
P A R T 1

Technology
CHAPTER ONE: Understanding Structured Markup

CHAPTER TWO: Learning CSS Theory

CHAPTER THREE: Writing CSS

CSS is emerging as the true language of web design. Being

a great web designer means being fluent in the language,

especially as we embark on a time where web browsers can

more effectively bring to life the power and elegance of CSS.

With CSS, we can bridge the gap between science and

art. To create a sophisticated web page means to under-

stand the visual and also to understand how the visual is

created through the technology.

To learn and use CSS effectively, you must have an

understanding of the underlying technical structure of

both web markup and CSS itself. To that end, the follow-

ing chapters focus on demonstrating structured markup,

how CSS integrates with markup, and how CSS works

as a language to enable you to express innovative and

progressive ideas through your work.

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

on
e

C H A P T E R

One cannot help but be in awe
when he contemplates the mysteries
of eternity, of life, of the marvelous
structure of reality.

—Albert Einstein

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 2

Understanding
Structured Markup

Just as a schooled artist must study anatomy, so must a web designer study the
structures that are the infrastructure of a design. It is imperative for web designers
who want to write great CSS to understand how web markup has evolved, grown,
and changed. It’s also critical to have a detailed understanding of how markup
works if you want to achieve excellence when writing CSS.

To prepare for that excellence, you’ll learn about the historical emergence of markup
and the current need to return to a structure temporarily lost in the frenzy of web
design and development in the late ’90s. The web design profession has matured,
so best practices and standard methods are emerging to help us create very clean,
very powerful means of delivering great sites for use today and well into the future.

In this chapter you will learn:

• The significance of standards
• The meaning of structure
• Ideas central to markup
• In-depth information about HTML and XHTML
• How HTML and XHTML relate to CSS
• How to create structured HTML and XHTML documents

What Are Web Standards?
Chances are you fit into one of several categories when it comes to authoring documents.
You might be a person who uses a visual editor such as Microsoft FrontPage, Dreamweaver
MX, or Adobe GoLive exclusively, letting the visual environment guide the markup. Or,
you might be specifically a markup author, pounding out your tags and attributes in a text
editor such as Emacs, vi, Notepad, or SimpleText. Maybe you like to write your own docu-
ments but prefer working with an HTML-style editor such as HomeSite or BBEdit.

As with more and more web professionals, a hybrid methodology may exist for you:
you might work using a visual editor and do some hand-authoring, too.

No matter your method, you probably know something about HTML, even if you’ve
learned it by viewing source or reading books and have never studied it formally. And, while
you might have heard the term web standards, it’s not a very clear term and may have con-
fused you as to what it means and why it’s important.

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 3

The term web standard is a confusing one not just because it’s inaccurate, but because
it also suggests conformity. I use the term to refer to what is actually a series of specifications
and recommendations created by the World Wide Web Consortium (W3C). The W3C is
not an authoritative standards body per se. They’re not going to drop by your office and
give you a ticket for noncompliance. The primary functions of the W3C are to research,
develop, and publish information on technologies and activities related to the Web (see
Table 1.1).

Table 1.1: A Sample of Technologies and Activities of the W3C

Technology or Activity Purpose

Accessibility To ensure documents are accessible to all people

Cascading Style Sheets (CSS) To provide a style language for presentation of documents

Document Object Model (DOM) To provide consistent object models within browsers

Hypertext Markup Language (HTML) To author web documents

Internationalization To facilitate proper encoding and display of multilingual
and international documents

Synchronized Multimedia Integration An XML-based language to facilitate multimedia
Language (SMIL) synchronization: video, audio, text

Scalable Vector Graphics (SVG) An XML-based language to facilitate scalable vector-
based graphics and animation

Extensible Hypertext Markup To author documents for the web and alternative devices
Language (XHTML)

Extensible Markup Language (XML) To provide a universal format for structured documents
and data

For more specific information related to these technologies, as well as descriptions of the many other issues the W3C concerns
itself with, visit www.w3.org/.

When you design your website, no matter which method you use, you are working in
part with W3C technologies. And, while the W3C is not an authoritative organization that
you must follow, it certainly provides a base from which designers can learn consistent and
intelligent practices.

Following a W3C specification—a web standard—does not mean that design options
are limited. I suggest the opposite. Innovation requires intermittent periods of stability and
chaos. Currently, we are in a transitional time as web professionals. We’re trying to make
sense out of the chaos of the past years and achieve some stability in our designs, tools, and
methods. It makes sense: we’re looking to find some conventions to make our jobs easier.

Building the next level of the Web’s infrastructure as cleanly as possible provides the
matrix for new levels of innovation. I think people are sensing this, and this is why many
people are starting to get interested in standards. Web professionals are starting to realize
it’s a cool—and necessary—thing to pay attention to in order to keep the technology moving
forward in a mature way.

A standards-based site also does not suggest that the site will be unattractive, use
text-only, or have few visual elements. In fact, this book exists in part to prove that standards-
based sites can not only be attractive, but also downright innovative.

4 c h a p t e r 1 ■ Understanding Structured Markup

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 4

Back to the Future
Most readers are aware of HTML, and many are also aware of its successor in web
markup, XHTML.

But where did these languages come from, and how come we’re going through such
a radical shift in the way we as designers and developers work?

Let’s begin with the Standardized General Markup Language (SGML). It is what is
known as a meta-language. SGML is essentially a massive document type definition (DTD)
used to create other markup languages.

DTDs are plain-text documents that describe the elements, attributes, and
other allowed components of a given markup language such as HTML or
XHTML, along with its version and type, such as HTML 4.01 Strict. You’ll read
more about these distinctions and how they influence your design options later
in this chapter.

