
Chapter 1

Getting Acquainted with
HTML and XHTML
In this chapter, we’ll introduce you to HTML and XHTML, which, as you’ll see, are
markup languages that you can use to develop documents for a variety of online uses. This chap-
ter aims to help you build the vocabulary and basic understanding you’ll need to actually use
HTML and XHTML.

Specifically, in this chapter you’ll find the following topics:

◆ Identifying uses for HTML and XHTML

◆ Understanding the difference between HTML and XHTML

◆ Determining whether HTML or XHTML is better for your needs

◆ Learning the tools you need to use HTML and XHTML

◆ Recognizing HTML and XHTML code

◆ Applying HTML and XHTML markup correctly

◆ Applying rules specific to XHTML markup

◆ Accessing other HTML and XHTML resources

Why Use HTML or XHTML?
HTML and XHTML are both markup languages. A markup language is a system of codes that
identify parts and characteristics of documents published online. Before you say, “Yikes, that sounds
techie!” consider that you’re probably already familiar with the most common application for HTML
and XHTML—Web pages. HTML and XHTML are not what you see on screen as a Web page;
instead, they’re the behind-the-scenes “code” that tells Web browsers what to display.

4141ch01.qxd 7/31/02 4:32 PM Page 3

CO
PYRIG

HTED
 M

ATERIA
L

Let’s look at some possible uses for HTML and XHTML:

Developing Web sites Using HTML- or XHTML-developed Web pages and sites, users can
jump from topic to topic, view images, fill out forms, submit information, and search databases,
among many other possibilities. Basically, these markup languages provide many of the capabili-
ties and functionality that you’re accustomed to using when you visit Web sites.

Developing intranet or extranet sites HTML and XHTML are commonly used to develop
intranet sites—Web sites accessed by people within a company or organization from one or more
locations—or extranet sites, used by people from a specific group of companies or organizations
that routinely share information among themselves.

Creating help files or documentation HTML and XHTML can also be used to develop online
help files that are accessible on any platform. Online help files allow developers to produce docu-
mentation inexpensively.

Developing network applications HTML and XHTML are even used for developing applica-
tions, such as training programs or online classes, or for providing access to databases through
Web pages.

Developing kiosk applications You can also use HTML and XHTML to help implement
kiosk applications—those stand-alone computers with the neat touch-screen capabilities.

Delivering information via wireless devices HTML and XHTML can be used to display doc-
uments on a variety of wireless devices, including Web-enabled phones, personal digital assistants,
and handheld computers. It’s expected that this will be an area of tremendous growth over the
next few years.

What’s the Difference Between HTML and XHTML?
In general, you’ll find that HTML and XHTML are very similar, and most Web browsers handle
both equally well. The main differences include:

XHTML is pickier about how you type the code (the markup) into the documents. As
you’ll see later in this chapter, XHTML requires your documents and markup to follow very spe-
cific rules. For example, whereas HTML lets you use uppercase, lowercase, or a combination of
the two when marking up your documents, XHTML requires that you use only lowercase letters.
Similarly, although you can get away with using only an opening element in HTML—say, using
just an opening paragraph element (<p>) to mark a paragraph—XHTML requires that you
always use both opening and closing tags, like this: <p>…</p>. These XHTML rules aren’t hard to
learn or follow, but you will need to pay special attention as you develop XHTML documents
and make sure all of the details are accurate and complete.

Chapter 1 GETTING ACQUAINTED WITH HTML AND XHTML4

4141ch01.qxd 7/31/02 4:32 PM Page 4

Note If you’re familiar with HTML, you’re probably used to hearing the word tag to describe HTML markup. You
might think of tags as being generally equivalent to “elements,” with “tag” being the less formal term. Technically, the tag (or
tag pair) refers to the elements and the surrounding <> and </> characters. Throughout this book, we’ll generally use the term
element to refer to both the perhaps more familiar “tag” and the more accurate “element,” unless we particularly need to
emphasize the components of a tag—as we will later in this chapter.

XHTML can provide more capabilities and flexibility than HTML does. XHTML is based on
a larger markup language called XML (Extensible Markup Language, which we’ll cover in Part VI),
which provides developers with powerful capabilities and flexibility far beyond what HTML
offers. For example, suppose you want to automatically generate a table of contents for your Web
site pages. Because XHTML documents have more structure and are more predictable than
HTML documents, you’ll find that automatically extracting specific pieces of XHTML docu-
ments to generate this content is easier than extracting specific pieces of HTML. In general,
XHTML gives you a bit more power and flexibility than you have with straight HTML, yet it
doesn’t have XML’s steep learning curve.

XHTML can provide a good start if you or your company may move to using a more struc-
tured markup language in the future. While XHTML doesn’t have the depth of structure that
XML or SGML (Standard Generalized Markup Language) offers, it does have basic document-
level structure and regularity. So, while transferring from using XHTML to one of these markup
languages is a complex undertaking, XHTML will give you a far better start than HTML would.

So, are we saying that you should choose XHTML rather than HTML? The short answer is that,
really, there’s no reason not to use XHTML. In fact, we would encourage you (even if you’re new to
markup languages or new to developing documents for online uses) to use XHTML. It’s not that
much harder to learn and use than HTML, following the rules can provide you with some good
planning and document-development skills, and it gives you future options and flexibility.

