
only happens once when the movie clip is being loaded, this is where you put anything that
needs a value to start with. It is also where you set how you want the movie clip to look
when the user first sees it. In this example, you set the scaling of the movie clip to 1%. You
also rotate the movie clip about itself by some random amount. This is how the user will first
see the Fading Spoke movie clip: very small and rotated. 

The onClipEvent(enterFrame) code is executed at the frame rate. In this case, the
frame rate is 25 frames per second (fps), so this code will be executed 25 times per second.
The onClipEvent(enterFrame) is where the actual work takes place, because it is repeated
over and over. In this example, you tell the Fading Spoke to get bigger, but only up to a cer-
tain point. When that certain point has been reached, you reset the Fading Spoke to very
small (1%) again, and then rotate it in some other direction.

18 c h a p t e r 1 ■ ActionScript for Non-Programmers

1.23: On the MC3 layer, increase the number from 100 to 250 within the if statement.



Conclusion
Flash MX has several built-in features that give you quick access to information on actions.
Don’t think for a moment that you’re somehow cheating or that you’re in some way less of a
programmer if you use the Reference panel or Show Code Hint button, or even if you select
actions from the Actions toolbox. Professional programmers use programming reference
guides all of the time. Macromedia has just made it easier for them and you to access the
information you need. 

Now that you’ve explored the Actions panel and its tools, you’re ready to put Action-
Script to use. In the next chapter, you’ll learn more about Flash MX’s features for controlling
movie clips.

■ Conclusion 19

1.24: The Fading Spoke movie clips instances now scale upward enough to fill the stage.