HTML is derived from SGML. The early
use of HTML led to some great and innovative
approaches, bending the language to allow for
increasingly more complex visual sites. The
best—and most problematic—example of this is
HTML tables, which were originally added to
HTML to manage data tables more effectively
than the preformatted text element pre. By turn-
ing off table borders, suddenly a de facto grid
system for laying out even the most popular site
content was born, as you can see in Figure 1.1.
As the example shows, the primary site design
method became tables.

As the examples show, the primary site
design method became tables. But tables were
problematic for several reasons, including:

• Tables, especially when particularly com-
plex or deeply nested, create overhead in
terms of size and speed.

• Complex tables can be difficult to manage,
especially across web teams.

• Tables of this nature are often inaccessible
to those with visual or mobility-related
impairments.

Other problems came to the forefront as
various browsers introduced proprietary markup
not related to work being done at the W3C. The
so-called “browser wars” began in the early
1990s and still exist to a large degree. Browser
manufacturers sometimes let corporate agendas
get in the way of the greater good. The irony is

■ What Are Web Standards? 5

Figure 1.1: eBay’s Home Page with all table
borders turned on

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 5

that the browser manufacturers were (and are now still) members of working groups for
standards and yet continue to only slowly implement W3C recommendations while aggres-
sively trying out new technologies in an effort to dominate the browser space.

Not all aspects of the browser wars was bad. In fact, early on, this competition allowed
for a time of great innovation. Everyone broke rules: designers, developers, browser and
tools vendors. It was an important exercise. However, now the time has come to clean up
our practices if we want to move forward in the expanding potential of the web and create
a strong, next-level infrastructure.

While these difficult issues in HTML and browser support were being examined,
Extensible Markup Language (XML) was coming to light. XML, also derived from SGML,
is a more streamlined meta-language that is especially useful for sharing documents and
information on the Internet and related networks.

HTML was re-evaluated in the context of XML—with its emphasis on rigor, confor-
mance, and extensibility. This evaluation resulted in the publication of a new markup
language, XHTML 1. Introduced in January 2000, XHTML 1 officially replaced HTML
4.01 as the most contemporary available specification. XHTML is now in its 1.1 version,
with version 2 on the horizon.

Just because a specification is currently recommended does not necessarily
mean it is the specification with which you must work. In other words, it’s
perfectly acceptable to be writing HTML 4.01 instead of XHTML 1.1. The goal
is to know the specifications well enough to be able to make decisions about
which method will work best for your circumstances.

XHTML is considered by the W3C as a reformulation of HTML as an XML applica-
tion. XHTML at its most basic is HTML vocabulary in a well-structured XML document.
At its most complex, XHTML is extensible and customizable. You’ll read more about this
and see examples as you read further in the chapter.

But Why Standards?
So why should you follow standards? A lot of people say, “Hey, I can use nonstandard
markup that works just fine.”

There are several reasons why understanding and following standards makes sense.
Here are a few:

• You will save time. If your documents follow standards, you achieve a level of efficient
work practices. Troubleshooting becomes easier because of document consistency.
Team members will work more efficiently in an environment where documents follow
structure and logic.

• Saving time means saving money. If you are able to save time by ensuring that your
documents are standards compliant, stable, and use CSS for style, you will be able to
both profit from the process and pass the resulting savings on to your clients.

• You’ll reduce complicated pages so browsers will interpret and display a page quickly
and accessibility concerns will be addressed. This means a happier end user.

• You’ll have better job opportunities. If you are still creating web pages in a visual editor
without understanding the underlying markup and have not spent any time studying
standards, you are restricting yourself in terms of advancement within the profession.

6 c h a p t e r 1 ■ Understanding Structured Markup

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 6

• You will become part of the solution, not the problem, as the infrastructure of the
web becomes increasingly more complex.

• Standards set the stage for extending content beyond the limits of the Web to wireless
devices such as smart phones, pagers, and PDAs; alternative devices such as MSNTV
(formerly WebTV); and a range of devices yet to come.

To sum up, early case studies suggest that compliance probably saves money for everyone
in the website food chain—from site owner to developer to ISP. Those are the immediate advan-
tages. Longer term, working with standards addresses many technical, creative, and even social
concerns. Technically, websites will be more easily maintained and also readily available for
many platforms beyond the Web. Creatively, you can apply style sheets that will easily make a
site look good on a computer screen, on a PDA screen, even in print. Socially, you remove bar-
riers to access by cleaning up your hacked markup and paying attention to accessibility concerns.

Making a Case for Standards: The Web Standards Project
One of the difficulties of becoming familiar with standards is that the W3C tends to focus on the
development and creation of technologies rather than the dissemination of educational material
related to their work.

The documents at the W3C are often prohibitive for busy people who don’t want to read
through the minutia—much less translate clumsy academic writing into useful guidance. The need
for more interesting documentation is currently being addressed by the W3C, which has several
committees that are working to make their findings more readily understandable and available to
the public at large.

In a desire to see the long-term benefits of standards be implemented by browsers, software
developers, and designers and developers themselves, a grassroots, volunteer-driven organization
called The Web Standards Project emerged. Members of The WaSP (as most people refer to it)
work to evangelize standards and educate others about them. The group has recently expanded
to include educational initiatives, and its website is an example of an attractive, usable site that
adheres to W3C standards and professionally acquired best practices.

The WaSP, however, is a truly independent organization. While understanding the long-term
benefits that W3C work does, WaSP members have (and will continue if necessary) to openly
criticized certain activities of the W3C. Part of The WaSP mission is to encourage the W3C to live
up to its potential.

For more information about The WaSP and its activities, see www.webstandards.org/.

Exploring HTML Concepts
By the time HTML 4 emerged in 1998 as the recommended specification for web markup,
a rigorous evaluation had been given to the state of affairs occurring with browsers and
language. With HTML 4 came several directives that have shaped the languages that have
since evolved and the practices related to those languages. The most critical concerns voiced
when HTML 4 was introduced include the following:

• The need to separate document structure and style in order to return documents to
a more accessible, cross-platform state. As CSS Level 1 had been completed in 1996,
this was a means of encouraging designers and developers to use CSS.

