
Configuring Dreamweaver for
ASP.NET

• Defining a site

• Setting up your IIS environment for production

• Configuring Dreamweaver MX for use in versioning software

• Managing the Web.config file

Chapter 1

4254c01.qxd 12/5/03 12:00 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

2

B efore you do anything with Dreamweaver MX, you’ll need to figure out how it works at
the site level. In other words, how can you configure it to build and deploy your website?

Besides the normal configuration issues you’ll encounter when working with Dreamweaver
MX, such as the site definitions that all users need to learn, you’ll want to get familiar with
some of the intricacies of .NET and how they relate to decisions you make as your projects
get underway.

.NET serves pages by compiling them at runtime into an intermediary language. Some-
times, some or all of the compilation takes place before runtime, such as when you develop
what is called a code-behind page, but I’ll save the intricacies of that for Chapter 9, “Advanced
Coding with Dreamweaver MX.” This intermediary language I’m talking about is basically
machine code that is generated by ASP.NET from any number of sources written in languages
such as C#, VB.NET, or even JavaScript. This is why you find so many different ways to work
with .NET. Whatever language is being used, the pages ultimately get converted into machine
code that tells the application server how to render your HTML.

All your code resides in either the code-behind page I just mentioned, or, more frequently
for the purposes of this book because of the way Dreamweaver outputs ASP.NET pages,
within special script tags. These tags have a runat=”server” attribute value pair that is
read exclusively by the server. The server interprets the script between the script tags and
processes any functions you’ve defined within those tags. By including runat=”server” in
the script element, you prevent the contents of that tag from being interpreted by the
browser, because ASP.NET compiles the page and returns HTML based on the instructions
on the ASP.NET page you created.

One of the chief advantages of .NET is this compilation scheme, because it allows you or
your loved ones to create custom controls in your favorite language and compile them as
DLLs. Then, when you slip one of these DLLs into the bin directory of your .NET-based
web application, .NET can use it to generate pages according to the functions it contains.

This is where Dreamweaver MX comes in. The good folks at Macromedia have already
written a killer custom control for you, and it’s where all the magic happens. With Dream-
weaver MX, you can simply choose commands from the Dreamweaver interface to generate
database-driven code. Dreamweaver generates special ASP.NET tags that tell ASP.NET how
to interact with the Dreamweaver custom control. The amount of hand-coding time you can
save is almost astonishing, and you’ll save even more when you start your application develop-
ment efforts with proper configuration settings. This chapter explores all these configuration
issues, to get you off to the best possible start.

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 2

3

Defining a Site
Your first activity when you launch Dreamweaver MX, unless you’re just looking at it to gain
familiarity, will probably involve setting up a site using the Site menu to define your website.
This will include telling Dreamweaver MX what language you want to use to create your
.NET applications, and the specifics about accessing your site. This is a necessary step to
take, since you need access to a server that can process .NET applications.

There are two ways to set up a site in Dreamweaver: Use a wizard, or choose the Advanced
tab of the Site Definition panel. When the program is first launched after installation, it
defaults to the wizard. However, if you choose the Advanced tab to define your site, the
next time you start a new site definition the program will default to Advanced tab setup.
To change it back to the wizard, click the Basic tab at the top of the Site Definition panel.

Using the Site Definition Wizard
Start off by choosing Site ➢ Manage Sites. A dialog box labeled Manage Sites will appear. Click
the New… button. When you do this, you’ll see two options appear: Site, and FTP & RDS
Server. Choose Site. A new, larger dialog box named Site Definition will appear. Click the tab
labeled Basic. You’ll see a Site Definition dialog box that looks similar to that in Figure 1.1.

F I G U R E 1 . 1 :
The Site Definition
wizard

Defining a Site

4254c01.qxd 12/5/03 12:00 PM Page 3

4

Here are the steps for completing the wizard:

1. The wizard asks you what you’d like to name your site. Give the site a descriptive name,
and click the Next button.

2. The wizard next asks you if you want to work with a server technology such as ColdFusion,
ASP.NET, ASP, JSP, or PHP. Under the question are two radio buttons. Choose the second
one, “Yes, I want to use a server technology.” When you click that, another question appears
along with a drop-down list of choices. In this book we’re using ASP.NET C#, so choose
that from the list.

3. The next page asks you, “How do you want to work with your files during development?”
Four radio buttons below that question reveal the following choices:

Edit and test locally (my testing server is on this computer) This means you
want to edit and test from the same directory on your machine. If your computer
has IIS (Microsoft’s Web Server, Internet Information Services), Dreamweaver MX
should know about it and will display a message indicating so at the bottom of the
wizard. “Edit and test locally” is the default selection because most people like to
test and develop locally, then deploy to the production site. In this dialog box you
will need to choose where to store your files. Enter that information into the text
field “Where on your computer do you want to store your files?” The wizard will
suggest a folder for you, but you can override that choice with your own.

Edit locally, then upload to remote testing server This means you want to edit
local files on your hard drive, then upload them to a server for testing. The testing
server is not your production server. Enter the location for storing your files into the
text field “Where on your computer do you want to store your files?” You can accept
the default choice or select your own folder.

Edit directly on remote testing server using local network This means you want
to set up a directory on your local machine that also serves as the root source for a
local testing server using HTTP. You’ll need to have a web server configured in order
for this to work because the wizard will ask you for a testing server URL. This is usu-
ally http://localhost but can also be http://127.0.0.1 (which is the same thing as
localhost).

To find out if your server is running, type either of these locations into your web
browser. If the server is running and you haven’t performed any custom configura-
tions, your browser will generally display a page like that shown in Figure 1.2. Once
you’re certain your server is running, fill in the text field “Where are your files on the
network?” You’ll also choose this if you are in a workgroup working on a networked
server. Either way, access is provided through a LAN, and you need to have access to
a live server.

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 4

5

Edit directly on remote testing server using FTP or RDS Clicking this option
reveals a bit more information about your editing choice, informing you that Dream-
weaver will need to download files from an FTP site. So the wizard asks you, “Where
on your computer do you want Dreamweaver to store local copies of your files?” You
can browse to the location or input the path directly into the text field. This is where
Dreamweaver will store local copies of files downloaded from the FTP site. It’s a rea-
sonable choice if you are working with a remote hosting service and you’re worried that
testing on your own server won’t be a true gauge of your site’s performance.

