Chapter 1

LEARNING THE
FUNDAMENTALS

magine being able to create interactive multimedia adventure

games that anyone can play over the World Wide Web. Imagine
being able to create animated product catalogs that not only help
your customers find the products they want but enable them to
purchase them using secure online payment systems. Imagine
being able to create database applications for use by your com-
pany’s sales force from one end of the country to another via the
company’s intranet. With JavaScript, you no longer have to
imagine—you can do it all.

JavaScript is the powerful programming language for the
Web that not only enables the development of truly interactive web
pages, but also is the essential glue that integrates HTML, XML,
Java applets, ActiveX Controls, browser plug-ins, server scripts,
and other web objects, permitting developers to create distrib-
uted applications for use over the Internet and over corporate
intranets as well.

Mastering”

JavaScriBE

i
B/ une) UL

’?ﬁ‘fﬁjd il Adapted from Mastering JavaScript Premium Edition
y by James Jaworski

ISBN 0-7821-2819-X

2 Chapter One

If the terms in the preceding paragraphs are a bit confusing to you,
you've come to the right place to begin your involvement with JavaScript
and the world of interactive web page development. In this chapter, I will
provide the background information you need to begin mastering the
JavaScript language. I'll begin with the concepts that are essential to
understanding the operation of the Web.

NOTE

\/ JavaScript is supported by Netscape Navigator, Microsoft Internet Explorer,
Mozilla, Chimera, Sun’s HotJava, Opera Software’s Opera Browser, and other
browsers. As such, it is an important tool for both current and future web devel-
opment. Throughout the JavaScript sections of this book, we will emphasize
the scripting capabilities provided by Navigator 6 and 7 (JavaScript 1.5) and
Internet Explorer 6 (JScript 5.6). The other JavaScript-capable browsers take
their lead from Navigator and Internet Explorer, but may not fully support all of
the features of JavaScript 1.5 or JScript 5.6. For instance, the Opera 5 browser
claims to support “most” of the JavaScript 1.4 core.

THE WEB

The Web is one of the most popular services provided via the Internet.
At its best, it combines the appeal of exploring exotic destinations with
the excitement of playing a video game, listening to a music CD, or even
directing a movie, and you can do it all by means of an intuitive, easy-to-use,
graphical user interface. Probably the most appealing aspect of the Web,
however, is the fact that it isn’t just for spectators. Once you have some
experience with web authoring tools (and even something as simple as
Notepad or SimpleText can be a web authoring tool), you can publish
yourself—and offer over the Web anything you want to make available,
from your company’s latest research results to your own documentary on
the lives of the rich and famous.

To many people, the most familiar element of the Web is the browser.
A browser is the user’s window to the Web, providing the capability to
view web documents and access web-based services and applications.
The most popular browsers are Netscape’s Navigator and Microsoft’s
Internet Explorer, the last few versions of which support JavaScript. Both
browsers are descendants of the Mosaic browser, which was developed by
a team of programmers, notably including Marc Andreessen, at the National
Center for Supercomputing Applications (NCSA), located at the University

Learning the Fundamentals 3

of lllinois, Urbana-Champaign. Mosaic’s slick graphical user interface
(GUI, pronounced “gooey”) helped transform the Web from a research
tool to the global publishing medium it is today.

Today’s web browsers have gone far beyond Mosaic’s GUI features with
multimedia capabilities and browser-based implementations of software
runtime environments such as Java and JavaScript. These programming
languages make it possible to develop web documents that are highly inter-
active, meaning they do more than simply connect you to another web
page elsewhere on the Internet. Web documents created with JavaScript
contain programs—which you, as the user of a browser, run entirely within
the context of the web pages that are currently displayed. This is a major
advance in web publishing technology. It means, for one thing, that you
can run web-based applications without having to install additional
software on your machine.

To publish a document on the Web, you must make it available to a
web server. Web servers retrieve web documents in response to browser
requests and return the documents to the requesting browsers. Web servers
also provide gateways that enable browsers to access web-related appli-
cations, such as database searches and electronic payment systems.

The earliest web servers were developed by CERN and NCSA. These
servers were the mainstay of the Web throughout its early years. Lately,
commercial web servers, developed by Netscape, Sun Microsystems,
Microsoft, and other companies, have become increasingly popular on
the Web, and the open-source Apache web server is still the most widely
used according to many surveys. These servers are designed for higher
performance and to facilitate the development of complex web applica-
tions. They also support the development of server-based applications
using languages such as Perl, Java, Visual Basic, and JavaScript. Code
written in these languages can be integrated very tightly with the server,
with the result that server-side programs are executed very efficiently.

Because the Web uses the Internet as its communication medium, it
must follow Internet communication protocols. A protocol is a set of
rules governing the procedures for exchanging information. The Internet’s
Transmission Control Protocol (TCP) and Internet Protocol (IP) enable
worldwide connectivity between clients and servers. Layered atop the
TCP/1IP protocols for communication across the Internet, the Web also
uses its own protocol, called the Hypertext Transfer Protocol (HTTP), for
exchanges between browsers and servers. Browsers use HTTP to request
documents from servers, and servers use it to return requested documents
to browsers. Figure 1.1 shows an analogy between the English language

4 Chapter One

and telephony protocols over the phone system on one hand, and HTTP and
TCP/IP over the Internet on the other hand. Browsers and servers commu-
nicate via HTTP over the Internet the same way an American and an
Englishman would communicate via English over a phone system.

