
Windows Forms
Solutions

SOLUTION 1 ListBox ItemData Is Gone!

SOLUTION 2 Create Owner-Drawn ListBoxes and Combo Boxes

SOLUTION 3 Upgrade Your INI Files to XML

SOLUTION 4 Build Your Own XML-Enabled Windows Forms TreeView Control

4253c01.qxd 10/14/03 11:00 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

2

SOLUTION 1
ListBox ItemData Is Gone!

The look of those familiar VB ListBoxes and ComboBoxes hasn’t changed, but the way they
work has changed dramatically. For those of you just getting started with .NET, dealing with
ListBoxes and ComboBoxes is often one of the first sources of serious frustration. But don’t
worry. In 10 minutes you can absorb the basic workings of the new .NET ListBoxes and
ComboBoxes, and you’ll never miss ItemData again.

NOTE For the rest of this solution, I’ll limit the discussion to ListBoxes, but all the information in
this solution works with both ComboBoxes and ListBoxes.

The data model for classic VB ListBoxes consisted of the List property, which held a simple
array of strings, and a parallel ItemData array that held Long numeric values. It was convenient
to use the two lists in tandem; for example, you might populate a ListBox with a list of strings
from a database table, while simultaneously populating the ItemData property with a unique
numeric value from that table, such as an AutoNumber. When a user selected an item (or
items), you could retrieve the ItemData value and use it to obtain the associated object, or use
the value as a lookup value for a database query. Table 1 shows the classic VB ListBox data
model with three items in the List array, and three Long integer values in the ItemData array.

TABLE 1: The Classic VB ListBox Data Model

List Array (String values) ItemData Array (Long values)

Item 1 1293

Item 2 2493

Item 3 8271

SOLUTION Place your items in a class.
When you do that, you often don’t need an
index or ID number, because the items are
directly available from the ListBox’s Items
collection.

PROBLEM Classic VB ListBoxes had an
ItemData property that let you associate an
item in a ListBox with something else, such
as an ID value for a row in a database table,
or an index for an array of items. But .NET
ListBoxes don’t have an ItemData prop-
erty. How can I make that association now?

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 2

3

In VB.NET, when you drag a ListBox onto a form and then try to write the same loop to
populate the ListBox, adding a text value and an ItemData numeric value for each item, you’ll
get a compile-time error. ListBoxes in .NET don’t have an ItemData property. Hmm. It does
seem that the ubiquitous VB ListBox lost some backward compatibility. But in doing so, it also
gained functionality. Rather than having two separate arrays limited to Strings and Longs, the
.NET ListBox has only one collection, called Items, which holds objects—meaning you can
store any type of object as an item in a ListBox, and not just simple strings and numbers.
However, the ListBox still needs a string to display for each item. That’s easy. By default, the
ListBox calls the ToString method to display each item in the Items collection.

But wait! What if the ToString method doesn’t display what you need? That’s easy too. List-
Boxes now have a DisplayMember property. If the DisplayMember property is set, the ListBox
invokes the item number named by the DisplayMember property before displaying the item.

In other words, rather than storing a single set of strings and associated ID values, and
then having to do extra work of retrieving the appropriate data when a user clicks on an item,
you can now store the entire set of objects—right in the Items property.

Still, despite the best efforts of VB.NET experts to convince them otherwise, people aren’t
always happy with the current ListBox implementation. One reason is that the consumers of
a class aren’t always the creators of the class—and they may not be satisfied with the class
creator’s selections. So first, I’ll show you how to re-create the functionality of the classic
VB ListBox control, and then I’ll show you how to move far beyond it—and even beyond
the probable intent of the .NET designers—to create an extremely flexible strategy for dis-
playing items in .NET ListBoxes.

Mimicking a Classic VB ListBox
What you’re about to do may feel awkward at first, but you’ll soon find that as your thinking
patterns switch from managing raw data to handling classes, it will become a natural behavior.
Because you’re trying to mimic an ItemData property that doesn’t exist, your first inclination
might be to subclass the .NET ListBox control and add your own parallel array of Integer
values, accessed via an added ItemData property. But that carries baggage you don’t need,
because you’d have to manage the new array in code—which becomes very difficult with a
control that can sort items. You’d then have to make sure the arrays stay synchronized across
sorts when users modify the Item collection—it can be a mess.

Populating a ListBox
Here’s an easier way. Rather than adding the ItemData property to the control itself, add the
ItemData value to the items you put into the Items collection. When you do that, you don’t have
to subclass the control or write any special sorting or list modification code. For example,

Solution 1 • ListBox ItemData Is Gone!

4253c01.qxd 10/14/03 11:00 PM Page 3

4

suppose you have a list of employee names and ID numbers. When a user clicks on an
employee name in the ListBox, you want to show a MessageBox with that user’s ID number
and name. Assume you have the names in a string array called names, and the IDs in a Long
array called IDs. In classic VB, you would write code like this:

Dim i As Long
For i = 0 To UBound(names)

List1.AddItem names(i)
List1.ItemData(List1.NewIndex) = ids(i)

Next

In .NET, however, you create a simple class with two properties, Text and ItemData, and a
constructor to make it easy to assign the two properties when you create the class. Listing 1
shows the code for such a class, named ListItem.

➲ Listing 1 The ListItem class (ListItem.vb)

Public Class ListItem
Private m_Text As String
Private m_ItemData As Integer

Public Sub New(ByVal Text As String, _
ByVal ItemData As String)
m_Text = Text
m_ItemData = ItemData

End Sub

Public Property Text() As String
Get

Return m_Text
End Get
Set(ByVal Value As String)

m_Text = Value
End Set

End Property

Public Property ItemData() As Integer
Get

Return m_ItemData
End Get
Set(ByVal Value As Integer)

m_ItemData = Value
End Set

End Property
End Class

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 4

5

Assuming you have the names and IDs arrays already populated, you can create instances of
your ListItem class and assign them to the ListBox’s Items collection using a simple loop:

Dim i As Integer

For i = 0 To names.Length - 1
Me.ListBox1.Items.Add(New ListItem(names(i), ids(i)))

Next

But if you run this code, you’ll find that the ListBox displays a list of items that look like
[Projectname].ListItem rather than the list of names you were expecting. That’s because, by
default, the ListBox calls the ToString method for each item to get a displayable string. In
this case, however, you don’t want to use the default; you want the ListBox to display the
Text property. So, add this line before the loop that populates the ListBox:

Me.ListBox1.DisplayMember = “Text”

That tells the ListBox to display the Text property for each item rather than the results of
ToString.

TIP You must assign a property member to the ListBox.DisplayMember property—using a
public field or a function doesn’t work. That’s because the display functionality works
through reflection—the ListBox dynamically queries the item at runtime for a property
with the name you assign to the ListBox.DisplayMember property.

Of course, it’s your class, and you can eliminate the DisplayMember assignment by overrid-
ing the ToString method to show whatever you like. In this case, you want to show the Text
property. So, add this code to the ListItem class:

Public Overrides Function ToString() As String
Return Me.Text

End Function

Now you can remove the DisplayMember assignment and the ListBox will still display the
results of the Text property.

Getting the Data Back
As you’ve seen, you can use this simple ListItem class to work with exactly the same data you
used in classic VB ListBox code. Getting the data back is just as simple. When a user clicks
an item, the .NET ListBox fires a SelectedItemChanged event. That happens to be the
default event for the ListBox, so if you double-click on it in design mode, Visual Studio will
insert a stub event handler for you. Fill in the event-handling code as follows:

Private Sub ListBox1_SelectedIndexChanged(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles ListBox1.SelectedIndexChanged

Solution 1 • ListBox ItemData Is Gone!

4253c01.qxd 10/14/03 11:00 PM Page 5

6

Dim li As ListItem
If Me.ListBox1.SelectedIndex >= 0 Then

li = DirectCast(Me.ListBox1.SelectedItem, ListItem)
Debug.WriteLine(“Selected Item Text: “ & _

li.Text & System.Environment.NewLine & _
“Selected ItemData: “ & li.ItemData)

End If
End Sub

First, test to ensure that an item is selected. If so, even though you know that it’s a ListItem,
the ListBox.Items collection doesn’t—it’s a collection of objects. Therefore, you need to cast
the selected item to the correct type, using either the CType or DirectCast method (Direct-
Cast is faster when you know the cast will succeed).

Now that you’ve seen a way to re-create VB6 ListBox behavior, I’ll concentrate on other
ways to use the list controls in .NET, including binding the control to a collection type.

The Class Creator Has Control
Suppose you’re told to use a Person class (created by a co-worker) that has four properties:
ID (Long), LastName, FirstName, and Status (see Listing 2). The Person object has an over-
loaded constructor so you can assign all the values when you create the object. I’ve included
the complete, finished code for the Person class in Listing 2, even though we’re assuming
your co-worker didn’t give you the class in quite this shape. I’ve highlighted the portions that
you’ll add in the next section of this solution. The Person class has ID, LastName, FirstName,
and Status properties. Although it exposes LastFirst and FirstLast methods, the interest-
ing parts are the DisplayPersonDelegate, the DisplayMethod property, and the overridden
ToString method.

➲ Listing 2 (VB.NET) The Person class (Person.vb)

Public Class Person

Public Delegate Function DisplayPersonDelegate _
(ByVal p As Person) As String
Private mID As Long
Private mLastName As String
Private mFirstName As String
Private mStatus As String
Private mDisplayMethod As DisplayPersonDelegate

Public Sub New(ByVal anID As Long, ByVal lname As String, _
ByVal fname As String, ByVal statusValue As String)
mID = anID
mLastName = lname
mFirstName = fname

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 6

7

mStatus = statusValue
End Sub

Public Property ID() As Long
Get

Return mID
End Get
Set(ByVal Value As Long)

mID = Value
End Set

End Property

Public Property LastName() As String
Get

Return mLastName
End Get
Set(ByVal Value As String)

mLastName = Value
End Set

End Property

Public Property FirstName() As String
Get

Return mFirstName
End Get
Set(ByVal Value As String)

mFirstName = Value
End Set

End Property

Public Property Status() As String
Get

Return mStatus
End Get
Set(ByVal Value As String)

mStatus = Value
End Set

End Property

Public Overloads Overrides Function ToString() As String
Try

Return Me.DisplayMethod(Me)
Catch

Return MyBase.ToString()
End Try

End Function

Public Property DisplayMethod() As DisplayPersonDelegate
Get

Return mDisplayMethod
End Get

Solution 1 • ListBox ItemData Is Gone!

4253c01.qxd 10/14/03 11:00 PM Page 7

8

Set(ByVal Value As DisplayPersonDelegate)
mDisplayMethod = Value

End Set
End Property

Public ReadOnly Property LastFirst() As String
Get

Return Me.LastName & “, “ & Me.FirstName
End Get

End Property

Public ReadOnly Property FirstLast() As String
Get

Return Me.FirstName & “ “ & Me.LastName
End Get

End Property

End Class

You want to fill a ListBox with Person objects. So you create a Form and drag a ListBox
onto it. You want the ListBox to fill when the user clicks a button, so you add a Fill List but-
ton to do that (see Figure 1).

VB.NET makes it easy to display items in a ListBox, because you can set the ListBox’s
DataSource property (binding the list) to any collection that implements the IList interface,
which represents a collection of objects that you can access individually by index. Note that
you don’t have to populate the list through binding; you can still write a loop to add items to
the ListBox, as you’ve already seen in the “Populating a ListBox” section of this solution.
However, binding is convenient, as long as you understand exactly what the framework does
when it displays the list.

F I G U R E 1 :
The sample form
(form2) initially con-
tains a ListBox and a
button.

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 8

9

The ArrayList class implements the IList interface, so you can create an ArrayList member
variable for the form, called people, and fill it with Person objects during the Form_Load
event.

‘ define an ArrayList at class level
Private people As New ArrayList()

Private Sub Form2_Load(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles MyBase.Load

Dim p As Person
Me.ListBox1.Sorted = True
ListBox1.DisplayMember = “ToString”
ListBox1.ValueMember = “ID”
p = New Person(1, “Twain”, “Mark”, “”)
people.Add(p)
p = New Person(2, “Austen”, “Jane”, “”)
people.Add(p)
p = New Person(3, “Fowles”, “John”, “”)
people.Add(p)

End Sub

Now, when a user clicks the Fill List button, the ListBox displays items automatically
because the code sets the ListBox’s DataSource property to the people ArrayList:

Private Sub btnFillList_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) +
Handles btnFillList.Click

ListBox1.DataSource = Nothing
ListBox1.DataSource = people

End Sub

Unfortunately, you find that the class creator didn’t override the ToString implementation
or include any additional LastFirst method to provide the strings for the ListBox. So the
result is that the ListBox calls the default Person.ToString implementation, which returns
the class name, Solution1.Person. The result looks like Figure 2.

OK, no problem. What about using the DisplayMember property? Just add the following
line to the end of the Button1_Click method:

ListBox1.DisplayMember = “LastName”

Solution 1 • ListBox ItemData Is Gone!