• A desire to improve document rendering.
• A highly motivated need to encourage the authoring of accessible documents.
• The need to encourage web professionals, web development tools manufacturers, and

browser developers to adhere to a common base of guidelines.

■ What Are Web Standards? 7

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 7

8 c h a p t e r 1 ■ Understanding Structured Markup

These critical concepts have followed through to the final version of HTML—HTML
4.01—and beyond, into XHTML.

HTML 4.01 contains only minor editorial changes from HTML 4. It is canoni-
cally important, however, because the HTML 4.01 DTDs were used as the basis
for XHTML 1. As this discussion progresses, you’ll see examples of HTML 4.01.
Most people authoring to standards (and using HTML) use an HTML 4.01 DTD.

The following sections will provide deeper insight into the concerns that HTML 4
raised; this will help you gain a more profound appreciation for how these ideas have influ-
enced the growing interest in using CSS.

Separation of Document Structure and Style
One of HTML 4’s prime directives is to separate document formatting from the presenta-
tion of that document. This is a critical issue, because most of the HTML in use today is
misused—it’s filled with errors that provide endless problems and make accessibility, docu-
ment rendering speed, and cross-browser consistency nightmarish to achieve.

What Is Document Structure?
For the purposes of this book, document structure for the purposes of this book is the
skeletal structure of a Web document. This skeletal structure includes:

• A DOCTYPE declaration
• An html element
• A head with title
• A document body
• Structural elements only, used in a logical manner for managing content. In this cate-

gory you’ll find such things as headings (h1, h2, h3, h4, h5, h6), paragraphs and breaks
(p, br), and lists (ul, ol, dl).

A DOCTYPE declaration defines the document type and DTD version. DOCTYPE
declarations appear at the top of a structured document. These declarations
are described in detail in the “Learning About Document Type Definitions”
section later in this chapter.

A structured document results in a tree. Listing 1.1 shows a valid HTML 4 document
with the required structural components and some content marked up with basic elements.

Listing 1.1: An HTML 4 Document with Basic Structure

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0//EN”
“http://www.w3.org/TR/REC-html40/strict.dtd”>

<html>
<head>

<title>Working with Structure</title>

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 8

</head>

<body>

<h1>Welcome</h1>

<p>Welcome to the site where structure matters!</p>

<h2>Getting Into Structure</h2>

<p>In order to begin working with structure, you need to be aware of:</p>

DOCTYPE declarations
Properly structured head and body components
Logical structures for content markup

</body>
</html>

Figure 1.2 demonstrates the document tree that results from Listing 1.1. Document
trees become especially important when working with CSS because of the concept of inheri-
tance—which means style features defined for an element will pass to its children—and how
elements are related to one another, influencing the way your style sheets will be interpreted.

Documents are broken down into a document root (typically the html element) and
any child relationships (the head and body are children to the root, and the body has four
children, h1, h2, p, and ul). Finally, there are the leaf nodes: the three bullet items denoted
by the li element. Each li element is, of course, a child to the ul element.

The concept of inheritance is explored in depth in Chapter 2, “Learning CSS
Theory.”

Figure 1.2: Document tree
with parent, child, and leaf
nodes

■ What Are Web Standards? 9

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 9

Document Presentation
Presentation mostly refers to anything that involves visual details. Examples of presentation
include the following:

• Color (see Figure 1.3)
• Text formatting and typographic design (see Figure 1.4)
• Background graphics (see Figure 1.5)
• Borders, padding, spacing (see Figure 1.6)
• Layout of pages (see Figure 1.7)

Figure 1.4: The range of
fonts, colors, and sizes in
this image are generated
by HTML.

Figure 1.3: The colors in
this page are all generated
using HTML color attributes.

10 c h a p t e r 1 ■ Understanding Structured Markup

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 10

Figure 1.7: This site uses
tables rather than CSS for
layout, a common current
practice.

Figure 1.6: HTML defines
the borders, padding, and
spacing of page elements.

Figure 1.5: This early web
page still looks great
because of its background.

■ What Are Web Standards? 11

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 11

HTML 4 was the first HTML version to formally recommend that in its most idealistic
expression, authors should leave the HTML document empty of presentational detail and
address presentational concerns using—you guessed it—Cascading Style Sheets (CSS).

One of the greatest features of CSS is that their presentation methods go
beyond the screen. You can prepare style sheets so documents can be styled for
many types of media, including print, aural devices, PDAs, and cell phones.

Improving Accessibility and Document Rendering
Originally, HTML was designed to be a language that could be easily and readily distributed
across various platforms and read by anyone, regardless of their software. But innovation
and competition within the browser sector quickly changed that reality. With Microsoft and
Netscape Communications Corp. rushing hither and yon to create the coolest technology
on the block, the consistency of HTML’s semantic structure was disrupted when new,
browser-based tags and attributes emerged—many unsupported by competing browsers.
Most of these tags and attributes had to do with presentation or visual design, including
Netscape’s renowned blink tag and the dreaded Microsoft IE marquee tag (Figure 1.8).

Figure 1.8: IE’s marquee tag—not only proprietary, but annoying, too.

12 c h a p t e r 1 ■ Understanding Structured Markup

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 12

One of HTML 4’s goals was to bring organization back to HTML. A related goal was
to improve accessibility of documents. By using some new element and attribute options
within HTML 4, document authors and page designers could now help individuals under-
stand and negotiate pages no matter what their platform—or physical abilities.

Many people with impaired or no vision have tremendous difficulty accessing today’s
World Wide Web. This is largely because electronic screen readers that browse the screen
and read the content aloud are significantly more challenged by complex graphical pages.
However, with a little forethought, authors can make this process much easier. Individuals
with other physical limitations are also assisted by devices—and whether it’s a screen reader
or special keyboard, the methodologies that HTML 4 proposed to aid access have begun to
play a growing role in accessibility and improved rendering of documents.

