
The C# Language

• Basics of .NET

• Installing a C# development environment

• The C# runtime environment

• C# programming basics

• C# features

Chapter 1

4176ch01.qxd 10/13/04 3:13 PM Page 3

CO
PYRIG

HTED
 M

ATERIA
L

4

I n its short history, the Microsoft .NET technology has quickly become a popular program-
ming platform for developing applications for Microsoft Windows workstations and servers.

Although most of the media attention has focused around the web application capabilities of
.NET, there are many other features that are useful to Windows programmers.

One of those features is the new C# programming language, developed specifically for
.NET. C# is becoming a widely used programming platform for programmers wanting to
create both network-aware and stand-alone applications for Windows systems. The language
provides many resources to help create robust Windows-based applications. Many program-
mers are migrating to the C# language to take advantage of these resources.

Before learning the basics of network programming in C#, it is important that you under-
stand the C# programming environment, the fundamentals of .NET, and how to create and
distribute C# applications. This chapter shows how to create a C# development environment
on your system and how to ensure that C# applications you create will run on other Windows
workstations and servers. Finally, I’ll present a brief introduction to the C# language, along
with some C# programming topics relevant to network programming. All together, the con-
cepts presented in this chapter will help you get ready for C# network programming.

Basics of .NET
The .NET group of programming languages differs from previous versions of Windows
programming languages in the way programs are created and run on the Windows systems.
If you are not familiar with how C# programs operate, this section briefly describes the basics
you should know to be able to deploy applications based on the .NET technologies.

Common Language Runtime (CLR)
The core of the Microsoft .NET technology is the Common Language Runtime (CLR) envi-
ronment. This environment enables programmers to create programs using a multitude of
programming languages and run them on any platform that supports the CLR. The idea of
the CLR is to provide a middle layer of Application Program Interfaces (APIs) that operate
between the low-level Windows Win32 API functions and the application program code. By
providing a common middle layer, Microsoft has given a larger number of application lan-
guages access to core Windows technologies (such as network support).

The layout of how application programs run in the CLR environment is shown in Figure 1.1.
High-level applications written in various .NET languages, such as Visual Basic .NET, Visual
C++ .NET, Visual J# .NET, and of course Visual C# .NET, are compiled into a special interme-
diate language called Microsoft Intermediate Language (MSIL). The MSIL code is interpreted by
the CLR as the program runs; MSIL runs on the host operating system as a normal executable

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 4

5

program. Of course, legacy programs that do not use the CLR can still directly access the low-
level Windows Win32 APIs as before.

This CLR model also pertains to other operating systems. Because the CLR is ported to
other operating systems, .NET programs will be able to run without recompiling them on
the new host systems. Currently, Microsoft supports the Shared Source Common Language
Interface (CLI) project (nicknamed Rotor), which ports the CLR environment to the
FreeBSD operating system. It is expected that the Rotor project will branch out to other
operating systems as well. At the time of this writing you can get more information about
Rotor at the following website:

http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.asp?url=
/msdn-files/027/001/901/msdncompositedoc.xml

For programs to run in the CLR, they must be compiled into the special MSIL format.
The .NET C# compiler is used to convert C# language programs to MSIL code that runs
in the CLR environment. The next section describes the MSIL code.

MSIL Code
When you compile a C# program, it produces an executable file. However, this executable
file is different from the ones you may be used to seeing produced from other Windows
compilers. Instead of a low-level assembly program that can run directly in Windows, this
executable file contains two parts:

● A stub assembly language program to start the CLR compiler

● The MSIL code of the compiled application

The stub program starts the CLR just-in-time (JIT) compiler, which compiles the MSIL
program code to native Win32 code that can be run on the system. Unlike native Windows

J++

Microsoft Windows Operating System

Microsoft Win32 API

Common Language Runtime JIT compiler Native compilers

C++
Visual BasicMicrosoft Intermediate Language

C++.NET C#.NET
J#.NET Visual Basic.NET

F I G U R E 1 . 1 :
The Common
Language Runtime
(CLR) environment

Basics of .NET

4176ch01.qxd 10/13/04 3:13 PM Page 5

6

applications, which interact directly with the low-level Win32 API system, .NET applications
rely on the .NET Framework CLR to run. Running a .NET application on a system that
does not have the .NET Framework installed will produce an error message like the one in
Figure 1.2. The .NET Framework is crucial to any .NET application, whether it is running
on a Windows workstation or server. Without it the MSIL code cannot run. Any Windows
workstation or server expected to run .NET programs must have the .NET Framework
installed.

Microsoft is committed to ensuring the .NET Framework will be installed on all future
versions of the Windows OS. However, older versions of Windows must have the .NET
Framework manually installed. The following section includes instructions for installing
the .NET Framework for a developer environment to allow you to create, compile, and run
.NET applications.

Installing a C# Development Environment
Before you can begin programming in C#, you must have a C# development environment—a
system for creating, compiling, and debugging C# programs. Unfortunately, one of the most
stringent requirements for .NET application development is the designation of OS platform
to use for development. Currently, .NET requires one of the following systems for full C#
program development:

● Windows NT 4 Workstation or Server (with Service Pack 6a)

● Windows 2000 Professional or Server (with Service Pack 2)

● Windows XP Home Edition or Professional

Programmers without access to any of these systems will not be able to develop C#
programs—but there is a solution to this, as will be explained later in the C# Runtime
Environment section.

F I G U R E 1 . 2 :
Trying to run a .NET
application without
the .NET Framework

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 6

7

C# Development Options
Microsoft offers three development environments for C# developers. Each environment has
its own set of pros and cons. This section describes these C# development environments and
how they differ.

● Visual Studio .NET

● Visual C# .NET

● .NET Framework software development kit (SDK)

NOTE All of the example programs in this book can be compiled in any of the .NET development
environments. To simplify things, this book’s examples are shown using the .NET Frame-
work command-line compiler. This ensures that anyone can use the examples, no matter
which development environment you are using.

Visual Studio .NET
The Visual Studio .NET package is the flagship development product for Microsoft .NET.
This Integrated Development Environment (IDE) offers many features to assist your Win-
dows application programming tasks. Microsoft describes the Visual Studio package as “a
rapid application development (RAD) tool, enabling programmers to quickly code and debug
.NET applications.” It includes a complete graphical environment for creating Windows
forms, typing code, and debugging programs. In addition to containing a fancy development
environment, Visual Studio also supports all the .NET programming languages—Visual
Basic .NET, Visual C++ .NET, Visual J# .NET, and Visual C# .NET. If you are looking at
developing with all of the .NET languages, the Visual Studio package is well worth the extra
expense.

In Visual Studio .NET, applications can be created in a graphical environment using any
of the four programming languages. The IDE provides separate windows for developing
code and for visually laying out Window controls for the application, including text boxes,
list boxes, buttons, and scrollbars. Visual Studio .NET offers an easy way to create, test, and
debug .NET applications, whether they are stand-alone Windows applications or ASP.NET
web pages.

There are several package levels for Visual Studio .NET, depending on your development
requirements (and budget). Each package level includes progressively more development
functionality, and also comes with a progressively higher price tag.