American British

i)
[]

English via
voice voice

Phone system electrical protocol

US phone
system

Browser

HTTP via HTTP via
local port local port

Y Y

Local TCP/IP | Local TCP/IP
protocol stack TCP/IP protocol protocol stack

Y

FIGURE 1.1: Browsers and servers communicate via HTTP over the Internet the
same way an American writer and a British editor communicate
via English over a phone system.

Learning the Fundamentals 5

THE HYPERTEXT MARKUP
LANGUAGE

The Hypertext Markup Language (HTML) is the lingua franca of the
Web. It is used to create web pages and is similar to the codes used by
some word processing and document layout programs.

HTML uses ordinary text files to represent web pages. The files consist
of the text to be displayed and the tags that specify how the text is to be
displayed. For example, the following line from an HTML file shows the
text of a title between the appropriate title tags:

<TITLE>Mastering JavaScript</TITLE>

The use of tags to define the elements of a web document is referred to
as markup. Some tags specify the title of a document; others identify
headings, paragraphs, and hyperlinks. Still others are used to insert forms,
images, multimedia objects, and other features in web documents.

NOTE

\/ This book assumes that you have a working knowledge of HTML. This section
briefly reviews the important aspects of the language. If you have not used
HTML, you should also check out the links to HTML tutorials and reference
information located on this book’s web page at www. sybex. com.

Tags always begin with a left angle bracket (<) and end with a right
angle bracket (>). The name of the tag is placed between these two symbols.
Usually, but not always, tags come in pairs, to surround the text that is
marked up. Such tags are referred to as surrounding tags. For example,
HTML documents begin with the <HTML> tag and end with the </HTML>
tag. The first tag of a pair of tags is the beginning or opening tag, and the
second tag of the pair is the ending or closing tag. The ending tag has
the same name as the beginning tag except that a / (forward slash character)
immediately follows the <.

Other tags, known as separating tags, do not come in pairs, and have
no closing tags. These tags are used to insert such things as line breaks,
images, and horizontal rules within marked-up text. An example of
a separating tag is <HR>, which inserts a horizontal rule (a line) across a
web page.

6 Chapter One

Both surrounding and separating tags use attributes to specify properties
of marked-up text. These attributes and their attribute values, if any, are
included in the tag. For example, you can specify a horizontal rule 10 pixels
high and the entire width of the browser window using the following tag:

<HR SIZE="10">
This tag contains a SIZE attribute that is assigned an attribute value of 10.

NOTE

Attributes and attribute values are placed in the opening tag of a pair of sur-
rounding tags and don’t have to be repeated when the tag is closed —for example,
<PALIGN="center">info</P>.

Listing 1.1 contains a sample HTML document that illustrates the use
of tags in marking up a web page. Figure 1.2 shows how Netscape Navigator
displays this HTML document. The <HTML> and </HTML> tags identify
the beginning and end of the HTML document. The document contains
a head, identified by the <HEAD> and </HEAD> tags, and a body, identified
by the <BODY> and </BODY> tags. The document’s head contains a title
that is marked by the <TITLE> and </TITLE> tags. (The title appears at
the top of the Navigator window.)

NOTE
You can download the file for Listing 1.1, cho1-o1.htm, from the Sybex website,
on the product page for this book.

Listing 1.1: Example HTML Document (ch01-01.htm)

<HTML>

<HEAD>

<TITLE>This text is the document's title.</TITLE>

</HEAD>

<BODY>

<H1 ALIGN="CENTER">This is a centered heading.</H1>

<P>This is the first paragraph.</P>

<P>This is the second paragraph.</P>

<HR SIZE="10">

<P ALIGN="CENTER">This paragraph is centered and
below the horizontal rule.</P></BODY>

</HTML>

Learning the Fundamentals 7

£ =18]xi
. Fie EdI aien Go Beck e

Q Q O \3 (2 [% e 24T Mt g5 fcdadoh0N feh 01 bim | [Search] C_é
o i Home My MyHetscope) Shep | SiDoskmetks % MatiPhore % Dawniosd % Customize...

This is a centered heading.
This w5 the first paragraph
Thiz 5 the excond paragragh.
This paragraph is centered and below the horizontal nule

4 A EEE Dounek Dens (05550 T

FIGURE 1.2: A browser display of the HTML document shown in Listing 1.1

Here are a few items to notice in this listing:

» The document’s body contains a Heading 1 that is marked by the
<H1> and </H1> tags. The opening <H1> tag uses the ALIGN
attribute to center the heading.

» Two paragraphs immediately follow the heading. These para-
graphs are marked by the paragraph tags <P>and </P>.

» Following these two paragraphs is a horizontal rule with its STZE
attribute set to 10.

» The last element of the document’s body is a paragraph that
uses the ALIGN attribute to center the paragraph.

The Development of HTML and XHTML

HTML was originally developed by Tim Berners-Lee at CERN. Since
then, it has evolved through several major revisions. Each revision adds
new tags that increase the expressive power of the language. For example,
HTML 2 added the capability to include forms within web documents,
and HTML 3.2 added tags for tables and tags that support the use of
JavaScript and Java.