Tip Web browsers handle HTML and XHTML equally well, and XHTML is not much more difficult to implement
than HTML (and it’s more flexible). So, we recommend using XHTML in most cases.

The long answer is, first consider what your needs are. Are you developing a simple personal Web
site? Documents for an intranet or extranet site where only HTML is being used? Documents that
have to be developed as quickly as possible, then will be discarded shortly thereafter? Or documents
that will need to be maintained by very un-technical folks? If so, then HTML might be the better
choice for you.

If, however, you are developing more than a minimal Web site, a site that will likely require some
amount of maintenance or revision, or a site in which other parts are already using XHTML, then
using XHTML is highly recommended. Similarly, if you’re developing documents for online help,
kiosks, or wireless devices, we’d highly recommend using XHTML simply because it’s more flexible,
forward-looking, and compatible with XML (on which XHTML is based).

Note Throughout this book, we’ll be primarily using XHTML for examples of documents and code. Note that these
examples will work equally well whether you’re using HTML or XHTML.

5WHAT’S THE DIFFERENCE BETWEEN HTML AND XHTML?

4141ch01.qxd 7/31/02 4:32 PM Page 5

Where Did HTML and XHTML Come From?

The roots of HTML (which is the predecessor to XHTML) go back to the late 1980s and early 1990s. That’s
when Tim Berners-Lee first developed HTML to provide a simple way for scientists at CERN (a particle
physics laboratory in Geneva, Switzerland) to exchange reports and research results on the Web. HTML
is based on a formal definition created using a powerful meta-language—a language used to create other
languages—called the Standard Generalized Markup Language (SGML). SGML is an International Organi-
zation for Standardization (ISO) standard tool designed to create markup languages of many kinds.

By the early 1990s, the power and reach of the World Wide Web was becoming well known, and CERN
released HTML for unrestricted public use. CERN eventually turned HTML over to an industry group
called the World Wide Web Consortium (W3C), which continues to govern HTML and related markup-lan-
guage specifications. Public release of HTML (and its companion protocol, the Hypertext Transfer Protocol,
or HTTP, which is what browsers use to request Web pages, and what Web servers use to respond to such
requests) launched the Web revolution that has changed the face of computing and the Internet forever.

In the years since HTML became a public standard, HTML has been the focus of great interest, attention,
and use. The original definition of HTML provided a way for us to identify and mark up content—spe-
cific information judged to be of sufficient importance to deliver online—without worrying too much
about how that information looked, or how it was presented and formatted on the user’s computer dis-
play. But as commercial interest in the Web exploded, graphic designers and typographers involved in
Web design found themselves wishing for the kind of presentation and layout controls that they
received from software such as PageMaker and QuarkXPress. HTML was never designed as a full-fledged
presentation tool, but it was being pulled strongly in that direction, often by browser vendors, such as
Microsoft and Netscape, who sought market share for their software by accommodating the desires of
their audience.

Unfortunately, these browser-specific implementations resulted in variations in the HTML language defi-
nitions that weren’t supported by all browsers and resulted in functionality that wasn’t part of any official
HTML language definition. Web designers found themselves in a pickle—forced either to build Web pages
for the lowest common denominator that all browsers could support, or to build Web pages that targeted
specific browsers that not all users could necessarily view or appreciate.

Basically, XHTML was created as a means to address this discrepancy. XHTML provides a way to take advan-
tage of a newer, more compact underlying meta-language called XML (Extensible Markup Language) that
is inherently extensible and, therefore, open-ended. More important, XHTML helps rationalize and con-
solidate a Web markup landscape that had become highly fragmented (a result of different and incompat-
ible implementations of HTML). There are many other good reasons for using standard-compliant HTML or
XHTML, and you’ll learn more about them later in this chapter and throughout this book.

The HTML and XHTML specifications—all versions, revisions, and updates—are maintained by the W3C
and can be found at www.w3.org. Taking a tour through the W3C Web pages can be quite useful, in terms
of learning what issues are considered most pressing or least important to the people making the specifi-
cations. In addition, you can find out if your personal concerns are being addressed.

Continued on next page

Chapter 1 GETTING ACQUAINTED WITH HTML AND XHTML6

4141ch01.qxd 7/31/02 4:32 PM Page 6

Where Did HTML and XHTML Come From? (continued)

At the time this book was written, the primary issues being addressed by the HTML Working Group were
pushing XHTML in the direction of modularization (Chapter 25) and toward use of Schemas (Chapter 29,
on the Web). Both of these issues reflect the importance of moving HTML toward standards that are:

◆ Compatible with existing browsers and tools

◆ Flexible enough to accommodate non-traditional browsers, like handheld computers and Web-enabled
cell phones

◆ Consistent and predictable enough to be readily parsed and processed by Web servers and other pro-
grams to provide tailored content

That said, you do not need to worry about the future of HTML as you know it. No plans are under way to
make any changes or improvements to HTML 4.01, and XHTML 1.0 is explicitly defined as being a “refor-
mulation” of HTML 4.01 in XML; therefore, your investment of time and effort in learning HTML or XHTML
won’t be wasted. In our opinion, given the number of Web pages out there, there’s virtually no possibility
that HTML 4.01 or XHTML will change substantially or cease to exist in the next several years—high-end
Web sites and information delivery systems will evolve to take advantage of the new features that the W3C
defines, but all of the basics (for example, everything in this book) will continue to work for the foreseeable
future.