Installing a C# Development Environment

4176ch01.qxd 10/13/04 3:13 PM Page 7

8

Visual C# .NET
If you are interested only in programming using the C# language, you do not have to buy the
full Visual Studio .NET package. Instead, Microsoft offers the Visual C# .NET package, which
has the same functionality of Visual Studio .NET but supports only the C# language. This is a
much less expensive method of development for C# programmers. Similar to Visual Studio, the
Visual C# package also comes in various package levels, from a bare-bones student version to a
full-featured professional developer version. Before you choose this version, however, be aware
that it does not include some of the advanced features, such as automatic database support, that
are in Visual Studio .NET.

Both the Visual Studio and C# development options require that you purchase a commer-
cial software development package from Microsoft. Both are excellent software development
packages that can save you hours of time in creating Windows and debugging applications.
However, many first-time and hobbyist programmers might find the cost of these IDE pack-
ages too great.

.NET Framework SDK
If you are looking for an inexpensive way to get started with C# programming, the .NET
Framework SDK is the way to go. The SDK is available free from Microsoft and contains
command-line tools for compiling and debugging .NET programs, including C#. This
package allows you to get the feel for developing C# applications without investing in an
expensive IDE development environment. You can obtain the .NET Framework SDK
package by downloading the complete package via Microsoft’s .NET Framework website,
or by ordering a minimal-cost CD directly from Microsoft. (See the upcoming section for
website information.)

If you are completely new to C#, you may want to start by downloading the .NET Frame-
work SDK and giving it a try. It is often said that the best way to learn a programming language
is to hand-code all your programs and suffer the consequences—I think this is especially true of
network programming. As you progress in your C# programming skills, you can migrate to the
Visual C# .NET package for creating Windows forms and debugging complex applications. To
get you started, the following section describes how to download and install the .NET Frame-
work SDK.

Downloading the .NET Framework SDK
At the time of this writing, the current version of the .NET Framework SDK is release 1.
As mentioned, it can be downloaded free or you can purchase a CD from Microsoft. If you

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 8

9

choose to download the package from Microsoft, there are two methods that can be used.
Because the SDK is so large (131MB), you can either download it in one piece, or as ten
smaller (13.1MB) packages that can be assembled after the download. Both methods require
the same amount of data to be downloaded, but people with slower connections may want the
convenience of downloading the individual pieces one at a time.

The .NET Framework website URL is currently www.microsoft.com/netframework/. As
is common on the Web, this location may change by the time you read this. If so, just go to
the Microsoft home page (www.microsoft.com) and look for the .NET stuff.

The .NET Framework site contains lots of information about the SDK, including a link
to the separate software download page. The download page shows the various options for
downloading the software. The single-file download is a file named setup.exe, which can
be downloaded to your workstation or server for installation. If you select the multipart
download option, you must download all of the split SDK files, along with the separate
setup.bat file, to a temporary directory. After all of the files are downloaded, you must run
the setup.bat file. This file creates the master setup.exe file from all of the SDK split files.

In either download scenario, the resulting file will be a setup.exe file. You must run this
file to install the .NET Framework SDK package. The following section describes this process.

Installing the .NET Framework SDK
Once the setup.exe file is obtained, either by single download, multipart download, or CD,
you can install the .NET Framework SDK. You start the installation by running the setup.exe
file from a DOS command prompt, or by double-clicking it in Windows Explorer.

When the installation starts, a dialog box asks if you want to install the .NET Framework
SDK. Click the Yes button to start the installation.

The .NET installation process first extracts the working installation files into a temporary
directory, pointed to by the TEMP environment variable. This allows you to place the tem-
porary working files on a drive other than the system drive (usually C:\) if you are tight on
disk space. After the working files are extracted, the installation updates the Windows installer
package on the workstation and then launches Windows installer with the .NET Framework
installation.

After the opening screen and a license agreement screen, you are asked which components
of the SDK package you want installed. This is shown in Figure 1.3.

Installing a C# Development Environment

4176ch01.qxd 10/13/04 3:13 PM Page 9

10

If you are tight on disk space, you can prevent the SDK samples from being loaded on the
workstation by deselecting the SDK Samples checkbox. After the Install Options screen,
the program asks where to install the SDK components. This only applies to some of the
components, as the DLLs and executable files used by the .NET Framework must be
installed on the system drive (usually C:\). After you select the installation destination, the
installation begins. When it’s completed, you should be ready to compile and run C# programs.

TIP It’’s a good idea to check out the Microsoft .NET Framework home page occasionally to
see if new service packs are released, and then to install them as directed.

The C# Runtime Environment
The .NET Framework provides not only a development environment, but also a CLR envi-
ronment for Windows workstations and servers that only run .NET programs. The .NET
Framework contains lots of DLL files used to supply libraries to support .NET application
programs. These libraries must be loaded on any workstation or server you want your .NET
program to run on. However, you do not need to load the .NET Framework SDK on every
machine that runs your program. As alluded to previously, Microsoft has a solution to this
aggravation.

F I G U R E 1 . 3 :
.NET Framework
Install Options screen

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 10

11

Microsoft has indicated that all future Windows operating systems will include the .NET
Framework runtime (CLR) environment, starting with the Windows .NET Server release.
This will ensure that .NET applications will run on the new OSes without your having to
manually install any .NET Framework libraries. Unfortunately, this is not the case with older
versions of Windows (98, Me, NT, 2000, and XP). The solution for these systems is manually
installing a runtime version of the .NET Framework libraries.

The .NET Framework runtime version is a much smaller distribution than the SDK package.
It includes only the files necessary to run .NET applications on the Windows workstation or
server. The following section describes how to download and install the .NET Framework
runtime files on older Windows platforms.

Downloading and Installing the C# Runtime Package
The C# runtime package is part of the .NET Framework Redistributable package. The
Redistributable package contains runtime environments for all .NET languages. Similar to
the SDK package, the Redistributable package can be obtained from the .NET Framework
home page at www.microsoft.com/netframework/. Because this is a much smaller distribu-
tion, there is no multipart download option. The entire package must be downloaded as a
single piece (about 20MB).

The download file, dotnetredist.exe, is actually a compressed file that must be uncom-
pressed into a working directory. When you run the program, it will ask for a working direc-
tory to use. You can choose any location that has enough space (about 22MB). The extracted
file is named dotnetfx.exe.

There is not much to installing the .NET Framework Redistributable package. After starting
the dotnetfx.exe file, you’re asked to confirm the installation, and then the files are installed.
You don’t have any choice as to locations for the Redistributable package files; they all go into
default locations on the system drive.

Developing with the C# Runtime
Currently, the .NET Framework Redistributable package includes the C# compiler program,
csc.exe. This allows developers who do not have workstations or servers running Windows
NT 4, 2000, or XP to compile C# programs without installing the .NET Framework SDK.
Any machine that supports the .NET Framework runtime can be used to compile C# applica-
tions using the csc.exe program. This includes Windows 98 and Me workstations. Though
the compiler is included, none of the documentation or debugging programs are, so this is
pretty much a bare-bones development environment.