8 Chapter One

language; and a hybrid of XML and HTML, called Extensible Hypertext
Markup Language (XHTML), is beginning to gain popularity. HTML 4
adds support for international text, greater accessibility, more flexible
tables, generic objects, printing, and advanced style sheets.

g g As of this writing, HTML 4.01 is the latest official version of the HTML

NEW

Although HTML is periodically standardized, the language continues
to grow as the result of new tags, attributes, and attribute values that
browser developers introduce. Because Netscape and Microsoft hold the
largest share of the browser market, they have taken the lead in defining
new additions to HTML. These additions are not part of the official HTML
language, so they are referred to as extensions. Most extensions are
eventually integrated into the official version of HTML.

Although HTML 4 is the current standard, some believe its days are
numbered. XHTML was released as a recommendation by the World
Wide Web Consortium (W3C) in January 2000. XHTML is essentially a
simple reformulation of HTML to be more like XML, the Extensible
Markup Language. Simplicity and extensibility are XHTML's primary
advantages over HTML. XHTML removes the flexible coding supported
by HTML. This makes XHTML simpler and easier to parse, allowing
XHTML parsers to be quicker and smaller. Because XHTML is an XML
application, it is easily extended. New tags and attributes can be defined
and added to those that are defined in the standard. Much of XHTML is
identical to HTML, however, and the changes—to force paired tags, for
example—are pretty easy: The <HR> tag referenced earlier would be written
as<hr size="10" />. Notice that XHTML tag and attribute names are
always lowercase, and that all attribute values must be in quotes.

Even though XHTML is the logical successor to HTML, there is no
need to convert all your web pages to the new standard. If you do, you'll
find that some of your pages won't be rendered correctly by non-XHTML
capable browsers. In addition, the document object models supported by
current browsers are HTML based, although theoretically they should
also work with XHTML implementations. Even though Navigator 6 and 7
and Internet Explorer 5 provide XML support, their primary capabilities and
features still center around HTML.

Cascading Style Sheets

Style sheets provide the capability to control the way HTML elements
are laid out and displayed. For example, you can use style sheets to control
the color, font, and spacing used with different HTML elements. Support

Learning the Fundamentals 9

for Cascading Style Sheets (CSS) was developed by the W3C and introduced
with HTML 3.2, and additional CSS support was added in HTML 4.
Cascading refers to the capability to use multiple levels of style sheets for
a document where one level of style can be used to define another.

Two levels of CSS have been defined. CSS1 is a simple style sheet
mechanism that allows basic styles (for example, fonts, colors, and spacing) to
be associated with HTML elements. CSS1 is an outgrowth of HTML 3.2 and
is supported by Internet Explorer 3 (and later), Navigator 4 (and later),
and other browsers. CSS2 builds on CSS1 to add support for media-specific
style sheets, content positioning, downloadable fonts, table layout, interna-
tionalization, automatic counters and numbering, and other capabilities.

In addition to CSS1 and CSS2, Navigator 4 introduced JavaScript Style
Sheets (JSS). JSS is similar to CSS1 and makes styles available as JavaScript
properties, although few developers, if any, use JSS, given the predominance
of Internet Explorer on the Web.

HELPER APPLICATIONS

Most graphical web browsers provide support for viewing images in
common graphics formats, such as Graphics Interchange Format (GIF)
and Joint Photographic Experts Group (JPEG). Some can even play audio
files. However, most browsers do not provide much more than that in terms
of multimedia features. Instead of building larger, more complicated
browsers to handle many different file formats, browser developers use
helper applications. When a browser encounters a file type that it does
not know how to handle, it searches its list of helper applications to see
if it has one that can deal with the file. If a suitable helper is found, then
the browser executes the helper and passes it the name of the file to be
run. If an appropriate helper cannot be found, then the browser prompts
the user to identify which helper to use or to save the file for later display.

External Viewers and Plug-Ins

Early helper programs operated independently of the web browser.
These programs, referred to as external viewers, were executed separate
from the browser and created their own windows to display various types
of files. Netscape and Microsoft developed the capability for their second-
generation browsers to use plug-in or add-in modules, which not only
execute automatically when needed but display their output in the browser
window. Since then, numerous companies have developed plug-in modules

10 Chapter One

to support everything from the three-dimensional worlds created by the
Virtual Reality Modeling Language (VRML) to CD-quality audio and a
variety of streaming video formats.

Plug-in modules are generally quicker to load and more efficient than
external viewers. Because they execute with the browser, they can be
accessed from within the browser environment. Netscape lets you control
plug-in modules from Java and JavaScript code via its LiveConnect toolkit.
Microsoft provides a similar capability through its Internet Explorer
Object Model.

Using MIME Types to Identify Helpers
for File Formats

So far, I've described how browsers use helper applications to display
different types of files, but how does a browser know which helpers to
use for a given file? The answer lies in MIME types and sometimes in
filename suffixes.

Multipurpose Internet Mail Extensions (MIME) was originally devel-
oped as a standard for including different types of files in electronic mail.
It was subsequently adopted for web servers and browsers to identify the
types of files referenced in a web page.

