
Adapted from Mastering™ Network Security,
Second Edition by Chris Brenton and Cameron Hunt

ISBN 0-7821-4142-0 $49.99

Chapter 1
A Systems Approach to
Information Networks

W e all probably have an idea about what the word system
means. For those of us who work in information tech-

nology, the term has become a catch-all that covers everything
from an operating system on a single computer to the Internet
itself. Now, we know you’re probably thinking that we’re going to
spend a whole chapter convincing you that because your network
is complex, securing it will also be complex. You would be right!

But we’re going to do more than that. We’re going to give you
a small tour through the idea of complexity and how it relates
to anything that gets labeled a “system.” The goal is to give you
several principles that you can apply to any complex system—
whether that system is a network, a data recovery procedure,
or a security decision tree—in order to build one or more models.
These models not only provide a common reference for author

P
ar

t
I

4144c01.qxd 8/21/02 2:53 PM Page 3

CO
PYRIG

HTED
 M

ATERIA
L

and reader, but are valuable tools in their own right in understanding,
planning, implementing, and managing any complex group of interrelat-
ing, dynamically operating parts. And if anything fits that description, it’s
a computer network (the thing we’re trying to secure, remember?).

An Introduction to
Systems Analysis

Systems analysis is the formal term for the process (which we cover in
Chapter 2) that uses systems principles to identify, reconstruct, optimize,
and control a system. The trick is, you have to be able to walk through
that process while taking into account multiple objectives, constraints,
and resources. Simple, but what’s the point? Well, ultimately you want
to create possible courses of action, together with their risks, costs, and
benefits. And that, in a nutshell, is what network security is all about—
choosing among multiple security alternatives to find the best one for
your system, given your constraints (technical or financial, typically).

The principles that make up systems analysis come from several theo-
ries of information and systems. Let’s look at Information Theory first.
In its broadest sense, the term information is interpreted to include any
and all messages occurring in any medium, such as telegraphy, radio, or
television, and the signals involved in electronic computers and other
data-processing devices. Information Theory (as initially devised in 1948
by Claude E. Shannon, an American mathematician and computer
scientist) regards information as only those symbols that are unknown
(or uncertain) to the receiver.

What’s the difference between symbols that are known and symbols
that are unknown? First, think of long distance communication a little
more than a century ago, in the days of Morse Code and the telegraph.
Messages were sent leaving out nonessential (predictable or known)
words such as a and the, while retaining words such as baby and boy
(defined as unknown information in Information Theory). We see the
same kind of behavior in today’s text messaging—minimal words and
abbreviations come to stand for entire phrases.

Shannon argued that unknown information was the only true informa-
tion and that everything else was redundant and could be removed. As a
result, the number of bits necessary to encode information was called the
entropy of a system. This discovery was incredibly important because it

Chapter One4

4144c01.qxd 8/21/02 2:53 PM Page 4

gave scientists a framework they could use to add more and more band-
width (using compression, or the removal of redundant information) to
the same medium. For example, modems increased their speed to the
point they were transmitting 56,000 bits of information per second, even
though the physical medium of the phone line could represent only 2400
changes (known as bauds) per second.

We point out Information Theory and Shannon’s definition of infor-
mation is to illustrate a central concept of understanding systems: You
don’t have to know everything about a system to model it; you only need to
know the unknown or nonredundant parts of a system (the information)
that can affect the operation of a system as a whole. You can ignore every-
thing else; for all practical purposes, it doesn’t exist.

System analysis also draws heavily from another discipline, Systems
Theory. Traditional Systems Theory tends to focus on complex (from the
Latin complexus, which means “entwined” or “twisted together”) items
such as biological organisms, ecologies, cultures, and machines. The
more items that exist and are intertwined in a system, the more complex
the system is. Newer studies of systems tend to look not only at items that
are complex, but also at items that are also adaptive. The assumption is
that underlying principles and laws are general to any type of complex
adaptive system, principles that then can be used to create models of
these systems. The following are some of these principles:

Complexity Systems are complex structures, with many differ-
ent types of elements that influence one another. For example,
a computer network encompasses software, different layers
of protocols, multiple hardware types, and, of course, human
users—all interacting with and influencing one another.

Mutuality The elements of a system operate at the same time
(in real time) and cooperate (or not). This principle creates many
simultaneous exchanges among the components. A negative
example of this is a positive feedback loop! Imagine a computer
that creates a log entry every time the CPU utilization is greater
than 50 percent. Now, imagine the consequences that will occur
if every time the system writes an error log, it forces the CPU to
be used greater than—you guessed it—50 percent.