You’ll find more history about markup languages in Chapter 21, which discusses XML in the context of
how it fits into HTML and SGML (Standard Generalized Markup Language).

What Tools Do You Need?
Whether you’re planning to develop HTML or XHTML documents, you’ll need three basic tools:

◆ A plain-vanilla text editor, which you will use to create and save your documents. The “HTML
and XHTML Editors” sidebar provides more information about some of the editors that are
available; however, keep in mind that we highly recommend using a plain-text editor for devel-
oping HTML and XHTML documents—at least when you’re learning to use these markup
languages.

◆ A Web browser, which you will use to view and test your documents. In fact, you should have
multiple Web browsers available so that you can see how your documents look when viewed in
these different browsers.

◆ A validator, which you will use to verify that your HTML or XHTML documents are devel-
oped and coded correctly. We recommend using a validator if you’re developing HTML docu-
ments; however, because browsers can often display HTML code that’s a bit sloppy or not
completely “standard,” validating your HTML documents isn’t an absolute must. If you’re
developing XHTML documents, however, you must use a validator as part of your document-
development and publishing process. The XHTML standard has specific rules to follow, and if
you want to use XHTML, you must ensure that your XHTML code is applied correctly.

Let’s take a more in-depth look at these necessary tools.

7WHAT TOOLS DO YOU NEED?

4141ch01.qxd 7/31/02 4:32 PM Page 7

Text Editors
Text editors force you to hand-code, meaning that you, not the software, enter the code. Hand-coding
helps you learn HTML and XHTML elements, attributes, and structures, and it lets you see exactly
where you’ve made mistakes. Also, with hand-coding, you can easily include the newest enhancements
in your documents, whereas WYSIWYG editors don’t have those enhancements available until updated
product versions are released.

Some basic text editors are:

◆ Notepad for all Windows versions

◆ vi or pico (command line), or GEdit or Kate (GUI) for Linux/Unix

◆ TeachText or SimpleText for Macintosh

Warning Using a word processing program such as Word, StarOffice, or even WordPad to create HTML documents
often inadvertently introduces unwanted formatting and control characters, which can cause problems. HTML and XHTML
require plain text, so either make a special effort to save all documents as plain text within such applications, or take our
advice and use a text editor instead.

HTML and XHTML Editors

In general, editors fall into two categories:

Text- or code-based editors, which show you the HTML or XHTML code as you’re creating docu-
ments A variety of code-based HTML and XHTML editors exist for Windows, Macintosh, and
Linux/Unix, and most of them are fairly easy to use (and create HTML code just as you wrote it). That
said, as we write this chapter, few editors are available that produce XHTML code (or rigorously standard-
compliant HTML code, for that matter).

However, it’s possible to use an HTML editor or a simple text editor to create an initial version of your
XHTML documents and then to make use of a special-purpose tool, such as HTML Tidy or HTML-Kit,
to transform your HTML into equivalent, properly formatted XHTML. Because this requires a bit more
savvy than we assume from our general readership, this material is aimed only at those more experi-
enced readers to whom this kind of approach makes sense.

WYSIWYG (“What You See Is What You Get”) editors, which show the results of code, similar to the
way it will appear in a browser, as you’re formatting your document Simple WYSIWYG editors,
such as Netscape Composer and Microsoft FrontPage Express, are good for quickly generating HTML
documents. These editors give you a close approximation of page layout, design, and colors, and are
good for viewing the general arrangement of features. However, they do not give you as much control
over the final appearance of your document as code-based editors do. Additionally, although there have
been improvements over the last couple of years, WYSIWYG editors notoriously introduce unneeded
elements, non-compliant code, and other characteristics that purists object to.

After you’ve developed a few HTML documents and understand basic HTML principles, you may
choose to use both a WYSIWYG editor and a code-based editor. For example, you can get a good start
on your document using a WYSIWYG HTML editor and then polish it (or fix it) using a code-based one.
Others prefer Web editing/publishing tools like Dreamweaver, which offers a combined approach with
both WYSIWYG and code-based modes.

For now, though, we recommend that you hand-code HTML and XHTML using a plain-text editor.

Chapter 1 GETTING ACQUAINTED WITH HTML AND XHTML8

4141ch01.qxd 7/31/02 4:32 PM Page 8

Web Browsers
The most common browsers are Microsoft Internet Explorer (IE) and Netscape Navigator; how-
ever, many other browsers are also available for virtually all computer platforms and online services.
(AOL’s browser is based on IE and functionally nearly the same.) We’re especially fond of Opera
(available free at www.opera.com) and Amaya (available free at www.w3.org/Amaya/) because they
often support advanced features and functions better and sooner than the more popular IE and
Netscape browsers do.

As you’re developing HTML or XHTML documents, keep in mind that exactly how your docu-
ments appear varies from browser to browser and from computer to computer. For example, most
browsers in use today are graphical browsers: they can display elements other than text. A text-only
browser can display—you guessed it—only text. How your documents appear in each of these types
of browsers differs significantly, as shown in Figures 1.1 and 1.2.