Accessibility is becoming a hot topic due to recent legislation worldwide that certain
kinds of sites must be made accessible to all people, including those with disabilities. In the
United States, accessibility has become especially important for federal agency websites as
well as those sites created by anyone receiving federal contracts to fund their sites. This is
due to legislation regarding accessibility in the U.S.; specifically, it relates to a portion of
legislation known as Section 508.

To learn more about Section 508 and what it details, see www.section508.gov/.

The rendering of documents in a web browser can be improved by adhering to com-
mon practices. At its most strict, HTML 4 suggests that the author leave tables behind as a
means of presenting layout and instead use Cascading Style Sheets for the positioning of
objects on a page. The use of CSS in this way not only improves the rendering of docu-
ments within supporting browsers, but it also helps you address accessibility concerns by
ensuring that it is the structured document and its content, not the presentation of that con-
tent, that gets distributed to those accessing the pages using assistive methods.

The Web Accessibility Initiative (WAI)
The Web Accessibility Initiative (WAI) of the W3C is dedicated to promoting awareness worldwide
about accessibility. The WAI provides the following:

• Accessibility guidelines and tips
• Accessibility tests
• Accessibility validation options
• News on accessibility activities

To learn more about the WAI, see www.w3.org/WAI/.

Going Global
Just as access is important to those with disabilities, it is equally important to ensure that
multilingual, international, and localized sites can be developed.

To accommodate access for international users, the W3C makes a concerted effort in
HTML 4 and beyond to address international issues for authors, user agents, and develop-
ment tools.

■ What Are Web Standards? 13

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 13

Current areas of activity include the following:

• Increasing awareness among web and browser developers regarding international
access issues

• Stressing the importance of Unicode as a mechanism for character encoding
• Creating study groups within the W3C to look at details of international concerns

The importance of internationalization is easily seen with a visit to any multi-lingual
website. If you’d like to see a variety of international sites, check out the BBC’s international
websites, each written and displayed in a different language, www.bbc.co.uk/.

For more information on internationalization concerns, visit www.w3.org/
International/.

Learning About Document Type Definitions
Another piece of the puzzle that HTML 4 provided was a means by which web designers
could move away from the haphazard practices of yesterday and embrace the longer-term
ideals of standards. This came about with the creation of three distinct DTDs within
HTML 4. Each of these definitions contains specific information about which elements and
attributes are available in HTML and how they could be used, depending upon the goals
of the designer.

A DTD is a plain-text document that contains rules about the way a given language
works. In the case of HTML, the DTDs are publicly available at the W3C. Figure 1.9
shows a portion of a W3C DTD viewed within a web browser.

Figure 1.9: A portion of the HTML 4.01 Transitional DTD as seen in the Opera browser

14 c h a p t e r 1 ■ Understanding Structured Markup

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 14

The Three Flavors of DTDs in HTML 4.0/4.01
Three types of DTDs, referred to as interpretations, were first defined in HTML 4 and later
influenced HTML 4.01 and XHTML 1. These DTD interpretations are as follows:

Strict The Strict DTD is the most optimistic of the three, with almost all presentational
elements and attributes completely unavailable to use if you want a valid document.
(See the next section, “Compliance and Validation.”) The recommended means of
addressing presentation at this level is, of course, CSS.

Transitional Also referred to as “loose,” this DTD was developed with the understand-
ing that CSS was not then (and is still not now) completely available in all cases. The
Transitional DTD allows for simple presentational elements and attributes, including
even those that had been deprecated in favor of a better technology, such as the font
element (note that this is even true in the XHTML 1 Transitional DTD). Ideally, doc-
ument authors choosing a Transitional DTD understand that they are working
toward the goals the Strict DTD embodies. To that end, while you can use deprecated
elements in a Transitional DTD, you are not particularly encouraged to do so.

Frameset The Frameset DTD is specific to the creation of framesets, which as most
readers are aware, is a different type of document from a conventional HTML page.
Framesets can be considered the control documents that restructure a browser’s inter-
face and give the designer control over how to do that. The Frameset DTD only includes
information for frameset documents, so the only time you will use a Frameset DTD
is when you are creating a frameset. Conventional pages within your frames can be
marked up using any HTML language, version, and DTD.

No doubt you’re wondering how DTDs influence the way a document is read by
browsers. The truth is that only recently did the inclusion of a DOCTYPE citing a specific
DTD influence the way a given browser interpreted a document. (See the “DOCTYPE
Switching” sidebar later in this chapter.) For the most part, if you include something non-
standard in a document, the browser’s going to display it if it knows the markup you’re
using. Following a DTD means following the language’s rules, and this relates mostly to
the creation of compliant and valid documents.

Compliance and Validation
Two key concepts when working with web standards include compliance and validation:

• A compliant document is one that conforms to the DTD that is referenced by its
DOCTYPE.

• A valid document is one that is tested for compliance using a validator such as that
provided by the W3C, http://validator.w3.org/.

With any application, bugs exist. So it is with validators, too. For a helpful
guide on commonly encountered validation problems, see “Liberty! Equality!
Validity!” at http://devedge.netscape.com/viewsource/2001/validate/.

There have been some arguments about the usefulness of validation. I consider valida-
tion to be an important process when working seriously with HTML, XHTML, and CSS.
Validation aids in education by providing warnings and errors regarding document compliance.

■ Learning About Document Type Definitions 15

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 15

The only consideration is that validation errors can be as confusing as grammar rules in a
Microsoft Word document! You have to learn a bit of process when it comes to troubleshooting.

You’ll step through the validation process with HTML and XHTML in this
chapter, and you will learn to validate CSS later in the book. Interestingly, the
W3C validator is the most used service of the W3C.