Complementarity Simultaneous exchanges among the ele-
ments create subsystems that interact within multiple processes
and structures. The result is that multiple (hierarchical) models
are needed to describe a single system.

A Systems Approach to Information Networks 5

P
ar

t
I

4144c01.qxd 8/21/02 2:53 PM Page 5

Evolvability Complex adaptive systems tend to evolve and
grow as the opportunity arises, as opposed to being designed
and implemented in an ideal manner. Now, this definitely
sounds like most computer networks we’ve been privy too—
patchworks of various brands, capabilities, and complexities,
implemented in pieces as time and resources allow.

Constructivity Systems tend to grow (to scale), and as they
do so, they become bound (in the sense of heritage) to their
previous configurations (or models) while gaining new features.
Anyone who has worked at an organization over an extended
period of time has seen this happen. No matter how large the
network grows (unless there was a major overhaul somewhere),
it still seems to fundamentally reflect the small, original net-
work it originated from, even with additional capabilities and
features added over the life of the system.

Reflexivity Both positive and negative feedback are at work.
Because this feedback affects both static entities and dynamic
processes, the system as a whole begins to reflect internal pat-
terns. You’ll notice that the physical network begins to reflect
the way you use that network.

The original Systems Theory was developed in the 1940s by Ludwig
von Bertalanffy (1901–72), a biologist, who realized that there were no
effective models to describe how biological organisms worked in their
environment. Physicists at the time could make a small model of the
solar system (through a process of both analysis and reductionism,
breaking the components and functions down to their smallest, simplest
parts) that would accurately predict planetary orbits while ignoring the
universe at large. Biologists, however, could not completely separate an
organism from its environment and still study it; it would die of star-
vation, cold, or boredom. As a result, the systems approach tries to
combine the analytic and the synthetic methods, using both a holistic
and reductionist view.

Again, think of how this concept applies to a computer network. Systems
inside and outside the network make up the environment of the network
itself. Although we can break down the parts and functions of a network, we
can truly understand it only by looking at the dynamic interaction of
the network with other components, whether those components are
other networks or human beings.

Chapter One6

4144c01.qxd 8/21/02 2:53 PM Page 6

To identify a system means to identify a boundary. The reality, especially
in our connected world, is that boundaries are often arbitrarily dictated and
defined, not necessarily created through physical reality. Placing a firewall
between your business LAN and the Internet may or may not establish a
boundary between two systems. It all depends on the model—the way in
which you view your network.

Assuming that we have defined a boundary between the system and
its environment, we can add some concepts that define how a system
interacts with that environment. In the following illustration, input is
defined as any information added into the system from the environment.
Throughput is defined as those changes made to the input by the system.
Output, of course, is what leaves the system and crosses the boundary
back into the environment.

Of course, the environment itself is made up of one or more systems,
and we rapidly reach the conclusion that defining a system (which really
means defining a boundary between one system and its environment) is
really a matter of scale and perspective—a concept that lets us begin to
see systems in a hierarchical order (more on this later). Whereas you
might view the Internet and your internal LAN as two separate systems,
that model no longer functions as effectively when you consider remote
workers accessing your network through a VPN (virtual private network)
or even a web mail session secured through SSL (Secure Sockets Layer).

If you look at a system as a whole, you don’t necessarily need to be aware
of all its parts. This perspective is called the black box view—seeing a sys-
tem as something that takes in input and produces output, with us being
ignorant of the throughput. (Seeing the innards would then be called a
white box view.) Although the black box view doesn’t necessarily satisfy
your inner control freak, it’s not always necessary to see the innards of a
process in order to implement and maintain it. (Remember the definition
of information according to Information Theory?) This approach is com-
mon in the complex world of information technology, where we often work
with black box abstractions of data operations.

Boundary

System

Throughput

Environment

Input Output

A Systems Approach to Information Networks 7

P
ar

t
I

4144c01.qxd 8/21/02 2:53 PM Page 7

In the realm of object-oriented programming languages such as C#
and Java, reducing a code object to a black box is considered a primary
strength. You are able to use the functionality of a code object (written by
another programmer) in programs of your own without knowing how the
object does the work. As long as the methods used to access the capabili-
ties of the object or its accessible properties don’t change, the authors can
change, update, or rework their object in any way they desire. Your code
can stay the same!