Even graphical browsers tend to display things a bit differently. For example, one browser might
display a first-level heading as 15-point Times New Roman bold, whereas another might display the
same heading as 14-point Arial italic. In both cases, the browser displays the heading bigger and
more emphasized than regular text, but the specific text characteristics vary. Figures 1.3 and 1.4 show
how two other browsers display the same XHTML document.

Figure 1.1

An HTML docu-
ment displayed in
Netscape Navigator

9WHAT TOOLS DO YOU NEED?

4141ch01.qxd 7/31/02 4:32 PM Page 9

Figure 1.3

The W3C Amaya
browser has its own
unique look and feel

Figure 1.2

The same HTML
document viewed in
Lynx, a text-only
browser

Chapter 1 GETTING ACQUAINTED WITH HTML AND XHTML10

4141ch01.qxd 7/31/02 4:32 PM Page 10

Tip Finally, your user’s computer settings can also make a big difference in how your HTML or XHTML documents
appear. For example, the computer’s resolution and specific browser settings can alter a document’s appearance.

So, as you’re developing and viewing your documents, remember that what you see may look a bit
different to your users. Test your documents in as many different browsers as possible, at as many dif-
ferent resolutions and color settings as possible, on as many different computers as possible. You
won’t be able to test for all variations, but you should be able to get a good idea of what your users
might see.

The W3C Validator
You should also use an HTML or XHTML validator, which is a tool that examines your documents
and verifies that the documents follow the rules for applying code and document structure.

Although a number of validators exist, the W3C Validator is the most definitive, because it’s devel-
oped by the same folks who developed the HTML and XHTML specification. To use it, first open
your browser. Then:

1. Go to http://validator.w3.org/file-upload.html.

2. Browse your local hard disk, and upload the file you want using the validator’s interface.

If you’re in luck, what you get back looks like what’s shown in Figure 1.5. If you’re not in luck,
you will need to find out how to read and interpret the validator’s sometimes-cryptic error messages.
Because this interpretation is a substantial chore, we’ve devoted Chapter 20 to this topic; you may
want to read it through before your first encounter with the validator.

Figure 1.4

The Opera browser
shows the same doc-
ument with slightly
different formatting

11WHAT TOOLS DO YOU NEED?

4141ch01.qxd 7/31/02 4:32 PM Page 11

You should make validation part of your standard authoring process. That way, you’ll get the
best possible guarantee that most browsers will be able to view and display the contents of your
documents.

Note Remember, validating your XHTML is necessary to ensure that it really is compliant with the XHTML
standards.

What Does HTML and XHTML Code Look Like?
As Figure 1.6 shows, HTML and XHTML documents are plain-text files. They contain no images,
no sounds, no videos, and no animations; however, they can include pointers, or links, to these file
types, which is how Web pages end up looking as if they contain non-text elements.

As you can see, HTML and XHTML documents look nothing like the Web pages you view in
your browser. Instead, documents are made up of elements and attributes that work together to identify
document parts and tell browsers how to display them. Listing 1.1 shows the elements and attributes
that create the Web page shown in Figures 1.1 through 1.4.

Figure 1.5

When the W3C
validator finds no
errors, its output is
both short and very
sweet!

Chapter 1 GETTING ACQUAINTED WITH HTML AND XHTML12

4141ch01.qxd 7/31/02 4:32 PM Page 12

Listing 1.1: HTML and XHTML Code Includes Context, Elements, Attributes,

and Links That Form a Web Page

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html;

charset=iso-8859-1” />
<title>
RayComm, Inc., Consulting Services -- Home Page

</title>
<link rel=”stylesheet”
href=”techwhirl/includes/techwhirl.css” type=”text/css” />

</head>
<body>
<table width=”600” align=”center”>
<tr>
<td>
<img src=”/images/translogo.gif”
name=”logo” width=”219” height=”67” border=”0”
alt=”RayComm Home Page” />

<img src=”/images/bluebar.gif” width=”620”

Elements

Attributes

Figure 1.6

HTML and
XHTML docu-
ments are just text
files, containing the
code and content
you provide

13WHAT DOES HTML AND XHTML CODE LOOK LIKE?

4141ch01.qxd 7/31/02 4:32 PM Page 13

height=”3” border=”0”
alt=”-------------------------------------” />
<p>
RayComm, Inc., provides technical communication and
technology consulting services to a variety of
clients from across the United States. From basic
computer information to product documentation (on
anything from computer hardware or software to heavy
equipment) to high-level Internet search service
consulting, we can help.
</p>
<p>
For more information:

</p>

Learn more about our consulting services.

Check out some of the books
and articles we’ve written, on everything
from UNIX to HTML and XHTML to adaptive
technologies.

Contact us
for more information about how we can help you.