TIP You can set up a sandbox on your remote site by creating a directory within the root of
your domain and calling it something like “test_root”. Then you can mirror your site and
copy everything onto your production server exactly as mapped out in your test directory.

4. The next wizard page will depend on your choice from Step 3. Let’s do an “if … then”
routine to map out your options:

Edit and test locally If you chose this option, the next page contains a dialog box with a
text field “What URL would you use to browse to the root of your site?” An example of
what you might enter in this field might be something like http://localhost/mySite/.

Edit locally, then upload to remote testing server If you chose this option, you’ll
be presented with a screen with a drop-down list at the top, labeled “How do you con-
nect to your testing server?” The four options available are “I’ll set this up later,” FTP,
Local/Network, and RDS. Forget about RDS since that’s specific to ColdFusion.

● You can choose “I’ll set this up later,” and move to the next page.

F I G U R E 1 . 2 :
When you type in
http://localhost,
your browser will show
an IIS page similar
to this.

Defining a Site

4254c01.qxd 12/5/03 12:00 PM Page 5

6

● If you select FTP, the dialog box changes and presents options for filling in your FTP
connection information. The hostname or FTP address of your server should be the
same as your website, unless your host provider or system administrator has given you
alternate FTP information. Whether you need to fill in the text field “What folder on
the testing server do you want to store your files in?” depends on whether the site is
at the root of the FTP address you’ve been assigned. If you don’t know, contact your
host provider or system administrator to be sure. You’ll also need your username and
password in order to successfully connect to your FTP service. These, too, are pro-
vided by your host provider or network administrator.

● If you choose Local/Network, choose a folder the test files should be stored in in the
text field “Where do you copy your files to in order to test them?” You can click the
small folder icon next to the text field to browse to the folder that should store your
test files.

Edit directly on remote testing server using local network If you chose this
option, the next wizard page asks, “What URL would you use to browse to the root
of the site?” The answer to this will vary, and it’s important to get it right, so if you’re
not administering your own site, be sure to check with your system administrator to
be sure you enter the correct information. Dreamweaver manages links based on a
correctly mapped mirror between the root of your testing site and the root of your
deployed site, so if the root doesn’t properly map to subfolders or directories, your
links may not work when you go live. After you’ve entered URL information in the
field (or browsed to your files), click the Test URL button to see if you have estab-
lished a connection. If the test is unsuccessful, a number of things could be wrong.
Check Appendix A in the section titled “Common Configuration and Deployment
Errors” for details.

TIP When you’re done setting up your site, you may need to go into the Advanced tab in the Site
Definition panel and choose Passive FTP in order to create a successful FTP connection,
especially if you are working behind a firewall. The unnamed alternative to Passive FTP is
called Active FTP and is the default, but it relies on the client’s listening for FTP connections,
which doesn’t work well with firewalls.

Using the Advanced Tab to Define a Site
I shy away from wizards whenever I can, because they often make assumptions about my
choices that I might later regret. So as quickly as possible, I try to figure out what everything
means and understand the options available to me when I’m configuring something on a

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 6

7

Windows machine—whether I’m using Windows itself or an application configuration tool
such as Dreamweaver MX’s Site Definition panel.

So let’s hit the Advanced tab in the Site Definition panel and take a closer look at our options
(refer again to Figure 1.1 to see where the Advanced tab is). To do this, start the process of
going to the Site Definition Wizard outlined at the top of this section immediately under the
heading “Using the Site Definition Wizard,” but this time, choose the Advanced tab rather
than Basic. Instead of invoking a wizard, you’ll be setting your configuration manually (Site
Files ➢ Edit Sites).

So start the process once again by going to Site Files ➢ Edit Sites. In the Edit Sites dialog
box, you can choose a current site to edit or you can create a new one. Let’s create a new site
and give it whatever name you like. This is where, instead of going into the Basic tab, you
should click the Advanced tab. There you’ll see categories on the left, grouped as a column in
a tall text box. We’ve covered a lot of these options in the preceding section on using the Site
Definition Wizard, so let’s focus here on some details not visible to you when using the wizard.

Local Info
The Local Info category manages the settings pertaining to the machine on which you’re
running Dreamweaver. You will normally want to keep images and media in separate direc-
tories. This option helps Dreamweaver keep track of them in the File panel’s Assets tab and
tends to improve the efficiency of image downloads. (When you use the wizard, you’ll not
see a dialog box asking you where to store images.)

Remote Info
This category lets you choose between several options just as the wizard did, except that here
you can override what you originally entered into the wizard.

This is where you can choose Passive FTP, as discussed in the earlier Tip. Passive FTP
allows the client to initiate FTP connections rather than simply listening for them. For a more
technical discussion on this, see the section “The Nefarious ‘Waiting For Server’ Message” in
this book’s appendix, “Troubleshooting Web Applications Using Dreamweaver.” You are also
presented with an option to automatically upload files when you save the site definition.

Testing Server (and Server Model Language)
Most of the Testing Server options are covered in the section on using the wizard, but here
we’ll touch a little more on the significance of choosing your server model language.

Since you’re using .NET, this part is pretty easy. I chose to use C# for the examples through-
out the majority of this book, but generally the code I use is portable to VB.NET or J#, with

Defining a Site

4254c01.qxd 12/5/03 12:00 PM Page 7

8

some minor tweaking. (This code is available on the Sybex website, at www.sybex.com, by
the way.)

When you choose a server model language, you’re basically setting your preferences in
such a way that when you click File ➢ New and choose Dynamic Page from the Category
window, Dreamweaver MX automatically goes into ASP.NET mode. When you save your
first file, Dreamweaver will automatically append the .aspx extension onto the end of
your filename, unless you manually override this option.