MIME identifies file types using a type/subtype naming scheme.
Examples of common MIME types are text/plain, text/html, image/gif,
and video/quicktime. The first component of a MIME type identifies the
general type of a file, and the second part identifies the specific type within
the general category. For example, the text/plain and text/html types
both belong to the text category, but they differ in their subtypes. Table 1.1
lists some common MIME types.

TABLE 1.1: Example MIME Types

MIME TYPE DESCRIPTION

text/plain Generic ASCII text file

text/html Text file containing HTML

image/qgif Image in Graphics Interchange Format
image/jpeg Image in Joint Photographic Experts Group format

audio/x-wav File containing sounds stored in the Windows audio file format

Learning the Fundamentals 11

TABLE 1.1 continued: Example MIME Types

MIME TYPE DESCRIPTION

video/mpeg Video in the Moving Pictures Experts Group format
video/quicktime Video in the Apple QuickTime format
application/octet-stream Raw (unformatted) stream of bytes
application/x-javascript File containing JavaScript source code

Web servers contain configuration files that match file extensions with
their MIME types. For example, files that end with the extension . htm or
.htm1 are associated with the text/html MIME type, and files that end
with . jpg, . jpe, or . jpeg are associated with the image/jpeg MIME type.

Browsers also contain configuration information about MIME types.
This information is used to map MIME types to the helper application
that displays files of that type.

When a browser requests a file from a web server, the server uses the
filename’s extension to look up the file’s MIME type if it’s not already
specified by the program generating the material. The server can also try
to guess the type of file from its contents if there is no filename extension,
or simply assign a MIME type if the file is being generated by the server
on-the-fly. The server then identifies the file’s MIME type to the browser.
The browser uses the file’s MIME type to determine which helper appli-
cation, if any, is to be used to display the file. If the file is to be displayed
by an external viewer, the browser waits until the file has been completely
received before launching the viewer. If the file is to be displayed by a
plug-in, the browser launches the plug-in and passes the file to the plug-in
as the file is received. This process enables the plug-in to begin displaying
the file before it is fully loaded (or stream it), which is an important capability
of audio- and video-intensive applications.

UNIFORM RESOURCE
LocaToRs (URLS)

A Uniform Resource Locator (URL) is the notation used to specify the
address of an Internet file or service.

12 Chapter One

A URL always contains a protocol identifier, such as http or ftp, and
often a host name, such as home . netscape.com, wwsw.microsoft.com,
and ftp.cdrom. com, which appear in the previous examples. The most
commonly used protocol identifiers are http and ftp, but if you examine
the Protocol Helpers section of your browser’s Preferences menu (sometimes
reached from Tools or another top level menu), you will find support for
older, more obscure identifiers such as wais and gopher. The protocol
identifier is also referred to as a scheme. When you write a web (HTTP)
URL, the protocol identifier is followed by : // and then the host name
of the computer to which the protocol applies. (In URLs, pathnames
are written using forward slash [/] characters rather than backslash [\]
characters.) For example, to access the main home page of Microsoft
on the host named www.microsoft. com, you would use the URL http://
www .microsoft.com. To access the root directory of the File Transfer
Protocol (FTP) server hosted by ftp.cdrom. com, you would use the URL
ftp://ftp.cdrom.com.

In addition to the host name, the URL can specify the pathname and
filename of a file to be accessed by adding a single / character followed by
the name. For example, the Internet book area on the Sybex website is
located in the Internet subdirectory of the directory sybexbooks.nsf
on Sybex’s web server’s root directory. The URL for this area is therefore
http://www.sybex.com/sybexbooks.nsf/Internet/.

NOTE
URLs can also contain additional addressing components, such as a port name
before the path and filename and a file offset after the filename.

g THE FILE PROTOCOL IN URLs
Your browser can use the file protocol to access files located
on your local machine. Suppose the file test.htmwas located on
your Windows desktop. The path to this file would be c: \windows\
desktop\test.htm. To open the file with your browser, you would

use the following URL: fiTle://Tocalhost/C| /WINDOWS/Desktop/
test.htm.

The host name Tocalhost in the previous URL refers to the local
filesystem and can be omitted safely. However, you should retain

CONTINUED =

Learning the Fundamentals 13

E the slash following TocaThost. The previous URL could be thus be

written as follows: file:///C| /WINDOWS/Desktop/test.htm.

Note that in both examples the C: drive designation is written as C|
instead. If you are using a Macintosh or Unix browser, this format might
vary slightly. On a Mac, for example, a file reference might appear more
akinto file://localhost/Users/demo/Desktop/test.htm.

THE HYPERTEXT TRANSFER
ProToCOL (HTTP)

HTTP is the protocol used for communication between browsers and
web servers. HTTP uses a request/response model of communication. A
browser establishes a connection with a server and sends a URL request
to the server. The server processes the browser’s request and sends a
response back to the browser.

A browser connects with a web server by establishing a TCP connec-
tion, by default at port 80 of the server. You can specify server ports other
than 80; for instance, to connect to port 8234 on the www. fictionalhost
.com server, the URL would be http://www.fictionalhost.com:8234/.
This port is the address at which web servers “listen” for browser requests.
Once a connection has been established, a browser sends a request to
the server. This request specifies a request method; the URL of the
document, program, or other resource being requested; the HTTP version
being used by the browser; and other information related to the request.