4253c01.qxd 10/14/03 11:00 PM Page 9

10

Now, run the project again. This time, the result is a little closer to what you want (see Fig-
ure 3). Setting the ListBox’s DisplayMember property to the string “LastName” causes the
ListBox to invoke the LastName method. Unfortunately, this displays only the last names,
not the last and first names.

Now you’re stuck. Unless you can get the class creator to add a LastFirst property, you’ll
have to go to a good deal of trouble to get the list to display both names. (At this point, you
have to pretend the class creator actually helps and adds a LastFirst property to the Person
class.)

Public ReadOnly Property LastFirst() As String
Get

Return Me.LastName & “, “ & Me.FirstName
End Get

End Property

Now you can change the ListBox.DisplayMember property, and the form will work as
expected (see Figure 4):

ListBox1.DisplayMember = “LastFirst”

F I G U R E 3 :
Setting the Display-
Member property to
“LastName” displays
only the last names.

F I G U R E 2 :
The default
Person.ToString
implementation
returns only the
class name.

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 10

11

Just as you get the form working, your manager walks in and says, “Oh, by the way, the
clients want to be able to change the list from Last/First to First/Last—both sorted, of
course.” Now what? You could get the class creator to change the class again, but surely
there’s a better solution.

You could inherit the class and add a FirstLast method, but then you’d have two classes to
maintain. You could create a new wrapper class that exposes the people ArrayList collection,
as well as implements FirstLast and LastFirst properties. But what if the clients change
their minds again? You’d have to keep adding methods to the class, or bite the bullet and beg
the class creator for yet more changes. Also, do you really have to create a wrapper for every
class you want to display in a ListBox?

This is when you begin to miss the classic VB ListBox’s ItemData property. If you could
assign Person.ID as the ItemData value, you could concatenate the names yourself, add them
to the ListBox, and then look up the Person based on the ID when a user selects an item from
the ListBox. But ItemData is gone. Of course, you can mimic it, as you’ve seen, but that
seems like a lot of trouble when you already have a class that you could store directly into the
ListBox.

All these possibilities are onerous choices. Things would be a lot easier if you could just
control the Person class. What’s the answer?

Delegate, Delegate, Delegate
At this point, you need to change roles—take off your reader hat and put on your control
creator hat. Here’s a completely different approach to displaying custom strings based on
some object.

Unless there’s a good reason not to do so, when you create a class you typically want the
class consumer to have as much control as possible over the instantiated objects. One way to

F I G U R E 4 :
Setting the ListBox
.DisplayMember
property to the
LastFirst method
displays the list in
LastName/
FirstName order.

Solution 1 • ListBox ItemData Is Gone!

4253c01.qxd 10/14/03 11:00 PM Page 11

12

increase class consumers’ power is to give them control over the method that the ListBox (or
other code) calls to get a string representation of your object. In other words, rather than
predefining multiple display methods within your class, you provide a public Delegate type,
and then add a private member variable and a public property to your class that accept the
delegate type. For example:

‘ Public Delegate type definition
Public Delegate Function DisplayPersonDelegate(_

ByVal p As Person) As String

‘ Private member variable
Private mDisplayMethod As DisplayPersonDelegate

‘ Public Property
Public Property DisplayMethod() As DisplayPersonDelegate

Get
Return mDisplayMethod

End Get
Set (ByVal Value As DisplayPersonDelegate)

mDisplayMethod=Value
End Set

End Property

The DisplayPersonDelegate accepts a Person object and returns a string. The class con-
sumer will create a DisplayPersonDelegate object and assign it to the public DisplayMethod
property.

Next, override the ToString method so that it returns the delegate result value. For example:
Public Overloads Overrides Function ToString() As String

Try
Return Me.DisplayMethod(Me)

Catch
Return MyBase.ToString()

End Try
End Function

The advantage of this scheme is that the object consumer gets the best of both worlds—a
default ToString implementation assignable by the class creator, and the ability to call a cus-
tom ToString method by assigning the delegate. And the class creator doesn’t have to worry
about all the possible ways that a user may wish to display an object. Finally, it gives the
object consumer the ability to set different custom ToString methods for every instance of the
Person class.

The simplest way to use the Person class is to assign a collection of Person objects to some
collection, setting the DisplayMethod property for each Person to a function matching the

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 12

13

DisplayPersonDelegate signature. For example, to create an ArrayList containing the Per-
son objects, you would first write the display functions:

Public Function DisplayPersonFirstLast _
(byVal p as Person) as String
Return p.FirstName & “ “ & p.LastName

End Function

Public Function DisplayPersonLastFirst _
(byVal p as Person) as String
Return p.LastName & “, “ & p.FirstName

End Function

Next, when you create the collection, you assign the DisplayMethod for each Person
object:

‘ define an ArrayList at class level
Private people As New ArrayList()

‘ create Person objects and add them
‘ to the people ArrayList
Dim p as person
p = New Person(1, “Twain”, “Mark”, “MT”)

‘ create a DisplayPersonDelegate for the
‘ DisplayPersonLastFirst method
p.DisplayMethod = New Person.DisplayPersonDelegate _

(AddressOf DisplayPersonLastFirst)
people.Add(p)

‘ repeat as necessary
p = New Person(2, “Austen”, “Jane”, “JA”)
p.DisplayMethod = New Person.DisplayPersonDelegate _

(AddressOf DisplayPersonLastFirst)
people.Add(p)

p = New Person(3, “Fowles”, “John”, “JF”)
p.DisplayMethod = New Person.DisplayPersonDelegate _

(AddressOf DisplayPersonLastFirst)
people.Add(p)

You can see the results by clicking the buttons titled “Last, First” or “First Last” on the
sample Form2 form. These buttons switch the display of the names between Last/First and
First/Last order without requiring any changes to or using any special display methods in
the Person class. Using the DisplayMethod delegate property, Person object consumers can

Solution 1 • ListBox ItemData Is Gone!

4253c01.qxd 10/14/03 11:00 PM Page 13

14

create custom methods that display the object’s data in any format they prefer. But because
the scheme defaults to the .NET standard ToString method, you haven’t changed the base
functionality of ToString in any other way. In fact, the only reason to override the ToString
method at all is because that’s what the ListBox calls by default. But you could just as easily
write a display method and have the class consumers call that method explicitly (in this case,
by setting the ListBox DisplayMember property to Display) and leave ToString out of the
equation altogether. By providing a display method of any kind (ToString or otherwise) that
accepts a delegate, you have, perhaps accidentally, given class consumers even more power
than you may have realized.

Who Needs ItemData?
The solution you’ve just studied accomplishes one other thing that—until now—was impos-
sible without writing customized code, and that’s that you can set a different display method
for each instance of a class. The Custom button illustrates this capability by setting the Status
property of the “Jane Austen” Person object to a custom string:

Private Sub btnCustom_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnCustom.Click

Dim p As Person
p = CType(people(0), Person) ‘ Mark Twain
p.DisplayMethod = New _

Person.DisplayPersonDelegate(_
AddressOf DisplayPersonFirstLast)

p = CType(people(1), Person) ‘ Jane Austen
p.Status = “Not at home. Whew!”
p.DisplayMethod = New _

Person.DisplayPersonDelegate(_
AddressOf DisplayPersonStatus)

p = CType(people(2), Person) ‘ John Fowles
p.DisplayMethod = New _

Person.DisplayPersonDelegate(_
AddressOf DisplayPersonLastFirst)

ListBox1.DataSource = Nothing
ListBox1.DataSource = people

End Sub

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 14

15

Public Function DisplayPersonStatus(_
ByVal p As Person) As String

Return p.LastName & “, “ & p.FirstName & _
“ (“ & p.Status & “)”

End Function

Now, when you click the button, the results look like Figure 5. In other words, assigning a
different DisplayMethod delegate to an object instance causes that instance to display differ-
ently than other class instances, even within the same ListBox, despite the fact that you don’t
have to alter the class code to control the text displayed for each item. Figure 5 shows the
result when each Person instance has a different display method assigned.

While you wouldn’t normally want to provide a customized display method for each
instance in a ListBox, the capability comes in handy when some people, for example, are
comfortable with displaying their nicknames while others aren’t, or when the ListBox con-
tains a collection of disparate objects.

Finally, giving class consumers the ability to create customized display strings for your
classes goes a long way toward making the missing ItemData truly unnecessary. When you
click on an item in the ListBox, it displays a MessageBox that shows the selected item and its
ID, proving yet again that associating an ID with an item by using objects works just as well as
the older ItemData array—and doesn’t require the class consumer to write any code.

There’s one small downside to this method. If you want to post two ListBoxes side by side,
both containing the same objects but with one displaying (for example) LastName/First-
Name and the other displaying FirstName/LastName, you need to implement a Clone
method. Doing so lets you set different display methods for the objects in each list. In this
particular case, using a wrapper object (such as the ListItem class) to handle the class display
may be a simpler design.

F I G U R E 5 :
The result of
assigning different
DisplayMethod
delegates

Solution 1 • ListBox ItemData Is Gone!

4253c01.qxd 10/14/03 11:00 PM Page 15

16

SOLUTION 2
Create Owner-Drawn ListBoxes and ComboBoxes

You must create an “owner-drawn” ListBox or ComboBox when you want to bypass the con-
trols’ automatic item display to do something special, such as display an image for each item
or display a list in which the items aren’t all the same size. The .NET Framework makes it
simple to generate these custom item lists. In this solution, you’ll learn how to populate list
and ComboBox controls with items you draw yourself.

The only thing you need to do to create an owner-drawn ListBox or ComboBox is to set
the DrawMode property to either OwnerDrawFixed or OwnerDrawVariable. The DrawMode prop-
erty has three possible settings:

● Normal, in which the system handles displaying the items automatically

● OwnerDrawFixed, which you should use when you want to draw the items yourself and all
the items are the same height and width

● OwnerDrawVariable, which you use to draw items that vary in height or width

The default setting is, of course, Normal. When you select the OwnerDrawFixed setting, you
must implement a DrawItem method. The ListBox calls your DrawItem whenever it needs to
draw an item.

When you select the OwnerDrawVariable setting, you must implement both the DrawItem
and a MeasureItem method. The MeasureItem method lets you set the size of the item to be
drawn.

When you use the Normal setting, the system does not fire either the MeasureItem or the
DrawItem method.

NOTE There are some restrictions when you use any setting but Normal. You can’t create vari-
able-height items for multicolumn ListBoxes, and CheckedListBoxes don’t support either
of the owner-drawn DrawMode settings.

SOLUTION Learn to use the DrawMode set-
tings with ListBoxes and ComboBoxes to
create and display customized items.

PROBLEM I want to create ListBoxes and
ComboBoxes that can contain icons and
special fonts like the ones I see in other
Windows applications. How can I do that
with .NET?

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 16

17

Listing Files and Folders
Suppose you want to list the files and directories in a folder along with the associated system
icons appropriate to the type of file. You must follow several steps to accomplish this task:

● Validate the requested directory path.

● Retrieve the files and subfolders from a directory.

● Iterate through them, retrieving their types and names.

● Find the appropriate icon for each file type.

● Draw the items for the ListBox containing the appropriate icon and text.

Figure 1 depicts a Web form with the finished ListBox control that displays all the files in a
specified directory along with their corresponding system icons. To use the example, enter a
directory path in the first text field. The form ensures that the entered path is valid, and then
follows the steps listed here to fill a ListBox shown in a separate dialog box. The user can
double-click an item in the list, or select an item and click OK. The constructor for the dia-
log form (ListFilesAndFolders) requires a path string.

F I G U R E 1 :
The ListFilesAnd-
Folders form contains
an owner-drawn List-
Box that displays
names of folders and
files, along with their
system-associated
icons.

Solution 2 • Create Owner-Drawn ListBoxes and ComboBoxes

4253c01.qxd 10/14/03 11:00 PM Page 17

18

The first step in creating the application logic is to validate the path string users enter in
the main form. The easiest way to do that is to use the System.IO.DirectoryInfo class, which
has an Exists method that returns True if the directory exists:

Dim di As DirectoryInfo
Me.txtResult.Text = Nothing
di = New DirectoryInfo(Me.txtPath.Text)
If Not di.Exists Then

txtPath.ForeColor = System.Drawing.Color.Red
Beep()
Exit Sub

End If

The code turns the TextBox text red and plays a warning sound if the entered path is invalid;
otherwise, it creates a new instance of the ListFilesAndFolders form, passing the validated
path string to its constructor:

Dim frmFiles As New _
ListFilesAndFolders(Me.txtPath.Text)

The ListFilesAndFolders form contains a ListBox, an OK button, and a Close button. The
form’s constructor calls a FillList method that retrieves the files and folders in the specified
path and then fills a ListBox control with the icons and names, suspending the control’s dis-
play until the method completes:

Sub FillList(ByVal aPath As String)
Dim fsi As FileSystemInfo
lstFiles.BeginUpdate()
Me.lstFiles.ItemHeight = _

CInt(lstFiles.Font.GetHeight + 4)
lstFiles.Items.Clear()
files = New DirectoryInfo(aPath).GetFileSystemInfos
For Each fsi In files

lstFiles.Items.Add(fsi)
Next
lstFiles.EndUpdate()

End Sub

The DirectoryInfo.GetFileSystemInfos method used in this code snippet returns an array
of FileSystemInfo objects. The code iterates through the returned array and adds each item
to the ListBox’s Items collection.