More importantly, Dreamweaver inserts the correct type of code into your Dreamweaver
page when you issue, for example, a Record Insertion Form command from the Dreamweaver
menu (Insert ➢ Application Objects ➢ Record Insertion Form), as in this example:

<MM:Insert
runat=”server”
CommandText=’<%# “INSERT INTO chuckwh.AdCopy (AdAutoNumber,
➥ AdTimeStamp, AdDate, AdIO_ID, AdTextCopy, AdTextCopyN, AdImage)
➥ VALUES (@AdAutoNumber, @AdTimeStamp, @AdDate, @AdIO_ID,
➥ @AdTextCopy, @AdTextCopyN, @AdImage)” %>’
ConnectionString=’<%# System.Configuration.ConfigurationSettings.AppSettings
➥ [“MM_CONNECTION_STRING_Tumeric”] %>’
DatabaseType=’<%# System.Configuration.ConfigurationSettings.AppSettings
➥ [“MM_CONNECTION_DATABASETYPE_Tumeric”] %>’
Expression=’<%# Request.Form[“MM_insert”] == “form1” %>’
CreateDataSet=”false”
Debug=”true”
>
<Parameters>
<Parameter Name=”@AdAutoNumber” Value=’<%#

➥ ((Request.Form[“AdAutoNumber”] != null) &&
➥ (Request.Form[“AdAutoNumber”].Length > 0)) ?
➥ Request.Form[“AdAutoNumber”] : “” %>’ Type=”Int” />
<!— SNIP —>
</Parameters>

</MM:Insert>
<MM:PageBind runat=”server” PostBackBind=”true” />

The real work here is performed in a compiled binary object called the DreamweaverCntrls
.dll, and the MM:Insert element is used for interacting with the compiled object and passing
parameters to it. This is why Dreamweaver MX can provide a visual interface to robust appli-
cation server technology. (If you chose VB.NET as your server language, Dreamweaver would
output VB.NET code instead.)

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 8

9

NOTE For more on the DreamweaverCntrls.dll, see the last section of this chapter, “Deploying
the Dreamweaver Control,” and Chapter 5, “Working with Components.”

There are a number of additional options in the Testing Server panel designed to help you
with site management.

Cloaking
Cloaking lets you hide files from Dreamweaver’s file-uploading services. You provide extensions
for the files you don’t want Dreamweaver to upload, such as the native Flash extension, .fla, or
PSD (Photoshop) files that you may have saved into your Images directory while building site
images.

Design Notes
You can pass information to team members using Design Notes, which let you make highly
customized notes and add levels of attention for project management purposes. There are
two check boxes:

● Maintain Design Notes. Enable this to tell Dreamweaver to maintain Design Notes.

● Upload Design Notes for Sharing. Enable this if you want to have Design Notes
uploaded with the associated file.

Site Map Layout
You can view the structure of your website and the relationship between various site documents
using the Site Map Layout tool. In order to use it, you’ll need to choose your home page so
that the tool can reveal broken or orphaned links within your site; this is a common feature
found in many site management tools.

You can customize the tool by adjusting the number of columns and column width, desig-
nating whether icons will contain descriptive text, and choosing whether to display hidden or
dependent files.

File View Columns
If you’ve worked with previous versions of Dreamweaver, you might really miss the way the
program used to display site files. The old view provided lots of information, such as any
associated notes, the date a file was modified and/or checked out, and size. This view is still
there, but it’s hidden away in the Site/File panel. When you click the last icon the Site/File
panel (Figure 1.3), the panel expands and covers the entire Dreamweaver interface to reveal
the “old style” Dreamweaver Site Management window (Figure 1.4).

Defining a Site

4254c01.qxd 12/5/03 12:00 PM Page 9

10

You can customize the look of the old-style view by selecting the next-to-last category in
the Advanced tab of the Site Definition panel, File View Columns. By clicking one of the

F I G U R E 1 . 4 :
The “old-style” Site
Management window
look of the File panel

F I G U R E 1 . 3 :
The Site
Management icon

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 10

11

Options check boxes at the bottom of the File View Columns panel, you can designate whether
to hide or show the highlighted feature in the view (Figure 1.5).

Setting Up the IIS Environment for Development
To use ASP.NET with Dreamweaver MX, you will need access to the .NET Framework. Even
though .NET Framework is a new technology, it doesn’t require an upgrade of Internet Infor-
mation Services (IIS), which is the Microsoft web server that comes with Windows 2000 and
Windows XP. You only need to download the .NET Framework (or get it on CD). You can
download it free from Microsoft at http://www.microsoft.com/net/.

You also need IIS, which comes with Windows Server operating systems, including Win-
dows 2000 and Windows XP. To test and see if it is already installed, type http://localhost
into your browser. If you get a “Cannot Find Server” error, you probably need to install IIS.
Double-check by opening your Administrative Tools control panel and look for the Internet
Information Services component. If you see it, right-click the website you are using by
expanding the computer icon in IIS (see Figure 1.6, which shows a highlighted computer
within IIS) and then the Web Sites folder. Choose the website you are using and right-click
the site. If you’re running Windows XP or something other than Windows Professional
Server, you will only be licensed for one site, named Default Web Site, so choose that. You’ll
see a series of options in a context menu. Choose Start. If the website is running, the menu
option will say Stop, which means you should actually be seeing the website when you type
in http://localhost into your browser.

F I G U R E 1 . 5 :
Highlight a feature
and select the Show
checkbox to include
the item in the
old-style File view

Setting Up the IIS Environment for Development

4254c01.qxd 12/5/03 12:00 PM Page 11

12

TIP If you are running XP Home, you’ll find that it doesn’t install either IIS or Personal Web
Server (PWS), the latter of which is a small-footprint web server Microsoft distributed previ-
ously with Windows 9x. However, you can go to www.asp.net/webmatrix/default.aspx?
and download WebMatrix, which is a free open-source offering by Microsoft. WebMatrix is
an editor for .NET files, but it also includes a server that XP Home users can use in lieu of
IIS and PWS.

Installing IIS
It’s very possible that Internet Information Services (IIS) did not come as part of the installation
package when you or someone else installed Windows 2000 or Windows XP Professional on
your computer. If that’s the case, you’ll need to install it.