The challenge in dealing with information technology, as well as in
dealing with any complex adaptive system, is to identify when you should
use black or white approaches. And the capability of using both black
and white approaches illustrates another principle that we mentioned
earlier: Systems are hierarchical. At the higher (or unified) level, you get
an abstraction of the system as a whole. At the lower (reduced) level, you
see many interrelating components, but you don’t necessarily know how
they fit together.

According to the traditional analytic approach (the one that existed
before von Bertalanffy came along), that low-level view is all that is neces-
sary to understand a system. In other words, if you know the precise state
of every component in the system, you should be able to understand how
the system functions. Anyone who has ever tried to optimize an operating
system for a given task (such as a web server or a database server) knows
how limiting this model can be, simply because performance rarely scales
in a linear fashion. In other words, increasing the number of users by a
specific amount doesn’t always guarantee the same rate (proportional or
not) of resource utilization.

In the same fashion, doubling the amount of RAM doesn’t automati-
cally increase RAM-based performance by the same percentage. Com-
puter components don’t (often) exist in simple, linear, cause-and-effect
relationships; rather they exist in complex networks of interdependen-
cies that can only be understood by their common purpose: creating the
functionality of the system as a whole. Looking at RAM or disk I/O or a
CPU as individual elements isn’t sufficient to understand resource utiliza-
tion until you understand the relationship each of these elements has
to the others—something not readily apparent by simply dissecting their
design.

All this might seem like common sense, and if you’ve spent any time
dealing with computer networks, you’ve probably come to the belief that
these ideas are true, even if you haven’t known why they are true. Most IT
workers have an emotional reaction (and not necessarily a positive one)

Chapter One8

4144c01.qxd 8/21/02 2:53 PM Page 8

to the overwhelming complexity and unpredictability normally experi-
enced by trying to understand, let alone manage, a complex system. Add
in the feedback (in the systems sense of the word) of human users (each
with their own method of interacting and altering that system), and we
now have to struggle with a complex adaptive system.

But we’re not done yet. Remember that we said systems have hierar-
chies? Understanding that systems can affect the structure and function-
ality of subsystems and, likewise, that subsystems can influence the
behavior of a parent system or systems (both directions of influence
occurring simultaneously and repeatedly over a period of time) is crucial
in Systems Theory. This theory also states that systems tend to mimic (in
a general sense) the structures and the functions of their parent systems.

Let’s look at a biological example. The cells in your body have bound-
aries (the cell wall), inputs (the structures on the cell wall that bind to
proteins and usher them into the body of the cell), and outputs (internal
cell structures that eject waste through the cell wall to the outside). Your
body as a whole has inputs (your mouth and nose), outputs, and a bound-
ary (the skin). Both your body, as a parent system, and your cells, as
subsystems, have to take in nourishment. Both transform that input
into an output. Although the specifics are different, the functions are
the same: to allow sustenance, growth, and repair.

Similar structures also exist in the hierarchy of systems. The inputs
on your body serve not only to transport nourishment, but also to analyze
and prepare it for the body. Likewise, the inputs on the cell (located on
the cellular wall itself) identify and “format” the proteins for the use of the
cell. Systems Theory, ultimately, asserts that there are universal principles
of organization that hold for all systems (biological, social, or informa-
tional) and that we can use these principles to understand, build, and
manipulate those systems.

Now that you have a better understanding of the theory of information
and systems, you need a practical way not just to understand a complex
system, but to predict how the system will respond to changes. Such a
method allows you not only to understand the security risks a computer
network might face, but the consequences (especially the unforeseen
ones) of trying to mitigate that risk. The name given to this practical
method of managing systems is systems analysis, decision analysis, or
even policy analysis. We’ll use the traditional term systems analysis.

The systems analysis model is a multidisciplinary field that includes
programming, probability and statistics, mathematics, software engineer-
ing, and operations research. Although you don’t need a background in any

A Systems Approach to Information Networks 9

P
ar

t
I

4144c01.qxd 8/21/02 2:53 PM Page 9

of these areas to use the model, understanding the background will help
you use the tools. The typical systems analysis process goes something
like this:

1. Define the scope of a problem.

2. Determine the objectives, constraints, risks, and costs.

3. Identify alternative courses of action.

4. Evaluate the alternatives according to the constraints (feasi-
bility), the fixed costs (cost-effectiveness), the ratio of bene-
fits to cost (cost-benefit), or the ratio of benefits to risk
(risk-benefit).