Here’s where things get interesting. The ListBox’s DrawMode property is set to OwnerDraw-
Fixed, because although you want to draw the items yourself (so you can add the file-type
icons), each item will be the same height. When you set DrawMode to anything except Normal,
the act of adding the items to the ListBox doesn’t cause the ListBox to draw them; instead, the
ListBox fires a DrawItem event whenever the ListBox needs to display an item. In this case,
every time the DrawItem event fires, you want to draw an icon and the name of a FileSystemInfo

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 18

19

object that represents a file or folder. Because this is an owner-drawn control, you must cre-
ate the DrawItem method to display the item:

Private Sub lstFiles_DrawItem(_
ByVal sender As Object, _
ByVal e As System.Windows.Forms.DrawItemEventArgs) _
Handles lstFiles.DrawItem

‘ the system sometimes calls this method with
‘ an index of -1. If that happens, exit.
If e.Index < 0 Then

e.DrawBackground()
e.DrawFocusRectangle()
Exit Sub

End If

‘ create a brush
Dim aBrush As Brush = System.Drawing.Brushes.Black

‘ get a reference to the item to be drawn
Dim fsi As FileSystemInfo = _

CType(lstFiles.Items(e.Index), FileSystemInfo)

‘ create an icon object
Dim anIcon As Icon

‘ use a generic string format to draw the filename
Dim sFormat As StringFormat = _

StringFormat.GenericTypographic

‘ get the height of each item
Dim itemHeight As Integer = lstFiles.ItemHeight

‘ call these methods to get items to highlight
‘ properly
e.DrawBackground()
e.DrawFocusRectangle()

‘ retrieve the appropriate icon for this file type
anIcon = IconExtractor.GetSmallIcon(fsi)

‘ draw the icon
If Not anIcon Is Nothing Then

e.Graphics.DrawIcon(anIcon, 3, _
e.Bounds.Top + ((itemHeight - _
anIcon.Height) \ 2))

Solution 2 • Create Owner-Drawn ListBoxes and ComboBoxes

4253c01.qxd 10/14/03 11:00 PM Page 19

20

anIcon.Dispose()
End If

‘ if the item is selected,
‘ change the text color to white
If (e.State And _

Windows.Forms.DrawItemState.Selected) = _
Windows.Forms.DrawItemState.Selected Then

aBrush = System.Drawing.Brushes.White
End If
sFormat.LineAlignment = StringAlignment.Center
e.Graphics.DrawString(fsi.Name, lstFiles.Font, _

aBrush, 22, e.Bounds.Top + _
(e.Bounds.Height \ 2), sFormat)

End Sub

In the DrawItem method shown here, the code calls a shared GetSmallIcon method exposed
by the IconExtractor class (see Listing 1), which, when passed a FileSystemInfo object, calls
the Win32 SHGetFileInfo API to extract the icon for the file type represented by that object.
The IconExtractor class exposes two public shared methods—GetLargeIcon and GetSmall-
Icon—both of which simply call a private GetIcon method that returns the large (32×32) or
small (16×16) icon versions, respectively:

Public Shared Function GetSmallIcon(_
ByVal fsi As FileSystemInfo) As Icon

Return IconExtractor.GetIcon _
(fsi, SHGFI_SMALLICON)

End Function

Public Shared Function GetLargeIcon(_
ByVal fsi As FileSystemInfo) As Icon

Return IconExtractor.GetIcon _
(fsi, SHGFI_LARGEICON)

End Function

Private Shared Function GetIcon(_
ByVal fsi As FileSystemInfo, _
ByVal anIconSize As Integer) As Icon

Dim aSHFileInfo As New SHFILEINFO()
Dim cbFileInfo As Integer = _

Marshal.SizeOf(aSHFileInfo)
Dim uflags As Integer = SHGFI_ICON Or _

SHGFI_USEFILEATTRIBUTES Or anIconSize
Try

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 20

21

SHGetFileInfo(fsi.FullName, fsi.Attributes, _
aSHFileInfo, cbFileInfo, uflags)

Return Icon.FromHandle(aSHFileInfo.hIcon)
Catch ex As Exception

Return Nothing
End Try

End Function

➲ Listing 1 The IconExtractor Class calls the Win32 API to identify and return icons
appropriate for a specific file type. (IconExtractor.vb)

Imports System
Imports System.Drawing
Imports System.Runtime.InteropServices
Imports System.Windows.Forms
Imports System.IO

Public Class IconExtractor

Private Const SHGFI_SMALLICON = &H1
Private Const SHGFI_LARGEICON = &H0
Private Const SHGFI_ICON = &H100
Private Const SHGFI_USEFILEATTRIBUTES = &H10

Public Enum IconSize
SmallIcon = SHGFI_SMALLICON
LargeIcon = SHGFI_LARGEICON

End Enum

<StructLayout(LayoutKind.Sequential)> _
Private Structure SHFILEINFO

‘ pointer to icon handle
Public hIcon As IntPtr
‘ icon index
Public iIcon As Integer
‘ not used in this example
Public dwAttributes As Integer
‘ file pathname--marshal this as
‘ an unmanaged LPSTR of MAX_SIZE
<MarshalAs(UnmanagedType.LPStr, SizeConst:=260)> _
Public szDisplayName As String
‘ file type--marshal as unmanaged
‘ LPSTR of 80 chars
<MarshalAs(UnmanagedType.LPStr, SizeConst:=80)> _
Public szTypeName As String

End Structure

Private Declare Auto Function SHGetFileInfo _
Lib “shell32” (ByVal pszPath As String, _
ByVal dwFileAttributes As Integer, _

Solution 2 • Create Owner-Drawn ListBoxes and ComboBoxes

4253c01.qxd 10/14/03 11:00 PM Page 21

22

ByRef psfi As SHFILEINFO, _
ByVal cbFileInfo As Integer, _
ByVal uFlags As Integer) As Integer

Public Shared Function GetSmallIcon(_
ByVal fsi As FileSystemInfo) As Icon
Return IconExtractor.GetIcon _

(fsi, SHGFI_SMALLICON)
End Function

Public Shared Function GetLargeIcon(_
ByVal fsi As FileSystemInfo) As Icon
Return IconExtractor.GetIcon _

(fsi, SHGFI_LARGEICON)
End Function

Private Shared Function GetIcon(_
ByVal fsi As FileSystemInfo, _
ByVal anIconSize As Integer) As Icon

Dim aSHFileInfo As New SHFILEINFO()
Dim cbFileInfo As Integer = _

Marshal.SizeOf(aSHFileInfo)
Dim uflags As Integer = SHGFI_ICON Or _

SHGFI_USEFILEATTRIBUTES Or anIconSize
Try

SHGetFileInfo(fsi.FullName, _
fsi.Attributes, aSHFileInfo, _
cbFileInfo, uflags)
Return Icon.FromHandle(aSHFileInfo.hIcon)

Catch ex As Exception
Return Nothing

End Try
End Function

End Class

The GetSmallIcon and GetLargeIcon methods both accept a FileSystemInfo object. Inter-
nally, the GetIcon method uses the FileSystemInfo object to pass the filename and file attrib-
utes to the SHGetFileInfo API call. After drawing the icon, the DrawItem event handler calls
the Graphics.DrawString method to place the filename on the image next to the icon. The
ListBox calls the DrawItem method repeatedly, once for each item in its Items collection.

The DrawItemEventArgs argument to the DrawItem event handler exposes an Index property
whose value is the index of the item to be drawn. Watch out! The system raises the DrawItem
event with an index value of -1 when the Items collection is empty. When that happens, you
should call the DrawItemEventArgs.DrawBackground() and DrawFocusRectangle() methods
and then exit. The purpose of raising the event is to let the control draw a focus rectangle so

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 22

23

that users can tell it has the focus, even when no items are present. The code traps for that
condition, calls the two methods, and then exits the handler immediately.

Users can select an item and close the ListFilesAndFolders form either by selecting an
item and then clicking the OK button, or by double-clicking an item. Either way, the form
sets a public property called SelectedItem, sets another public property called Cancel, and
then closes. The main form then displays the filename of the selected item in the Result field.

Drawing Items with Variable Widths and Heights
This section presents a similar example, but this time the items you’ll create won’t all be the
same width and height. To create an owner-drawn ListBox or ComboBox with items of vari-
able heights and widths, set the DrawMode property to OwnerDrawVariable. Then, implement
a method that handles the MeasureItem event, which accepts a sender (Object) and a System
.Windows.Forms.MeasureItemEventArgs argument. The sample form frmColorCombo displays
all the known system colors and their names in a ComboBox. The items themselves vary
between 20 and 40 pixels in height. The result is contrived and ugly (see Figure 2) but serves
to illustrate the point.

The code does present a couple of interesting problems. The .NET Framework defines
the common colors as an enumeration. Enumerations expose a getNames method that, when
passed a Type object for a particular enumeration, returns an array of names in that enumer-
ation. In this case, you want not only the names but the colors themselves. You can create a

F I G U R E 2 :
The frmColorCombo
form contains an
owner-drawn ListBox
that displays all the
known color names,
accompanied by a
variable-height color
swatch.

Solution 2 • Create Owner-Drawn ListBoxes and ComboBoxes

4253c01.qxd 10/14/03 11:00 PM Page 23

24

Color object if you know the name by using the Color.FromName method. So the following
For...Each loop retrieves the known color names, and then adds Color objects to the Combo-
Box’s Items collection:

Dim aColorName As String
For Each aColorName In _

System.Enum.GetNames _
(GetType(System.Drawing.KnownColor))
colorCombo.Items.Add(Color.FromName(aColorName))

Next

The frmColorCombo class defines a private Random object (mRand). Because its DrawMode
property is set to OwnerDrawVariable, the ComboBox control calls the MeasureItem event
before drawing each item (in other words, before calling the DrawItem method):

Protected Sub colorCombo_MeasureItem(_
ByVal sender As Object, ByVal e As _
System.Windows.Forms.MeasureItemEventArgs) _
Handles colorCombo.MeasureItem

e.ItemHeight = mRand.Next(20, 40)

End Sub

In this code snippet, the comboColor_MeasureItem event handler calls the overloaded
Random.Next method to get the next random number between 20 and 40, and assigns that
to the ItemHeight property of the MeasureItemEventArgs parameter.

The DrawItem event handler used here is similar to the one in the previous example. It
retrieves the Color object from the Items collection as specified by the Index value of the
DrawItemEventArgs parameter, and then retrieves the color name from that Color object.
The method draws a square and fills it with the appropriate color, and then draws the color
name to the right of the square. As you can see in Listing 2, the DrawItem method uses the
bounds set randomly in the MeasureItem method for each item.

➲ Listing 2 The colorCombo_DrawItem method displays a random-height color swatch and
the color name for each color shown.

Protected Sub colorCombo_DrawItem(_
ByVal sender As Object, _
ByVal e As System.Windows.Forms.DrawItemEventArgs) _
Handles colorCombo.DrawItem

If e.Index < 0 Then
e.DrawBackground()
e.DrawFocusRectangle()
Exit Sub

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 24

25

End If
‘ Get the Color object from the Items list
Dim aColor As Color = _

CType(colorCombo.Items(e.Index), Color)

‘ get a square using the bounds height
Dim rect As Rectangle = New Rectangle _

(2, e.Bounds.Top + 2, e.Bounds.Height, _
e.Bounds.Height - 4)

Dim br As Brush

‘ call these methods first
e.DrawBackground()
e.DrawFocusRectangle()

‘ change brush color if item is selected
If e.State = _

Windows.Forms.DrawItemState.Selected Then
br = Brushes.White

Else
br = Brushes.Black

End If

‘ draw a rectangle and fill it
e.Graphics.DrawRectangle(New Pen(aColor), rect)
e.Graphics.FillRectangle(New SolidBrush _

(aColor), rect)

‘ draw a border
rect.Inflate(1, 1)
e.Graphics.DrawRectangle(Pens.Black, rect)

‘ draw the Color name
e.Graphics.DrawString(aColor.Name, _

colorCombo.Font, br, e.Bounds.Height + 5, _
((e.Bounds.Height - colorCombo.Font.Height) _
\ 2) + e.Bounds.Top)

End Sub

In the sample form, when you select a color from the frmColorCombo window, the main
form changes the button color to reflect your choice. If you close the frmColorCombo window
without selecting a color, the main form changes the button back to its default color.

Building a Font Combo That Displays Fonts
Here’s another useful example. It’s relatively easy to create a ComboBox that lets a user select
a font, but in Microsoft Word and other commercial applications, you sometimes see font
selection ComboBoxes that display the names of the fonts using the fonts themselves, rather

Solution 2 • Create Owner-Drawn ListBoxes and ComboBoxes

4253c01.qxd 10/14/03 11:00 PM Page 25

26

than using a single fixed typeface. To do that, you first need to retrieve the list of font families
installed on the machine—a process called enumerating fonts—and add them to an owner-
drawn ComboBox. Then, in the MeasureItem event, you create an instance of that font and
use it to measure the font name. Similarly, in the DrawItem event, you create an instance of
the font and use that to draw the font name. Because most of the code is identical to that
of the frmColorCombo form, I’ll only show the relevant portion in Listing 3, although the
accompanying code (available on the Sybex Web site, www.sybex.com) contains the complete
implementation.