The C# Runtime Environment

4176ch01.qxd 10/13/04 3:13 PM Page 11

12

If you want to compile C# programs from the Redistributable package, you must add the
location of the csc.exe program to the PATH environment variable of your system. This
differs depending on the system you are using.

● For Windows 98 and Me systems, you can add the PATH statement in the autoexec.bat
file located in the C:\ directory. There may already be an autoexec.bat file present, and
it may already have a PATH statement in it. If so, you can append the csc.exe path to the
existing PATH statement.

● For release 1 of the .NET Framework Redistributable package, csc.exe is located in the
C:\Windows\Microsoft.Net\Framework\v1.0.3705 directory. (Remember that on Win-
dows 98 and Me, the Windows system directory is called Windows; on Windows NT and
2000 systems, it is Winnt.)

After rebooting the system you should be able to access the csc.exe compiler program
from the command-line prompt, as in the following example:

C:\>csc
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

fatal error CS2008: No inputs specified

C:\>

You are now ready to start programming using the C# language.

C# Programming Basics
Though it’s considered a bare-bones development environment, the .NET Framework SDK
contains quite a few tools that allow you to create, compile, and debug C# programs. This
section describes some of the tools that are at your disposal.

Creating C# Programs
If you are using one of the Microsoft Visual products to develop your programs (Visual Studio
.NET or Visual C# .NET), you have a complete program editing environment, including help
files, graphical wizards, and command completion wizards. If you are using the .NET Frame-
work SDK package, you are on your own for producing and compiling your C# code. Although
this SDK’s features pale in comparison to the fancy Visual packages, it is nonetheless just as
valid a way to produce C# applications.

The first step to working with C# programs in the .NET Framework development envi-
ronment is to associate the C# source code filename extension with a text editor. This will

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 12

13

make editing programs much easier; you can just double-click a program from within the
Windows Explorer program to begin editing. The type of editor you select is important.
Choose one that allows you to save your source code files in text mode rather than a
Microsoft Word .doc file or other word processing document, because the C# compiler
must be able to interpret each line of code. If you do select a word processing package to
edit your C# programs, make sure that you save all of the files in text format.

After you select an editor, associate the .CS file type to the editor application within the
Windows Explorer: right-click a C# program, select the Open With option, and select the
appropriate application from the list.

If you are new to C#, you may want to practice compiling and debugging C# programs.
To do that, you must first have a sample program to work with. Listing 1.1 shows a simple
program that demonstrates some basic C# programming principles.

➲ Listing 1.1 SampleClass.cs program

class DataClass
{

private int a;
private int b;

public DataClass(int x, int y)
{

a = x;
b = y;

}

public int addem()
{

return a + b;
}

}

class SampleClass
{

static int sampleX;
static int sampleY;

public SampleClass()
{

DataClass sample = new DataClass(sampleX, sampleY);
System.Console.WriteLine(“The result is: {0}”, sample.addem());

}

public static void Main(string[] argv)
{
if (argv.Length != 2)

C# Programming Basics

4176ch01.qxd 10/13/04 3:13 PM Page 13

14

{
System.Console.WriteLine(“ Usage: SampleClass x y”);
return;

}
sampleX = System.Convert.ToInt16(argv[0]);
sampleY = System.Convert.ToInt16(argv[1]);
SampleClass starthere = new SampleClass();

}
}

The sample program contains two separate C# classes, DataClass and SampleClass.
DataClass declares two private integers (that is, they are only accessible from the DataClass
class), a constructor for the class, and a method that manipulates the data. The DataClass
constructor defines what happens when DataClass is instantiated from a program:

public DataClass(int x, int y)
{

a = x;
b = y;

}

The default constructor requires two integers. The two integers are assigned to the internal
private variables a and b defined in the class. The one method that is defined, addem, returns
an integer value that is the addition of the two private variables:

public int addem()
{

return a + b;
}

NOTE Once DataClass is defined in the program, other classes in the program can use it. In
C#, unlike C++, you can use classes before they are defined without first declaring them.
The SampleClass code could just as easily have been defined first, before the DataClass
definition. The C# compiler will realize that the required class is located later in the pro-
gram. You can even declare classes in separate files, as long as you include them on the
command line when compiling. The compiler will only complain if declared classes are
never found in any of the program files listed on the command line.

SampleClass contains two static integer variables, a constructor, and a Main() method,
which instructs the C# compiler where to start execution of the program. The Main()
method first checks to ensure that two command-line parameters have been entered, con-
verts them to integer values, and assigns them to the two integer variables defined. It then
creates an instance of SampleClass using the statement

SampleClass starthere = new SampleClass();

This forces the CLR to execute the SampleClass constructor to create a new instance of
the class.

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 14

15

The SampleClass constructor code creates an instance of DataClass, passing the two inte-
gers to the DataClass class constructor. The addem() method is called from the instantiated
SampleClass variable and returns the result of the addition method. The following line is used
to display the result of the addem() method to the console screen:

System.Console.WriteLine(“The result is: {0}”, sample.addem());

The symbol {0} is used as a placement value to represent a variable listed after the text string,
in this case replaced with the return value of the sample.addem() method. You can add addi-
tional variables by continuing the placement numbers ({1}, {2}, and so on). Each additional
variable is added to the variable list separated by commas.

After typing the program code, you must save the file using a .CS extension, which identifies
the file as a C# code file. Once you save the file, you are ready to compile it.

Compiling and Running C# Programs
The .NET Framework SDK and Redistributable packages both contain the C# compiler,
csc.exe. Any C# program, no matter how complex, can be compiled using just this compiler.
Many different switches can be used on the command line to control the behavior of the com-
piler function. Some of the most common are listed in Table 1.1.

TABLE 1.1: csc Command Line Switches

Switch Function

/out:filename Defines the executable filename of the program

/main:classname Defines the class that contains the Main() method

/target:target Defines the type of program. The target can be exe for console-based
apps, winexe for Windows graphical apps, library for Windows DLL files,
or module for assembly modules

/debug:type Creates debugging information for the executable file. The type can be
full (the default), which enables attaching the debugger to a running
process, or it can be pdbonly, which only creates a .pdb database file
for debugging within a debugging tool

/resource:<res> Embeds the resource specified in the executable file

After you determine what command-line options (if any) you need, compiling the
C# program using the csc command-line compiler is simple:

C:\>csc SampleClass.cs
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

C:\>

C# Programming Basics

4176ch01.qxd 10/13/04 3:13 PM Page 15

16

The compile was successful if the command prompt returns with no text messages. If any
errors or warnings are indicated by the C# compiler, you must edit the source code file to
correct them. Each error or warning produced by the compiler indicates the line where the
error occurred. Here is an example of the error produced by csc when a typo occurs within
the source code:

C:\>csc SampleClass.cs
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

SampleClass.cs(36,12): error CS0117: ‘System.Convert’ does not contain a
definition for ‘oInt16’

C:\>

Note the line number, along with position in the line, shown in parentheses within the
error message. Also, you get a fairly descriptive error message, helping you to determine the
cause of the error. If you are using a text editor that supports line numbers, it is easy to go
back into the source code and correct the mistake. If not, happy counting!