<p>
<img src=”/techwhirl/images/techwhirllogo.gif”
alt=”TECHWR-L Logo” align=”right” /> RayComm, Inc.,
is the home of TECHWR-L, including both the TECHWR-L
mailing list for technical communicators and the TECHWR-L Site. Look here for
original articles and content, archives,
instructions, frequently asked questions, and likely
everything you wanted to know but were afraid to ask
about “Techwhirl.”
</p>
<br clear=”all” />
<hr />
<p class=”centered”>
Home | Consulting | Portfolio | FAQs | <a

Chapter 1 GETTING ACQUAINTED WITH HTML AND XHTML14

4141ch01.qxd 7/31/02 4:32 PM Page 14

href=”/techwhirl/index.html”>TECHWR-L Site

About RayComm, Inc.
| Contact Information

</p>
<p class=”centered”>
Last modified on 1 April, 2002

Site contents Copyright © 1997 - 2002 RayComm,
Inc.

Send comments to webmaster@raycomm.com.

</p>
</td>

</tr>
</table>

</body>
</html>

Tip Throughout this book, we use the term users to describe the people who view and use the HTML and XHTML doc-
uments you develop.

Understanding Elements
HTML and XHTML elements serve two primary functions. First, they identify logical document
parts—that is, major structural components in documents, such as headings (h1, a heading level 1, for
example), numbered lists (ol, also called ordered lists), and paragraphs (p). For example, if you want
to include a paragraph component in an HTML or XHTML document, you type the text and apply
the appropriate elements (<p> to the beginning of the paragraph and </p> at the end) to that text, as
this snippet from Listing 1.1 shows:

<p>
RayComm, Inc., provides technical communication and
technology consulting services to a variety of
clients from across the United States. From basic
computer information to product documentation (on
anything from computer hardware or software to heavy
equipment) to high-level Internet search service
consulting, we can help.

</p>

And, voila, the paragraph element (<p>…</p>) marks that document part to be a paragraph.

15WHAT DOES HTML AND XHTML CODE LOOK LIKE?

4141ch01.qxd 7/31/02 4:32 PM Page 15

Second, some elements refer to other things that are not included in the HTML or XHTML
document itself. Whereas the <p> and <h1> elements just mentioned refer to paragraph and heading
components within the document itself, elements can also mark pointers—essentially just links—to
other documents, images, sound files, video files, multimedia applications, animations, applets, and
so on. For example, if you want to include an image of your company’s product in your document,
rather than pasting an image directly into the document (as you might in a word processing file), you
include an element that points to the file location of that image, as shown here:

In this example, the img (image) element points to a logo file (logo.gif) that the browser should
display. This illustrates that browsers rely on information within the HTML or XHTML document
to tell them what to display, as well as how to display it.

Understanding Attributes
Some HTML and XHTML elements take modifying values called attributes, which provide addi-
tional information about the elements, such as:

◆ What other files should be accessed, such as an image file

◆ What alternative text should be associated with the element

◆ Which style classes should be used to format the element

Let’s assume you want to center a heading 1 in the browser window. You’d start with your heading
and elements, like this:

<h1>A heading goes here</h1>

Next, you’d add the style and type attributes to the opening element, like this:

<h1 style=”text-align:center”>A centered heading goes here</h1>

In this example, the heading level one element includes attributes that specify the style to be aligned
in the center. As you can see, attributes normally have two parts: the attribute name (style=, in this
example) and the value (“text-align:center”). The value should appear in quotes in HTML and
must appear in quotes in XHTML.

About Common Attributes

In HTML and XHTML, there are several attributes that can be applied to nearly all elements; these are
known as the common attributes. They include:

id="name" Assigns a unique name to an element within a document.

style="style" Allows the author of the document to use Cascading Style Sheets (CSS) as attribute val-
ues or to define the presentation parameters for that specific element. You can use the style attribute
with all elements except html, head, title, meta, style, script, param, base, and basefont.

class="name" Assigns a class or a set of classes to an element. This attribute is frequently used with
CSS to establish the display properties for a particular subset of elements.

Continued on next page

Chapter 1 GETTING ACQUAINTED WITH HTML AND XHTML16

4141ch01.qxd 7/31/02 4:32 PM Page 16

About Common Attributes (continued)

lang="language code" Specifies the language of the content contained by the element. For example,
lang=”en” declares that English is the language used.

dir="ltr|rtl" Specifies the direction text should be displayed. This doesn’t seem like an important
attribute unless you remember that many of the world’s languages are not read from left to right. Yes,
ltr means “left to right,” and rtl means “right to left.”

title="text" Functions in a manner similar to the title element but applies only to a specific element
instead of an entire document. Caveat: The attribute’s behavior is not defined by the HTML or XHTML
specification. Instead, the way that behavior is rendered is left up to the browser, and the content is
usually presented as a pop-up tooltip when readers hover the mouse pointer over the text. This attrib-
ute is currently most useful on sites or documents that the author knows will be viewed by users of
Internet Explorer 5, Opera 6, or Netscape 6 (or later) browsers. The title attribute cannot be used with
the following elements: html, head, meta, title, script, param, base, and basefont.

Typing Elements and Attributes Correctly
As our examples so far should illustrate, elements and attributes are reasonably intuitive. Although
markup can occasionally be cryptic, you can generally get some idea of an element or attribute func-
tion from its name.