The system maintains a list of the installed font families, which you can retrieve either by
using the FontFamilies.Families property or by creating a new InstalledFontsCollection
object and calling its Families method:

Dim installedFonts As New InstalledFontCollection()

In that way, you can retrieve a complete list of installed fonts—including the line-drawing
and non-character WingDings fonts. Some of those don’t look very good in a ComboBox,
so I’ve eliminated the worst offenders by testing the height of the letter A at a font size of 9
points. If the font height measurement is greater than 20 pixels, the code in Listing 3 doesn’t
add it to the ComboBox.

➲ Listing 3 The Form_Load event handler fills the ComboBox’s Items collection with a
list of fonts. (frmFontCombo.vb)

Private Sub frmFontCombo_Load(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Me.Size = New Size(New Point(240, 60))
Me.ControlBox = True
Me.FormBorderStyle = _

Windows.Forms.FormBorderStyle.FixedToolWindow
fontCombo = _

New System.Windows.Forms.ComboBox()
fontCombo.DrawMode = _

Windows.Forms.DrawMode.OwnerDrawVariable
fontCombo.Location = New Point(0, 0)
fontCombo.Width = Me.Width - 5
fontCombo.MaxDropDownItems = 20
fontCombo.IntegralHeight = True
Dim aFontFamily As FontFamily
Dim installedFonts As New InstalledFontCollection()
Dim g As Graphics = Me.CreateGraphics
Dim families() As FontFamily = FontFamily.GetFamilies(g)
For Each aFontFamily In families ‘installedFonts.Families

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 26

27

If aFontFamily.IsStyleAvailable _
(FontStyle.Regular) Then
If g.MeasureString(“A”, New Font(aFontFamily, 9, _

FontStyle.Regular, GraphicsUnit.Point)).Height _
< 20 Then
fontCombo.Items.Add(aFontFamily)

End If
End If

Next
g.Dispose()
Me.Controls.Add(fontCombo)

End Sub

Similar to the previous example, after you select a font from the ComboBox, the sample
changes the View Font Combo Example button font to match your selection (see Figure 3).
Closing the window without selecting a font switches the button text back to the default font.

By selecting the appropriate DrawMode setting for your ListBoxes and ComboBoxes and
implementing the MeasureItem and DrawItem event handlers, you gain complete control over
the contents of ListBoxes and ComboBoxes within the .NET Framework. You can extend
the owner-drawn techniques shown here to create complex interactive ComboBoxes.

F I G U R E 3 :
Selecting a font from
the ComboBox
changes the View Font
Combo button’s font
to match the selection.

Solution 2 • Create Owner-Drawn ListBoxes and ComboBoxes

4253c01.qxd 10/14/03 11:00 PM Page 27

28

SOLUTION 3
Upgrade Your INI Files to XML

The INI (application Initialization) file format became popular because it provides a conve-
nient way to store values that might change (such as file locations and user preferences) in a
standard format accessible to but outside of compiled application code. INI files are text-
based—meaning you can read and change most values manually if necessary—and logically
arranged—meaning it’s easy even for nontechnical personnel to understand the contents. In
addition, the functions for reading and modifying the files are built into Windows.

You can still use the existing Win32 API calls to read and write from standard INI files
using the DllImport attribute with C#, or with the Declare Function statement in VB.NET;
however, there are a couple of tricks.

WARNING The API calls to interact with INI files have been obsolete since the release of Win-
dows 95, and are supported in Win32 for backward compatibility only. The INIWrapper
class shown here wraps the most important API calls for interacting with INI files.

The API INI Functions
The API functions that deal with INI files are usually paired; there’s a Get and a Write ver-
sion for most of the functions. The API contains special functions to read and write the
win.ini file in the Windows folder (which aren’t discussed in this solution); however, if you
need to modify win.ini through .NET, you’ll see enough here to declare the function proto-
types yourself. For INI files associated with individual applications, the most important
Win32 API INI-related functions are:

GetPrivateProfileString Retrieves an individual value associated with a named section
and key.

WritePrivateProfileString Sets an individual value associated with a named section and key.

GetPrivateProfileInt Retrieves an integer value associated with a named section and key.

SOLUTION: Migrate your legacy INI data
to XML using the Windows API and this
XML INI file wrapper class.

PROBLEM: The .NET Framework wraps
many underlying Windows API calls, but
doesn’t provide an easy way to get to legacy
data and configuration settings stored in
application initialization (INI) files.

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 28

29

WritePrivateProfileInt Sets an integer value associated with a named section and key.

GetPrivateProfileSection Retrieves all the keys and values associated with a named section.

WritePrivateProfileSection Sets all the keys and values associated with a named section.

GetPrivateProfileSectionNames Retrieves all the section names in an INI file.

For example, the GetPrivateProfileString API function retrieves an individual value
from an INI file. You specify the file, the section, the key, a default value, a string buffer for
the returned information, and the size of the buffer. In classic VB, you use a Declare Func-
tion statement to declare the API function:

‘ Classic VB declaration
Public Declare Function _

GetPrivateProfileString _
Lib “kernel32” _
Alias “GetPrivateProfileStringA” _
(ByVal lpApplicationName As String, _
ByVal lpKeyName As Any, _
ByVal lpDefault As String, _
ByVal lpReturnedString As String, _
ByVal nSize As Long, _
ByVal lpFileName As String) As Long

In .NET the equivalent declaration is
‘ VB.NET declaration
Private Declare Ansi Function _

GetPrivateProfileString _
Lib “KERNEL32.DLL”
Alias “GetPrivateProfileStringA” _
(ByVal lpAppName As String, _
ByVal lpKeyName As String, _
ByVal lpDefault As String, _
ByVal lpReturnedString As StringBuilder, _
ByVal nSize As Integer, _
ByVal lpFileName As String) As Integer

C# handles things a little differently. In C#, you use the DllImport attribute to declare
function prototypes, so the equivalent declaration is

// C# function prototype
[DllImport(“KERNEL32.DLL”,

EntryPoint=”GetPrivateProfileString”)]
protected internal static extern int

GetPrivateProfileString(string lpAppName,
string lpKeyName, string lpDefault,
StringBuilder lpReturnedString, int nSize,
string lpFileName);

Solution 3 • Upgrade Your INI Files to XML

4253c01.qxd 10/14/03 11:00 PM Page 29

30

The interesting point here is that the lpReturnedString parameter expects a string buffer
nSize in length. In .NET, you pass a StringBuilder object for the lpReturnedString parame-
ter rather than a String object (remember to add a using System.Text; line to your class file
in C#; in VB.NET use the Imports System.Text statement). That’s because strings in .NET
are immutable, so while you can pass them into unmanaged code without errors, any changes
made to the string buffer in unmanaged code aren’t visible in your .NET code when the
.NET Framework marshals the data back into managed code. Fortunately, StringBuilder
objects act as mutable strings and you can create them with a fixed buffer size. When calling
unmanaged code that needs a fixed-size string buffer, try a StringBuilder first.

The EntryPoint parameter in the C# declaration in the previous snippet isn’t strictly
required. The EntryPoint parameter contains the name (or the index) of the function you
want to declare. You need to include this parameter only if the name of your .NET function
isn’t the same, because .NET looks for a function named identically to the .NET function if
you don’t include the parameter. However, if you were to rename the .NET function to
getAppInitValue, you would have to include the EntryPoint parameter:

[DllImport(“KERNEL32.DLL”,
EntryPoint=”GetPrivateProfileString”)]
protected internal static extern int

getAppInitValue(string lpAppName,
string lpKeyName, string lpDefault,
StringBuilder lpReturnedString, int nSize,
string lpFileName);

NOTE I declared the prototypes in the C# version of this class using the protected internal sta-
tic accessibility level, which means they’re only visible from this project and any derived
classes. You may want to change the accessibility level, depending on how you want to
use the functions.

Suppose you had a simple INI file that looks like this:
[textvalues]
1=item1
2=item2
3=item3

[intvalues]
1=101
2=102
3=103

After setting up the imported GetPrivateProfileString function definition, you can call it
just like any other function. For example, using the INI file shown earlier, and assuming it
was saved as c:\INIinterop.ini, the following code would retrieve the value of the item in

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 30

31

the [textvalues] section with the key “1”—the string “item1”—and write it to the output
window. Note that you don’t have to instantiate an instance of the INIWrapper class, because
all the methods are class-level methods (static methods in C# and shared methods in
VB.NET).

Dim buffer As StringBuilder = New StringBuilder(256)
Dim sDefault As String = “”
Dim bufLen As Integer = _
INIWrapper.GetPrivateProfileString _
(“textvalues”, “1”, “”, buffer, buffer.Capacity, _
“c:\INIinterop.ini”) <> 0)

Debug.WriteLine(buffer.ToString())

In contrast, you can write a new value without using a StringBuilder, because you don’t
need a return value:

INIFileInterop.WritePrivateProfileString
(“textvalues”, “1”, “new Item 1”,
“c:\INIinterop.ini”)

You can retrieve and write integer values with the GetPrivateProfileInt and WritePrivate-
ProfileInt methods. (See Listing 1 later in this solution for the full declarations.) To call the
GetPrivateProfileInt function, pass the section name, key name, a default integer value
(which is returned if the key doesn’t exist), and the name of the INI file. For example, the fol-
lowing code writes “101” to the output window:

int result = INIWrapper.GetPrivateProfileString
(“intvalues”, “1”, 0, “c:\INIinterop.ini”);

Debug.WriteLine(result.ToString());

dim result as Integer = _
INIWrapper.GetPrivateProfileString _

(“intvalues”, “1”, 0, “c:\INIinterop.ini”)
Debug.WriteLine(result.ToString())

Unfortunately calling the GetPrivateProfileSection function isn’t quite as easy. The
function returns a buffer filled with a null-delimited list of all the keys and values (items) in a
specified section, with an additional trailing null character after the last item, so the returned
buffer looks like this, where the \0 characters denote nulls:

1=item1\02=item2\03=item3\0\0

You would expect to declare the function using a StringBuilder object with a predefined
length for the lpReturnedString buffer parameter, just as with the GetPrivateProfileString
function—but that doesn’t work. When you call the function, it returns the proper number
of characters, but the StringBuilder contains only the first item, “1=item1”. However, the
return value of the function contains 24, which is correct—the length of the text of the three

Solution 3 • Upgrade Your INI Files to XML

4253c01.qxd 10/14/03 11:00 PM Page 31

32

items in the [textvalues] section plus one null character after each item. In other words,
the StringBuilder buffer contains the second and third items—but you can’t reach them; the
first null character in the StringBuilder buffer determines the length of the contents avail-
able, and the StringBuilder throws an error if you attempt to index a character past that
point. Obviously, you need to pass a managed type that isn’t quite so sensitive to null-
delimited strings.

Using a Char array doesn’t work either—the function doesn’t alter the array, even though
it still returns the correct number of characters. Instead, after much fiddling with the prob-
lem, you’ll find that you can use a byte array. You can see the full declaration in Listing 1.

When the function call returns, the byte array contains the entire set of items, separated
with null characters, as expected. I haven’t found a truly simple way to convert the byte array
to a set of strings; the best method I’ve found is to iterate through the byte array creating the
individual strings using a StringBuilder object. The sample GetINISection method here
wraps the call to the GetPrivateProfileSection API, converts the returned items to strings,
collects them in a StringCollection, and returns that to the calling code:

‘ **
‘ * VB.NET code *
‘ **
Public Shared Function GetINISection(ByVal filename _

As String, ByVal section As String) _
As StringCollection
Dim items As StringCollection = New _

StringCollection()
Dim buffer(32768) As Byte
Dim bufLen As Integer = 0
Dim sb As StringBuilder
Dim i As Integer
bufLen = GetPrivateProfileSection(section, _

buffer, buffer.GetUpperBound(0), filename)
If bufLen > 0 Then

sb = New StringBuilder()
For i = 0 To bufLen - 1

If buffer(i) <> 0 Then
sb.Append(ChrW(buffer(i)))

Else
If sb.Length > 0 Then

items.Add(sb.ToString())
sb = New StringBuilder()

End If
End If

Next
End If

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 32

33

Return items
End Function

// **
// * C# code *
// **
public static StringCollection GetINISection

(String filename, String section) {
StringCollection items = new StringCollection();
byte[] buffer = new byte[32768];
int bufLen=0;
bufLen = GetPrivateProfileSection(section,

buffer, buffer.GetUpperBound(0), filename);
if (bufLen > 0) {

StringBuilder sb = new StringBuilder();
for(int i=0; i < bufLen; i++) {

if (buffer[i] != 0) {
sb.Append((char) buffer[i]);

}
else {

if (sb.Length > 0) {
items.Add(sb.ToString());
sb = new StringBuilder();

}
}

}
}
return items;

}

To use the method, add the line using System.Collections.Specialized; (in C#) or
Imports System.Collections.Specialized (in VB.NET) to the top of the calling class, and
then you can write code such as this:

‘ **
‘ * VB.NET code *
‘ **
Dim s As String
Dim items as StringCollection = _

INIFileInterop.GetINISection _
(“c:\INIinterop.ini”, “textvalues”)

For Each s In items
Debug.WriteLine(s)

Next

// **

Solution 3 • Upgrade Your INI Files to XML

4253c01.qxd 10/14/03 11:00 PM Page 33

34

// * C# code *
// **
StringCollection items =

INIFileInterop.GetINISection
(“c:\INIinterop.ini”, “textvalues”);

foreach(String s in items) {
Debug.WriteLine(s);

}

The sample code in Listing 1 (downloadable from the Sybex Web site) includes an
INIWrapper class (INIWrapper.cs in C#, INIWrapper.vb in VB.NET) that contains the
API function prototypes and some wrapper methods to simplify calling the APIs. The
classes work with any standard INI file.