Once you successfully compile the program, you can run it from the command line:
C:\>SampleClass 5 10
The result is: 15

C:\>

You can see that the program has successfully run and displayed the result of the addition of the
command-line arguments. Of course, this simple example does not do much error checking on
the command-line arguments, so be careful to only enter numbers or the program will blow up
and produce an error message—but more on that later in the C# Exception Programming
section.

Using Multiple Source Files
The SampleClass.cs example program defined two separate classes in one source code file.
This was easy to do for a small example, but larger programs can get confusing when you’re
combining classes into one source code file. Often it is best to create a separate source code
file for each class used in the application. This allows better code management, especially
when several people are working on an application that contains hundreds of classes. For
example, two separate files could be created:

● DataClass.cs for the DataClass class code

● SampleClass2.cs for just the SampleClass class code

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 16

17

There are a few things to be careful of when you separate classes out into discrete source
code files. First, you must ensure that the C# compiler can find them at compile time. The
easiest way to do this is to include all related source code files on the command line, as
follows:

C:\>csc SampleClass2.cs DataClass.cs

Be careful when you do this, however, because the source code file listed first will be the default
.exe filename. If you want to change the .exe filename, you can use the /out: command line
switch:

C:\>csc /out:SampleClass2.exe DataClass.cs SampleClass2.cs

Another issue is the importance of telling the compiler where the program execution
starts. If only one class has a Main() section defined, this will work fine. However, some-
times different classes can use methods from other classes, but both classes may contain a
Main() method. This would confuse the compiler, as it would not know from which Main()
method to start to run the program.

A command-line switch for the csc.exe program solves this problem. The /main:switch
defines the class that contains the Main() method you want to use:

C:\>csc /main:SampleClass SampleClass2.cs DataClass.cs

Notice that you must specify the class that the Main() method is in, not the source code
filename.

Debugging C# Programs
The .NET Framework SDK offers two excellent ways to debug C# programs:

● dbgclr is a GUI debugging program

● cordbg is a command-line text debugging program

The graphical dbgclr program and the text mode cordbg program have similar features
but present different interfaces. Both allow you to step through the C# program and watch
variables and outputs as execution proceeds. To do this, though, you must compile the exe-
cutable program using the /debug option on the csc compiler:

C:\>csc /debug SampleClass.cs

This command performs two actions: an attribute is set in the executable file that informs the
CLR JIT compiler that code tracking must be done, and a programmer database (PDB) file
is created that contains code tracking information for the debugger. The added attribute is
called the JITTracking flag. It informs the CLR JIT compiler that the code must be disas-
sembled from the generated native code back to MSIL instructions and ultimately mapped

C# Programming Basics

4176ch01.qxd 10/13/04 3:13 PM Page 17

18

back to the original source code. All of this information is contained in the PDB file for the
executable file.

Using the dbgclr Program
The dbgclr program provides a Windows environment that can be used to watch and trace
a running C# program to look for coding errors. The dbgclr program is located under the
Microsoft.Net directory you specified when installing the SDK. The default location is as
follows:

C:\Progam Files\Microsoft.Net\FrameworkSDK\GuiDebug\dbgclr.exe

When dbgclr is run, you must specify the source code and executable file location for the
application. To do this, follow these steps:

1. From the Menu Bar, click Debug ➢ Program to Debug.

2. Next to the Program text box, click the ellipsis (...) button and select the SampleClass.exe
program you want to debug. (Remember that the executable program must have been com-
piled with the /debug switch.) The Working Directory text box will automatically display
the directory location of the executable file. Also, in the Arguments text box, type in any
required arguments for the program; for the SampleClass program, type in any two num-
bers. Click OK when you are finished.

3. Click File ➢ Open ➢ File. Select the SampleClass.cs source code file for the application,
and click Open.

At this point, the dbgclr program will display four separate windows:

● The source code file

● The Solution Explorer

● The application output

● The command window

You should see the SampleClass.cs file in the source code window, and the Solution Explorer
should list this file in the Miscellaneous Files section. To start debugging, from the menu bar,
click Debug ➢ Step Into. This starts the program and allows you to single step though the code
(see Figure 1.4).

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 18

19

When the debugging process starts, a new window appears showing various variables used
within the application code. Note in Figure 1.4 that the command-line argument values you
entered are displayed under the Locals tab, along with the Length value (which should be 2).
This allows you to easily watch variable values throughout the execution of the program. This
is handy if you are getting a corrupt variable value within the program and want to investigate.

The Step Into function starts executing the program line by line, starting at the Main()
section. The current code line is highlighted in yellow. By pressing F11, you can single step
through the entire program. You can also click buttons on the toolbar to step over code, as
well as step out of (or back up from) a code segment. This gives you great control in watching
the program execute.

Using the cordbg Program
The cordbg command-line tool has similar functionality to that of dbgclr, without the graphi-
cal windows. It, too, allows you to single step through a program and monitor variable values
as you go along, but with allowing text input and providing a text output. Listing 1.2 shows a
sample debug session using cordbg.

F I G U R E 1 . 4 :
Using dbgclr to
single-step through
an application

C# Programming Basics

4176ch01.qxd 10/13/04 3:13 PM Page 19

20

➲ Listing 1.2 Sample output from cordbg

C:\>cordbg
Microsoft (R) Common Language Runtime Test Debugger Shell Version 1.0.3705.0
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

(cordbg) run SampleClass.exe 5 10
Process 356/0x164 created.
Warning couldn’t load symbols for
c:\winnt\microsoft.net\framework\v1.0.3705\ms
corlib.dll
[thread 0xff] Thread created.

031: if (argv.Length != 2)
(cordbg) sh
026: System.Console.WriteLine(“The result is: {0}”, sample.addem());
027: }
028:
029: public static void Main(string[] argv)
030: {
031:* if (argv.Length != 2)
032: {
033: System.Console.WriteLine(“ Usage: SampleClass x y”);
034: return;
035: }
036: sampleX = System.Convert.ToInt16(argv[0]);
(cordbg) pro

PID=0x164 (356) Name=C:\SampleClass.exe
ID=1 AppDomainName=SampleClass.exe

(cordbg) p argv
argv=(0x00e718b8) array with dims=[2]
argv[0] = (0x00e718d0) “5”
argv[1] = (0x00e718e4) “10”

(cordbg) s

036: sampleX = System.Convert.ToInt16(argv[0]);
(cordbg) so

037: sampleY = System.Convert.ToInt16(argv[1]);
(cordbg) so

038: SampleClass starthere = new SampleClass();
(cordbg) s

023: public SampleClass()
(cordbg) s

[0007] nop

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 20

21

(cordbg) s

[001c] mov ecx,0B65210h
(cordbg) s

006: public DataClass(int x, int y)
(cordbg) s

[0007] nop
(cordbg) s

[0014] mov dword ptr [esi+4],edi
(cordbg) s

009: b = y;
(cordbg) s

010: }
(cordbg) s

025: DataClass sample = new DataClass(sampleX, sampleY);
(cordbg)

Note that when the cordbg program is started, you can use the run command with the file-
name of the executable program, along with any pertinent command-line parameters for the
executable program. Alternatively, you can run the cordbg command with the executable
program and arguments on the command line.