Before we get started on typing elements and attributes, be aware that entering elements and
attributes varies slightly depending on whether you’re using HTML or XHTML. Remember that we
mentioned XHTML is a bit pickier? Well, entering XHTML markup is where that pickiness comes
into play. Again, though, XHTML is not harder; you’ll just have to pay a bit more attention as you’re
learning to use it. In the next sections, we’ll do the following:

◆ Describe general guidelines for typing HTML and XHTML elements and attributes

◆ Show you how to nest elements (apply more than one element to a document part)

◆ Explain specific rules for typing XHTML elements and attributes

◆ Help you improve readability of your HTML and XHTML documents

Typing Elements and Attributes in Either HTML or XHTML (General Information)

To begin, all elements are composed of element names that are contained within angle brackets (< >).
The angle brackets simply tell browsers that the text between them represents HTML or XHTML
markup rather than ordinary text content. Some sample elements look like these:

◆ <h2> (for heading level 2)

◆ <p> (for document paragraph)

◆ (to emphasize a particular section of content)

Tip You’ll learn more about these elements and their uses in Chapter 2.

17WHAT DOES HTML AND XHTML CODE LOOK LIKE?

4141ch01.qxd 7/31/02 4:32 PM Page 17

Second, many elements are designed to contain content; they use a pair of tags, where actual con-
tent occurs between the opening tag (for example, <h1>) and the corresponding closing tag (</h1>). Both
tags look alike, except the closing tag includes a forward slash (/) to denote the end of the element
container. To apply tags to something in your document, place an opening tag before the content that
should be associated with the element you want to use, and place the closing tag after it, as these
examples show:

<h1>Information to which the tags apply</h1>

or

<title>Correctly Formed Title</title>

When typing elements, be particularly careful not to include extra spaces within the tag itself, as in
this erroneous example:

< title >Incorrectly Formed Title< /title >

If you include spaces within the elements, browsers may not recognize the element and may not
display the content correctly (or at all). Sometimes, a browser might display the markup itself because
it’s unable to distinguish improperly formed markup from normal element content.

Tip When creating HTML or XHTML markup by hand, enter both the opening and closing tags at the same time.
That way, you won’t forget the closing tag.

Keep in mind that you’ll also use the occasional empty elements, which do not include a closing tag.
Some empty elements include the line break element (
) and the image element (), which
do not require the closing element but include a space and a forward slash (/)after the element name.
This example shows the break element (
), which would put in a line break after each line:

<p>
RayComm, Inc., provides technical communication and

technology consulting services to a variety of

clients from across the United States. From basic

computer information to product documentation (on

anything from computer hardware or software to heavy

equipment) to high-level Internet search service

consulting, we can help.

</p>

We’ll point out these empty elements throughout this book and show you how to use them
correctly.

Note Empty elements in HTML—as opposed to XHTML—do not require the closing / character. However, the extra
/ causes no problems in HTML, so we customarily use it in both HTML and XHTML.

As we discussed, elements don’t usually appear by themselves; often you’ll also include attributes
that provide supporting information about the element. The style= attribute in this example indi-
cates that the heading level 1 should be centered:

<h1 style=”text-align:center”>A centered heading goes here</h1>

Chapter 1 GETTING ACQUAINTED WITH HTML AND XHTML18

4141ch01.qxd 7/31/02 4:32 PM Page 18

As you enter attributes, remember these guidelines:

◆ Include the attribute within the element after the element name, as in <h1 style=”text-
align:center”>.

◆ Use spaces to separate attributes from other attributes and the element itself, as in <h1
id=”5325a” style=”text-align:center”>.

◆ Enclose attribute values in quotes, as in style=”text-align:center”. The quotes are required
in XHTML and part of developing “correct” HTML. Learning to include them now will
help you in the future, when newer specs are released that insist on this convention.

Finally, be aware that:

◆ HTML allows you to type in elements (and attributes) using uppercase, lowercase, or a com-
bination of both. It’s not picky, and browsers will display HTML code using whichever capi-
talization choice you make.

◆ XHTML requires that elements and attributes—with a few exceptions—must be typed using
all lowercase. We’ll point out exceptions throughout this book; however, we recommend that
you use lowercase for both HTML (for good practice, should you ever move to XHTML in
the future) and XHTML (because lowercase is required). The examples in this book will all
be lowercase.

Applying More than One Element to a Document Component (Nesting Elements)

In the preceding examples, you saw how you apply elements around the text to which they apply.
Suppose, though, that you need to apply more than one element to a document component. For
example, say you have a paragraph that also includes a few words that you want to emphasize. To
apply more than one element to a particular piece of content, you nest the tags. Nesting means plac-
ing one set of tags inside another set. For example, to apply strong emphasis to a word within a
paragraph, you nest the strong element within the paragraph p element, as follows:

<p>The right way to use strong emphasis is to
enclose only those words you want to emphasize inside a
strong element.</p>

When you nest elements, the first opening tag must be matched by a corresponding closing tag
at the end of the related block of content, and the second opening tag must be closed with a corre-
sponding closing tag immediately after its related content block. XHTML is quite insistent that
you nest tags in the right order. Therefore, a block of text like this:

<p>The last word gets strong emphasis.</p>

is invalid because it closes the outside p element before closing the nested (or inside) strong element.
It’s also technically incorrect for HTML, but such issues usually don’t cause problems in HTML.