There are a few other Win32 API calls that work with INI files, and over the years, I’ve
found it useful to add wrapper functions that, for example, return just a list of keys in a
section, or just the list of values from a section. I’ve also found it useful to write wrapper
functions to insert comments at various places. You can probably think of many more
extensions to these simple classes.

Finally, the code in Listing 1 is meant for example use only. You should add error
trapping and checking. See the DllImportAttribute.SetLastError field and the
Marshal.GetLastWin32Error method in the .NET Framework documentation for
more information.

➲ Listing 1 The VB.NET INIWrapper class (INIWrapper.vb)

Option Strict On
Imports System
Imports System.Runtime.InteropServices
Imports System.Collections.Specialized
Imports System.Text
Imports System.IO
Public Class INIWrapper

Private Declare Ansi Function GetPrivateProfileString _
Lib “KERNEL32.DLL” Alias “GetPrivateProfileStringA” _
(ByVal lpAppName As String, ByVal lpKeyName As _
String, ByVal lpDefault As String, _
ByVal lpReturnedString As StringBuilder, _
ByVal nSize As Integer, _
ByVal lpFileName As String) As Integer

Private Declare Ansi Function GetPrivateProfileInt _
Lib “KERNEL32.DLL” (ByVal lpAppName As String, _
ByVal lpKeyName As String, ByVal iDefault As _
Integer, ByVal lpFileName As String) As Integer

Private Declare Ansi Function _
WritePrivateProfileString Lib “KERNEL32.DLL” _

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 34

35

Alias “WritePrivateProfileStringA” _
(ByVal lpAppName As String, ByVal lpKeyName As _
String, ByVal lpString As String, ByVal lpFileName _
As String) As Boolean

Private Declare Ansi Function GetPrivateProfileSection _
Lib “KERNEL32.DLL” Alias _
“GetPrivateProfileSectionA” _
(ByVal lpAppName As String, ByVal lpReturnedString _
As Byte(), ByVal nSize As Integer, ByVal lpFileName _
As String) As Integer

Private Declare Ansi Function _
WritePrivateProfileSection _
Lib “KERNEL32.DLL” Alias _
“WritePrivateProfileSectionA” _
(ByVal lpAppName As String, ByVal data As Byte(), _
ByVal lpFileName As String) As Boolean

Private Declare Ansi Function _
GetPrivateProfileSectionNames _
Lib “KERNEL32.DLL” Alias _
“GetPrivateProfileSectionNamesA” _
(ByVal lpReturnedString As Byte(), ByVal nSize As _
Integer, ByVal lpFileName As String) As Integer

Public Shared Function GetINIValue _
(ByVal filename As String, ByVal section As String, _
ByVal key As String) As String
Dim buffer As StringBuilder = New StringBuilder(256)
Dim sDefault As String = “”
If (GetPrivateProfileString(section, key, sDefault, _

buffer, buffer.Capacity, filename) <> 0) Then
Return buffer.ToString()

Else
Return Nothing

End If
End Function

Public Shared Function WriteINIValue _
(ByVal filename As String, ByVal section As String, _
ByVal key As String, ByVal sValue As String) _
As Boolean
Return WritePrivateProfileString(section, key, _

sValue, filename)
End Function

Public Shared Function GetINIInt _
(ByVal filename As String, ByVal section As String, _
ByVal key As String) As Integer
Dim iDefault As Integer = -1
Return GetPrivateProfileInt(section, key, iDefault, _

filename)
End Function

Solution 3 • Upgrade Your INI Files to XML

4253c01.qxd 10/14/03 11:00 PM Page 35

36

Public Shared Function GetINISection _
(ByVal filename As String, ByVal section As String) _
As StringCollection
Dim items As StringCollection = New _

StringCollection()
Dim buffer(32768) As Byte
Dim bufLen As Integer = 0
Dim sb As StringBuilder
Dim i As Integer
bufLen = GetPrivateProfileSection(section, buffer, _

buffer.GetUpperBound(0), filename)
If bufLen > 0 Then

sb = New StringBuilder()
For i = 0 To bufLen - 1

If buffer(i) <> 0 Then
sb.Append(ChrW(buffer(i)))

Else
If sb.Length > 0 Then

items.Add(sb.ToString())
sb = New StringBuilder()

End If
End If

Next
End If
Return items

End Function

Public Shared Function WriteINISection _
(ByVal filename As String, ByVal section As String, _
ByVal items As StringCollection) As Boolean
Dim b(32768) As Byte
Dim j As Integer = 0
Dim s As String
For Each s In items

ASCIIEncoding.ASCII.GetBytes(s, 0, s.Length, b, j)
j += s.Length
b(j) = 0
j += 1

Next
b(j) = 0
Return WritePrivateProfileSection(section, _

b, filename)
End Function

Public Shared Function GetINISectionNames _
(ByVal filename As String) As StringCollection
Dim sections As StringCollection = New _

StringCollection()
Dim buffer(32768) As Byte
Dim bufLen As Integer = 0
Dim sb As StringBuilder
Dim i As Integer
bufLen = GetPrivateProfileSectionNames(buffer, _

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 36

37

buffer.GetUpperBound(0), filename)
If bufLen > 0 Then

sb = New StringBuilder()
For i = 0 To bufLen - 1

If buffer(i) <> 0 Then
sb.Append(ChrW(buffer(i)))

Else
If sb.Length > 0 Then

sections.Add(sb.ToString())
sb = New StringBuilder()

End If
End If

Next
End If
Return sections

End Function
End Class

Moving Beyond Interop
All that COM Interop code is interesting, but simply reading existing INI files doesn’t help
you move them into XML. You’ve seen how to read and write INI files with .NET using
DllImport to access the Windows API functions from within a C# or VB.NET class. Wrap-
ping the Windows API functions lets you use existing INI files from .NET, but doesn’t
address the problems inherent in the INI file format itself—and INI files have a number of
deficiencies. For example, total file size is limited to 64 KB total, individual values cannot
exceed 256 characters, and the Windows API provides no programmatic way to read and
write comments. Translating the files to XML solves these problems. The first task is to
analyze exactly how INI files are constructed and decide how best to preserve their advantage
(a text format that’s easy to read and modify) while maintaining and extending the program-
matic capabilities.

The Ubiquitous INI File
An INI file has three types of information: sections, keys, and values. A section is a string
enclosed in square brackets; the keys and values are paired. A key does not have to have a
value, but when present, an equal sign (=) separates the key from the value. The keys and
values together create an item. The items are always “children” of a section header. Each
section can have any number of child items. For example, here’s a simple INI file structure:

[Section 1]
key=value

[Section 2]
key=value
key=value

Solution 3 • Upgrade Your INI Files to XML

4253c01.qxd 10/14/03 11:00 PM Page 37

38

INI files first appeared in Windows 3.x, and were originally intended to hold global Win-
dows settings for various applications. Therefore, the section items of the INI file format were
initially called application—a name that persists in the Win32 API function calls to this day,
even though the later documentation uses the section/key/value terminology. Windows pro-
vides special APIs to read and write the win.ini file in the Windows folder, as well as func-
tionally identical “private” versions that read and write values from named INI files specific
to one application. Windows provides a number of functions in kernel32.dll to read and
write INI files—all of which are marked as obsolete (see http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/vbcon/html/vbconupgraderecommendation-

adjustdatatypesforwin32apis.asp for more information).

Microsoft began calling the API functions obsolete seven years ago with the release of Win-
dows 95, when it began touting the Registry as the perfect place to store application-level
settings. The current MDSN documentation states that the functions are supported only for
backward compatibility with Win16. Nevertheless, INI files have remained popular among
developers, partly because Microsoft never made the Registry easy to use programmatically
and partly for many of the same reasons that XML became popular: INI files are easy to
understand; easy to modify, either manually or programmatically; and you can simply copy
them from one machine to another. The strongest evidence in favor of INI files is that—
despite Microsoft’s insistence that INI files are obsolete—they’re ubiquitous even in
Microsoft software (search your local Documents and Settings\accountName\Local
Settings\Application Data folder for examples).

Why Not Use .NET Configuration Files?
Your .NET applications are supposed to use the AppSettings section of configuration files to
store key-value pair information. Unfortunately, the INI file format doesn’t translate well to
a simple list of key-value pairs, because you lose a “level” of information. Items in INI files
exist as children of named sections; therefore, many INI files repeat key names for each sec-
tion. Any line in an INI file that starts with a semicolon is a comment. For example, the sample
code for this chapter uses this INI file:

; Company employees
[Employee1]
name=Bob Johnson
department=Accounting

[Employee2]
name=Susan Fielding
department=Sales

If you were to remove the section names and attempt to place this information into a con-
figuration file as key-value pairs, you would have duplicate key names. In other words, the

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 38

39

default AppSettings data provides no way to group the items into something equivalent to
INI sections. You could write a custom configuration handler to handle more levels of struc-
ture than configuration files support by default, but using a separate file is easier.

The XML INI File Structure
The IniFileReader project sample code for this solution reads standard INI files or XML-
formatted INI files. Table 1 shows the IniFileReaderNotInitialized exception property,
and Table 2 shows a complete list of methods and properties for the IniFileReader class.

TABLE 1: Class: IniFileReaderNotInitializedException

Property Type Description

Message (read-only) String The IniFileReader class throws this error when it can’t
successfully read the file passed to the constructor.

TABLE 2: Class: IniFileReader

Property/Method Type Description

Message (read-only) String The IniFileReader class throws this error when it can’t
successfully read the file passed to the constructor.

SetIniSection Boolean Updates a section name.

SetIniValue Boolean Updates the value associated with a specified section
and key. When the keyName parameter is null, the
method deletes the section. When the value parameter
is null, the method deletes the specified key. Otherwise,
if the specified sectionName or keyName do not already
exist, the method creates them. If both the specified sec-
tionName and keyName exist, the method updates the
value with the string contained in the value parameter.

SetIniKey Boolean Updates a key name.

GetIniValue String Retrieves the value associated with a specified section
and key.

GetIniComments StringCollection Retrieves a StringCollection filled with all the comments
associated with a specified section.

SetIniComments Boolean Writes a set of comments contained in a String-
Collection parameter to the specified section. The
method first removes any existing comments. In this
implementation, you must set and retrieve all com-
ments at one time.

Continued on next page

Solution 3 • Upgrade Your INI Files to XML

4253c01.qxd 10/14/03 11:00 PM Page 39

40

TABLE 2: CONTINUED Class: IniFileReader

Property/Method Type Description

AllKeysInSection StringCollection Returns a StringCollection object filled with the key
names associated with a specified section.

AllValuesInSection StringCollection Returns a StringCollection object filled with all the val-
ues associated with all keys in the specified section.

AllItemsInSection StringCollection Returns a StringCollection object filled with all the keys
and values from the specific section. Each item has
the form “key=value”.

GetCustomIniAttribute String Returns the value of a specified attribute associated
with a specified key and section.

SetCustomIniAttribute Boolean Updates the value of a specified attribute associated
with a specified section and key. If the attribute does
not exist, the method creates it.

Save void Saves the XML-formatted INI file to the file specified
using the SaveAs property.

AsIniFile String Performs an XSLT transform to translate the loaded
XML-formatted INI file back to a standard text INI file
and returns the results as a string.

IniFilename (read-only) String Returns the name of the file passed to the new con-
structor.

Initialized (read-only) Boolean Returns true when the class has been properly initial-
ized with a standard INI or XML-formatted INI file.

CaseSensitive (read-only) Boolean Returns a Boolean indicating whether the instance is
case-sensitive or case-insensitive. When case-sensi-
tive, all section, key, and attribute name parameters to
the methods must match those in the source file
exactly. The default is false (not case sensitive).

AllSections (read-only) StringCollection Returns a StringCollection object filled with the section
names that exist in the file.

SaveAs String The filename to which the class will save the XML-for-
matted INI file during the next Save operation.

XmlDoc XmlDocument Returns the XmlDocument object containing the cur-
rent XML-formatted INI file.

XML String Returns a string containing the XML-formatted con-
tents of the current INI file.

The IniFileReader class constructor requires a filename. The class first tries to open the
specified file as an XML file, using the XmlDocument.Load method. If that fails, the class
assumes the file is in the INI format. It then creates a very simple default XML string and
loads that, using the XmlDocument.LoadXml method, after which it opens the file in text mode
and parses the lines of the file, adding elements for the sections, items, and comments in the
order they appear (see Listing 2).