5. Recommend an alternative that will meet the needs of a deci-
sion maker (without violating the constraints of the system).

Sounds easy enough, right? You’re creating a model of the system.
This model allows you to apply metrics (measurable behaviors of the com-
ponents, their behaviors, and relationships) in order to make decisions
about what courses of actions will allow you to meet your objectives.

Two major challenges are associated with systems analysis of network
security. The first is to assign realistic values to the frequency of threats.
As we’ll illustrate later, the frequency of a threat is one of the primary
ways you determine the actual risk to a system. The second challenge is to
decide which evaluation criteria to use (the items from step 4). Traditional
computer network security has attempted to use all the criteria in the
decision-making process, while giving the greatest weight to cost-benefit.

Now that we have a list of the steps in the systems analysis process,
let’s walk through each of them in more detail.

Define the Scope of the Problem
In systems analysis, a problem is something in the system or its environ-
ment that requires the system to change. The scope of network security
includes protecting the system from data corruption and ensuring the
availability of data, no matter where the threat originates. The result of
this definition of scope is that even if you have no external environmental
threat from hackers, you still need to determine if the design of a network
itself could put your data at risk—for example, by not providing sufficient
levels of data redundancy.

Chapter One10

4144c01.qxd 8/21/02 2:53 PM Page 10

In a practical sense for any individual involved in network security,
defining the scope of the problem comes down to two questions: what
and why? The first question is essentially about responsibility: What
assets (or systems) are you in charge of protecting? This quickly moves
beyond a technical arena into the specifics of your business, job, or role
within a security effort. Once you clarify the what of your work, you can
start to define the why. In other words, you can evaluate the current state
of the system (state being formally defined as the current value of any
variable element in a system) and decide what needs to be changed.

We’ll introduce the formal security process in Chapter 2, but you can
probably guess that in an ideal, formal setting, you receive a document
that clarifies the areas (or systems) of your responsibility. You then attempt
to determine the current state of the system, followed by an analysis of the
problem. In network security specifically, this process means identifying
and quantifying the risks to your data, including the systems that process,
store, and retrieve that data.

Determine Objectives, Constraints, Risks,
and Cost

In systems analysis, an objective is simply the outcome desired after a
course of action is followed. Because objectives (like systems) usually
exist in a hierarchy (descending from general to specific, nonquantified to
highly quantified), we usually refer to higher-level, abstract objectives as
goals. Specific quantifiable objectives are referred to as targets.

An example of a goal/target combination is a corporate website. The
goal is to maintain the functionality and integrity of the website as a
whole. A subgoal is to protect against web page defacement. Two specific
targets that support that subgoal (which, in turn, supports the overall
goal) are to apply vendor security patches to the web server within five
hours of release and to create a secure, mirrored content server that over-
writes the master website with correct content every five minutes.

Nice and easy, right? The problem comes when you have multiple
objectives that are contradictory or competitive (also known as conflict-
ing objectives). You usually see conflicting objectives when more than one
party is responsible for the state (remember the definition of state?) of a
system. You probably already know how rampant conflicting objectives
are in the security world, because implementing security almost always
comes down to restricting behavior or capability (or increasing cost).

A Systems Approach to Information Networks 11

P
ar

t
I

4144c01.qxd 8/21/02 2:53 PM Page 11

Unfortunately, restricting system capability tends to conflict with the cen-
tral purpose of information systems, which is to enable and ease behavior
or capability. For example, think of how quickly you find notes hidden
under keyboards when password complexity and length requirements are
enforced in an organization!

Fortunately, systems analysis gives you a method for resolving conflicts
by providing hierarchical decision makers. Because the means of achieving
your goal of system security might conflict with the accountant’s goal of
maintaining a low cost of the system, a decision maker at a higher level is
usually required to determine either which goal takes precedence or (more
commonly in the real world) how to change the constraints of each goal so
that they are no longer in opposition. In other words, executive-level deci-
sions are often required to reach a compromise between two competing goals.

A byproduct of conflict resolution is the creation of proxy objectives—
replacing generalized objectives with those that can be measured in some
quantifiable way. An example of proxy objectives is illustrated by multiple
security plans, each with a quantified cost/benefit ratio, that are presented
to senior management who make the final decision based on how much risk
they are willing to accept (the greater the risk, the lower the initial cost).

So what are constraints? According to systems analysis, a constraint
is a limit in the environment or the system that prevents certain actions,
alternatives, consequences, and objectives from being applied to a system.
A simple, but limited way to understand this idea is to think of the differ-
ence between what is possible to do in a system and what is practical.
Thinking of a constraint this way makes it easier to identify the conse-
quences of any given course of action on a system.