The cordbg program uses text commands to step through the program and display perti-
nent information. Table 1.2 describes some of the text commands that can be used.

TABLE 1.2: cordbg text commands

Command Function

s Step into one line of source code

si Step into one line of source code

so Step over the next line of code

ss Step into the next native or IL instruction

p arg Print the current value of the variable arg

pro Show the system process information for the running program

reg Display the CPU registers for the current thread

run prog Run the progam prog in the debugger

break Set or display a breakpoint in the code

sh Show the current line of code, along with five lines before and after

C# Programming Basics

4176ch01.qxd 10/13/04 3:13 PM Page 21

22

As demonstrated, you can do everything in cordbg that you can in dbgclr. In fact, many
advanced developers prefer to use cordbg because it can be faster than waiting for the graphi-
cal dbgclr program to do its thing.

Watching the C# program execute is one way to debug your application. The next section
describes a tool for observing the actual MSIL code generated by the csc compiler and run by
the CLR.

Debugging MSIL Code
If you really want to get under the hood of your program, you must look at the MSIL
code—the actual code that is compiled by the CLR JIT compiler to create the native
system code for the host. The .NET Framework SDK gives you a tool that helps you
do this: the Microsoft Intermediate Language Disassembler (IL DASM). You must run
the ildasm.exe program from the command line, along with the name of the CLR exe-
cutable program to monitor to see the code:

C:\>ildasm SampleClass.exe

Figure 1.5 shows the IL DASM window with the classes and variables that are contained in
the program. IL DASM gives you a hierarchical view of the code, separating the classes and the
variables and methods within classes. To see the actual MSIL code, double-click an individual
section. Figure 1.6 shows the result from clicking the addem() method. Even without knowing
much about MSIL, you can see that this section of code retrieves two values from memory and
adds them.

F I G U R E 1 . 5 :
The IL DASM window

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 22

23

NOTE If you want to debug your applications at the CLR level, you must learn the MSIL assembly
code, which is way beyond the scope of this book.

Now that you are familiar with the C# development environment, it is time to start working
on C# code. Let’s begin by looking at some features of C# that are different from other pro-
gramming languages and that are often used in network programs. If you are already familiar
with the C# language, feel free to skip to the next chapter.

C# Features
C# is an object-oriented language created by Microsoft that incorporates many features that
may be new to experienced C, C++, and Visual Basic programmers. If you are not familiar
with the C# programming language at all, I suggest you purchase a book on C# program-
ming, such as Sybex’s Mastering Visual C# .NET by Jason Price and Michael Gunderloy, or
Visual C# .NET Programming by Harold Davis, also from Sybex. Texts like these fully explore
the features of this exciting language. The following sections provide a brief synopsis of some
unique C# features that are crucial to understand before you begin network programming.

F I G U R E 1 . 6 :
MSIL code generated
for the addem()
method

C# Features

4176ch01.qxd 10/13/04 3:13 PM Page 23

24

C# Namespaces
With all of the classes provided in the .NET Framework, it’s easy to get confused about which
classes perform which functions and the methods that should be used from particular classes.
To help simplify things, Microsoft uses namespaces in classifying .NET Framework classes.

What Are Namespaces?
As shown in the SampleClass program, each C# application consists of one or more classes.
Each class defines an object that can contain data and methods to manipulate the data. At
least one class in each application must contain a program interface method called Main().
The Main() method lets the C# compiler know where to begin execution of the program.
Other classes can be defined within the program (such as the DataClass), or can even be
shared with other programs.

Sharing classes among programs is the goal of object-oriented programming. One of the
issues involved in class sharing is the importance of unique and meaningful class names. If
you are working alone and on simple projects, it is unlikely that you will run into the problem
of calling two (or more) classes by the same name. However, on a large development team
that needs to create hundreds of classes, having a class naming structure in place is critical to
success.

C# namespaces are used to identify a higher-level hierarchy of class names, allowing you
to group similar classes together within a single namespace. The namespace is defined in the
source code file before the class definition, using the namespace directive:

namespace Test1;

class testProgram
{

}

namespace Test2;
class testProgram
{

}

For programs that do not declare a namespace (such as the SampleClass program) the
defined classes become part of a global namespace. These classes are globally available to
any application in the CLR.

Each namespace uniquely identifies the programs within it. Notice that both of the sample
namespaces just shown contain a class called testProgram; most likely they perform separate
functions. If your program needs to use one or both of the testProgram classes, you must
specify which class you mean to use by referencing the namespace.

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 24

25

The .NET Framework contains many classes separated into namespaces, which help
classify the various classes into groups of common functions. You must know how to
properly declare the classes you use so that there is no confusion by the compiler when
your program is compiled. Let’s examine the specific namespaces used in the .NET
Framework.

.NET Framework Namespaces
The .NET Framework uses namespaces to help categorize library classes used in the CLR.
This helps programmers determine the location of various classes and how to define them in
their programs.

Many .NET Framework namespaces make up the core CLR classes. Table 1.3 lists some of
the common namespaces you will encounter in your C# network applications.

TABLE 1.3: .NET Framework Class Namespaces

Namespace Description of Classes

Microsoft.Win32 Handles events raised by the OS and Registry handling classes

System Base .NET classes that define commonly used data types and data
conversions

System.Collections Defines lists, queues, bit arrays, and string collections

System.Data Defines the ADO.NET database structure

System.Data.OleDb Encapsulates the OLE DB .NET database structure

System.Drawing Provides access to basic graphics functionality

System.IO Allows reading and writing on data streams and files

System.Management Provides access to the Windows Management Instrumentation
(WMI) infrastructure

System.Net Provides access to the Windows network functions

System.Net.Sockets Provides access to the Windows sockets (Winsock) interface

System.Runtime.Remoting Provides access to the Windows distributed computing platform

System.Security Provides access to the CLR security permissions system

System.Text Represents ACSII, Unicode, UTF-7, and UTF-8 character encodings

System.Threading Enables multi-threading programming

System.Timers Allows you to raise an event on a specified interval

System.Web Enables browser and web server functionality

System.Web.Mail Enables sending mail messages

System.Windows.Forms Creates Windows-based application using the standard Windows
graphical interface

System.XML Provides support for processing XML documents

C# Features

4176ch01.qxd 10/13/04 3:13 PM Page 25

26

Using Namespaces in Programs
As explained, each namespace provides support for a specific group of classes. Once you
have located the namespaces that contain the classes you need for your program, you must
define them in your program to access the classes. There are two methods of identifying
.NET Framework classes in your programs.

The first method was demonstrated in the SampleClass program:
System.Console.WriteLine(“The result is {0}”, sample.addem());

This command uses the WriteLine() method of the Console class, found in the System
namespace. Notice the hierarchy used in referencing the method. First the namespace is
declared, followed by the class name, and finally the method name. You can reference all of
the .NET Framework classes in your program using this method, but you might quickly get
tired of typing.