That’s easy to do, assuming you have Administrator rights on your computer. If you don’t,
you’ll have to ask your Administrator to set up your system for you.

To install IIS, go to Windows Control Panel and choose Add/Remove Programs. In Win-
dows XP, this option will be named Add/Remove Programs and Windows Components. In
Windows 2000, you’ll need to drill down one more time to Add/Remove Windows Compo-
nents. When Windows displays a list of Windows components that can be installed, check
the box next to Internet Information Services and click Next to install IIS.

The IIS snap-in will appear in your Administrative Tools Control Panel. If you’re running
Windows XP and not viewing your Control Panel in classic view, you’ll need to click the Per-
formance and Maintenance section of your Control Panel. When you double-click Internet
Information Services, you’ll see a snap-in expand into a window like the one in Figure 1.6.

F I G U R E 1 . 6 :
The IIS snap-in

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 12

13

Configuring IIS
The IIS snap-in works similarly to any other Microsoft Management Console (MMC) win-
dow. MMC is a hosting environment that presents a common interface for multiple applica-
tions such as IIS and Index Server. This makes it easier for users to use what really amounts
to a number of fairly complex Windows components, without needing to figure out the
nuances of the assortment of interfaces for those components. Even if you’ve never used an
MMC-based component, it’s easy to learn because it looks so much like Windows Explorer.

At the top of the IIS MMC window is an icon and the name Internet Information Services.
Under that is your computer name, and next to that is a little plus sign, just like Windows
Explorer. When you click the plus sign, the computer expands to reveal the components of
your computer that are relevant to IIS. One of those will be a folder named Web Sites.
Expand Web Sites and you’ll see your Default Web Site. If you have Windows 2000 Server,
you can add additional sites. If you have what amounts to personal editions of Windows 2000,
such as Windows 2000 Professional or Windows XP, you won’t be able to add additional web-
sites and you’ll have to use the Default Web Site because that’s all you’re licensed for.

You’re actually ready to go, but chances are you’ll want to break your web applications down
into separate directories. This means you need to make a virtual directory. A virtual directory is
a mapped directory interface to a physical directory on the web server’s computer. By creating
a virtual directory, you can have a directory located at

C:/documents/docs/moredocs/yetmoredocs/docs/xdocs/ydocs/vdocs/

accessed via the server at
localhost/vdocs

This is because you tell the web server that the physical path should point to the virtual
directory mapping you provide.

To try it out, right-click the Default Web Site in IIS and navigate to New/Virtual Direc-
tory. The New Virtual Directory Wizard will appear. The first thing you’ll have to do is
name your virtual directory by entering it into the Alias text field. The name you give is
the name of your web application. You can have more than one web application in a web-
site. In fact, you can have zero web applications in your website and run everything from
the root (and still have subdirectories), but that’s not a terribly efficient way to do things.

The next page asks you to locate the physical folder that stores the files to be used by the
virtual directory. It’s important to realize at this point that the Virtual Directory doesn’t
actually store any files, or even copy them anywhere, even though it will look like it does
when you’re finished with the wizard. The Virtual Directory is an application that runs by
implementing code it finds in the physical directory you name on this page of the wizard.
The nice thing about this is that, even if you serve an HTML page from a directory that is

Setting Up the IIS Environment for Development

4254c01.qxd 12/5/03 12:00 PM Page 13

14

not involved in any way with your virtual directory, you can refer to the virtual directory in
any code on your site like this (assuming our current example):

A link

Notice where the first solidus (/) character is on the path. Using that character as the first
character on a path tells IIS to look for a virtual directory named by whatever lies between
the first and second solidus characters. So in the preceding line of code, the link points to a
virtual directory named vdocs that would resolve to the domain name followed by vdocs, or

http://www.domainname.com/vdocs

Another advantage to using virtual directories is that you can make them resolve to sub-
domains like this:

http://services.domainname.com/vdocs

where vdocs resolves to the subdomain services.

The last page of the wizard asks you which Access Permissions you want for your Virtual
Directory. For our purposes here, you will generally not need anything more than the Read
and Run Scripts permissions. Exceptions to this will be noted during the course of the book.
Always make Read and Run Scripts your choice as your instinctive reaction (rule of thumb)
to this page. You can always change things later.

NOTE The configuration described in this section was tested on Windows XP Professional. Your
IIS configuration windows may differ slightly but will be basically the same.

Configuring Dreamweaver MX for Use in Versioning Software
Versioning software, also referred to as source control or content management systems software,
is software that locks files when a team member checks them out for editing so that team
members can’t edit the same files simultaneously. Among such software, Dreamweaver
MX provides direct support only for Microsoft’s Visual SourceSafe and Macromedia’s
SiteSpring. SiteSpring is being left to die on the vine by Macromedia; they have released
their last version of the product.

Before I introduce you to specific source control systems, let’s have a brief look at team
workflow as practiced within the Dreamweaver environment.

Checking In and Checking Out
The basic tenet of Dreamweaver’s Check In/Check Out system is based on one thing: Don’t
use the Get or Put commands, ever, if you are using Check In/Check Out. Get and Put are

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 14

15

FTP commands that get files from the server and put files onto the server, respectively. Of
course, there might be exceptions to this if you are using, for example, Perforce, which is a
third-party source control system, but that’s because Perforce has its own checking-in-and-out
workflow that bypasses Dreamweaver’s. (There’s more about configuring Dreamweaver MX
for Perforce in a later section.)

NOTE To use Check In/Check Out, each team member must be using Dreamweaver, which can be
a drawback if you have programmers who resist using it. This is one of the reasons it’s
sometimes best to develop using a third-party source control system. If every team member
is using Dreamweaver MX, Check In/Check Out can be a good option for version control, but
keep in mind that it doesn’t lock files as true source control software does.

Team Workflow
To use Check In/Check Out, each team member defines a local root folder on his or her
development machine. If you’re an administrator, configure a common remote sharing
server. Otherwise, your administrator will do that for you. Make sure that in your Site Defi-
nition panel, under Remote Server in the Advanced tab, you check the Enable File Check In
and Check Out box. Then, to retrieve a file, instead of using the Get command, you use the
Check Out command. All team members access files this way; so when a file is checked out,
it’s critical that you do not check it out. You can tell by viewing the icons in the File panel
that indicate whether or not files are checked out (refer again to Figure 1.4).