Comparing DTDs in HTML 4
A good way to learn a bit about the way DTDs work is to compare portions of them with
each other. In this case, first examine the DTD portion in Listing 1.2.

Listing 1.2: Excerpt from HTML 4.01 Strict DTD—Paragraphs

<!-—========= Paragraphs =========—->

<!ELEMENT P - O (%inline;)* -— paragraph —->
<!ATTLIST P
%attrs; —- %ccoorreeaattttrrss, %%ii1188nn, %%eevveennttss -—
>

Notice how this DTD portion shows how paragraphs are handled in HTML 4.01
Strict. The only attributes allowed are core attributes (%coreattrs) needed for style, scripting,
and accessibility (id, class, style, title); internationalization attributes (%il8n) required
for internationalization (lang, dir); and event attributes (%events), used for scripting as
well (onclick, onmouseup, etc.).

Now examine Listing 1.3, which describes how paragraphs are handled in HTML
4.01 Transitional.

Listing 1.3: Excerpt from HTML 4.01 Transitional DTD—Paragraphs

<!-—========= Paragraphs =========—->

<!ELEMENT P - O (%inline;)* -— paragraph —->
<!ATTLIST P
%attrs; -— %%ccoorreeaattttrrss, %%ii1188nn, events —-
%align; -— aalliiggnn, tteexxtt aalliiggnnmmeenntt —-
>

The attributes in this DTD are a bit different. You’ll notice that the align category of
attributes is included as well (align=x where x is left, right, center or justify). Alignment
isn’t allowed in the Strict DTD because of the idea that presentation should be separated
from the document structure and its content.

The HTML 4.01 Strict DTD can be found at www.w3.org/TR/html401/sgml/
dtd.html. The HTML 4.01 Transitional DTD is available at www.w3.org/TR/
html401/sgml/loosedtd.html. All of the DTDs in this chapter are public and
online at the W3C website, www.w3.org/.

16 c h a p t e r 1 ■ Understanding Structured Markup

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 16

Enter XHTML
XHTML 1 is, again, the rewrite of HTML as an XML application. The primary concepts
in HTML 4—especially the separation of document structure from presentation and issues
concerning accessibility and internationalization—remain intact in XHTML 1. What’s
more, the three DTD offerings (Strict, Transitional, and Frameset), originally from HTML
4 and later refined by HTML 4.01, are essentially the same DTDs in XHTML 1.

Despite these similarities, there are quite a few differences of great importance from
both theoretic and semantic standpoints.

XHTML in Theory
XML brings several important ideas and incentives to web designers and developers
through XHTML:

Reintroduce structure back into the language Picking up on the SGML and XML
idea that documents should be written in conformance with the rules set out within
the languages, XHTML makes it clear to authors that structural and semantic rules
should be adhered to and must be adhered to in order to create compliant pages.

Provide designers with incentives to validate documents Validation carries with it
some controversy, but it’s a powerful learning tool that helps you find your mistakes,
fix them, and in the process, understand the way a specific DTD works. Validation,
therefore, is an encouraged practice.

Accommodating new devices Part of the drive to accommodate XML in the web
development environment has to do with the interest of delivering web-based content
to other devices such as PDAs, cell phones, pagers, set-top boxes, WebTV (now
known as MSNTV), and even television.

With XHTML 1.1, the concept of separation of structure and presentation is com-
plete. XHTML 1.1 has only one public DTD, based on the Strict DTD in XHTML 1. Web
authors also have the option to work with modularization.

Modularization breaks HTML down into discrete modules such as text, images,
tables, frames, forms, and so forth. The author can choose which modules they want to use
and then write a DTD combining those modules into a unique application.

This is the first time you really see the extensibility introduced by XML at work: instead
of having only the public DTDs to choose from, authors can create their own applications.

An overview of XHTML modularization can be found at www.w3.org/MarkUp/
modularization. The actual XHTML 1.1 recommendation is at www.w3.org/
TR/xhtml11/. Modularization is a fascinating and rather dramatic change to
the way we approach pages, but it is beyond the scope of this book to cover it
in detail.

Semantic Changes from HTML
In practice, XHTML works a bit differently from HTML. XHTML is much more rigorous
than HTML and demands close attention to details.

■ Enter XHTML 17

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 17

• It is recommended but not required that an XHTML 1 document be declared as an
XML document using an XML declaration.

• It is required that an XHTML 1 document contain a DOCTYPE that denotes that it is
an XHTML 1 document and also denotes the DTD being used by that document.

• An XHTML 1 document has a root element of html. The opening tag of the html
element should contain the XML namespace xmlns and the appropriate value for the
namespace.

• The syntax and structure of the document must follow the syntactical rules of
XHTML.

XML Prolog, DOCTYPE Declaration, and Namespace
An XHTML document may contain several structural elements to be considered correct.

The XML Prolog
The XML Prolog is a declaration that can appear above your DOCTYPE declaration. The
prolog is recommended but not required. Part of the reason it is not required is that some
browsers (including IE 4.5 for Mac, IE 6 for Windows, and Netscape 4 for Windows) will
display XHTML pages inappropriately if it is used.

So, most XHTML 1 authors interested in the best interoperability leave it out.
However, because the encoding information is important in many instances—particularly
when working with international documents—if you don’t use the XML declaration, you
are encouraged to be sure encoding is set on your server or in a meta tag. Here’s an example
of the XML prolog, which states the XML version of the document as well as the docu-
ment’s encoding:

<?xml version=”1.0” encoding=”UTF-8”?>

The DOCTYPE Declaration
There are only three DTDs available in XHTML 1: Strict, Transitional, and Frameset, all
carrying over with some minor differences from HTML 4.01. The DOCTYPE declaration declares
the language version, interpretation, and location of the related DTD.

The way a DOCTYPE declaration is written is important for the reasons described in
this DOCTYPE Switching sidebar. The following shows the available DOCTYPE declarations
for HTML 4.01, XHTML 1.0, and XHTML 1.1, as they should be written.

