
Chapter 1

Creating Your First ColdFusion
Template
Beginning with this chapter and continuing throughout this book, you will create Cold-
Fusion templates. A ColdFusion template is nothing more than a markup file (typically HTML)
that also contains ColdFusion statements and has a .cfm file extension.

One of the best learning devices is by doing, so in this chapter you are actually going to write
a ColdFusion template. Don’t worry, though, you won’t be diving off the high board right away;
you’ll get to wade in a bit at a time. You will be shown how to write a simple template, and then
its important points will be deconstructed and explained.

Featured in this chapter:

◆ Setting up the software

◆ Understanding ColdFusion templates

◆ Creating your first template

Setting Up ColdFusion
Before you can begin working with the projects in this book, you will need to install some soft-
ware first:

◆ A web server—for example, Apache, Microsoft’s Internet Information Server (or its work-
station version, Personal Web Server), Netscape, or Deerfield WebSite Pro

◆ ColdFusion MX

◆ A web development tool, such as HomeSite+, ColdFusion Studio, or Dreamweaver MX

If you have trouble installing ColdFusion MX, refer to Appendix A, “Installing ColdFusion,”
for assistance.

4124c01.qxd 8/20/02 8:43 AM Page 3

CO
PYRIG

HTED
 M

ATERIA
L

Using ColdFusion
Once everything is installed correctly, there are really only two things you need to understand to get
started using ColdFusion: how to call a template, and what it takes to write a template.

Calling Templates
Calling a ColdFusion template can be done just like calling an HTML (Hypertext Markup Language)
page. Addressing the template from the browser is identical for the user with the exception of the file
extension.

By default, when the ColdFusion server is serving its own pages (stand-alone mode), it is not run-
ning on port 80 like most other web servers (though it could later be configured to do so). This means
that you will have to specify a port address in the page’s URL. The port number is 8500 by default—
for example,

http://localhost:8500/index.cfm

ColdFusion Markup Language (CFML)
ColdFusion Markup Language (CFML) is a tag-based programming language. It was designed to
have an HTML-like look and feel, making it easier for web designers to become web developers.
Most tags have attributes, and many are comprised of start and end tag sets. CFML tags are readily
identifiable because their tag names all begin with cf.

A common HTML tag is the paragraph tag:

<p>some content</p>

A common CFML tag looks like this:

<cfoutput>some content</cfoutput>

As you can see, the two markup languages are very similar. Obviously the major differences are the
purposes of the two languages: one is for presentation, and the other is for processing data. As you
will see later, this makes for a powerful synergy.

When the CFML interpreter processes a template, it executes the tags that it finds and writes out
any resulting content (typically text or HTML tags), but no trace of the original CFML will show in
the output. All the CFML tags are processed out of the output on the server side. This means the logic
in the template is afforded a degree of protection.

Your First Template
Building your first template isn’t difficult at all. The first project in this book will walk you through
what you need to do to create your first ColdFusion template.

Note The code here utilizes CFML constructs that you are probably not familiar with yet. Don’t panic; learning these
things is why you are reading this book! All of the constructs used will be explained in greater detail in the next few chapters.

Chapter 1 CREATING YOUR FIRST COLDFUSION TEMPLATE4

4124c01.qxd 8/20/02 8:43 AM Page 4

Launch your HTML writer and create a new HTML document, complete with a head and an
empty body. Add to the empty body the following lines of CFML code:

<cfset today = dateFormat(now(), “mm/dd/yyyy”)>
<cfoutput>

<p>Hello, today’s date is: #today#</p>
</cfoutput>

The finished product should look almost exactly like Listing 1.1. Save this document into the web
server’s document root as c0101.cfm. Then load the page in your browser called through the web server.

Listing 1.1: A Basic CFML Template (c0101.cfm)

<!---
Name: /spiderbytes/c01/c0101.cfm
Description: Display current date.

--->
<html>

<head>
<title>Basic Template</title>

</head>
<body>

<cfset today = dateFormat(now(),“mm/dd/yyyy”)>
<cfoutput>

<p>Hello, today’s date is: #today#</p>
</cfoutput>

</body>
</html>

Be certain to load the template by requesting it from your web server (as seen in Figure 1.1) or the
ColdFusion server; otherwise, the CFML interpreter will not get invoked to process the template.

Figure 1.1

The output of
Listing 1.1

5YOUR FIRST TEMPLATE

4124c01.qxd 8/20/02 8:43 AM Page 5

Using Variables
CFML variables are like variables in other development languages: a name given to a place in memory
where a value has been saved. There is a variety of ways to construct variables in CFML, but the simplest
is cfset. Using cfset will create a variable if it doesn’t exist or replace an existing variable’s old value
with some new value. It looks like a regular tag but it has a slight twist; the attribute of cfset is the
name of a variable that will be created or modified when the tag is executed. This means, that unlike
other tags, there is not a “standard” attribute for the tag. The attribute value is the value given to that
variable. The format is:

<cfset variable_name = variable_value>

cfset will be covered in greater detail in Chapter 4, “Creating and Manipulating Variables,” and
can also be found in Appendix B, “ColdFusion Tag Reference.”

In Listing 1.1, we created a variable called today and assigned it the result of a function called
dateFormat.

There are some general rules to using CFML variables in your templates:

◆ A variable cannot be a reserved word, cannot contain spaces or special characters and cannot
begin with a number.