The bad news about Check In/Check Out is that the system doesn’t lock the files in the
same way as industrial-strength source control systems, so it’s actually possible to check out a
file even if it has already been checked out, and then overwrite someone else’s changes when
you check the file back in. This can also happen if you use the Get and Put commands—a
good reason never to do this when you’re using Check In/Check Out. Users attempting to
retrieve files that were checked out by someone else will get a confirmation message asking if
they really want to go through with it. Even knowledgeable users, however, can make mis-
takes and accidentally hit the OK button, especially when they’re distracted.

If it sounds like I’m arguing that workgroups should design a better system, one that really
locks files when they’re checked out, I am. Nevertheless, Check/In Check Out is available in
Dreamweaver, and there may be some instances where you might use it. So let’s take a quick
look at how to set it up.

Setting Up Check In/Check Out
You must first define a site and select certain options in the Site Definition panel to activate
Check In/Check Out:

Configuring Dreamweaver MX for Use in Versioning Software

4254c01.qxd 12/5/03 12:00 PM Page 15

16

Setting up the local site Each team member defines a site, designating a folder on their
computer’s hard drive as the local root folder. You already know how to do this from the
section titled “Defining a Site” earlier in the chapter.

Setting up the remote site In the Site Definition dialog panel, in the Advanced Tab’s
Remote Info category, specify a server folder (Host Directory for FTP access) or a remote
folder (for local/network access) as shown in the section titled “Defining a Site” earlier in
the chapter.

Enabling Check In/Check Out In the Remote Info category, select the Enable Check
In/Check Out check box. Two more text fields appear beneath that check box. Fill in a
name and your e-mail address in the two fields provided. After these options have been
activated, the Check In and Check Out icons appear in the File panel.

Configuring for Concurrent Versions System (CVS)
Concurrent Versions System (CVS) is a reliable old workhorse among long-time developers. On
Windows the most commonly used implementation is WinCVS. On the Mac, you can get a
CVS implementation called MacCVS. WinCVS has proven frustrating for most Dreamweaver
developers in production environments, but there are two options to consider to make it a viable
solution for versioning.

The first is a SourceForge Dreamweaver/CVS project that is in its earliest stages for inte-
grating Dreamweaver with WinCVS. You’ll find it at http://dwcvs.sourceforge.net/.

NOTE As this book was being written, the SourceForge project was in its earliest stages, and the
developers had not yet posted any files. That may have changed by the time you read this.

A better bet, because it gets good reviews for stability and ease of use and is in fact available,
is another SourceForge project named TortoiseCVS. There isn’t any specific module for
integration with Dreamweaver, but as a general versioning control system, it’s worth a try:
http://www.tortoisecvs.org/download.shtml. And MacCVS is available at SourceForge at
http://www.maccvs.org/.

You’ll have to use TortoiseCVS and MacCVS outside of Dreamweaver because direct
integration with them isn’t supported.

Configuring for Perforce
Perforce is a versioning system that has a loyal following in many large-scale development
shops. You can configure Dreamweaver to work with Perforce’s storage units (called depots)
and access them in Dreamweaver using FTP. The following instructions assume a basic
knowledge of Perforce.

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 16

17

There are three Perforce directory areas to be aware of:

● The client workspace is an area of working storage on the computer where P4FTP, the
Perforce FTP tool, runs. This workspace must not overlap the local root.

● The local root is the directory where Dreamweaver stores its working copies of the
website files for editing.

● The host directory is the Perforce depot location where your website files live. The remote
host directory must be the path to your Perforce ftp- client workspace, plus any additional
directories that you need in order to get you to the files you’re working on.

For example, suppose you’re running Dreamweaver on a Windows computer, P4FTP on a
Unix computer named ftpserver, and the Perforce server on a Unix computer. You would
use the following Perforce configuration:

Host: ftpserver

Client root: /usr/team/userName

Client view: //depot/... //ftp-userName/...

The Dreamweaver configuration for a website named mySite would be as follows:

Local root: c:\dwroot\mySite

Host directory: /usr/team/userName/main/mySite/

Creating Websites
To use Dreamweaver to create a website that resides in a Perforce depot, follow these steps:

1. Choose ➣ New Site. The Site Definition dialog box is displayed. Click the Advanced Tab.

2. Create a folder on your computer where you want Dreamweaver to store the local copies
of your website files, making sure you specify an existing directory that does not live in
your client root.

3. In the Category pane, click Remote Info. The Remote Info pane is displayed.

4. From the Access list, choosing FTP reveals the following fields:

FTP Host Enter the name of the computer where P4FTP is running and the port
on which it is listening for FTP requests. For example: myftphost:1234.

Host Directory This is the location in the Perforce depot to upload and download
website files using the Put and Get FTP commands. If you’re running in a mixed OS envi-
ronment, the name of this directory should be based on the conventions of the operating

Configuring Dreamweaver MX for Use in Versioning Software

4254c01.qxd 12/5/03 12:00 PM Page 17

18

system that is running P4FTP. This must be an existing directory, so if one doesn’t exist,
create one first using Perforce or through an FTP client with a command-line interface.

Login and Password Enter your Perforce login and password.

WARNING Do not check the box Enable File Check In and Check Out.

The next step is to create the Perforce depot location in your client workspace. Copy any
existing website files to the client workspace location that corresponds to the depot location
of the website you defined with the Site Definition panel. Use the Perforce p4 Add command
to add files to the depot.

Configuring for Visual SourceSafe
Dreamweaver MX provides direct support for Visual SourceSafe. You can connect directly to
SourceSafe through the Remote Info category in the Advanced tab of the Site Definition
panel. When you choose SourceSafe Database from the Access drop-down list, a Settings
button appears to the right of the drop-down list. Click that button to display a dialog box
with the settings you need to configure for connecting to the desired Visual SourceSafe data-
base (see Figure 1.7). After you complete these entries, you can connect to the SourceSafe
database and check files in and out.