HTML 4.01 Strict

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

HTML 4.01 Transitional

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>

HTML 4.01 Frameset

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”
“http://www.w3.org/TR/html4/frameset.dtd”>

XHTML 1.0 Strict

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

18 c h a p t e r 1 ■ Understanding Structured Markup

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 18

XHTML 1.0 Transitional

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

XHTML 1.0 Frameset

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

XHTML 1.1

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

DOCTYPE Switching
In many recent browsers, an implementation for managing standard versus nonstandard markup
has emerged. Browsers with this feature, referred to as DOCTYPE Switching, will behave in differ-
ent ways depending upon the DTD that is declared in your document, or if in fact the DTD is
declared at all.

This behavior involves switching modes to best represent standard versus nonstandard markup.
The two modes are quirks mode, which behaves just as any legacy browser would, and strict rendering
mode, which follows the standard.

Those pages containing older or transitional HTML DOCTYPEs or no DOCTYPE at all are
displayed using quirks mode. Documents with correct Strict or XHTML DOCTYPEs use strict
rendering mode.

This switching becomes more important as you delve into CSS, because certain rendering
modes create different results. I’ll point these concerns out as you move through the CSS chap-
ters in the next part of the book.

A switching table created by Eric A. Meyer (technical editor of this book) can be found at
www.meyerweb.com/eric/dom/dtype/dtype-grid.html. Another table, by Matthias Gutfeldt, is
available at http://gutfeldt.ch/matthias/articles/doctypeswitch/table.html. This table shows
how various browsers will relate to given DOCTYPE declarations.

The XML Namespace for XHTML
An XML namespace is a collection of unique element and attribute names. In XHTML, the
namespace points to the related document at the W3C. The namespace is placed in the root
element of the document tree, html:

<html xmlns=”http://www.w3.org/1999/xhtml”>

XHTML Syntax
Once an XHTML document contains the necessary declarations and basic structural infor-
mation, you can examine the syntax changes resulting from XML’s influences on web
markup, including:

• Heavy focus on logical markup
• Case sensitivity
• Well-formed syntax
• Specific management of empty and non-empty elements
• Quotation requirements
• Escaping of script characters
• Management of minimized attributes

■ Enter XHTML 19

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 19

Each of these changes brings a marked amount of rigor to your authoring practices.
Whether you end up using HTML or XHTML to mark up the documents you’ll be styling
with CSS, the knowledge of these practices will greatly influence your ability to write your
style sheets with equal logic and organization.

Logical Markup
It can’t be expressed enough that anyone wishing to learn CSS must understand the value
of logical markup. When you work with content, the proper use of headers, paragraphs,
breaks, lists, and so on should follow a sensible tree.

If you’ve ever wondered why an h1 is bigger than an h6 instead of the other way
around, consider that headers in a document are meant to be organized by level of topic
importance, like in an outline.

Let’s say you’ve got three important places to go today: Bank, Post Office, Grocery
Store. If you were creating a document tree out of those three topics, they would all be
level 1 headers. The main activities you want to do at each stop would comprise your level
2 headers, and so on.

Paragraphs of content should be structured properly, too. Other items, such as lists,
can easily organize information in a logical way. As you build your page, keep the tree con-
cept in mind because you can work off of the elements in your tree when creating your
style sheets—as you will see in many examples throughout the course of this book.

Using the Bank, Post Office, Grocery Store example, Listing 1.4 shows how this struc-
ture might pan out within a document.

Listing 1.4: Exploring the Logical Structure of Level 1 and 2 Headers

<h1>Bank</h1>
<p>Today I need to go to the bank.</p>
<h2>Cash Check</h2>
<p>My first order of the day is to cash my check.</p>
<h2>Transfer Funds</h2>
<p>I also need to transfer funds from one account to another. Once I’m done
with that, I can go to the post office.</p>

<h1>Post Office</h1>
<p>After the bank, I need to stop at the post office.</p>
<h2>Mail Packages</h2>
<p>I have three packages to mail.</p>
<h2>Buy Stamps</h2>
<p>I need to buy stamps, I’m always forgetting! Once done with the bank and
post office, I’m off to the grocery store.</p>

<h1>Grocery Store</h1>
<p>I have a few things to get at the grocery store.</p>
<h2> Salad Fixings</h2>
<p>Since it’s summer, all I want to eat are lots of fresh veggies.</p>
<h2>Wine</h2>
<p>I’m having company Friday night and need a few bottles of a decent
wine.</p>

20 c h a p t e r 1 ■ Understanding Structured Markup

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 20

Of course, you can go on to develop your markup to use additional headers. The
important lesson is tapping into using headers the way they were intended. The problem
prior to style sheets was that designers were limited to what the default display was of their
header (unless they also used a font tag and attributes to modify it). With CSS, the logic
can be restored to the page while the separate presentation rules can leave the customized
look of these components in your hands.

Figure 1.10 shows this sample page, unstyled. In Figure 1.11, I added a few simple
CSS styles for the headers.

Case Sensitivity
HTML is not case sensitive. This means that HTML elements and attributes names can be
in upper-, lower-, or mixed-case:

<body background=”my.gif”>
or
<BODY BACKGROUND=”my.gif”>
or even
<BoDy background=”my.gif”>

All of these examples mean the same thing in HTML.
On the other hand, XML is case sensitive. This means that XHTML is also case sensi-

tive. In XHTML 1, all elements and attribute names must be written in lowercase:
<body background=”my.gif”>

Attribute values, such as “my.gif”, can be in mixed case. This is especially impor-
tant in instances where the files are on servers with case-sensitive file systems.

Figure 1.11: The same document, styledFigure 1.10: Studying logical structure, unstyled

■ Enter XHTML 21

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 21

Well-Formed Syntax
Many HTML browsers are quite forgiving of HTML errors and many HTML tools don’t
conform to standards. As such, some web designers have either inadvertently created poorly
formed markup or learned bad habits.