An easier way is to declare the namespace with the C# using directive at the beginning of
the program. Any classes contained within a namespace declared with using do not have to
be referenced by their namespace name:

using System;

Console.WriteLine(“The result is {0}”, sample.addem());

The C# compiler searches all declared namespaces for the Console class and automatically
references the proper namespace.

WARNING Be careful using this method of declaring namespaces, because you can run into situa-
tions where two declared namespaces have classes with the same name (such as the
Timer class). In that case, you must supply the full namespace name when referencing
the class. If you don’t, the C# compiler will complain that it cannot determine which class
you are trying to reference.

After the namespaces have been declared and you use the namespace classes in your pro-
gram, you must ensure that the C# compiler can find the proper class libraries when you
compile your program. The next section explains how this is done.

Compiling Programs with Namespaces
The .NET Framework implements the CLR class library as a set of DLL files. Each DLL
file contains a specific subset of classes from one or more namespaces. Not only must the
DLLs be available when you run your .NET program, they must also be referenced on the
command line when you compile the program.

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 26

27

You must reference each DLL that is necessary to support all of the namespaces declared
in your program. To reference a DLL, you use the /resource command-line switch for the
csc compiler:

C:\> csc /r:System.dll SampleClass.cs

(The /resource switch can be abbreviated /r.) Here, the classes for the System namespace
are contained in the System.dll file, so you need to reference the System.dll file on the
command line for the SampleClass.cs program to compile properly. You may be wondering
why you didn’t have to do this when you compiled the program earlier. There is a trick
involved.

The csc.exe compiler program uses a configuration file that sets a few standard command-
line parameters, including default DLL files to reference. The configuration file is called
csc.rsp and is located in the same directory as the csc.exe program file.

You can examine the csc.rsp file with any text editor, such as Microsoft Notepad.
Listing 1.3 shows the default csc.rsp file that was installed with my version of the
.NET Framework.

➲ Listing 1.3 Default csc.rsp file

This file contains command-line options that the C#
command line compiler (CSC) will process as part
of every compilation, unless the “/noconfig” option
is specified.

Reference the common Framework libraries
/r:Accessibility.dll
/r:Microsoft.Vsa.dll
/r:System.Configuration.Install.dll
/r:System.Data.dll
/r:System.Design.dll
/r:System.DirectoryServices.dll
/r:System.dll
/r:System.Drawing.Design.dll
/r:System.Drawing.dll
/r:System.EnterpriseServices.dll
/r:System.Management.dll
/r:System.Messaging.dll
/r:System.Runtime.Remoting.dll
/r:System.Runtime.Serialization.Formatters.Soap.dll
/r:System.Security.dll
/r:System.ServiceProcess.dll
/r:System.Web.dll
/r:System.Web.RegularExpressions.dll
/r:System.Web.Services.dll
/r:System.Windows.Forms.Dll
/r:System.XML.dll

C# Features

4176ch01.qxd 10/13/04 3:13 PM Page 27

28

Notice that the majority of the prevalent namespace DLLs are referenced in the csc.rsp file.
This is a handy feature that keeps you from having to reference lots of files on the command
line if you are using classes from several namespaces. As shown in the comment text from the
csc.rsp file, you can also override the csc.rsp values by using the /noconfig command-line
switch:

C:\>csc /noconfig /r:System.dll SampleClass.cs

This command will compile the SampleClass program with just the reference to the
System.dll file.

NOTE Adding references to additional DLL files does not increase the size of the resulting exe-
cutable file. The references are only for the purpose of telling the compiler where to find
the namespace definitions, not for compiling in the DLL code. The library class code is
still run from the DLL. That is why the .NET Framework must be installed on the target
workstation or server.

Using Strings in C# Programs
One of the most difficult parts of C programming is dealing with strings. Many program
security holes develop from string buffer overflows, in which programmers have used character
arrays for strings, and hackers place more characters than memory bytes allocated for the
string. To alleviate some of the problems of dealing with strings in C# programs, Microsoft
has incorporated two string handling classes into the C# language. Because many network
protocols are concerned with sending and receiving text strings, it’s a good idea to get a handle
on using strings properly in C# network programs. This section will help you do that by dis-
cussing the use of .NET string classes in the C# language.

The String Class
The basic part of string support in C# is the String class. The String class allows you to
assign a series of characters to a variable and handle the variable in your program as a single
unit. The String class also contains several methods that can be used to perform operations
on string objects, such as determining the length of the string and comparing two strings.

The String constructor is overloaded, providing several ways to create a string variable.
Table 1.4 describes the string constructors.

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 28

29

TABLE 1.4: String Constructors

Constructor Description

string(char[]) Creates a string from a specified character array

string(char, int) Creates a string from a specified character repeated int
number of times

string(char[], int1, int2) Creates a string from a specified character array, starting at
position int1 with a length of int2 bytes

In one of the few quirks of C#, you can define strings using either a capital S or a lowercase
s in the String declaration. The following are a few examples of declaring string variables:

string test = “This is a test string”;
string test2 = test;
string anotherTest = new string(‘a’, 10);

The first technique just listed is the most common way to create new strings. After the
string is created, several other methods are available for manipulating and operating on
the string. Table 1.5 shows some of the more popular methods.

TABLE 1.5: String Methods

Method Description

Clone Returns a reference to the string

Compare Compares two specified strings

CompareTo Compares a string with another object

Concat Concatenates two strings

Copy Creates a new string with the value of an existing string

CopyTo Copies a specified number of characters from one string, starting at a specified
location, to another string

EndsWith Determines if a string ends with a specified string

Equals Determines if two strings have the same value

IndexOf Returns the first occurrence of a specified string within the string

Insert Inserts a specified string at a specified location of the string

Intern Retrieves the system reference for the string

Join Concatenates a specified string between each element of the string array

Continued on next page

C# Features

4176ch01.qxd 10/13/04 3:13 PM Page 29

30

TABLE 1.5 CONTINUED: String Methods

Method Description

LastIndexOf Returns the index location of the last occurrence of the specified string in the string

PadLeft Right-aligns the characters of the string and sets the left-most characters to spaces

PadRight Left-aligns the characters of the string and sets the right-most characters to spaces

Remove Deletes a specified number of characters from the string

Replace Replaces all occurrences of a specified character or string with another specified
character or string

Split Identifies substrings in the string based on a specified separation character

StartsWith Determines if a string starts with a specified string

ToCharArray Copies the characters in the string to a character array

ToLower Returns a copy of the string, setting all characters to lowercase

ToString Converts the value of the object to a string

ToUpper Returns a copy of the string, setting all characters to uppercase

Trim Removes all occurrences of a set of specified characters from the beginning and
end of a string

TrimEnd Removes all occurrences of a set of specified characters from the end of a string

TrimStart Removes all occurrences of a set of specified characters from the beginning of
a string

With all of these string methods at your disposal, it is easy to work with strings in C# pro-
grams. Much of the hard work of manipulating and comparing strings has been done for you.
Listing 1.4 shows a sample string program to illustrate some of these features.