F I G U R E 1 . 7 :
The Settings input for
connecting to Visual
SourceSafe

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 18

19

It’s possible that the site administrator won’t want direct connections to the Visual Source-
Safe database, in which case you’ll have to work on your site locally and check files in and out
of Visual SourceSafe using your Working folder in SourceSafe. Details on this will depend
on how your administrator has set up the SourceSafe environment, so be sure to check with
your site administrator for details.

NOTE Unfortunately, up to this point, my experience with WebDAV in Dreamweaver has not been
very positive. In fact, every time I have attempted to use it, the application has crashed,
and this has been the case on multiple versions of Dreamweaver MX and Dreamweaver
MX 2004.

The Art of Managing the Web.config File
Anytime you’re working with component-based architecture, and .NET as deployed from
Dreamweaver certainly qualifies, it’s best to think about how many problems can be solved
globally. By this I don’t mean solving the world’s problems, but rather how many of your web
development tasks can be resolved on a global level, so that you can drill down and add speci-
ficity on a granular level.

To see what I mean, pay special attention to this section, because the more you can manage
configuration outside of your actual application code, the better. In ASP.NET, you can con-
trol a number of your web application’s configuration properties through an XML file named
Web.config.

When you store a Web.config file in your domain’s root directory, all the files through-
out the rest of your site inherit the properties that are in the configuration file. If there is
no Web.config file, the application acts as if you have one in the root anyway, and every-
thing is defaulted to ASP.NET’s settings that the Framework adopted when it was origi-
nally installed.

The settings of the Web.config file, whether they’re placed by you or are the .NET default
settings, can be overridden by adding a configuration file named Web.config to the directory
that contains the application you want to influence. Looking at Figure 1.8, if you want to
make some application configurations in the directory named Sub1 different from the rest of
your site, you would add a Web.config file to Sub1. The web applications in Sub2, since it is
a child of Sub1, would then inherit the configurations deployed in Sub1. So if you wanted
them to be like the rest of the site, you’d need to either provide that directory with its own
Web.config file, or set up different system.web elements for each directory within the root
directory’s Web.config file.

The Art of Managing the Web.config File

4254c01.qxd 12/5/03 12:00 PM Page 19

20

Listing 1.1 shows what a typical structure for a Web.config file might look like.

Listing 1.1 Typical structure for a Web.config file

<configuration>
<appSettings />
<system.web>

<authentication>
<forms>

<credentials>
<passport>

<authorization>
<allow>
<deny>

<browserCaps>
<result>
<use>
<filter>

<case>
<clientTarget>

<add>
<remove>
<clear>

<compilation>
<compilers>

<compiler>
<assemblies>

<add>
<remove>
<clear>

<customErrors>
<error>

<globalization>
<httpHandlers>

<add>
<remove>
<clear>

<httpModules>
<add>
<remove>

F I G U R E 1 . 8 :
Directories inherit
Web.config
properties from
their parents

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 20

21

<clear>
<httpRuntime>
<identity>
<machineKey>
<pages>
<processModel>
<securityPolicy>

<trustLevel>
<sessionState>
<trace>
<trust>
<webServices>

<protocols>
<add>
<remove>
<clear>

<serviceDescriptionFormatExtensionTypes>
<add>
<remove>
<clear>

<soapExtensionTypes>
<add>

<soapExtensionReflectorTypes>
<add>

<soapExtensionImporterTypes>
<add>

<WsdlHelpGenerator>
</webServices>

</system.web>
</configuration>

You may want to configure everything in one root directory, however. It certainly will be
easier to maintain, because you won’t have to remember to update various Web.config files as
your site grows. Instead, you just need to remember to alter the root Web.config file.

For example, you might want to create particular configurations for different languages. In
that case, you wrap each system.web element in a location element, like so:

<location path=”EnglishPages”>
<system.web>
<globalization
requestEncoding=”iso-8859-1”
responseEncoding=”iso-8859-1”

/>
</system.web>

</location>

The Art of Managing the Web.config File

4254c01.qxd 12/5/03 12:00 PM Page 21

22

<location path=”JapanesePages”>
<system.web>
<globalization
requestEncoding=”Shift-JIS”
responseEncoding=”Shift-JIS”

/>
</system.web>

</location>

Here, a different system.web configuration element is used for Japanese and English pages.
All files in the EnglishPages directory will use the iso-8859-1 encoding, and all files living in
the JapanesePages directory will use Shift-JIS encoding. You can also use any of the other
system.web child elements that you’ll be visiting in the next section.

Web.config Elements and Attributes
It doesn’t do much good to have this nifty XML-based configuration document if you don’t
know what its elements and attributes mean. This section provides a look into the properties
of the one file you’re likely to encounter the most while working with Dreamweaver. We’re
not providing a detailed analysis of every element and attribute available to this file, because,
like so many Microsoft object models, the underlying schema that defines these elements is
substantial and there just isn’t enough space in this book to justify the deforestation such
detailed analysis would trigger. Instead, I’ve focused on areas that will be of particular
interest to Dreamweaver MX .NET developers. You can get more information from the
.NET Framework SDK at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html
➥ /gngrfaspnetconfigurationsectionschema.asp

appSettings
One of the main reasons for using Dreamweaver MX in the first place is to take advantage of
its rapid application development (RAD) capabilities, especially when you’re working with
databases. If you look at your site’s Web.config file after you set up your database, you’ll find
something like this:

<appSettings>
<add key=”MM_CONNECTION_HANDLER_MyConnection” value=”sqlserver.htm” />
<add key=”MM_CONNECTION_STRING_ MyConnection” value=
“Persist Security Info=False;Data Source=11.11.1.1;
Initial Catalog=mydb;User ID=user;Password=somepass” />

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 22

23

<add key=”MM_CONNECTION_DATABASETYPE_ MyConnection” value=”SQLServer” />
<add key=”MM_CONNECTION_SCHEMA_ MyConnection” value=”” />
<add key=”MM_CONNECTION_CATALOG_Tumeric” value=”” />