The following example will work in many browsers:

<i>Welcome to MySite.Com</i>

It will display as both bold and italic in a forgiving browser. But, if you take a pencil
and draw an arc from the opening bold tag to its closing companion, and then from the
opening italic tag to its closing companion, you’ll see that the lines of the arcs intersect.
This demonstrates improper nesting of tags and is considered poorly formed.

In a conforming browser, assuming the content displayed at all, it would be
italic but not boldface.

In XHTML 1, such poorly formed markup is unacceptable because the potential
problems resulting from nonstandard methods are unacceptable. The concept of well-
formedness must be adhered to in that every element must nest appropriately. The XHTML
1 equivalent of the prior sample is as follows:

<i>Welcome to MySite.Com</i>

Draw the arcs now, and you’ll see that they do not intersect. These tags are placed in
the proper sequence and are considered to be well-formed.

Management of Non-Empty and Empty Elements
A non-empty element is one that contains an element and some content:

<p>This is the content within a non-empty element.</p>

An empty element is one that has no content, just the element and any allowed
attributes, such as hr, br, and img. XML says that empty and non-empty elements must
be properly terminated. In HTML, non-empty elements often have optional closing tags.

In HTML, I could write the paragraph above as follows:

<p>This is the content within a non-empty element.

This is considered correct. XHTML 1 demands that non-empty elements be properly
terminated with a closing tag, as in the first example.

Another example is the list item, li, element.
In HTML, you could have a list like this:

Bank
Post Office
Grocery Store

or like this:

Bank

22 c h a p t e r 1 ■ Understanding Structured Markup

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 22

Post Office
Grocery Store

In XHTML 1, only the latter method is allowed.
Empty elements work a bit differently. They are terminated in XML with what is

known as a trailing slash:

becomes:

Due to problems some browsers accustomed to interpreting HTML have with this

method, a workaround was introduced, adding a space before the slash: br /. You should
always use the space prior to the trailing slash in XHTML documents.

Here’s an XHTML example of the image element, which is an empty element:

Other empty elements of note are hr, meta, and link.

Quotation Rules
Quotation marks in HTML are arbitrary in that you can use or not use them around attrib-
ute values without running into too much trouble. There’s no rule that says that leaving
values unquoted is illegal. The following is perfectly acceptable in HTML:

<table border=0 width=”90%” cellpadding=10 cellspacing=”10”>

Despite the fact that some attribute values are quoted and others are not, browsers
will render this markup just fine. However, if you want to conform to XHTML 1, you’ll
have to quote all of your attribute values:

<table border=”0” width=”90%” cellpadding=”10” cellspacing=”10”>

You can never go wrong when you quote your attribute values in HTML, so get in
the practice of always quoting values!

Other Markup and Code Concerns in XHTML
There are two other important concerns of which to be aware when working with
XHTML:

Escaping certain characters in any inline script Let’s say you have a JavaScript within
your document. Any ampersand (&) must be escaped properly (that is, coded as an
entity, not input using the keyboard symbol) as & for that document to be valid.

No attribute minimization is allowed Attribute minimization is a phenomenon that
occurs in HTML, where an attribute is minimized to only the attribute name. An
example of this is the nowrap attribute. In HTML, the attribute name can stand alone,
with no value. However, in XHTML, minimization is not allowed—the attribute
name is its value. Therefore, to be valid in XHTML, the HTML nowrap attribute
must become nowrap=”nowrap”.

■ Enter XHTML 23

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 23

As you can see, none of these changes are monumental. A bit different, yes, but if you
begin to use XHTML, you’ll find that your markup is a lot more consistent. That consis-
tency is part of what makes XHTML so attractive—it provides a strong foundation upon
which to build future constructs as well as to help you and your team members manage
documents within a site more efficiently.

Creating Structured Documents
No doubt you’re itching to get your hands into the work and actually create a structured
document. You will now learn to create a structured HTML 4.01 document as well as an
XHTML 1 document.

Authoring a Structured HTML Document
Open your favorite web design tool. You can use anything you like as long as it allows you
to work by hand and, when you save your changes, your changes remain intact. You can
also use any plain text editor such as Notepad or SimpleText.

1. Begin with the DOCTYPE declaration. In this case, I’ve chosen HTML 4.01 Strict
because I don’t intend to have any presentational elements or attributes within the
document, just the structure and content:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

2. Add the root element. In this case, it will be html. Note that I’ve added both the
open and closing tags:

<html>

</html>

3. Within the html tags, add the head element, along with the title:

<head>
<title>Structured HTML Document</title>
</head>

4. Add the body element below the closing </head> tag:

<body>

</body>

Listing 1.5 shows a complete HTML 4.01 Strict Document that contains all the neces-
sary components to begin working with HTML 4.01.

Listing 1.5: A Conforming HTML 4.01 Strict Document Template

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

24 c h a p t e r 1 ■ Understanding Structured Markup

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 24

<title>Structured HTML Document</title>
</head>

<body>

</body>

</html>
Now that the necessary structural components are complete, you can add some con-

tent and structure according to the logical ideas described earlier in this chapter. Listing 1.6
shows my HTML 4.01 document with content. You can follow my lead, or be creative and
add your own content.

Be sure to use only structural markup when managing your content. Do not use
visual presentation such as color, alignment, text styles, and so on. If you aren’t
sure about something, you can either try to look it up within the DTD, or better
yet, wait till the end of this section, where you’ll walk through validation. If you’ve
got an error, the validator will let you know.

Listing 1.6: A Conforming HTML 4.01 Strict Document with Logical Styles

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
<title>Structured HTML Document</title>
</head>

<body>

<h1>weblog</h1>

<p>left turn
<h2>August 17, 2002</h2>

<p>Sitting at the light at Fort Lowell. I’m facing East waiting to take a
left turn onto Campbell. Boys in a car next to me, shirtless in the summer
heat. The driver is tall, built. I can smell their beer sweat from here,
hear hardcore music pound.