A good example is a requirement mandating that biometric security
devices (such as a fingerprint scanner) be used on every desktop com-
puter in an organization. Although using a fingerprint scanner would
achieve a major goal of network security (and is technically possible in
most cases), you could easily run into constraints—initial equipment cost,
client enrollment (storing authenticated copies of every employee’s finger-
prints), and non-biometric capable access devices (such as a Palm
Pilot or other PDA) that make the solution unworkable according to
other goals (such as maintaining your security within a certain budget).

We know this sounds complicated, and it is. Using systems analysis to
guide you in your security process has great rewards, but it also requires
you to have a thorough knowledge of your network inventory (hardware,
software, and configuration), business procedures and policies, and even
some accounting. Using formal worksheets and checklists to guide you

Chapter One12

4144c01.qxd 8/21/02 2:53 PM Page 12

through the process is highly recommended, as is hiring a consultant
who specializes in systems analysis in a security context.

Once you identify your objectives and initial constraints (additional con-
straints usually show up when you are defining various courses of action),
you need to identify risk. Risk, in systems analysis, can mean several
things. For our purpose, we’ll choose risk assessment, which is a two-part
process. The first part is identifying the impact (measured, from a security
perspective, in cost) of a threat (defined as a successful attack, penetra-
tion, corruption, or loss of service); the second part is quantifying the
probability of a threat.

We can use the web page defacement example to illustrate risk
assessment. You begin by identifying the threat (a successful web page
defacement) in terms of the cost to the organization. Now things become
difficult to quantify. How much money does an organization lose when
investor and customer confidence is lowered (or lost) when a page is
defaced? What if the particular page was interactive and the defacement
breaks or inhibits commercial interactions?

You could even break the threat down to finer details, assigning cost to
each individual defaced page, varied by the amount of time the page was
defaced; the time of day, month, and year the defacement took place; the
amount of publicity received; and the functionality that was broken.

You must also consider another type of impact: Does the system state
change after a threat? In other words, the process needed to deface your
web page most likely results in the attacker having some level of control
over your system. This, according to strictly defined systems analysis, has
changed the state of your system, especially if you extend your concept
of your system to include those individuals who are authorized to use
your system. Once your system state has changed (for better or worse),
new threats are possible, requiring a repeat of the entire risk assessment
process. This recursive, hierarchical analysis helps you to establish a
multilayered defense—something we’ll refer to as defense in depth.

Once impact is quantified, you have to assess the probability of a
threat (remembering our definition of a threat as an actual occurrence of
a specific negative event, not just a possible one). You can begin to assess
the probability of a threat against a system by using simple comparison:
Identify all the known characteristics of systems that have succumbed to
that threat in the past. In our web page defacement example, you com-
pare your system (including operating system, web server configuration,
level of dynamic code, public exposure and opinion of the website, and
so on) to those that have been defaced before.

A Systems Approach to Information Networks 13

P
ar

t
I

4144c01.qxd 8/21/02 2:53 PM Page 13

This process sounds relatively straightforward, but you can’t stop here.
You also need to attempt to weigh those system characteristics in suscepti-
bility to the threat. Using an example from history, which factor contributed
more to the Department of Justice website defacement (the one that
left then-Attorney General Janet Reno with a Hitler-like mustache!)—
the operating system or the type of web server running on the operating
system? The answer is a little more difficult to determine and takes expe-
rience along with knowing how the threat was carried out. We quickly
come to the conclusion that we need another hierarchy: a hierarchy of
threats. Although the end threat is still web page defacement, an attacker
could use multiple methods to deface a page. The threat probability is
then a combination of which methods of attack are the most popular,
along with which system configurations are most susceptible to those
popular attacks.

Remember that we’re speaking of system configuration in the systems
analysis sense of the term. Part of your website system is the environment
in which it operates, including the popularity and publicity associated
with that site. If you are, say, a U.S. military organization, the state of
your system guarantees a higher level of interest. That raised interest can
translate into a higher frequency and sophistication of attack. In this
example, not only has the frequency of the threat possibly changed, but
also the nature of the threat itself.