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 40

41

➲ Listing 2 The ParseLineXML (IniFileReader.vb)

Private Sub ParseLineXml(ByVal s As String, _
ByVal doc As XmlDocument)
Dim key As String
Dim value As String
Dim N As XmlElement
Dim Natt As XmlAttribute
Dim parts() As String
s.TrimStart()

If s.Length = 0 Then
Return

End If
Select Case (s.Substring(0, 1))

Case “[“
‘ this is a section
‘ trim the first and last characters
s = s.TrimStart(“[“)
s = s.TrimEnd(“]”)
‘ create a new section element
CreateSection(s)

Case “;”
‘ new comment
N = doc.CreateElement(“comment”)
N.InnerText = s.Substring(1)
GetLastSection().AppendChild(N)

Case Else
‘ split the string on the “=” sign, if present
If (s.IndexOf(“=”) > 0) Then

parts = s.Split(“=”)
key = parts(0).Trim()
value = parts(1).Trim()

Else
key = s
value = “”

End If
N = doc.CreateElement(“item”)
Natt = doc.CreateAttribute(“key”)
Natt.Value = SetNameCase(key)
N.Attributes.SetNamedItem(Natt)
Natt = doc.CreateAttribute(“value”)
Natt.Value = value
N.Attributes.SetNamedItem(Natt)
GetLastSection().AppendChild(N)

End Select
End Sub

Solution 3 • Upgrade Your INI Files to XML

4253c01.qxd 10/14/03 11:00 PM Page 41

42

The sample INI file looks like this after the IniFileReader finishes loading it:
<?xml version=”1.0” encoding=”UTF-8”?>
<sections>
<comment> Company employees</comment>
<section name=”employee1”>
<item key=”name” value=”Bob Johnson” />
<item key=”department” value=”Accounting” />

</section>
<section name=”employee2”>
<item key=”name” value=”Susan Fielding” />
<item key=”department” value=”Sales” />

</section>
</sections>

Getting the INI file contents into the simple XML structure makes it easy to mimic and
extend the actions that you can perform with a standard INI file—and makes them easier
to remember. The root <sections> element can contain any number of child <comment>
or <section> elements, each of which can contain any number of <item> or <comment>
elements.

You may be wondering why the project doesn’t use the standard API functions through
DllImport—as discussed in the article “Use COM Interop to Read and Write to INI Files
with .NET” (see www.devx.com/dotnet/discussions/040902/cominterop.asp). This is
because the standard API functions provide no way to read comments, so you can’t get a
complete translation using the API functions alone. Instead, for this particular purpose, it’s
better to parse the file line by line.

Retrieving Values
To retrieve the value of an item, you use the GetIniValue method, which accepts sectionName
and keyName parameters. The method creates an XPath query that searches for the section
with a name attribute matching the supplied section name, and then searches within that
section for an item with a key attribute matching the supplied key name. If the XPath query
matches an item, the function returns the text value of the value attribute of that item;
otherwise it returns Nothing (null in C#).

‘ **
‘ * VB.NET code *
‘ **
Public Function GetIniValue(_

ByVal sectionName As String, _
ByVal keyName As String) As String
If Not Initialized Then Throw New _

IniFileReaderNotInitializedException()
Dim N As XmlNode = GetItem(sectionName, keyName)

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 42

43

If Not N Is Nothing Then
Return (N.Attributes.GetNamedItem(“value”).Value)

End If
Return Nothing

End Function

There is one major difference between XML-formatted files and INI files—XML files are
case sensitive, while standard INI files aren’t. The INIFileReader class deals with this poten-
tial problem by treating all data as case-insensitive by default. The following section provides
a more detailed discussion of the problem and the solution.

Dealing with XML’s Case Sensitivity
Case sensitivity is an intrinsic feature of many languages, and XML is no exception. Unfortu-
nately, case sensitivity is also one common source of bugs in code. Because the old INI files
were not case-sensitive, translating them directly to XML risks breaking existing code logic
because of the difference in the way the Windows API function treats case and the way an
XML parser treats case. Therefore, the IniFileReader class uses only lowercase tags by default;
however, it treats queries in a case-insensitive manner by first converting the section or key
names to lowercase and then performing the query. While the change in case sensitivity might
cause problems for some file types due to section or key name conflicts where the only differ-
ence was in case, it’s not a problem for INI files—the API functions for INI file update and
retrieval aren’t case-sensitive either. Therefore, translating all the section and key names to lower-
case has no effect on file modifications—it just makes the names look different.

If you prefer to use the IniFileReader in case-sensitive mode, you can set the CaseSensitive
property to False in VB.NET (false in C#). If you prefer this, remember that you must set
the CaseSensitive property when you instantiate an IniFileReader using the optional over-
loaded constructor as shown in the following code snippet. After creating an instance of the
class, there’s no way to change the CaseSensitive property value.

ifr = new IniFilereader(someFilename, True);

All methods that retrieve nodes apply the results of the private setNameCase method to
parameters. The method ensures that names are shifted to lowercase when CaseSensitive
is true.

Private Function SetNameCase(_
ByVal aName As String) As String
If (CaseSensitive) Then

Return aName
Else

Return aName.ToLower()
End If

End Function

Solution 3 • Upgrade Your INI Files to XML

4253c01.qxd 10/14/03 11:00 PM Page 43

44

So to retrieve a section, for example, the GetSection code checks to ensure that the section-
Name argument is not Nothing or an empty string, and then calls SetNameCase before con-
structing the XPath query that searches for the section node:

Private Function GetSection(_
ByVal sectionName As String) As XmlElement
If (Not (sectionName = Nothing)) AndAlso _

(sectionName <> String.Empty) Then
sectionName = SetNameCase(sectionName)
Return CType(m_XmlDoc.SelectSingleNode _

(“//section[@name=’” & sectionName & “‘]”), _
XmlElement)

End If
Return Nothing

End Function

Updating and Adding Items
Updating individual values is similar to retrieving them. You provide a section name, a key
name, and the new value. The class uses the GetItem method to locate the appropriate
<item> element, and then updates that item’s value attribute with the specified new value.
The Windows API function WritePrivateProfileString creates new sections and items if
you call it with a section or key name that doesn’t already exist.

Although it’s not good object-oriented design, for consistency the IniFileReader class acts
identically, meaning that you can create a new section simply by passing a nonexistent section
name. To update a section name, key name, or value for existing sections or items, select the
section and item you want to update, enter the new values in the appropriate fields, and then
click the Update button to apply the changes. To create a new section or key on the sample
form, first click the New Section or New Key button to clear the current selections, and then
enter the new section or key name and click the Update button to apply your changes.

To delete a section using the API, you pass the section name and a null key value to the
WritePrivateProfileString function—and you do the same with the IniFileReader class,
except that you use the SetIniValue method. For example, the following code would delete
the section named section1.

SetIniValue(“section1”, Nothing, Nothing)

Similarly, to delete an item within a section, you pass the section name, the key name, and
a null value for the value argument. The following code would delete the item with the key
key1 in the section named section1.

SetIniValue(“section1”, “key1”, Nothing)

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 44

45

On the sample form (see Figure 1), you can delete a section or value by selecting the
appropriate item in either the section or item list, and then pressing the Delete key.

The class has several other properties that may interest you. First, the Save method saves
the file to a filename you specify using the OutputFilename property. The Save method
checks whether the specified directory exists and then uses the Save method of the underlying
XmlDocument to save the file.

Second, the XmlDoc property gives the calling code direct access to the underlying Xml-
Document object. The IniFileReader class has a number of properties that extend the stan-
dard API functionality. For example, the GetAllSections method retrieves all the section
names. Whenever the class returns multiple values, it returns a StringCollection object
rather than a string array. While this marginally affects the class’s performance, from the
caller point of view StringCollections are more convenient than simple arrays.

F I G U R E 1 :
The sample form lets
you test the INIFil-
eReader methods and
edit INI files.

Solution 3 • Upgrade Your INI Files to XML

4253c01.qxd 10/14/03 11:00 PM Page 45

46

Extensibility
The three types of information in a standard INI file often did not suffice to store the infor-
mation needed by the application. I’ve seen (and built) applications that rely on custom string
formats to perform tasks beyond the INI file format’s native capabilities. For example, it’s not
uncommon to see INI files containing strings that use separators to “squash” more values
into an INI file:

[testing]
emp1=Bob Johnson|Accounting|04/03/2001 8:23:14|85
emp2=Susan Fielding|Sales|03/23/2001 15:41:48|92

Not only are such files difficult to read and edit—and maintain—but they also require cus-
tom code to retrieve the item values and assign them to variables within the program. The
data in such files is unusable by other programs without re-creating the code to retrieve the
data. In contrast, you can add new items to an XML-formatted INI file with few problems.
At the most simplistic level, you can use the GetCustomIniAttribute and SetCustomIni-
Attribute methods to read, write, and delete custom strings, stored as attributes within the
<item> elements. For example, the following XML document shows the same data shown in
the preceding INI file added as custom attributes:

<?xml version=”1.0” encoding=”UTF-8”?>
<sections>
<comment>Company employees</comment>
<section name=”employees”>
<item key=”employee1” value=”Bob Johnson”

department=”Accounting”
testedon=”04/03/2001
8:23:14” score=”85”/>

<item key=”employee2”
value=”Susan Fielding”
department=”Sales”
testedon=”03/23/2001 15:41:48”
score=”92” />

</section>
</sections>

It’s much easier to discover the meaning of the data in the XML version.

At a more complex level, although I haven’t implemented it in the sample code, you could
add GetCustomIniElement and SetCustomIniElement methods to add custom child elements
and values to the <item> elements. These methods would be overloaded to accept an element
name and value, an XmlElement instance, or an XmlDocumentFragment instance, so you

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 46

47

could make the file as complicated as necessary. The Extensibility button on the sample form
contains code that shows how to use the extensibility methods.

Beyond the built-in extensibility methods, you can, of course, subclass the IniFileReader
and override or add methods to do anything you like.

Dealing with Comments
You use the SetIniComments and GetIniComments methods to add and retrieve comments.
The GetIniComments method returns a StringCollection containing the text of comments at
either the file or section level. The SetIniComments method accepts a StringCollection con-
taining a list of comments you want to add at either the file or section level. While this
implementation is very crude, and could be greatly improved—for example, you could extend
the class to attach comments directly to individual items—it’s already an improvement over
standard INI files, which provide no way to create or remove comments automatically. You
can also add XML-formatted comments manually or use the DOM directly to add comments
to an XML-formatted INI file.

Where’s My INI File?
For straightforward (unextended) files, you can “get the original INI file back.” In some
cases, you will want to read and modify the INI file with a .NET application, but you still
need access to the file in its original format usable by pre-.NET Windows applications.
An XSLT transform performs the work of turning the file back into a standard INI file.
You initiate the transform using the SaveAsIniFile method. However, extensibility comes
at a price. If you make custom modifications to the file using the writeCustomIniAttribute
method, those changes will not appear in the results of the transform; however, there’s
little reason to translate the files back to standard INI format, so that restriction seems
reasonable.

Having a separate file for storing application initialization information is a good idea.
The .NET Framework contains built-in methods for handling configuration data, but—as
delivered—they aren’t suitable for complex information structures, nor are they dynamically
updatable using the Configuration classes in the Framework. As you migrate existing applica-
tions into .NET, the INIFileReader class described in this solution lets you use and even
extend your existing INI files. Nonetheless, .NET configuration files have some advantages
even over these custom external XML-formatted initialization files, and you should study
their capabilities.

Solution 3 • Upgrade Your INI Files to XML

4253c01.qxd 10/14/03 11:00 PM Page 47

48

SOLUTION 4
Build Your Own XML-Enabled Windows Forms TreeView Control

The .NET Windows Forms TreeView control lets you display a hierarchical view of infor-
mation; therefore, it’s a perfect match for displaying data in XML documents, which is
innately hierarchical. But the Windows Forms TreeView control can’t display an XML
document natively—if you want to display XML in a TreeView, you have to add the func-
tionality yourself.

The basic process is simple; iterate through the nodes in the XML document. For each
node, add a new TreeNode and set its text to the text of the current XML node—and that’s
the idea behind most of the examples you’ll find about filling TreeView controls with XML
data. But those examples use XML that’s conducive to TreeView display; when you try to
use them directly on many XML documents, they work—but not the way you want them
to work.

Iterating through Nodes
The iteration process is recursive. A method such as the AddNode method shown in the fol-
lowing code snippet (from http://support.microsoft.com/default.aspx?scid=kb;EN-
US;Q308063) expects an XmlNode argument and a TreeNode argument. The method tests to
see if the XML node has child nodes. If so, it gets a list of the child nodes and iterates
through them, creating a new TreeNode and calling itself recursively for each child node.
Finally, it sets the text of the TreeNode to the OuterXML property of the XML node. The
comments in the code indicate that you might want to change that based on the type of node.