<p>Not meaning to, I find myself staring at the young boy in the passenger
seat. He looks like someone I once knew.

<p>He sees me looking. Suddenly, he comes up out of his seat in a leap of
ferocity. Or maybe, insanity. He throws himself across his friend, he’s
reaching out the window for me, screaming.

<p>The light turns green so his friend takes off and I turn left.

■ Creating Structured Documents 25

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 25

<hr>

</body>

</html>

Save the document, as you’ll be validating it in just a bit. Figure 1.12 shows the unstyled
page. In Figure 1.13, you can see my content here as viewed from within my website.

Creating a Structured XHTML Document
The process here is essentially the same, although there are specific differences as noted ear-
lier in terms of the XML Prolog and the XHTML syntax in use.

As with the prior exercise, open your favorite editor and begin a new document.

Figure 1.13: The styled
entry at Molly.Com

Figure 1.12:
Unstyled markup

26 c h a p t e r 1 ■ Understanding Structured Markup

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 26

1. This time, you’ll begin by adding the XML Prolog. Remember, this is recommended
but not required, and in most cases it’s best to leave it out of a document to avoid
browser rendering problems. However, here you’ll learn to include it.

<?xml version=”1.0” encoding=”UTF-8”?>

2. Now add the DOCTYPE declaration. In this case, I’ve chosen XHTML 1.1, which is
based on the XHTML 1 Strict DTD:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

3. Now, add the root element. Note that I’ve added both the open and closing tags:

<html>

</html>

4. Within the opening html tag, add the XML namespace for XHTML:

<html xmlns=”http://www.w3.org/1999/xhtml”>

5. Within the html tags, add the head element, along with the title:

<head>
<title>Structured XHTML Document</title>
</head>

6. Add the body element below the closing /head tag:

<body>

</body>

Save the document for validation. Listing 1.7 shows a complete XHTML 1.1 Strict
Document that contains all the necessary components to begin working with XHTML 1.1.

Listing 1.7: A Conforming XHTML 1.1 Document Template (with XML Prolog)

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Structured XHTML 1.1 Document</title>
</head>

<body>

</body>

</html>

■ Creating Structured Documents 27

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 27

Now I’m going to add the same content to this document that I did to the HTML
4.01 document, but I will modify the document to be in conformance with XHTML. In
this case, that means closing the non-empty paragraph elements and properly terminating
the horizontal rule in accordance with XHTML.

Listing 1.8 shows the results.

Listing 1.8: XHTML 1.1 Document with Content

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Structured XHTML 1.1 Document</title>
</head>

<body>

<h1>weblog</h1>

<p>left turn</p>
<h2>August 17, 2002</h2>

<p>Sitting at the light at Fort Lowell. I’m facing East waiting to take a
left turn onto Campbell. Boys in a car next to me, shirtless in the summer
heat. The driver is tall, built. I can smell their beer sweat from here,
hear hardcore music pound.</p>

<p>Not meaning to, I find myself staring at the young boy in the passenger
seat. He looks like someone I once knew.</p>

<p>He sees me looking. Suddenly, he comes up out of his seat in a leap of
ferocity. Or maybe, insanity. He throws himself across his friend, he’s
reaching out the window for me, screaming.</p>

<p>The light turns green so his friend takes off and I turn left.</p>

<hr />

</body>

</html>

Validating Your Documents
In this section, you’ll use the W3C validator to test your documents. First, you’ll test the HTML
document, then the XHTML document. Then, you’ll do some validation tests on your own.

28 c h a p t e r 1 ■ Understanding Structured Markup

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 28

Validating the Document
The W3C validator can validate a document online or by upload. To validate your docu-
ment online, you’ll first need to place it on a web server. To validate your document by
upload, be sure you know the name and location of the document.

Then, follow these steps:

1. Point your web browser to http://validator.w3.org/.
2. If you are validating an online document, enter the address of your document in the

Validate by URI address field. If you are uploading your file, click the Upload Files
link and add the file from your hard drive. Leave all the other options as they are.

3. Select the Validate This Page or Validate This Document button. The validator will
now compare your document to the DTD you described in the document.

First validate your HTML document, then repeat this step with your XHTML docu-
ment. You may find that the validator returns errors as well as warnings. An error is a
problem with the markup that must be fixed for the document to be valid. A warning pro-
vides you with information that might assist you in improving your document. Warnings
will not affect your document’s validity.

If any errors are reported, examine what they are, troubleshoot your document, make
any necessary changes, and revalidate until your document passes the validation test.

Encoding Warnings
If you are uploading files, you will generate a warning with the HTML example here regarding
proper encoding.

Encoding is ideally set on the server, so this error should not appear when you are validating
from an online source, assuming your server is properly configured.

Note that a warning of this nature does not interfere with your document’s validity; it’s simply
a means of alerting you to a potential problem.

Another means of adding encoding is to place the proper encoding information into a meta
tag. The document using the XML prolog should not generate this warning on upload or online
test because the prolog contains the encoding information. In this case, the encoding is the ISO
character set for Latin-1 characters.

<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1” />
Setting your encoding in a meta tag will ensure that you do not receive this warning.

Validating Other Documents
At this point it will serve you well to begin validating other documents that you have been
working on recently. Find a document that you know might be problematic (has font tags,
uses nested tables, uses proprietary browser tags—anything like that will do). Then, try
validating the document with a range of DTDs.

Next Steps
Now that you have a clear idea of the way markup works in a contemporary, standard
fashion, it’s time to dig into the real topic at hand: CSS.

In the next chapter, you will explore CSS principles, structure and syntax, and
visual models.

■ Next Steps 29

Ch01 SY4184 (001-029).qxd 6/27/05 11:42 AM Page 29