Once you identify your objectives, constraints, and risks, you’re ready
to decide on courses of action—nothing more than the ways in which an
objective will be met. Multiple courses of action are defined as alternatives,
and then only if they are mutually exclusive. For example, an objective
requires a standard biometric authentication device across an organization.
If the decision makers in the organization are trying to decide between
fingerprint scanners and iris scanners, they are said to be selecting from
two alternatives. If the organization decides that it could use both alterna-
tives together in a standardized fashion—fingerprint scanners for desktops,
iris scanners for server rooms (or combine elements from two mutually
exclusive alternatives)—a new, distinct alternative has been created (and
possibly a new objective, depending on how strictly that objective was
originally defined).

Defining an alternative means to establish the feasibility, costs,
benefits, and risks associated with a course of action—a process that
usually occurs repeatedly, starting with a multitude of alternatives
that are gradually integrated and combined until at last you reach a

Chapter One14

4144c01.qxd 8/21/02 2:53 PM Page 14

small collection of alternatives. At this point, the process usually
stops for a couple of reasons:

8 You don’t have sufficient information to continue an evalua-
tion. Perhaps no one has yet conducted a TCO (Total Cost of
Ownership) study comparing biometric authentication with
centrally stored user profiles against a system using smart don-
gles that store an encrypted copy of the user’s profile in an
embedded chip.

8 All the alternatives that could meet the objective are greater than
the budget constraint (an objective/constraint conflict), which
(as we mentioned earlier) usually requires the intervention of a
higher-level decision maker.

And, after all your hard work, all that is left to do is present your pro-
posal to the decision makers. Although it can be bad enough if someone
questions your results, it’s worse when your decision makers don’t under-
stand your methodology.

Applying Systems Analysis
to Information Technology

Now that we’ve covered the general theory of systems analysis, let’s apply
it to IT systems specifically. This approach might seem like unnecessary
repetition, but it’s actually an attempt to reinforce important concepts
while adding details that are specific to issues you’ll face in dealing with
security.

When you begin to analyze your network (in preparation to secure it),
you’ll break it down into four general areas:

Data The nature of the information stored and processed on
the system

Technology The different types of technology used in the
system

Organization How the organization as a whole uses the system

Individuals Key decision makers and personalities that use
the system

A Systems Approach to Information Networks 15

P
ar

t
I

4144c01.qxd 8/21/02 2:53 PM Page 15

The Nature of the Data
Understanding your organization and the type of work it does goes a long
way toward understanding the type of data stored and processed on your
system. Translating this knowledge into specifics follows a task orientation:
What is your system used for? Some smaller organizations primarily process
and store groupware—common address books, shared or centrally stored
files, and simple databases, along with e-mail and a website or two. Larger
organizations tend to break down their network segments, and the net-
work technical divisions begin to mirror the network logical divisions. For
example, a company places its Internet-accessible resources (web servers,
mail servers, and so on) on a network that is separate from its internal net-
work (for security and performance reasons, among others). In this case, a
parent system (the functionality) is driving a change in a subsystem (the
technology).

The Types of Technology
Technology itself helps define the structure of the system, but primarily
as background. In other words, understanding the technological topology
of your system will help you formulate your constraints and identify and
quantify your threats, and will ultimately play a big part in formulating
your risk assessment.

How the Organization Uses the System
Understanding how your organization uses the system can be easier in
larger organizations, in which the network tends to follow organizational
lines along centers of power or divisions of labor. However, even in smaller
organizations, understanding how the network is used and perceived by
the organization becomes critical to projecting the consequences of your
various courses of action. Those consequences play a primary role in
determining which alternatives you choose to solve a problem.

How Individuals Use the System
This task is not just about evaluating the technical ability of individuals
in an organization or simply identifying those with the most influence. It
also concerns determining the relationship those individuals have with
the system and determining their knowledge of how the system as a whole
works, even to the point of the organization’s relationship with the system.

Chapter One16

4144c01.qxd 8/21/02 2:53 PM Page 16

Models and Terminology
Once you look at your network through these types of filters, you’re ready
to begin defining the subsystems. Selecting where to draw the border of a
subsystem is always difficult, but, again, systems analysis gives you some
direction. Object-Oriented Systems Analysis (OSA) takes the concept of
the black box discussed earlier and uses it to create object-based models
using the components of the network, using three model types:

ORM (Object-Relationship Model) Defines objects (and
classes of objects), how objects relate to classes, and how objects
map to real-world components

OBM (Object-Behavior Model) Defines the actions of objects
(used to define how and why an object changes state)

OIM (Object-Interaction Model) Defines how objects influ-
ence one another

Object-Relationship Model
An object is a label you apply to a single thing that has a unique identity
either physically or conceptually. Here are a few IT objects:

8 Router #13

8 www.go-sos.com

8 An inventory database

8 The first primary partition of the second hard drive of the web
server

In OSA, objects are represented with a lowercase labeled dot:

Objects can be grouped into one or more object classes, such as the
following:

8 Router

8 URL

8 Database

8 Partition

router #13

A Systems Approach to Information Networks 17

P
ar

t
I

4144c01.qxd 8/21/02 2:53 PM Page 17

Object classes are represented with a cylinder and a capitalized label:

For an object to be a member of an object class, it has to meet the con-
straints. That requirement might seem obvious, but think about the Routers
class in the previous example. It’s easy to think of a dedicated router as
belonging to the Router class, but what about a Windows 2000 server
that shares files, hosts e-mail, and provides a VPN connection between a
small office and corporate headquarters? Although we don’t necessarily
think of this machine as a router, it acts in that capacity (by routing
traffic over the VPN). Including it in the Router class would depend on the
constraints of the Router class; in other words, how you define the class
determines what objects qualify for membership.

NOTE
Objects can migrate from class to class as class constraints change or as the
state of the object changes.

Objects can have a relationship, which is represented by a simple line
between them labeled with a sentence that describes the relationship.
Usually, however, this relationship reflects a relationship set between
object classes. Relationships are grouped into sets when they connect to
the same object classes and represent the same logical connection among
objects. To illustrate a relationship set, you draw the two object classes as
boxes and connect them:

When a relationship set has multiple connections, these connections
are referred to as the arity of the set. Two connections make a set binary,
three connections make a set ternary, and four connections make a set
quaternary. Relationships with five or more connections are referred
to as x-ary, with x reflecting the number of connections. When illustrat-
ing a relationship set with more than one connection, a diamond is

ServerClient
Creates Session to

Database

Chapter One18

4144c01.qxd 8/21/02 2:53 PM Page 18

used to interconnect the lines:

To give an even better level of detail, you can treat the relationship set
as an object, which in this case is called Session:

Treating the relationship set as an object allows you to link the Session
object to other objects or object classes (in this cases, byproducts or
characteristics of the session):

This graphic illustrates that a Session object (really a relationship set)
has a relationship between a Data object class and a Session Duration
class, much as any network session in the real world has data associated
with it, along with an amount of time the session existed.

ServerClient

Session

Creates Session to

Data Session Duration

ServerClient

Session

Creates Session to

Web Server

Browser

Browser connects to
Web Server using HTTP

HTTP

A Systems Approach to Information Networks 19

P
ar

t
I

4144c01.qxd 8/21/02 2:53 PM Page 19

But something is still missing. When working with relationship sets,
you need to clarify the constraints. There are three types:

Participation Defines (for every connection) how many times
an object class or object can participate in the relationship set.

Co-occurrence Similar to participation, co-occurrence speci-
fies how many times an object can participate in a relationship
set with another object. This constraint can also apply to object
collections.

General Defines what is allowed or not allowed in a relation-
ship. This constraint can be expressed as a formal math/logic
statement or as a simple statement.

Let’s look at an illustrated example of a Participation constraint:

This illustration tells you that a Computer object (belonging to the
Computer object class) must have one (but only one) Location object
(again, of the Location object class). A Location object, however, doesn’t
even have to have a single corresponding Computer object, but can have
an infinite number of Computer objects. For example, if you define a
Location object to have a value of Corporate, it is tied to all the Computer
objects that are mapped to physical machines at the corporate office (a
one-to-many relationship, for all you database programmers).

This makes sense, but you could quickly run into a problem. What
happens if you decide to map a laptop (the term map in OSA denotes an
association between a physical item and a logical object) to the Computer
class? Because a Computer object can have only one location (as defined by
the Participation constraint), you could have difficulty if you are analyzing
objects over time with an expectation that the Location value won’t change!
You can solve that problem by simply mapping laptops to a Laptop class
that doesn’t have the same constraint.

The following illustration shows how Co-occurrence constraints can
limit the number of objects that can be associated with an object (or a

LocationComputer

1:1 0:*

Creates Session to

has

Chapter One20

4144c01.qxd 8/21/02 2:53 PM Page 20

group of objects) in a relationship set:

This example is also fairly straightforward. When Client, Server, and
Session objects are in a relationship set, there can be only one Source IP
and one Destination IP object in that set. This arrangement is similar to
real-life network communications, in which the source and destination IP
addresses don’t change for the duration of a session between a client and
a server.