Several request methods are available. GET, HEAD, and POST are the
most commonly used:

GET Retrieves the information contained at the specified
URL. You can also use this method to submit data collected in
an HTML form (the topic of Chapter 5, “Processing Forms”) or
to invoke a Common Gateway Interface (CGI) program (discussed
in the next section). When the server processes a GET request,
it delivers the requested information (if it can be found). The
server inserts at the front of the information an HTTP header
that provides data about the server, identifies any errors that

14 Chapter One

occurred in processing the request, and describes the type of
information being returned as a result.

HEAD Similar to the GET method, except that when a web
server processes a HEAD request, it returns only the HTTP
header data and not the information that was the object of the
request. The HEAD method is used to retrieve information about
a URL without actually obtaining the information addressed by
the URL.

POST Informs the server that the information appended to
the request is to be sent to the specified URL. The POST method
is typically used to send form data and other information to CGI
programs. The web server responds to a POST request by sending
back header data followed by any information generated by the
CGI program as a result of processing the request.

The current version of HTTP is HTTP 1.1. It incorporates performance,
@ security, and other improvements to the original HTTP 1. A new version
of HTTP, referred to as HTTP-NG, is currently being defined. (The NG
stands for next generation.) The goal of HTTP-NG is to simplify HTTP
and make it more extensible. However, little progress has taken place
over the past few years, and the project may be considered dead.

COMMON GATEWAY INTERFACE
PROGRAMS

The Common Gateway Interface (CGI) is a standard that specifies how
web servers can use external programs. Programs that adhere to the CGI
standard are referred to as CGI programs. These programs can be used
to process data submitted with forms, to perform database searches,
and to support other types of web applications, such as clickable
image maps.

NEW

A browser request for the URL of a CGI program comes about as the
result of a user clicking a link, requesting the output of a CGI program
(for example, many sites have their default home page generated by a
CGI program rather than as a static HTML page), or submitting a form.
The browser uses HTTP to make the request. When a web server
receives the request, the web server executes the CGI program and also
passes it any data that was submitted by the browser. When the CGI
program performs its processing, it usually generates data in the form

Learning the Fundamentals 15

of a web page, which it returns via the web server to the requesting

browser.

The CGI standard specifies how data may be passed from web servers
to CGI programs and how data should be returned from CGI programs to
the web server. Table 1.2 summarizes these interfaces. In Chapter 5 and
Chapter 7, “Interfacing JavaScript with CGI Programs,” you'll study CGI

and learn how to create CGI programs.

TABLE 1.2: CGI Summary

METHOD OF
COMMUNICATING

Command-line
arguments

Environment variables

Standard input stream

Standard output stream

INTERFACE

Web server to CGI
program

Web server to CGI
program

Web server to CGI
program

CGI program
to web server

DESCRIPTION

Data is passed to the CGI program

via the command line that is used to
execute the program. Command-line
arguments are passed to CGI programs
as the result of ISINDEX queries.

A web server passes data to the CGI
program by setting special environment
variables that are available to the CGI
program via its environment

A web server passes data to a CGI
program by sending the data to the
standard character input stream asso-
ciated with the CGI program. The CGI
program reads the data as if a user
manually entered it at a character
terminal.

The CGI program passes data back to the
web server by writing the data to its

standard output stream. The web server
intercepts this data and sends it back to
the browser that made the CGI request.

JAVA APPLETS

The Java language, developed by Sun Microsystems, Inc., has realized
tremendous popularity. Although it was originally developed as a language
for programming consumer electronic devices, Java has increasingly been
adopted as a hardware- and software-independent platform for developing

16 Chapter One

advanced web applications. Java can be used to write stand-alone appli-
cations, but a major reason for its popularity is that you can also develop
Java programs that can be executed by a web browser.

Java programs that can be executed by the web browser are called
applets rather than applications, because they cannot be run outside
the browser’s window without a separate viewer or helper application.
(Application usually implies a complete, stand-alone program.) Program-
mers create Java applets using built-in programming features of the Java
Developer’s Kit (JDK). Web pages, written in HTML, reference Java applets
using the <APPLET> or <OBJECT> tag, much as images are referenced using
the tag. When a browser loads a web page that references a Java
applet, the browser requests the applet code from the web server. When
the browser receives the applet code, it executes the code and allocates a
fixed area of the browser window. This area is identified by attributes
specified with the <APPLET> tag. The applet is not allowed to update the
browser display or handle events outside its allocated window area.

By way of comparison, JavaScript provides access to the entire web
page, but is a much smaller, lighter-weight programming language that
also doesn’t support many of the more advanced object-oriented pro-
gramming features of Java. Netscape Navigator and Microsoft Internet
Explorer provide the capability for JavaScript scripts to load Java applets,
access Java objects, and invoke their methods.

ACTIVEX— MICROSOFT OBJECTS

ActiveX is Microsoft’s approach to executing objects other than Java
applets in Internet Explorer. The name ActiveX was used to make it seem
like a new and innovative technology. However, ActiveX is nothing more
than Component Object Model (COM) objects that can be downloaded
and executed by Internet Explorer. COM traces its origin back to the Object
Linking and Embedding (OLE) technology of Microsoft Windows 3.1.