➲ Listing 1.4 Sample string program StringTest.cs

using System;

class StringTest
{

public static void Main ()
{

string test1 = “This is a test string”;
string test2, test3;

test2 = test1.Insert(15, “application “);
test3 = test1.ToUpper();

Console.WriteLine(“test1: ‘{0}’”, test1);
Console.WriteLine(“test2: ‘{0}’”, test2);
Console.WriteLine(“test3: ‘{0}’”, test3);

if (test1 == test3)
Console.WriteLine(“test1 is equal to test3”);

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 30

31

else
Console.WriteLine(“test1 is not equal to test3”);

test2 = test1.Replace(“test”, “sample”);
Console.WriteLine(“the new test2: ‘{0}’”, test2);

}
}

The output from this program should look like this:
C:\>StringTest
test1: ‘This is a test string’
test2: ‘This is a test application string’
test3: ‘THIS IS A TEST STRING’
test1 is not equal to test3
the new test2: ‘This is a sample string’

C:\>

C# creates a set amount of memory for each new string created. Because of this, strings are
immutable, that is, they cannot be changed. That said, you may see C# code like the following:

string newString = new string(“test”);
string newString += “ing”;

The resulting value for the variable newString is testing.

If strings are immutable, how can you modify an existing string? The answer is, you don’t;
C# just does some trickery. Instead of modifying the existing string, C# creates a brand new
string with the new value. The memory area reserved for the old string is now unused and
will be cleaned up on the next garbage collection cycle (CLR’s automatic recovery of lost
memory). If you do a lot of string manipulation in your programs, these operations can create
additional memory overhead. To compensate for this, Microsoft has created another type of
string class just for modifying string objects.

The StringBuilder Class
As its name suggests, the StringBuilder class allows you to create and modify strings without
the overhead of recreating new strings each time. It generates a mutable sequence of characters
that can change size dynamically as the string is modified, allocating more memory as required.

The amount of memory used by the string is called the capacity. The default capacity of a
StringBuilder string is currently set to 16 bytes (StringBuilder documentation indicates that
this value may change in the future). If you create a string larger than 16 bytes, StringBuilder
will automatically attempt to allocate more memory. When you want to control exactly how
much memory StringBuilder can use, you can manually increase or decrease the string capacity
using StringBuilder methods, as well as various StringBuilder constructors when the instance
is initially created.

C# Features

4176ch01.qxd 10/13/04 3:13 PM Page 31

32

Six constructors can be used to create a StringBuilder instance, as shown in Table 1.6.

TABLE 1.6: The StringBuilder Class Constructors

Constructor Description

StringBuilder() Initializes a new default instance with a size of 16

StringBuilder(int) Initializes a new instance with a capacity of int

StringBuilder(string) Initializes a new instance with a default value
of string

StringBuilder(int1, int2) Initializes a new instance with a default capacity of
int1 and a maximum capacity of int2

StringBuilder(string, int) Initializes a new instance with a default value of
string and a capacity of int

StringBuilder(string, int1, int2, int3) Initializes a new instance with a default value
starting at position int1 of string, int2
characters long, with a capacity of int3

Once the StringBuilder instance is created, you have access to several properties, meth-
ods, and operations for modifying and checking properties of the string. One of the most
useful properties is Length, which allows you to dynamically change the capacity of the
string. Listing 1.5 shows an example of changing the capacity of the StringBuilder string
using the Length property.

➲ Listing 1.5 The SampleBuilder.cs program

using System;
using System.Text;

class SampleBuilder
{

public static void Main ()
{

StringBuilder sb = new StringBuilder(“test string”);
int length = 0;

length = sb.Length;
Console.WriteLine(“The result is: ‘{0}’”, sb);
Console.WriteLine(“The length is: {0}”, length);

sb.Length = 4;
length = sb.Length;
Console.WriteLine(“The result is: ‘{0}’”, sb);
Console.WriteLine(“The length is: {0}”, length);

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 32

33

sb.Length = 20;
length = sb.Length;
Console.WriteLine(“The result is: ‘{0}’”, sb);
Console.WriteLine(“The length is: {0}”, length);

}
}

The output from the StringSample program should look like this:
C:\>SampleBuilder
The result is: ‘test string’
The length is: 11
The result is: ‘test’
The length is: 4
The result is: ‘test ‘
The length is: 20

C:\>

The original string is 11 bytes long, but after setting the string length to 4, the resulting
string is only the first 4 bytes of the original string. After setting the string length to 20,
the string becomes 20 bytes long, but the data originally located after the fourth byte has
been lost, with spaces used to pad the extra bytes.

After the final string is built using a StringBuilder object, you may need to convert it to
a string object to send it to a network stream. This is a simple process using the ToString()
method:

string outbound = sb.ToString();

Now the string outbound can be used as a normal string object. Just remember that it is
now an immutable string, and as such should not be modified (or be aware that you may
suffer additional overhead if it is).

Streams, mentioned in the preceding paragraph, are another feature of C# that you should
know intimately for network programming. The next section describes C# streams and
their uses.

C# Streams
Data handling is one of the most important jobs of programs. There are many methods for
storing and retrieving data in the C# world—files, memory, input/output devices, interprocess
communication pipes, and networks. There are also many ways of reading data to and writing
it from objects. Most objects allow data to be read or written on a byte-by-byte basis. This
method transfers one byte of data into or out of the data object at a time. Certainly this works,
but it is not the most efficient manner of handling data.

C# Features

4176ch01.qxd 10/13/04 3:13 PM Page 33

34

The C# language supplies an interface to assist programmers in moving large chunks of
data to and from data objects. The data stream allows multiple bytes of data to be transferred
simultaneously to a data object so that programs can work on blocks of data instead of having
to build data elements one byte at a time.

Streams can support three fundamental operations:

● Transferring data from a stream to a memory buffer (reading)

● Transferring data from a memory buffer to a stream (writing)

● Searching the stream for a specific byte pattern (seeking)

Not all streams support all of these functions. Obviously, a CD-ROM device cannot support
streams that write data, and network connections do not support streams that seek data patterns.

The .NET System.IO namespace contains various stream classes that can be used to
combine the bytes from a data source into manageable blocks that are easier to manipulate.

The FileStream class is a good example of using a stream to simplify reading and writing
data. This class provides a stream interface to easily read and write data to a disk file. Let’s
look at an example.

If you were writing a program that logged messages to a log file, you most likely would be
logging (writing out) one text line of information at a time. You would write the code to
place each string in the file byte-by-byte, and ensure that the proper carriage return was
added to each text line as it was written. Then, when you wanted to read the log file with a
program, you would have to create the code to read the file byte-by-byte. As the file was
read, you would have to know that each log file entry ended with the carriage return and that
a new entry would start. Each byte read would have to be examined to determine if it was a
carriage return.

Instead of this tedious process, you can take advantage of the FileStream class, along with
the StreamWriter class, to easily write and read lines of text in a log file. Listing 1.6 shows a
sample program that uses streams to simplify file access.