Both of the previous examples illustrate constraints that arise from the
workings of the objects themselves (or, in other words, the interaction of
the objects determines the constraint). However, General constraints
often represent constraints imposed on the objects. An example of Gen-
eral constraints is often seen in IT systems in which policies exist about
how the system should be used, as shown in the following illustration:

This example shows how a simple text sentence is used to create the
General constraint. Because IT security policies are all about limiting
the use of a system, General constraints are used frequently.

Once you model the objects and their relationships in the system, you’re
ready to examine their state, defined in OSA through the Object-Behavior

IT staff member

System Security Log Policy

management team member

Both an IT staff member and a
management team member
must be present to view or edit
the System Security Log Policy.

1 1

0.* 0.*
Allows
access

Allows
access

Server
Client

1:1

Source IP

Session

Destination IP

Client Server Session Source IP Destination IP

A Systems Approach to Information Networks 21

P
ar

t
I

4144c01.qxd 8/21/02 2:53 PM Page 21

Model as the activity or status of an object. You illustrate state by using
an oval and writing the name of the state inside that rectangle:

How do you determine all the states an object can have? That’s really
up to you; you use your experience and understanding of the object you
are representing. States are binary—either on or off—and they are activated
and deactivated when control (or flow) transitions to another state. Excep-
tions to this rule are threads (you can turn on multiple threads), prior
conjunction (turning off multiple states when one is turned on), and sub-
sequent conjunction (turning multiple states on when one is turned off).

A transition is also formally diagrammed in OSA, sometimes with an
identifier, but always with a trigger and an action. The trigger defines the
conditions under which a transition fires, along with the resulting action,
as shown in the following illustration:

This example uses an event-based trigger (hence the @ sign). Event-
triggered transitions execute their action the moment the event becomes
true. Conditional triggers (informal statements not preceded with @)
cause the transition the entire time they are true.

Now that you can illustrate objects and relationships using ORM and
use multiple state transitions (known as state nets) to show how objects
behave, you can use the Object-Interaction Model to show how objects
and states are changed through interaction. Here is a basic example of an
interaction:

Both User and Database are object classes, with the interaction defined
by a circle with a zigzag; retrieve is the action, and customer table is
the object transferred in the transaction. You can use a more complete

User
retrieve (customer table)

Database

Inactive
Execute Bios
Read in and execute MBR
Read in and Execute boot Sect
Boot operating system

Pre-login

@System Boot

Active

Chapter One22

4144c01.qxd 8/21/02 2:53 PM Page 22

illustration to show how object class, state changes, and interactions
work together:

This is a complete (although simplified) example of putting together
all the pieces of the OSA to represent your network as a system. Remem-
ber also that this is just an introduction to familiarize you with the con-
cepts and symbols. Many specialized security consultants will use these
diagrams to document your network, analyze courses of action, and present
you with alternatives that meet your criteria and solve your problems.
Knowing how to read their documentation will aid you in making better
decisions. Although you might not go to the same lengths in analyzing
or illustrating your own network, the principles remain the same.

Formal systems analysis makes understanding the environment of a
system as important as understanding the system itself. This can be more
difficult—especially determining which elements of an environment actually
influence the system (particularly those items that remain unknown).
Once you begin making a list of items that might influence or affect your
system, you identify the techniques to determine if they do. Here are some
items to look for:

Data The flow of information streaming into a system

Web Browser

Link selected
HTTP GET request to URL

Web Server

Process page
Send page

Request received
Page exists

LAN Proxy

A Systems Approach to Information Networks 23

P
ar

t
I

4144c01.qxd 8/21/02 2:53 PM Page 23

Technology The limitations and capabilities of other systems
that interact with your own

Competition The capabilities of other organizations

Individuals People whose activities could influence your
system, such as crackers

Capital The quantity of resources held by systems outside
your own

Regulations The legal limitations faced by all systems

Opportunities The innovations and capabilities not yet inte-
grated into your own system

What’s Next
By formally documenting your system, you can better understand the vul-
nerabilities and threats it faces. By using the same theory and techniques
to document your security alternatives (including their consequences),
you can make better choices about how to secure your system. In the
next chapter, we’ll take these techniques and place them in a dynamic
context of the security process—an important reminder that security is a
constant effort, not just a project to complete!

Chapter One24

4144c01.qxd 8/21/02 2:53 PM Page 24