</appSettings>

These settings are created by Dreamweaver and inserted into your root directory’s Web.config
file when you set up your first database connection. The settings, of course, will depend on
exactly what settings you choose when you create your database connection string to connect
to your database. The process is driven by the appSettings element, which can have three
child elements:

The add element, which is the one you’ll see used most often, has two attributes, key and
value. The key is simply the name of the application setting that will be accessed by .NET
during runtime, and the value is the value sent to .NET to process the component. For
example, when you create a dataset in Dreamweaver MX, Dreamweaver inserts a custom
.NET control element named MM:DataSet into your web page. One of the attributes for
this element is the ConnectionString attribute. In Figure 1.9 you can see there is a direct
connection between the MM:DataSet element’s ConnectionString attribute and the
Web.config file’s element’s appSettings element. The ConnectionString calls the key
named MM_CONNECTION_STRING_Tumeric, and that key is the value of the connection
string. Therefore, this:

ConnectionString=’<%# System.Configuration.ConfigurationSettings.AppSettings
➥ [“MM_CONNECTION_STRING_MyConnection”] %>’

could have been written like this directly in an .aspx page, instead:
ConnectionString=”Persist Security Info=False;Data Source=11.11.1.1;
➥ Initial Catalog=mydb;User ID=user;Password=somepass”

This form, however, forces us to edit the connection string in the .aspx page that is
using it. And we don’t want to do this, because if we end up with numerous such pages
we’d have to go into each page in order to edit the connection string. It’s much easier to
define the connection string within the appSettings element and refer to it repeatedly in
other pages. That way, if we want to change it later, we easily can by simply updating the
Web.config file.

The remove element of appSettings can be used to remove a configuration setting
deployed further up in the configuration hierarchy.

The clear element removes all settings defined further up in the hierarchy.

The Art of Managing the Web.config File

4254c01.qxd 12/5/03 12:00 PM Page 23

24

authentication
The authentication element configures ASP.NET authentication support. This is one of
the more important elements when you are building Dreamweaver .NET apps, because it
makes it easy to develop password-protected areas and redirection routines. Authentication
can be handled in one of four ways, as represented by the mode attribute:

● Through Windows authentication

● Through forms

● Through Microsoft’s proprietary Passport system

● None (there is no authentication)

<MM:DataSet
id="clientDS"
runat="Server"
IsStoredProcedure="false"
ConnectionString='<%#
System.Configuration.ConfigurationSettings.AppSettings["MM_CONNECT
ION_STRING_myConnection"] %>'
DatabaseType='<%#
System.Configuration.ConfigurationSettings.AppSettings["MM_CONNECT
ION_DATABASETYPE_myConnection"] %>'
CommandText='<%# "SELECT Client_ID FROM ClientInfo WHERE CEMail =
@CEMail" %>'
Debug="true"
>

<appSettings>
<add key="MM_CONNECTION_HANDLER_myConnection"

value="sqlserver.htm" />

Security Info=False;Data Source=11.111.1.11;Initial Catalog=myDB;User
ID=uid;Password=yourpassword" />

<add key="MM_CONNECTION_DATABASETYPE_myConnection"
value="SQLServer" />

<add key="MM_CONNECTION_SCHEMA_myConnection" value="" />
<add key="MM_CONNECTION_CATALOG_myConnection" value="" />

</appSettings>

appSetting element in Web.config file

MM:DataSet element

ConnectionString='<%#
System.Configuration.ConfigurationSettings.AppSettings["MM_CONNECT
ION_STRING_myConnection"] %>'

<add key="MM_CONNECTION_STRING_myConnection" value="Persist
Security Info=False;Data Source=11.111.1.11;Initial Catalog=myDB;User
ID=uid;Password=yourpassword" />

F I G U R E 1 . 9 :
The Connection-
String attribute in
MM:DataSet is bound
to the second add
element child of the
appSettings
element.

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 24

25

The syntax for this element looks like this:
<authentication mode=”Windows|Forms|Passport|None”>
<forms name=”name”

loginUrl=”url”
protection=”All|None|Encryption|Validation”
timeout=”30” path=”/” >

<credentials passwordFormat=”Clear|SHA1|MD5”>
<user name=”username” password=”password” />

</credentials>
</forms>
<passport redirectUrl=”internal”/>

</authentication>

The authentication element has some child elements that are worth looking at. These
all help you develop robust authentication routines for directories, virtual directories and
applications.

The forms Element
The forms child element has nothing to do with the HTML form element we’ve all grown
to love and nurture. Rather, this is used for the .NET authentication process. Consider this
element as the key to the city for your users. Let’s say you set up a virtual directory or web
application named catalog that is accessed when a user types www.mydomain.com/catalog
into their browser. You use the forms element to handle the users’ routing so that everyone,
if you want, goes to the same page. This means if someone has a part of this directory book-
marked, let’s say www.mydomain.com/catalog/profile.aspx, they can only get there if they
are an authenticated user. You use the forms element to manage this routing apparatus.

There are a number of attributes to the forms element you might want to get familiar with,
so let’s have a look:

name This attribute specifies the HTTP cookie to use for authentication. By default, the
value of name is .ASPXAUTH. When more than one application is running on a single
server and each application requires a unique cookie, each application must have its own
cookie name in each application’s Web.config file.

loginUrl When a user attempts to visit a page on a site that has been configured for
authentication, the user will first get redirected to the page specified by the loginUrl
attribute if no valid authentication cookie is found; this happens even if the page is book-
marked. The default value is default.aspx, but you can change it to any name you wish.
The page to which you redirect the users should have a login form, or, at a bare minimum,
a link to a login form, since the page really acts as the gateway to the rest of the directory
configured for authentication.

The Art of Managing the Web.config File

4254c01.qxd 12/5/03 12:00 PM Page 25

26

protection This attribute specifies what kind of encryption to use. There are four possible
values for this attribute:

● All: The default and recommended value; this means the application uses both data
validation and encryption to protect the cookie.

● None: Although it makes authentication less challenging to system resources, Microsoft
recommends against using the none protection value because both encryption and vali-
dation are disabled.