Private Sub AddNode(ByRef inXmlNode As XmlNode, _
ByRef inTreeNode As TreeNode)

SOLUTION Because of XML’s simple,
repeating syntax, you can treat any well-
formed XML document generically. Cre-
ate this XML-enabled TreeView control
and display customized views of any well-
formed XML document.

PROBLEM Displaying XML in a TreeView
seems like it would be a no-brainer—and
for some simple, regular XML documents,
it is. But for complex, mixed-content docu-
ments, or documents with content split
between attributes and elements, or docu-
ments containing unneeded nodes, display-
ing the XML becomes much more
complicated.

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 48

49

Dim xNode As XmlNode
Dim tNode As TreeNode
Dim nodeList As XmlNodeList
Dim i As Long

‘ Loop through the XML nodes until the leaf is reached.
‘ Add the nodes to the TreeView during the looping
‘ process.
If inXmlNode.HasChildNodes() Then

nodeList = inXmlNode.ChildNodes
For i = 0 To nodeList.Count - 1

xNode = inXmlNode.ChildNodes(i)
inTreeNode.Nodes.Add(New TreeNode(xNode.Name))
tNode = inTreeNode.Nodes(i)
AddNode(xNode, tNode)

Next
Else

‘ Here you need to pull the data from the XmlNode
‘ based on the type of node, whether attribute
‘ values are required, and so forth.
inTreeNode.Text = (inXmlNode.OuterXml).Trim

End If
End Sub

So basically, if you pass the AddNode method the root element of an XML document, it will
fill the TreeView control with the XML of each node in the document. Here’s another example.
Suppose you have a simple XML document that looks like Listing 1.

➲ Listing 1 A simple XML document (SimpleXML.xml)

<?xml version=”1.0” encoding=”Windows-1252”?>
<departments>

<department id=”d3” name=”IT” expanded=”False”>
<employees>

<employee id=”e50”>
<lastname>Chen</lastname>
<firstname>Kelly</firstname>
<address><![CDATA[37118 Second Hill

Dr.]]></address>
<email>kchen@company.com</email>
<phones>

<work>(253) 703-7277</work>
<home>(253) 703-3168</home>
<fax>(253) 703-5633</fax>

</phones>
<active>True</active>

</employee>
<employee id=”e45”>

<lastname>Chen</lastname>

Solution 4 • Build Your Own XML-Enabled Windows Forms TreeView Control

4253c01.qxd 10/14/03 11:00 PM Page 49

50

<firstname>William</firstname>
<address>133 S. Chilhowee Dr.</address>
<email>wchen@company.com</email>
<phones>

<work>(221) 410-3615</work>
<home>(221) 410-0402</home>
<fax>(221) 410-3788</fax>

</phones>
<active>False</active>

</employee>
<!-- more employees here -->
</employees>

</department>
<!-- more departments here -->

</departments>

To see the results, you create an XmlDocument object and load the XML file into it, create
a root TreeView node, and call the AddNode method, passing the XmlDocument.DocumentElement
and the root TreeNode as arguments. For example, the following code loads the sample
employee.xml file:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
Dim doc As New XmlDocument()
Dim execFile As FileInfo = New _

FileInfo(Application.ExecutablePath)
Dim fldr As DirectoryInfo = execFile.Directory
fldr = fldr.Parent

Dim filename As String = “\employees.xml”
doc.Load(fldr.FullName & filename)
Dim tNode As TreeNode = Me.TreeView1.Nodes.Add _

(doc.DocumentElement.Name)
AddNode(doc.DocumentElement, tNode)
Me.TreeView1.ExpandAll()

End Sub

The results look like Figure 1.

The first thing you’ll probably notice is that it looks “different” than you might expect.
Sure, it contains the data, but it also has a number of little problems. First, every node has a
child node. Because the final line in the Form1_Load code calls the TreeView’s ExpandAll
method, it looks slightly less onerous than it is. But if you collapse all the nodes in one of
the employee nodes, for example, you’ll find that to see any value, your users will have to
drill down one more level than you might think. In addition, your users probably don’t care
about the XML document element names—and you might not even want your users to see
those names.

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 50

51

To be fair, the comment at the bottom of the AddNode method states that you would proba-
bly want to customize it based on your needs. In this case, it would be much better if you
could ignore the <employees> nodes and simply show the names of each department, with
the names of the employees below that.

Similarly, note that the AddNode method doesn’t show attributes. You would probably want
to show the name of each department, which, in the employees.xml file, resides in an
attribute of each <department> node. To do that, you’d need to add code in the Else block,
such as

If inXmlNode.LocalName = “department” Then
inTreeNode.Text = inXmlNode.getAttribute(“name”)

End If

It’s easy to create such custom code and make it work for this document. But if you take
that route for every XML document you want to display, you’ll have to customize an AddNode
implementation each and every time. There’s a better way.

What Capabilities Do You Need?
Rather than writing custom code, consider the functionality you might like to have in a Tree-
View that displays XML. The simplest way to extend the functionality of controls within the
.NET Framework is to subclass them, so one solution is to create a TreeViewXml control
that’s capable of displaying XML in a TreeView control in customized ways.

F I G U R E 1 :
The results of loading
a TreeView control
with XML using the
AddNode method

Solution 4 • Build Your Own XML-Enabled Windows Forms TreeView Control

4253c01.qxd 10/14/03 11:00 PM Page 51

52

Right off the bat, you’ll probably decide that it’s usually much more intuitive to show the
text string for a node than to show the tag names. The tag names may (or may not) help users
understand exactly what they’re looking at. For example, there’s little point in showing this in
a TreeView…

<departments>
<department>

IT
<department>

Marketing
<department>

Manufacturing

…when you could show this:
departments

IT
Marketing
Manufacturing

The second version displays only the data, not the element names, but the intent is clear, and
it’s far easier to read. To display the data without the names, you must be able to identify ele-
ments based on their relative hierarchical position in the document.

You’ll also want to be able to hide elements based on their name or their position relative to
the document itself—in other words, their path. Here’s the full path for the department name
attribute and the type:

departments/department/name
departments/department/employees/employee/name

Using the node path rather than a simple name clearly differentiates between two identically
named nodes in different locations within the node tree.

While many XML documents already have exactly the content you want in exactly the
format you need, many don’t. The goal is to identify the nodes you want to change (using
their path) and then alter the contents. For example, you don’t have to show the <depart-
ment> tag; you want to show the name attribute value instead. Similarly, the <employee> nodes
have <lastname> and <firstname> children, but rather than displaying them separately, it
would be far friendlier to concatenate them, displaying the name as a single lastname,
firstname string.

In other words, you want the capability to “surface” attributes and child elements
and display them at the parent level. In the sample code for this solution, I’ve termed
that functionality “display rules.” The code that defines each rule is localized to the
DisplayRule class.

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 52

53

The DisplayRule Class
The following code contains five types of display rules, exemplified by the DisplayRule-
ContentType enumeration in the class:

Public Enum DisplayRuleContentType
ShowOnlyNodesNamed
HideNodesNamed
ShowOnlyNodesWithPath
HideNodesWithPath
XpathQuery
XslTemplate

End Enum

These five are by no means comprehensive, and you may find many ways to extend the
class to provide additional customizing capabilities. To do that, you can add new types to the
enumeration. However, these five are sufficient for many purposes. Table 1 shows the effect
of each DisplayRuleContentType.

TABLE 1: Display Rules

DisplayRuleContentType Rule Effect

ShowOnlyNodesNamed Causes the TreeViewXml control to hide all nodes not associated with
the rule type

HideNodesNamed Causes the TreeViewXml control to hide nodes associated with the
rule type

ShowOnlyNodesWithPath Causes the TreeViewXml control to hide all nodes whose path does not
match one of the paths associated with the rule type

HideNodesWithPath Causes the TreeViewXml control to hide all nodes whose path matches
one of the paths associated with the rule type

XpathQuery Causes the TreeViewXml control to display the result of an XPath query
for all nodes whose path matches the path associated with the rule type

XslTemplate Causes the TreeViewXml control to display the result of an XSLT style
sheet applied to all nodes whose path matches the path associated with
the rule type

The first four types simply hide or show nodes. The ShowOnlyNodesNamed and HideNodes-
Named types show and hide nodes, respectively; the difference is that when you add nodes to
the ShowOnlyNodesNamed list, the TreeViewXml control shows only nodes associated with that
rule—in other words, if you begin adding element names to this rule type, you must add all
the names you want to display. In contrast, the HideNodesNamed rule simply hides the nodes
associated with the rule. The ShowOnlyNodesWithPath and HideNodesWithPath rules work
identically but use node paths rather than the node LocalName property.

Solution 4 • Build Your Own XML-Enabled Windows Forms TreeView Control

4253c01.qxd 10/14/03 11:00 PM Page 53

54

DisplayRule Properties
Each DisplayRule has three properties: Name, Value, and DisplayRuleType. The DisplayRule-
Type property is one of the DisplayRuleContentType enumeration values shown in Table 1.

The Name property holds either a simple node LocalName or a path from the document root
to some element. For example, “employees” is the LocalName for all the <employees> elements.
In contrast, the path from the document root to each <employees> element is departments/
department/employees. This dual naming scheme simplifies element identification; when the
element names are unique within the document, you can use the LocalName, and when they’re
not, you can use the path.

Each DisplayRule applies either to all elements whose LocalName (such as “employees” or
“address”) matches the value of its Name property—regardless of where those elements appear
in the document—or where the path stored in the Name property matches the path to a node
in the document. For example, a DisplayRule.Name value of departments/department/
employees/employee/lastname applies to all <lastname> child elements of each <employee>
element.

The Value property holds either an XPath query or an XslTransform object. Simple
show/hide DisplayRule types don’t require a value; you need the Value property only when
you plan to alter the display value of an element or attribute.

Creating DisplayRules
You create display rules by adding them to a DisplayRulesCollection exposed by the custom
TreeViewXml class.

For example, using the sample document from Listing 1, you can hide everything but the
<departments> and <department> nodes by creating two DisplayRule objects whose Name
property contains the strings “departments” and “department”, respectively, and the Dis-
playRuleType property is ShowOnlyNodesNamed.

As another example, the <department> nodes contain a name attribute. To display, or sur-
face, that name attribute in the TreeNode for each <department> node, you can create a Dis-
playRule that identifies <department> nodes by their path and then display the result of an
XPath query that retrieves the name attribute value. In other words, the Name property would
be departments/department, the Value property would be the XPath query @name, and the
DisplayRuleType property would be XpathQuery.

Simple XPath substitutions work fine for surfacing attributes, but not so well for surfacing
or concatenating child elements. Therefore, display rules also accept an instance of the
XslTransform class. The rule substitutes the output of the XslTransform applied to the nodes

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 54

55

identified by the DisplayRule. For example, to obtain a string containing each employee’s ID
followed by that employee’s name in lastname/firstname order, you could write this XSLT
style sheet:

<?xml version=’1.0’ encoding=’UTF-8’?>
<xsl:stylesheet version=’1.0’

xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’>
<xsl:output method=’text’ encoding=’UTF-8’/>

<xsl:template match=””employee””>
<xsl:value-of select=””@id””/>: <xsl:value-of

select=””lastname”” />, <xsl:value-of select=””firstname”” />
</xsl:template></xsl:stylesheet>

When you transform an employee node using this style sheet, the output is a string that
looks like this:

e45: Chen, Kelly

In other words, the text assigned to the TreeNode for each <employee> node is the output of
the transformation.

Finding Node Paths
To identify nodes unambiguously based on their path, you must be able to obtain the path,
given any node in an XML document. You can do that by walking recursively up the Docu-
ment Object Model (DOM) tree until you reach the document node, concatenating a string
that describes the relative hierarchical position of the node in question.

Listing 2 shows a getPath method that returns the path string for a node.

➲ Listing 2 The getPath method returns the path from the document root to any
child node. (TreeViewXml.vb)

Private Function getPath(ByVal aNode As XmlNode, _
ByVal sPath As String) As String
If sPath Is Nothing Or sPath Is String.Empty Then

If N.NodeType = XmlNodeType.Attribute Then
sPath = “@” & N.LocalName

Else
sPath = N.LocalName

End If
Else

sPath = N.LocalName & “/” & sPath
End If
If Not N.ParentNode Is Nothing Then

Solution 4 • Build Your Own XML-Enabled Windows Forms TreeView Control

4253c01.qxd 10/14/03 11:00 PM Page 55

56

‘ call this function recursively until you reach the
‘ document node
If N.ParentNode.NodeType <> XmlNodeType.Document Then

sPath = getPath(N.ParentNode, sPath)
End If

End If
Return sPath

End Function

The method begins by checking the length of the sPath String argument. If it’s empty, the
method sets it to the LocalName property of the XmlNode argument.

Next, the method checks to see if the Parent property of the XmlNode is Nothing. If not,
and the parent node is not the root node (the XmlNodeType.Document node), it calls itself
recursively, passing the current value of sPath and the parent node as arguments. In effect,
this builds the path string by moving “upward” through the document. The process stops
when the current node’s parent is the root node.

Using the concatenated path string, you can check each node against a set of display rules
to see how to treat that node. Display rules consist of a key-value pair where the key is a path
string and the value is either an XPath string or an XslTransform object. The DisplayRule-
sCollection class shown in Listing 3 implements the collection.