◆ In order to display or use the value of a variable as part of an HTML tag (such as the value
of a tag’s attribute), it must be processed within the body of a cfoutput block. Variables are
identified to cfoutput by enclosing them within pound signs (#) as you did in the paragraph
body of Listing 1.1.

Using Functions
CFML is not only composed of tags; it also contains nearly 300 functions. Functions will be dis-
cussed in greater detail in Chapter 5, “Functions,” but suffice it to say for now that a function is a
language construct that can be called to perform a specific task. There are groups of functions for
handling date and time conversions, string parsing, number processing and formatting, and various
data type handling. Most of the functions return values that can be saved to variables. This is most
commonly done with cfset, as you did in Listing 1.1.

Data can be passed into a function (comma-delimited within parentheses following the function
name) as well as returned. A piece of data passed to a function is called an argument. The kind of data
and meaning that an argument has are specific to each individual function. An argument can be a literal
value, a variable, or even the value returned from another function.

There are actually two functions used in Listing 1.1, dateFormat and now. The first and more
complicated of these takes two arguments, in the order dateFormat(date, mask). In our example,
the date argument is actually the value returned from the now function, and is a date/time value
between 100 and 9999 AD. The second argument, mask, is a string that describes how dateFormat
should display the first argument. Table 1.1 lists the various character strings used in the mask argu-
ment to indicate the desired format.

Chapter 1 CREATING YOUR FIRST COLDFUSION TEMPLATE6

4124c01.qxd 8/20/02 8:43 AM Page 6

Table 1.1: Format Character Codes for the dateFormat Function

Character Format Effect

d Day of the month as digits; no leading zero.

dd Day of the month as digits; with leading zero.

ddd Day of the week as three-letter abbreviation.

dddd Full name of the day of the week.

m Month as digits; no leading zero.

mm Month as digits; with leading zero.

mmm Month as three-letter abbreviation.

mmmm Full name of the month.

y Year as last two digits; years less than 10 no leading zeros.

yy Year as last two digits; years less than 10 with leading zeros.

yyyy Year in four-digit representation.

gg Period/era indicator. Currently ignored.

Using cfoutput
The cfoutput tag will not be discussed in detail in this chapter, as it will be covered over the next few
chapters and can also be found in Appendix B. cfoutput is a vital CFML tag, and you will use it often;
it is important to get comfortable with it. This tag is used to block off some content (typically HTML)
that contains CFML variables that need to be displayed. CFML variables can be used as attribute values
to other CFML tags or can be assigned to other CFML variables without being processed by cfoutput.
However, if you are using a variable or function results to format content for display or to feed as an
attribute to an HTML tag, then you will need cfoutput.

Commenting Your Code
Commenting code is a much-maligned developer task, but the importance of commenting your code
cannot be stressed strongly enough. Who knows when you’ll look at your code again once you’re done?
Or more likely, who knows who else will have to look at your code?! If you don’t have much experience
writing code, this can seem less important early in your evolution, but one day it will be critical. It’s
best to get into the practice early, so it won’t seem like so much of a chore later.

Most web designers are familiar with HTML comments:

<!-- something important to remember -->

Anything between the comment’s start and end punctuation will be ignored by the browser and will
not have an impact on the display of the content in any way.

7YOUR FIRST TEMPLATE

4124c01.qxd 8/20/02 8:43 AM Page 7

CFML comments are very similar, but they use three dashes instead of just two:

<!--- something important to remember --->

The interpreter will ignore anything, including other CFML statements, within a CFML comment
block. Further still, like other CFML statements, the comment block does not become part of the
generated output that goes to the client.

This being the case, a developer should feel comfortable liberally adding CFML comments to
templates without fear of exposing dangerous information to the client. At a minimum, each tem-
plate should carry a block that identifies the various things about it:

<!---
Filename: template name
Author: developer’s name
Date: template’s creation date
Application: application’s name
Type: standard template
Description:

Describe the template in some detail.
Changes:

1/1/00 GR did something to the template logic
--->

Note This header is different than the header that is used with the samples throughout this book. The reason for this is that
the one used in the sample code is meant for identification purposes and brevity, and it does not attempt to be as encompassing
as a real header ought to be. This should not be taken to mean that the other fields listed in the longer header are superfluous—
quite the contrary. Well-documented code, even if only a complete header, is vital to providing quality production code.

This block contains seven very important pieces of information: the filename, the original author,
the date of creation, the application, the kind of template this file represents, the description, and the
changes log. Some of these things have obvious importance, such as Filename and Author. Others,
like Type, may not be instantly obvious, though. Type describes the kind of functionality the template
encapsulates. This is something that should be tailored to the development team’s jargon. Not all tem-
plates are for displaying content; some are libraries of functions that are meant to be included into
other templates.

Of all of the fields in the block, the Changes information is, arguably, the most important. It
tracks what, when, and by whom alterations have been made to a template. This will be vital during
the lifecycle of an application as new or altered business requirements force changes in the code.

Where Do We Go from Here?
This chapter showed you how to create your first ColdFusion template. Certainly there wasn’t any-
thing terribly complex about this template, but it introduced you to some very important CFML
concepts, such as using CFML variables and functions and commenting your ColdFusion code.

The next chapter will build on these concepts, and you will learn how to pass data between tem-
plates via HTML forms and hyperlinks. These are standard practices that you will use time and again
when building ColdFusion applications.

Chapter 1 CREATING YOUR FIRST COLDFUSION TEMPLATE8

4124c01.qxd 8/20/02 8:43 AM Page 8