Typing XHTML Elements and Attributes

With the general information and guidelines for typing elements and attributes established, we’ll now
take a look at the specific rules you’ll need to follow for developing XHTML documents. Although

19WHAT DOES HTML AND XHTML CODE LOOK LIKE?

4141ch01.qxd 7/31/02 4:32 PM Page 19

some of these XHTML rules seem pointless or arbitrary, keep in mind that the XHTML specifica-
tion is based on the XML specification, and it applies some of the same constraints and conventions
of that specification. Although you may not be interested in moving to XML, you still need to apply
these rules to your XHTML documents.

Some of the following rules will look familiar; we mentioned a few in the general guidelines for
both HTML and XHTML documents.

All XHTML Elements Must Be Closed

All XHTML elements must be balanced with an opening and a closing tag, which is referred to as
making the document well formed:

HTML: <p>This is a paragraph.
XHTML: <p>This is a paragraph.</p>

If you’re already familiar with HTML, you’re probably wondering what you do with the img and
br elements in XHTML. These (and other) empty elements accept attributes but do not contain
character data. Using HTML, these empty elements generally include just the opening tag, like this:

XHTML is a tad different in that you have to include markup to terminate the empty element, in
one of two ways:

◆ Terminate the tag with a space and a slash, as follows:

◆ Add a closing tag, as follows:

The first option saves space and time, and logically makes a little more sense. You can use either
approach, but we suggest (and most developers use) the first option, rather than the latter.

Warning In XHTML, most white space within a tag is not significant. For example, <img src=”logo.gif”
alt=”Logo”/> is the same as . In the second example, you should notice
white space between the closing quotation mark (“) and the forward slash (/). However, older browsers have problems inter-
preting the first example because there is no white space separating these items. If you add a space before the /, you can
ensure that most older browsers will interpret the empty element without any problems.

All Attributes Must Have Values

One of the trickier XHTML rules is that all attributes must have values. At first glance, this may
seem to be an easy rule to grasp, but there’s a trick or two you have to master when applying it to
XHTML. For most attributes, it’s fairly straightforward. For example:

<table align=”center”>

In this case, the align attribute has to have a value (“center”) to tell the processor just how to
align the table.

Chapter 1 GETTING ACQUAINTED WITH HTML AND XHTML20

4141ch01.qxd 7/31/02 4:32 PM Page 20

As you advance your skills, you’ll encounter a few situations where including the value isn’t as
straightforward. For example, in Chapter 6, we discuss forms, which use the <input> element. This
element accepts what’s called a stand-alone value (an attribute where basically the name and the value
are the same thing) called disabled, which simply turns off the function. The element and attribute
might look like this:

<input disabled>

Or, if you added other attributes, the element would look something like the following:

<input disabled name=”pet” value=”cat”>

Because this element is empty, we need to terminate it, like this:

<input disabled name=”pet” value=”cat” />

Although the preceding attribute is fine according to HTML, it’s not well formed according to
XHTML, because all attributes must have values. The problem is that these stand-alone attributes
do not have any predefined values, and therefore, a value is not really needed. However, according to
XHTML’s rules, it must have a value, so a workaround was created. You set the attribute equal to
itself:

<input disabled=”disabled” name=”pet” value=”cat” />

All Attribute Values Must Be Enclosed in Quotes (“”)

Another XHTML rule is that all attribute values be delimited with quotation marks. HTML allows
several attribute values to be defined without quotation marks—although the specification recom-
mends that they always be used.

This rule is easy enough:

HTML: <table align=center>
XHTML: <table align=”center”>

The HTML example does not contain quotation marks, and the XHTML example does.

Tip In many HTML examples, you’re likely to see the attribute value in uppercase (CENTER). Most attribute values
are not case sensitive. In this book, we generally use lowercase to define attribute values, for readability.

XHTML Is Case Sensitive

As we mentioned, XHTML is case-sensitive and requires—with few exceptions—that all elements
and attributes be typed using lowercase letters. This may be a sticky point if you’ve been using HTML
and are accustomed to using uppercase or a combination of upper- and lowercase. Nonetheless, using
all lowercase letters just takes some getting used to:

HTML: <TABLE>…</TABLE>
XHTML: <table>…</table>

21WHAT DOES HTML AND XHTML CODE LOOK LIKE?

4141ch01.qxd 7/31/02 4:32 PM Page 21

Elements Must Be Nested Correctly

In the previous section, we described the concept of nesting, where you apply one or more elements
within another element. For example, the following markup defines a title element that is nested
with the head element:

<head>
<title>Document title</title>

</head>

This may seem straightforward; however, there are cases where people make mistakes. For
example, can you spot the mistake in the following markup?

<p>You can bold a word</p>

The problem is that the tags are overlapping; no one element is nested within the other. The
golden rule is “what you open first, you close last.”To correct this syntax, you would write:

<p>You can bold a word</p>

Notice how the b element is nested completely within the p element.

Tip When referring to an element that is nested within another element, we call the nested element a child of the con-
tainer element; the container is the parent element. Throughout this book we refer to nested elements as “children of a par-
ent element.”

There are a few other XHTML-specific rules that apply to certain elements and attributes. We’ll
mention these as we come to them in this book. The XHTML rules described here are the ones you
will need to know as you’re getting started.

