Chapter 1

AN INTRODUCTION TO J2EE

T he Java2 Enterprise Edition (J2EE) is a powerful collection
of technologies that sit on top of the Java2 Standard Edition
(J2SE) environment. This base of Java2 provides a stable and
reliable application environment that runs on many different
operating system (OS) platforms. The cross-platform compati-
bility lifts both application and server environments above the
dependencies of specific OS and hardware platforms.

The enterprise technologies that extend the Java2 environ-
ment are focused upon providing standard interfaces, which
J2EE application server vendors can implement while providing
a robust environment for server-based solutions; not only are
J2EE enterprise solutions free from OS and hardware depen-
dencies, but also achieve a high degree of portability between
application servers. It is precisely this standards-based approach
that continues to attract enterprise systems development. Before
a picture of J2EE is laid out, let’s take a look at the demands of
enterprise applications.

Written for Enterprise Java™ 2, J2EE™ 1.3 Complete
by Vince E. Marco

Part |

4 Chapter One

ENTERPRISE APPLICATIONS

Functional requirements of enterprise applications are typically more
expansive than many traditional applications. Their functional require-
ments often include extensive access to a varied array of data sources,
and accessibility from a wide array of user interfaces. Enterprise applica-
tions also usually have more demanding non-functional requirements
including availability, scalability, security, and maintainability. Availability
largely refers to an application’s capability to process client requests.
Enterprises collect and process information using a distributed environ-
ment consisting of clients and servers. Enterprise applications include
server-based components that desire to provide constant availability to
client requests. Application servers restrict the free use of resources (such
as threads) to prevent an application from starving a server and preventing
clients from accessing needed services.

Scalability refers to the capability of an application to support a wide
range of numbers of users. This includes effectively supporting just a
handful of users to millions of users by merely changing the deployment
environment. In the past, enterprise development was performed on large
and expensive mainframes. While this did support large-scale applications,
it wasn't effective at deploying small or medium scale applications, and it
certainly was costly to maintain a mainframe just for development of the
application.

Maintainability involves the management of software complexity.
Because Java2 is an object-oriented language, objects are the method for
managing this complexity. Objects provide a means for building small
software units that interact to provide an entire application. This object
technology is extended with components. Components add features such
as distributed access, transactions, security, and lifecycle management to
objects, and are ideal for server-side objects supporting many clients over
a network. As an example, both JavaBeans and Enterprise JavaBeans
(EJBs) provide component technology by defining component properties
and definition.

J2EE addresses these enterprise application requirements by providing
a standard for Java-based application servers. These J2EE application
servers are then provided by vendors, each providing the standard J2EE
application server functionality, but competing on specific implementa-
tion and extended behavior. These servers utilize clustering to provide
availability and scalability, enabling enterprise applications to be deployed
into a cluster of machines of various sizes.

An Introduction to J2EE 5

NOTE
http://java.sun.com/j2eeisthe homepage for J2EE and contains links for

a plethora of J2EE learning and development resources.

JAvA2 ENTERPRISE EDITION (J2EE)

J2EE is a collection of several different technologies, each of which helps
developers meet the requirements of enterprise applications. Figure 1.1 is
a diagram of these technologies.

[10P/JRMP. HTTP/HTTPS
/ \

Y r
RMI Servlets & JSP JNDI > |DAP
JMS EJB JDBC > RDBMS
JTA JAAS J2EECA > EIS
Java2
Java2 Enterprise Edition

FIGURE 1.1: J2EE technologies

The foundation starts with the standard Java2 environment. This pro-
vides a base environment that is cross-platform, and fully supports and
leverages the Java2 language and features. A set of technologies is added
to this with each technology addressing an enterprise application need.
Each technology is composed of an application programming interface
(API), and a contract for behavior. The API is composed of a set of Java2
interfaces and classes that define constant values and methods (member
functions) for objects not yet implemented. Vendor implementations of
these interfaces provide the actual classes that provide J2EE behavior.
The behavioral contract is in the form of a specification document, which

Part |

6 Chapter One

describes exactly what each technology implementation must do to be
compliant with the J2EE specification.

J2EE Technologies

Each J2EE technology focuses on a set of functionality needed by server-
based applications. These technologies address the enterprise application
demands of availability and scalability through the use of clustering.

Clustering is the configuration of multiple servers, each identical in the
service provided and enabling client access to be effectively distributed
across many servers rather than one large server (see Figure 1.2). This
provides effective availability and scalability.

server server

server

FIGURE 1.2: Clustering of J2EE servers

Applications can be built on one machine as small as a laptop and then
deployed to as many servers as needed. Some of these can even be main-
frames. Application maintenance is enhanced by using object-oriented
and component-based framework development. Also important to J2EE
development is multi-tiered development and the separation of tech-
nologies. The following describes each technology.

Remote Method Invocation (RMI) RMI provides a way
to access distributed Java objects running on a remote server
on the network. It can use the Java Remote Method Protocol
(JRMP), which supports RMI, or the Internet Inter-Orb Protocol
(IIOP), which supports both RMI and CORBA distributed
method calls (see Chapter 18, “Persistence and Remote Method
Invocation”).