COM objects are instances of classes (object types) that are also organized
into interfaces. Each interface consists of a collection of methods (functions).
COM objects are implemented inside a server (dynamic-link libraries, oper-
ating system service, or independent process) and are accessed via their
methods. The COM library provides a directory of available COM
objects. Over the years since Windows 3.1, many software components
have been developed as COM objects.

Learning the Fundamentals 17

ActiveX components are COM objects that implement a specific type
of interface. They are important in that they provide a means for the large
base of COM objects to be reused within Internet Explorer. They also allow
older languages, such as C++ and C, to be used to build components for
web applications.

Although ActiveX components allow the use of legacy software in
Internet Explorer, they also present some drawbacks. The most significant
drawback is that ActiveX is only supported by Internet Explorer 4 and
later—no other browser (including earlier versions of Internet Explorer)
can use ActiveX. ActiveX has also been criticized for its poor security. An
ActiveX component is not required to behave in a secure manner like a
Java applet or JavaScript script. In fact, it has been demonstrated that
ActiveX components can be used to steal or modify sensitive information
or completely wipe out a user’s system. Microsoft has countered this
vulnerability by allowing ActiveX components to be digitally signed. This
does not prevent ActiveX components from violating security, but, in
some cases, a signature can be used to determine whether a particular
website is responsible for causing damage.

ActiveX components are useful in intranet applications where all users
of a particular company are required to use Internet Explorer and the com-
ponents are signed by the company or a trusted developer. Because the
Internet Explorer Object Model allows ActiveX components to be accessed
from JavaScript, JavaScript scripts can be used to integrate the ActiveX
components into the intranet applications.

A BRIEF HISTORY OF JAVASCRIPT

Often, one programming language evolves from another. For example,
Java evolved from C++, which evolved from C, which evolved from other
languages. Similarly, Netscape originally developed a language called
LiveScript to add a basic scripting capability to both Navigator and its
web-server line of products; when it added support for Java applets in
its release of Navigator 2, Netscape replaced LiveScript with JavaScript.
Although the initial version of JavaScript was little more than LiveScript
renamed, JavaScript has been subsequently standardized through the
European Computer Manufacturing Association (ECMA) and is now also
referred to as ECMAScript (formally ECMA-262).

18 Chapter One

NOTE
Although JavaScript bears the name of Java, JavaScript is a very different
language that is used for a very different purpose.

JavaScript supports both web browser and server scripting. Browser
scripts are used to create dynamic web pages that are more interactive,
more responsive, and more tightly integrated with plug-ins, ActiveX
components, and Java applets. JavaScript supports these features by
providing special programming capabilities, such as the ability to dynam-
ically generate HTML and to define custom event-handling functions.

You include JavaScript scripts in HTML documents via the HTML
<SCRIPT> tag. When a JavaScript-capable browser loads an HTML docu-
ment containing scripts, it evaluates the scripts as they are encountered.
The scripts may be used to create HTML elements that are added to the
displayed document or to define functions, called event handlers, that
respond to user actions, such as mouse clicks and keyboard entries.
Scripts can also be used to control plug-ins, ActiveX components, and
Java applets.

Microsoft implemented its version of JavaScript, named JScript, in
Internet Explorer 3. The scripting capability of Internet Explorer 3 is
roughly equivalent to Navigator 2. Netscape introduced JavaScript 1.1 with
Navigator 3 and JavaScript 1.2 with Navigator 4. JavaScript 1.1 added a
number of new features, including support for more browser objects and
user-defined functions. JavaScript 1.2 added new objects, methods,
properties, and support for style sheets, layers, regular expressions, and
signed scripts.

Microsoft introduced its ECMAScript-compliant version of JScript
in Internet Explorer 4. JScript is tightly coupled to Internet Explorer
and allows almost all HTML elements to be scripted. Microsoft also
included server-side JavaScript support with its Internet Information
Server (IIS). It later developed a more general approach to server-side
scripting with its Windows Script Host and remote scripting technologies.
Remote scripting allows Internet Explorer to remotely execute scripts on
a server and receive the server script outputs within the context of a
single web page.

Netscape and Microsoft submitted their scripting languages to the
ECMA for standardization. ECMA released the Standard ECMA-262
in June of 1997. This standard describes the ECMAScript language,
which is a consolidation of the core features of JavaScript and JScript.

Learning the Fundamentals 19

Updated versions of this standard were released in June 1998 (Revision 2)
and December 1999 (Revision 3). ECMA also released ECMA-290 in
June 1999. ECMA-290 covers the development of reusable components
in ECMAScript.

Microsoft worked closely with the ECMA and updated Internet Explorer 4
and JScript (JScript 3.1) to achieve ECMAScript compliance. Navigator
achieved ECMAScript compliance with JavaScript 1.3, which is supported
in Navigator 4.06 through 4.7.

Internet Explorer 5 introduced JScript 5, which provides additional
scripting capabilities, such as the try - catch statement. This statement
provides advanced error handling support and is included in ECMAScript
Revision 3. Internet Explorer 5.5 was introduced after ECMAScript Revi-
sion 3 and provides full Revision 3 support. Navigator 6.0 and later
supports JavaScript 1.5, which is fully compliant with ECMAScript
Revision 3.