Improving Document Readability

Throughout the book, because of the width limits of the printed page, we wrap and indent code
lines that are meant to be written all on one line. This doesn’t mean you have to wrap or indent the
code you develop, but we do recommend using hard returns in your code to help make the lines a bit
shorter and easier to read. Doing so does not affect how browsers display your documents (unless
you inadvertently put in a space between an angle bracket and an element name); it just makes that
document easier for you and others who may have to maintain the code to read when you’re editing
its contents.

For example, take a look at this code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”><head><title>
Mastering HTML Document Title</title></head><body>Mastering
HTML Document Body</body></html>

Although we’ve included line breaks so that the code won’t run off the book’s page, we could
improve the readability by separating some of the code a bit, like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

Chapter 1 GETTING ACQUAINTED WITH HTML AND XHTML22

4141ch01.qxd 7/31/02 4:32 PM Page 22

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Mastering HTML Document Title</title>
</head>
<body>

Mastering HTML Document Body
</body>

</html>

No question which one’s easier to read or follow, right?

What Other Resources Can Help?
In addition to this book, you can find information, resources, and specifications on the Web. In par-
ticular, the W3C site, as well as several product-specific Web sites, will help you learn, use, and keep
up with changes in HTML (unlikely to change) and XHTML (somewhat more likely to change).

Visit the W3C
The W3C was created in 1994 at the Massachusetts Institute of Technology (MIT) to oversee the
development of Web standards, eventually including the XHTML standard. This consortium defines
and publishes HTML, XHTML, and numerous other Web-related standards, along with information
about the elements and attributes that may legally appear within HTML or XHTML documents. So,
an excellent way to monitor changes is to visit the W3C site at www.w3.org/MarkUp. There you’ll find
new releases of XHTML standards and information about HTML standards.

For more information on proposed standards and other developments in Web-related specifica-
tions, such as Cascading Style Sheets (CSS) and XML specifications, visit the W3C’s home page at
www.w3.org.

Can you use new elements and attributes as they become available? For the most part, yes. By the
time many popular elements and attributes become part of a standard, they already work with many
or most browsers. However, some elements and attributes (including some that were introduced with
HTML 4) did not have wide or stable browser support when that specification was released and, to this
day, do not have nearly the breadth of support that some other elements and attributes enjoy. We’ll
point these out throughout this book and show you how they differ from previous versions of HTML.

Monitor Netscape and Microsoft Sites
When HTML was the prevailing Web markup standard, each time Netscape or Microsoft released a
new browser version, it would also add new markup extensions, which are browser-specific, nonstandard
elements and attributes. Some of these extensions were useful, some less so. However, as a whole, any
nonstandard elements introduced into HTML caused problems both for Web developers and for users.
Fortunately, far fewer extensions seem to be introduced now that XHTML has made the scene, but you
should still be aware of what’s added with each new browser release, if only to know what progress the
browsers have made in supporting the elements and styles that are already defined.

If you’re considering using extensions in your XHTML documents, keep in mind that they’re
not standard and that the W3C validator will not recognize or validate nonstandard markup. Also,
extensions that are specific to a particular browser (for example, Netscape) will probably not work

23WHAT OTHER RESOURCES CAN HELP?

4141ch01.qxd 7/31/02 4:32 PM Page 23

in other browsers (such as IE or Opera). For this reason, we strongly recommend that you refrain from
using extensions and use only standard HTML or XHTML elements and attributes. This way, you’ll
not only be able to validate your documents to make sure they’re syntactically correct, but you can also
be reasonably sure that all your users can access the information you provide therein.

You can find Netscape’s elements and attributes at

http://developer.netscape.com/docs/manuals/htmlguid/index.htm

And you will find Microsoft’s elements and attributes at

http://msdn.microsoft.com/library/

under the Web Development, HTML subsections. (Note that these pages move frequently, so you
may need to browse a little to get there.)

Monitor Other Sites
Although definitive information comes from the W3C, you should also check other reliable resources
for information about HTML and XHTML. Here’s a list of sites to check regularly.

Organization URL

Web Design Group www.htmlhelp.com

Web Developer’s Virtual Library www.wdvl.com

HTML Writer’s Guild www.hwg.org

WebMonkey www.webmonkey.com

CNET’s Builder.com www.builder.com

Oasis www.oasis-open.org

Zvon www.zvon.org

Google Web Directory http://directory.google.com/Top/Computers/Data_Formats/

Markup_Languages/HTML/References/

WebReference.com www.webreference.com/

Where to Go from Here
This chapter gave you a brief overview of HTML and XHTML—what they are, what they’re used
for, how to enter their tags and attributes correctly, and what supplemental resources might be help-
ful to you. Although you haven’t done any HTML or XHTML coding yet, you should now possess
a good foundation of basic concepts and terminology.

From here, we suggest you proceed to Chapter 2, where you’ll learn more details about XHTML
document syntax and structure and will create your first HTML or XHTML document. You might
also browse Part IV, “Developing Web Sites,” to learn about the HTML and XHTML document
life cycle as well as about developing and publishing Web sites.

Chapter 1 GETTING ACQUAINTED WITH HTML AND XHTML24

4141ch01.qxd 7/31/02 4:32 PM Page 24