An Introduction to J2EE

7

Java Database Connectivity (JDBC) JDBC provides a Java-
based, standardized API for executing SQL-92 queries and
statements on database servers from different vendors (see
Chapter 9, “Database Connectivity [JDBC]”).

Java Naming and Directory Interface (JNDI) JNDI provides
a uniform and standardized Java-based naming and directory
services interface for accessing various types of naming providers
such as LDAP and DNS (see Chapter 8, “Java Naming and
Directory Interface [JNDI]”).

Java Authorization & Authentication Service (JAAS) JAAS
provides a uniform interface for managing enterprise-wide
security (see Chapter 22, “EJB Transactions and Security”).

Java Transaction API (JTA) JTA is a standard Java inter-
face for supporting local and distributed transactions (see
Chapter 22).

Java Management Extensions (JMX) Java Management
Extensions is a framework for managing Java-based services
supporting web and external tool integration.

Java Messaging Service (JMS) JMS is an interface that allows
standardized access to Message Oriented Middleware servers
that can provide asynchronous messaging, through reliable
point-to-point and publish-and-subscribe messaging models
(see Chapter 17, “Java Messaging Service [JMS]”).

Enterprise JavaBeans (EJBs) A container-based component
model that allows for distributed and container managed Java
components. A developer creates Java components, called beans,
which are placed in an EJB server that provides life-cycle man-
agement and services to the bean, such as security, transactions,
and object pooling. EJBs can be an excellent technology to create
business components that need to be very scalable or support
other typical enterprise characteristics (see Chapter 20, “EJB
Architecture and Clients”; Chapter 21, “Session, Entity, and
Message-Driven EJBs”; Chapter 22; and Chapter 23, “EJB
Environment, Client, and Design Issues”).

Servlets and JSPs A model for container managed compo-
nents that process client requests to a server. They are most

Part |

8 Chapter One

commonly used for handling HTTP or HTTPS web requests.
Java Server Pages (JSPs) provide an abstraction of servlets that
makes it easier to create servlets which predominantly produce
dynamic web content such as HTML or XML content. Together
servlets and JSPs provide the web interface behavior for J2EE
(see Chapter 2, “The Basic Servlet API”; Chapter 3, “The Basic
JSP API”; Chapter 4, “Servlet Web Applications”; Chapter 5,
“Introducing JavaBeans”; Chapter 6, “Session Management”;
and Chapter 7, “Using Custom Tags”).

JavaMail and JavaBeans Activation Framework (JAF) An
API that enables the sending of email from Java applications.
The JavaBeans Activation Framework is used by JavaMail and
enables the support of MIME content within email messages.

JavalDL An API that enables J2EE application components

to invoke external CORBA objects via the IIOP protocol. These
CORBA objects may be written in a wide variety of languages

and run on any CORBA platform (see Chapter 19, “Java IDL and
CORBA Connectivity”).

J2EE Connector Architecture (J2EECA) This is a standard
Java-based architecture for connecting transactional J2EE
applications to existing Enterprise Information Systems (see
Chapter 24, “J2EE Connector Architecture”).

Multi-Tiered Applications

Enterprise applications are characterized by their distributed and scalable
nature. These applications encompass both client and server components,
and include web applications and services. The explosion of the Internet
has led to the need to access and manage large amounts of information
within these enterprise applications. Meeting the requirements of modern
enterprise application requires not only robust technologies but effective
architectural patterns and recommended guidelines for most effectively
using these technologies. This has identified the need to separate busi-
ness logic from the technologies used within these applications. Sun
has provided a guideline for building J2EE applications called the J2EE
Blueprint. This blueprint organizes enterprise applications into multiple
tiers to manage the complexity.

These tiers provide a means of managing the dependencies between
the J2EE technologies and reducing the accidental complexity added by

An Introduction to J2EE 9

the technologies themselves. The base tier includes enterprise information
systems and databases. The business model containing the business
logic and functionality required by the application sits above the base
tier. The user interface sits above the business model, and consists of
Java clients such as Java-based applications or applets as well as web
clients supported through servlets and JSPs. These tiers separate the
aspects of an enterprise application as well as the business logic so that
each tier can change at its own rate while minimizing the change to the
entire application.

NOTE
The J2EE Blueprints are available online at http://java.sun.com/j2ee/

blueprints.

WHAT’S NEXT

The Java2 Enterprise Edition defines a new standard for enterprise appli-
cations and the servers used to deploy them. The J2EE specification
provides several technologies for the building and deploying of enterprise
applications. Not every enterprise application will use every technology,
but these applications now have a standard framework of tools as well as
a market of vendors supporting the environment.

This market extends from application servers to frameworks of EJBs
to integrated development environments (IDEs) and tools. The J2EE
frameworks provide the J2EE developer with many tools for building
cross-platform applications for today’s informational enterprise.

The following chapters will detail each technology, and present a
complete understanding of how they operate and how to use them. As
you cover each chapter, the full picture of the Java2 Enterprise Edition
will become complete.

Part |