While Netscape and Microsoft were busy introducing new versions of
their browsers and scripting languages, Opera Software (www.opera-
software. com) launched another JavaScript-compatible browser. In
addition, Sun jumped into the JavaScript field with its HotJava browser.
HotJava 3.0 is ECMAScript compliant. Other browser developers followed
by developing JavaScript-capable browsers of their own.

Another JavaScript-related standardization effort was initiated by the
W3C to standardize the basic objects made available by browsers when
processing HTML and XML documents. This effort resulted in a specifi-
cation known as the Document Object Model (DOM) Level 1. It provides
a standard set of objects for representing HTML and XML documents, a
standard model of how these objects can be combined, and a standard
interface for accessing and manipulating them. The DOM is like an appli-
cation programming interface (API) for HTML and XML documents.
However, the DOM is not a complete API, in that it does not specify the
events that occur when a user interacts with an HTML or XML document
(and methods for handling them). Version 6 and 7 of Navigator and version 5
of Internet Explorer support the DOM.

Today, the latest version of JavaScript is 1.5, but the additions to
JavaScript in version 1.4 and 1.5 are unlikely to influence your day-to-day
web development: Runtime errors are reported differently, regular expres-
sions have been enhanced, functions can be conditionally declared, and
named read-only constants are now supported. Netscape Navigator 6 and
later, Microsoft Internet Explorer 6.0 and later, and Mozilla all support
JavaScript 1.5.

20

Chapter One

JAVA SERVLETS AND JAVASERVER
PAGES

Sun Microsystems developed the Java Servlet API as an extension to the
standard Java specification; it provides a way to write modules that run
within a server to handle requests in a client-server architecture. You can
think of servlets as applets that run on the server side rather than the
client side. The fundamental Servlet API isn’t tied to the HTTP protocol,
but the API does have a framework specifically tailored to handling HTTP
requests. A number of different vendors have products that implement
the Servlet API, so if you write a web-based application using it, you
won'’t necessarily be tied to a single vendor’s products. Although there can
be performance benefits to using servlets over a typical CGI script, perhaps
the most attractive feature of using servlets is the full access to the rest of
Java’s standard APIs (for instance, the JDBC API, which provides a
standard interface for connection to a variety of SQL database stores). If
your project will reuse or interface with other modules of Java code, you
should consider using this technology instead of standard CGI techniques.

JavaServer Pages (JSP) technology is an extension to Servlets that
specifies ways to dynamically author HTML and XML pages. JSPs are
particularly suited to situations where you need to change certain aspects
of a page’s content but can use a template to provide the basic format and
structure of the page. For instance, an application that needs to display
invoices online to users might use an Invoice template that defines fonts,
tables, and headers and footers, but might rely on application logic to fill
in the line items and dollar amounts.

NOTE
The Tomcat Server is an open-source reference implementation of the Servlet

and JSPtechnologies that runs on Windows and a variety of Unix platforms. You
can download it free from http://jakarta.apache.org/tomcat/.

ASP, WINDOWS SCRIPTING HOST,
AND REMOTE SCRIPTING

Microsoft’s Active Server Pages (ASP) is a server-side scripting environ-
ment that is similar to JSP. You can use it to include server-side scripts and
ActiveX components with HTML pages. The combined HTML and script

Learning the Fundamentals 21

file is stored as an ASP file. When a browser requests the ASP file from
your web server, the server invokes the ASP processor. The ASP processor
reads the requested file, executes any script commands, and sends the
processed results as a web page to the browser. ASP pages can also invoke
ActiveX components to perform tasks, such as accessing a database or
performing an electronic commerce transaction. Because ASP scripts
run on the web server and send standard HTML to the browser, ASP is
browser independent.

Microsoft introduced ASP with IIS version 3. It also works with later
versions of IIS, Personal Web Server for Windows 95, and Peer Web Server
for Windows NT Workstation.

As a result of the success of ASP, Microsoft developed Windows Script
Host (WSH), a technology that allows scripts to be run on Windows 95,
98, ME, NT 4, 2000, and Windows XP. WSH is language independent
and supports JScript, VBScript, and other languages. It lets you execute
scripts from the Windows desktop or a console (MS DOS) window.
WSH scripts are complete in themselves and do not need to be embedded
in an HTML document. WSH is an exciting technology in that it extends
the capabilities of JScript beyond the Web to the Windows desktop and
operating system. You can use WSH scripts to replace MS DOS scripts
and take full advantage of the Windows GUI, ActiveX, and operating
system functions in JScript scripts.

NOTE

WSH can be freely downloaded from Microsoft’s website at http://msdn
.microsoft.com/scripting/.

NOTE

If you want to use a web server other than Microsoft’s IIS, you can use the Sun
ONE Active Server Pages component (http://wwws.sun.com/software/
chilisoft/) to deploy ASP on the Apache, Sun ONE, or Zeus web server on a
variety of non-Windows platforms, including Linux.

| Ty

Microsoft’s latest addition to scripting technology is referred to as
remote scripting. Remote scripting enables client-side scripts running
on Internet Explorer to execute server-side scripts, running on IIS.
Internet Explorer and IIS can perform simultaneous processing and
communicate with each other within the context of a web page, allowing

22 Chapter One

the page to be dynamically updated with server information without
having to be reloaded. This process frees the user from having to reload a web
page during the execution of a web application and provides for a higher
degree of interaction between the browser and web server. For example,
with remote scripting, a web server can validate form data and provide
the user with feedback while the user is still filling out the form.