➲ Listing 3 The DisplayRulesCollection class contains a collection of key-value pairs
used to determine node display values. (DisplayRulesCollection.vb)

Option Strict On
Imports System.Collections.Specialized
Imports System.Xml.Xsl
Public Class DisplayRulesCollection

Inherits System.Collections.CollectionBase

Public Sub Add(ByVal aDisplayRule As DisplayRule)
Me.List.Add(aDisplayRule)

End Sub

Public Sub Add(ByVal nodeName As String, _
ByVal aType As DisplayRule.DisplayRuleContentType)
Me.Add(New DisplayRule(nodeName, aType))

End Sub

Public Sub Add(ByVal nodePath As String, _
ByVal anXPathQuery As String, _
ByVal aType As DisplayRule.DisplayRuleContentType)
Me.Add(New DisplayRule(nodePath, anXPathQuery, _

DisplayRule.DisplayRuleContentType.XpathQuery))
End Sub

Public Sub Add(ByVal nodePath As String, _
ByVal anXslTransform As XslTransform, _

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 56

57

ByVal aType As DisplayRule.DisplayRuleContentType)
Me.Add(New DisplayRule(nodePath, anXslTransform, _

DisplayRule.DisplayRuleContentType.XslTemplate))
End Sub

Public Sub Add(ByVal nodeNames As String(), _
ByVal aType As DisplayRule.DisplayRuleContentType)
Dim nodeName As String
For Each nodeName In nodeNames

Me.Add(New DisplayRule(nodeName, aType))
Next

End Sub

Public Sub Remove(ByVal key As String)
Dim dr As DisplayRule
Dim o As Object
For Each o In Me.List

dr = DirectCast(o, DisplayRule)
If dr.Name = key Then

Me.List.Remove(o)
End If

Next
End Sub
Public Sub Remove(ByVal key As String, _

ByVal aType As DisplayRule.DisplayRuleContentType)
Dim dr As DisplayRule
Dim o As Object
For Each o In Me.List

dr = DirectCast(o, DisplayRule)
If dr.Name = key AndAlso _

dr.DisplayRuleType = aType Then
Me.List.Remove(o)

End If
Next

End Sub

Public ReadOnly Property GetRulesOfType(_
ByVal aType As DisplayRule.DisplayRuleContentType) _
As DisplayRuleSet
Get

Dim dr As DisplayRule
Dim o As Object
Dim drList As New DisplayRuleSet()
For Each o In Me.List

dr = DirectCast(o, DisplayRule)
If dr.DisplayRuleType = aType Then

drList.Add(dr)
End If

Next
Return drList

End Get
End Property

End Class

Solution 4 • Build Your Own XML-Enabled Windows Forms TreeView Control

4253c01.qxd 10/14/03 11:00 PM Page 57

58

The class is by no means a complete typed collection implementation—it contains only the
functionality needed for the sample project that accompanies this solution. Note the overridden
Add methods, which simplify adding the various types of DisplayRules you can add to the class.

The DisplayRulesCollection class makes it easy to retrieve any rules that apply to a specific
DisplayRuleContentType. The GetRulesOfType method returns all the rules that match a
specific type as a DisplayRuleSet object. Because the DisplayRuleSet class inherits from
DictionaryBase, you can then use the Exists method to test whether a particular node’s
LocalName or path matches an existing rule.

So far, you’ve seen how to fill a TreeView with XML using a recursive method, how to
identify specific nodes so you can alter the display characteristics for those nodes, and how
you can use XPath and XSLT style sheets to manipulate the text content displayed for any
particular node. All you need to do now is wrap all that up into a class that provides all the
functionality.

The TreeViewXml Control
The TreeViewXml class in the sample project inherits from TreeView, and adds the capabilities
you need. To display an XML document in a TreeViewXml instance, you call its overloaded
LoadXml method, passing the name of an XML file, an XML string, or a populated Xml-
Document object. In all cases, the control’s response is the same—it clears any existing
nodes, and then populates itself from the specified data source.

At the simplest level, you can simply pass a filename or string containing XML to the control.
When you do that, the control displays all elements and all attributes.

The sample project form named Form2 displays a TreeViewXml control and three buttons.

NOTE You’ll need to switch the startup form to Form2 in the project properties dialog box to run
Form2.

At startup, the form retrieves a string containing the contents of an embedded XML
resource file named employees.xml and stores it in a String variable named employeesXml
using the following code:

Dim sr As New System.IO.StreamReader(_
[Assembly].GetEntryAssembly. _
GetManifestResourceStream(_
“TreeViewXMLTest.employees.xml”))

employeesXml = sr.ReadToEnd
sr.Close()

If you weren’t aware that you could embed files as resources in your .NET assemblies, see
Anthony Glenwright’s excellent article, “How to Embed Resource Files in .NET Assem-
blies,” which you can find at www.devx.com/dotnet/Article/10831/0/page/1.

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 58

59

Using the TreeViewXml Control
The form creates the TreeViewXml control at startup and uses the variable tvx1 to refer to
the control throughout the class. The Default XML Load button sets a few properties and
displays the employees.xml string by calling the TreeViewXml control’s LoadXml method:

Private Sub btnDefaultLoad_Click(ByVal sender As _
System.Object, ByVal e As System.EventArgs) _
Handles btnDefaultLoad.Click

tvx1.ShowAttributesAsChildren = True
tvx1.AttributeColor = Color.Red
tvx1.DisplayRules.Clear()

‘ show the tree
tvx1.LoadXml(employeesXml)

End Sub

The ShowAttributesAsChildren property takes a Boolean value and controls whether the
TreeViewXml instance displays attributes as child nodes below each element. By default, the
value is False. The AttributeColor property accepts or returns a Color value that deter-
mines the color in which the control displays attributes. The default attribute color is
Color.Blue. The code clears the DisplayRules collection to ensure that the XML will dis-
play without applying any rules that may have been added when you clicked the other but-
tons on the form.

Figure 2 shows Form2 after clicking the Default XML Load button.

F I G U R E 2 :
The default XML
string load

Solution 4 • Build Your Own XML-Enabled Windows Forms TreeView Control

4253c01.qxd 10/14/03 11:00 PM Page 59

60

Using the DisplayRules collection, a few simple commands can alter the display of the
XML content radically. For example, the Show Only Departments button causes the control
to display only the root <departments> node and the child nodes for each department. It uses
one DisplayRule to limit the tree display to only those two elements, and a second to apply
an XPath query result to each <department> element, causing the tree to display the value of
that element’s name attribute (see Listing 4).

➲ Listing 4 Using DisplayRules to control the tree display

Private Sub btnDepartments_Click(ByVal sender As _
System.Object, ByVal e As System.EventArgs) _
Handles btnDepartments.Click

tvx1.ShowAttributesAsChildren = False
tvx1.DisplayRules.Clear()

‘ display only departments and department elements
tvx1.DisplayRules.Add(_

New String() {“departments”, “department”}, _
DisplayRule.DisplayRuleContentType.ShowOnlyNodesNamed)

‘ Display the value of the name attribute for
‘ each department
tvx1.DisplayRules.Add(“departments/department”, _

“./@name”, _
DisplayRule.DisplayRuleContentType.XpathQuery)

‘ load the tree
tvx1.LoadXml(employeesXml)

End Sub

Figure 3 shows the results.

You can alter the display even further by using an XSLT style sheet to modify the display
for specific nodes. Clicking the Show Employees’ Names button displays all the departments
and all the employees within each department, showing each employee’s id attribute value
and the text values of its child <lastname> and <firstname> concatenated into a single string,
as discussed earlier in the section ”What Capabilities Do You Need.” The button code
obtains the style sheet by reading another embedded resource file named ConcatEmpNames.xsl.
Again, the code for the button Click event shown in Listing 5 simply creates the DisplayRules
and calls the LoadXml method.

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 60

61

➲ Listing 5 Using an XSLT style sheet to display customized node content

Private Sub btnEmpNames_Click(ByVal sender As _
System.Object, ByVal e As System.EventArgs) _
Handles btnEmpNames.Click

tvx1.ShowAttributesAsChildren = False
tvx1.DisplayRules.Clear()

‘ display only the following elements
tvx1.DisplayRules.Add(New String() {“departments”, _

“department”, “employees”, “employee”}, _
DisplayRule.DisplayRuleContentType. _
ShowOnlyNodesNamed)

‘ display department names
tvx1.DisplayRules.Add(“departments/department”, _

“./@name”, _
DisplayRule.DisplayRuleContentType.XpathQuery)

‘ load the XSLT stylesheet
Dim template As New XslTransform()
template.Load(New XmlTextReader(_

New System.IO.StringReader(concatEmpNameXsl)))

F I G U R E 3 :
Displaying only depart-
ments

Solution 4 • Build Your Own XML-Enabled Windows Forms TreeView Control

4253c01.qxd 10/14/03 11:00 PM Page 61

62

‘ add a DisplayRule for employee nodes
‘ using the XSLT stylesheet and a
‘ DisplayRuleContentType of XslTemplate
tvx1.DisplayRules.Add(_

“departments/department/employees/employee”, _
template, _
DisplayRule.DisplayRuleContentType.XslTemplate)

tvx1.LoadXml(employeesXml)
End Sub

Figure 4 shows the results.

How TreeViewXml Works
When you call the TreeViewXml class’s LoadXml method, the control creates one DisplayRule-
Set object for each DisplayRuleContentType by calling the private InitializeDisplayRule-
Sets method, which in turn calls the DisplayRulesCollection.GetRulesOfType method:

Private Sub InitializeDisplayRuleSets()
‘ for each type in the
‘ DisplayRule.DisplayRuleContentType enumeration
‘ get a DisplayRuleCollection containing only
‘ rules of that type

mShowOnlyNodesNamed = Me.DisplayRules.GetRulesOfType _

F I G U R E 4 :
Using XSLT to display
custom employee
node strings

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 62

63

(DisplayRule.DisplayRuleContentType. _
ShowOnlyNodesNamed)

Me.mShowOnlyNodesWithPath = _
Me.DisplayRules.GetRulesOfType _
(DisplayRule.DisplayRuleContentType. _
ShowOnlyNodesWithPath)

‘ ... additional calls to GetRulesOfType here

End Sub

Next, the control loads the XML passed to the LoadXml method (except for the overloaded
version that accepts an XmlDocument object), calls the BeginUpdate method, clears any
existing nodes from the TreeView control, and then attempts to create a set of TreeNodes
using the XML by passing the document element to the FillTree method. The FillTree
method recursively fills the tree in a manner similar to the AddNode method shown in the sec-
tion “Iterating through Nodes”; however, it adds checks to determine whether it should dis-
play each node based on the various hide/show DisplayRuleSets, using code such as the
following:

‘ the ShowOnlyNodesNamed list contains a list of
‘ element names that you want to show. Check to see
‘ if this node is in that list.
If Me.mShowOnlyNodesNamed.Count > 0 Then

showNode = Me.mShowOnlyNodesNamed.Exists(N.LocalName)
End If

‘ the HideNodesNamed list contains a list of element
‘ names that you want to hide. Check to see if this node
‘ is in that list.
If showNode Then

If Me.mHideNodesNamed.Count > 0 Then
showNode = Not mHideNodesNamed.Exists(N.LocalName)

End If
End If
‘ ... additional similar checks here

Whenever the FillTree method determines that it should display a node, it calls the
setNodeText method, which checks to see if the node is associated with an XPathQuery
or XslTransform DisplayRule. If so, it executes the query or performs the transformation
and applies the result to the TreeNode’s Text property; otherwise, it either uses the XML
node’s LocalName for the TreeNode.Text property (when the XML node has child nodes),
or simply assigns the XML node’s InnerText property as the text.

Solution 4 • Build Your Own XML-Enabled Windows Forms TreeView Control

4253c01.qxd 10/14/03 11:00 PM Page 63

64

So, the overall logic flow is:

1. For each node...

2. Determine whether to show or hide the node.

3. For displayed nodes, apply XPathQuery or XslTransform rules, if any, or display the node
name (non-leaf nodes) or the node text content (leaf nodes).

One final note: The FillTree method returns a single TreeNode containing a hierarchical
set of TreeNode objects. The calling code then uses the inherited TreeView.Nodes.AddRange
method to attach all the nodes to the TreeView control in a single operation. In contrast, if
you add nodes to the TreeView directly in the FillTree method, it takes many times as long
to populate the control.

TreeViewXml Extensions
The sample version simplifies the process for displaying customized XML in a TreeView
control, but there are many additional ways to extend the TreeViewXml control so you can
provide even more customization. For example, you might want to create a new Display-
RuleContentType that accepts a Delegate for the Value property, so that you could run cus-
tom code to create a display string for specific nodes.

You could add Color and Font properties to the DisplayRule class and additional construc-
tors so that you could specify the ForeColor, BackColor, and Font for specific nodes. Note
that, as delivered, the DisplayRule class constructors are specified as Friend, so you’ll also
have to create additional overloaded Add methods for the DisplayRulesCollection class to
instantiate new DisplayRule types or add properties.

Windows Forms Solutions

4253c01.qxd 10/14/03 11:00 PM Page 64