➲ Listing 1.6 Sample log writing program TestLog.cs

using System;
using System.IO;

class TestLog
{

public static void Main ()
{

string logFile = “LOGFILE.TXT”;

FileStream fs = new FileStream(logFile,

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 34

35

FileMode.OpenOrCreate, FileAccess.ReadWrite);

StreamWriter sw = new StreamWriter(fs);
StreamReader sr = new StreamReader(fs);

sw.WriteLine(“First log entry”);
sw.WriteLine(“Second log entry”);

while(sr.Peek() > -1)
{

Console.WriteLine(sr.ReadLine());
}

sw.Close();
sr.Close();
fs.Close();

}
}

Take note of the following things in this example:

● The FileStream object can be used for both reading data from and writing data to the
stream.

● Both the StreamReader and StreamWriter objects reference the same FileStream, but
they perform different functions.

● Each stream object has its own pointer in the stream. After the StreamWriter object
inserts two new lines in its stream, the StreamReader object reads the first object in its
stream, which is the first line in the file.

● Each stream opened must be explicitly closed, including the base FileStream object.
Many novice programmers forget to close the base stream and inadvertently leave it
hanging.

The most common stream technique is to create two separate streams for reading and
writing:

StreamWriter sw = new StreamWriter(fs);
StreamReader sr = new StreamReader(fs);

This enables you to have complete control over data access to and from the stream using
separate streams.

One thing this program doesn’t do is error checking on the file open attempt. If the pro-
gram is not able to open the log file, it will produce an ugly error message to the user. The
next section shows how you can gracefully handle error conditions within C# programs.

C# Features

4176ch01.qxd 10/13/04 3:13 PM Page 35

36

C# Exception Programming
One of the biggest problems for programmers is dealing with abnormal conditions in a pro-
gram. Inexperienced programmers often forget to compensate for error conditions such as
dividing by zero. This results in ugly and annoying error messages and programs blowing
up in customers’ faces. To ensure that your code is user-friendly, try to compensate for most
types of error conditions. Such error conditions, or other unexpected behavior occurring
when a program executes, are called exceptions. Listing 1.7 shows an example.

➲ Listing 1.7 The BadError.cs program

using System;

class BadError
{

public static void Main ()
{

int var1 = 1000, var2 = 0, var3;

var3 = var1 / var2;
Console.WriteLine(“The result is: {0}”, var3);

}
}

As you can see, this program is doomed from the start. The arithmetic function in line 9
is destined for disaster because of a divide-by-zero error. Compile and run this example and
watch what happens:

C:\>csc BadError.cs
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

C:\>BadError

Unhandled Exception: System.DivideByZeroException: Attempted to divide by zero.
at BadError.Main()

C:\>

The csc compiler had no problem compiling this code. It was oblivious to the impending
error. When the program runs, a pop-up window indicates that an error occurred and asks
you if you want to debug the application. This is exactly the kind of thing you do not want
your customers to see. After clicking the OK button, the text error message is produced on
the console, indicating the error that was encountered. The program halts at the line of code
that produced the error, and no other lines are executed.

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 36

37

C# helps programmers code for exceptions by providing a way to watch and capture excep-
tions as they occur. By catching exceptions, programmers can efficiently provide for readable
error messages and the continuation of the program, or they can stop the program gracefully
if necessary. In C#, the try-catch block accomplishes this.

The try-catch block tries to execute one or more statements. If any of the statements
generates an exception, the catch block of code is executed instead of the program stopping.
Depending on what you include in the catch block, the program can either be terminated
gracefully, or allowed to continue as if nothing were wrong. Here is the format of a try-catch
block:

try
{

// one or more lines of code
}
catch ()
{

// one or more lines of code to execute if an error
}
finally
{

// one or more lines of code to execute at all times
}

The statements in the try block are executed as normal within the course of the program.
If an error condition occurs within the try block, program execution moves to the catch block.
After the code in the catch block is executed, control passes back to the main program state-
ments that follow the try-catch block, as if no error had occurred (unless of course the code
in the catch block stops or redirects the program execution).

Optionally, you can add a finally block, which will be executed after the try or the catch
blocks are finished. Sometimes the finally block is used for clean-up functions that must run
whether the functions succeed or fail; most often, however, finally is not used.

NOTE Notice the parentheses in the catch statement. This is a filter, allowing you to define what
types of exceptions you want to attempt to catch. You can define a specific exception to
watch for, depending on the type of actions being done in the try block; or you can define
the generic Exception class, which will catch any exception that occurs. You can even
define more than one catch block. Catch blocks are evaluated in order, so specific excep-
tions must be listed before general ones.

Listing 1.8 shows an example of a simple try-catch block.

C# Features

4176ch01.qxd 10/13/04 3:13 PM Page 37

38

➲ Listing 1.8 The CatchError.cs program

using System;

class CatchError
{

public static void Main ()
{

int var1 = 1000, var2 = 0, var3;

try
{

var3 = var1 / var2;
}
catch (ArithmeticException e)
{

Console.WriteLine(“Exception: {0}”,
e.ToString());

var3 = -1;
}
catch (Exception e)
{

Console.WriteLine(“Exception: {0}”,
e.ToString());

var3 = -2;
}
Console.WriteLine(“The result is: {0}”, var3);

}
}

In CatchError, the original program is modified by adding a try-catch block. There are
two catch statements: one to watch specifically for ArithmeticExceptions, and one to watch
for any general Exception. Notice that the specific ArithmeticException was listed first,
otherwise the general Exception block would handle all of the exceptions before the more
detailed exception appeared. Also note that the catch blocks set a value for the result variable
that can then be checked later on in the program. The result of this program is as follows:

C:\>csc CatchError.cs
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

C:\>CatchError
Exception: System.DivideByZeroException: Attempted to divide by zero.

at CatchError.Main()
The result is: -1

C:\>

Chapter 1 • The C# Language

4176ch01.qxd 10/13/04 3:13 PM Page 38

39

The try-catch block gracefully catches the arithmetic exception, displays the error
as instructed in the catch block, and sets the variable to a special value that can later be
checked in the program logic.

NOTE Network functions are frequently used within try-catch blocks. In network programming,
it is often impossible to determine whether an action will succeed. For example, packets
sent out on the network may not get to their intended destination because of a down
router or destination host. Instead of the program blowing up because of an unexpected
network issue, the problem can be reported to the user.

Summary
The Microsoft .NET technology supplies an excellent programming environment for net-
work programmers. The C# programming language allows programmers to easily prototype
applications in a short amount of time and lets them design robust network applications that
take advantage of the Windows networking features.

Creating a C# development environment is easy with the two comprehensive Microsoft
Visual .NET products or the new .NET Framework SDK package. All three environments
include compilers and debuggers for creating C# application programs.

The C# language also offers many features that smooth the way for programmers writing
network applications. For instance, using the StringBuilder class instead of creating and
modifying string objects may save your application some performance time. Also, putting
streams to work in network programming can simplify handling of data into and out of the
network transport. Using exceptions in your programs can make your applications look more
professional and save your customers lots of grief.

This chapter discussed the basics of the C# language, and you’ll find more basics in Chapter 3.
There we’ll get into the specific C# classes used for network programming. With the addition
of network programming helper classes, C# makes network programming a snap. First, though,
Chapter 2 presents a helpful review of IP programming fundamentals.

Summary

4176ch01.qxd 10/13/04 3:13 PM Page 39

4176ch01.qxd 10/13/04 3:13 PM Page 40