Remote scripting allows browser/server communication to be accom-
plished in either a synchronous or asynchronous manner. When
synchronous communication is used, a client-side script executes a
server-side script and waits for the server-side script to return its result.
When asynchronous communication is used, the client-side script executes
the server-side script and then continues with its processing without
waiting for the server-side script to finish. You can find more informa-
tion about remote scripting at Microsoft’s Developer Network site:
http://msdn.microsoft.com/scripting/.

g ANOTHER SERVER-SIDE SCRIPTING SOLUTION: PHP

In addition to the popular ASP solution from Microsoft, an alterna-
tive server-side solution is offered by PHP, an open-source solution
that is included with the Apache web server, among others. There
are lots of good online references to PHP, but the best place to start
ishttp://www.php.net/.

XML AND XSL

One of the most powerful features of Navigator 6 and 7 and Internet
Explorer 5 and 6 is their support for the Extensible Markup Language
(XML). These browsers can display XML files directly. Moreover, they
allow XML files to be scripted using JavaScript and JScript much as
HTML files are scripted.

XML documents are similar to HTML documents in their use of tags
and attributes to mark up text. However, XML differs from HTML in that
it does not define a fixed set of markup tags. Instead, XML lets you define
the tags and attributes of customized markup languages. For example,
you could use XML to define a product catalog and then display the catalog
directly with an XML-capable browser. You could customize the way the

Learning the Fundamentals 23

catalog is displayed using CSS or the Extensible Style Language (XSL).
You could also translate the XML to HTML in a format specified by an
XSL style sheet.

NOTE

The XML 1.0 specification is available at www.w3.0org/TR/REC-xm1. The
XSLspecification is available at www.w3.0org/TR/xs1/.The XSL Transforma-
tions specification is available at www.w3.0org/TR/xs1t.

L

XSL is to XML as CSS is to HTML. XSL is a language for expressing
style sheets. It is organized into two parts: the XSL Transformations lan-
guage (XSLT) and a vocabulary (expressed in XML) for specifying formatting
semantics. XSLT lets you specify how an XML document of one type can
be transformed into a document with another set of markup tags. XSLT
can also be used to specify how XML documents should be translated
into HTML. The second part of XSL, the formatting language, lets you
specify how XML documents should be rendered for a variety of display
media, such as the Web and printed documents.

NOTE
n ?J XML documents can also be formatted using CSS.

INTRANETS, EXTRANETS, AND
DISTRIBUTED APPLICATIONS

For the last few years, corporations have been deploying pure TCP/IP
networks internally to take advantage of the full range of standards-based
services provided by the Internet. These “company-internal internets”
have become known as intranets. Intranets may be private networks that
are physically separate from the Internet, internal networks that are sepa-
rated from the Internet by a firewall, or simply a company’s internal
extension of the Internet.

Companies deploy intranets so that they can make internal services
available to their workers using popular Internet tools and technologies.
E-mail, web browsing, and web publishing are the most popular of these
services. Many companies make web servers available for their employees’

24 Chapter One

intranet publishing needs. These intranet web servers allow departments,
groups, and individuals within a company to conveniently share information
while usually limiting access to the information published on the intranet
to company employees.

The popularity of intranets as a way of communicating and of sharing
information within a company has brought about a demand for more
powerful and sophisticated intranet applications. The eventual goal is for
the intranet to provide a common application framework from which a
company’s core information processing functions can be implemented
and accessed. Sun, Microsoft, and other web software providers are
focusing on the intranet as the primary application framework for the
development of business software.

Because of its client/server architecture and user-friendly browser
software, the Web is the perfect model for implementing these com-
mon intranet application frameworks. The approach taken by Netscape,
Microsoft, and other web software developers is to use the web browser
as the primary interface by which users connect to the intranet and
run intranet and extranet applications. These applications are referred
to as distributed applications, because their execution is distributed in
part on the browser (via JavaScript, Java, ActiveX, XML, and other
languages), in part on the server (via CGI programs and JavaScript and
Java server-side programs), and in part on database and other enter-
prise servers.

Distributed intranet and extranet applications use HTML, JavaScript,
Java, XML, and other languages for programming the browser-based user
interface portion of the distributed application. They also use Perl, Java,
Visual Basic, and other languages to perform server-side programming.

In some distributed application development approaches, Java is seen
as a key technology for developing the components of distributed applica-
tions, and JavaScript is seen as the essential glue that combines these
components into fully distributed web-based intranet and extranet appli-
cations. Other approaches rely less on JavaScript and more on Java.

WHAT’S NEXT

This chapter covered the concepts that are essential to understanding
the operation of the Web. You learned about web development languages
such as HTML, XML, Java, and JavaScript. You also have been introduced
to related web technologies such as HTTP, CGI, Java Servlets, JSP, ASP,

Learning the Fundamentals 25

and remote scripting. You should have a basic understanding of how
these elements work together when you're developing web applications.

In Chapter 2, you'll begin the exciting process of learning to use JavaScript
to write sample client-side scripts. You'll begin doing some actual program-
ming using JavaScript. If you've never done any programming, you should
read the material carefully—it introduces fundamental programming
concepts that are used throughout this book.