● Encryption: Specifies that the cookie is encrypted using Triple-DES or DES (for more
information on encryption schemes, go to http://csrc.nist.gov/cryptval/des.htm),
but data validation is not performed on the cookie. According to Microsoft, cookies
used in this way might be subject to chosen plaintext attacks.

● Validation: This is a validation confirmation technique for preventing cookie data
tampering while the data is transported over the network. This attribute value tells
.NET to create a cookie by concatenating (adding one string value to another to
form a new string) a validation key with cookie data, computing a message authenti-
cation code, and appending the message authentication code to the outgoing cookie.

timeout This specifies the amount of time, in integer minutes, after which the cookie
expires. The default value is 30.

path Use the path attribute to specify the path for cookies generated by your application.
It’s best to keep the path at the default value, which is a backslash (\), because most browsers
are case-sensitive and will not send cookies back if there is a case mismatch in the path.

The forms child element itself has an optional child element named credentials, consisting
of a mandatory attribute named passwordFormat that you use to indicate how you want to
encrypt the password. You have three options: Clear, which provides no encryption, and which
you obviously want to avoid unless you want hackers to have access to your users’ passwords;
MD5, for the MD5 hash algorithm; and SHA1, for the SHA1 hash algorithm.

The credentials element, too, has a child element named user, which can be used to store
a username and password directly in the Web.config file.

Take a look at the following Web.config file snippet, a form that authenticates against an
application named logon.aspx. This form is the gateway, so to speak, for all who attempt to
access a file in the directory. If users try to access a file but hasn’t yet logged on, they are
automatically re-directed to logon.aspx.

<authentication mode=”Forms”>
<forms name=”.ASPXAUTH “
loginUrl=”logon.aspx”
protection=”All” path=”/” timeout=”30” />

</authentication>

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 26

27

Listing 1.2 is an example of the script that drives logon.aspx. When a user tries to get into
another page in the same directory, if they haven’t logged in, they’ll get bounced back to
logon.aspx. This is true even if they know the query string that would take them to their
profile page and try to type that into their browser.

➲ Listing 1.2 A login script for logon.aspx

<script runat=”server”>
bool ValidateUser(string uid, string passwd)

{
SqlConnection cnn;
SqlCommand cmd;
SqlDataReader dr;
cnn = new SqlConnection(ConfigurationSettings.AppSettings
➥ [“MM_CONNECTION_STRING_Tumeric”]);
cmd = new SqlCommand(“SELECT Client_ID, CPassword, ClientName,

➥ CFirstName,
➥ CLastName FROM ClientInfo where CEMail=’” + uid + “‘“,cnn);
cnn.Open();
dr = cmd.ExecuteReader();
try {
while (dr.Read())
{

if (string.Compare(dr[“CPassword”].ToString(),passwd,false)==0)
{

cnn.Close();
return true;

}
}
}
catch (Exception e)
{
lblMsg.Text = “An application error has occurred. Please call us
➥ at 415-553-8857 for further assistance.”;
}
cnn.Close();
return false;

}

void Page_Load(object sender, System.EventArgs e)
{
if (Page.IsPostBack)
{
if (ValidateUser(txtUserName.Value,txtUserPass.Value))
{

FormsAuthenticationTicket tkt;
string cookiestr;
HttpCookie ck;
tkt = new FormsAuthenticationTicket(1, txtUserName.Value,

➥ DateTime.Now,
➥ DateTime.Now.AddMinutes(30), chkPersistCookie.Checked,

The Art of Managing the Web.config File

4254c01.qxd 12/5/03 12:00 PM Page 27

28

➥ “your custom data”);
cookiestr = FormsAuthentication.Encrypt(tkt);
ck = new HttpCookie(FormsAuthentication.FormsCookieName, cookiestr);
if (chkPersistCookie.Checked)

ck.Expires=tkt.Expiration;
Response.Cookies.Add(ck);

string strRedirect;
strRedirect = Request[“ReturnUrl”];
if (strRedirect==null)

strRedirect = “client2.aspx?CEMail=” + txtUserName.Value;
Response.Redirect(strRedirect, true);

}
else

lblMsg.Text = “You have provided an invalid user name or password.
➥ Please try again”;

}
}

You’ll learn how to build this kind of form authentication in Chapter 4, “Working with
Databases.”

authorization
You can also allow users entry into a directory or application through the authorization
element and its child allow and deny elements, which define who gets in and who doesn’t.

<authorization>
<allow users=”comma-separated list of users”

roles=”comma-separated list of roles”
verbs=”comma-separated list of verbs” />

<deny users=”comma-separated list of users”
roles=”comma-separated list of roles”
verbs=”comma-separated list of verbs” />

</authorization>

When defining who gets in and who doesn’t, a question mark (?) allows anonymous users;
an asterisk (*) indicates that all users are accepted, as in this next example. It allows access to
all members of the Admin role and denies access to everyone else by blocking out all users
using an asterisk.

<configuration>
<system.web>

<authorization>
<allow roles=”Admins” />
<deny users=”*” />

</authorization>
</system.web>

</configuration>

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 28

29

In authorization code, users and roles may be obvious to you, but what about verbs?
This attribute is a comma-separated list of HTTP methods granted access to the resource.
Possible values are GET, HEAD, POST, and DEBUG.

browserCaps
The browserCaps exposes ASP.NET’s browser capabilities component to help you better
handle various incoming browsers. This lets you write code to make your web application
behave differently depending on the browser type accessing your site. This process is called
browser sniffing, often done in the past using client-side JavaScript. The browserCaps element
structure looks like this:

<browserCaps>
<result type=”class” />
<use var=”HTTP_USER_AGENT” />

browser=Unknown
version=0.0
majorver=0
minorver=0
frames=false
tables=false

<filter>
<case match=”Windows 98|Win98”>

platform=Win98
</case>

<case match=”Windows NT|WinNT”>
platform=WinNT

</case>
</filter>
<filter match=”Unknown” with=”%(browser)”>

<filter match=”Win95” with=”%(platform)”>
</filter>

</filter>
</browserCaps>

The filter element’s with attribute uses regular expressions, the nuances of which are
beyond the scope of this chapter, but generally you won’t need to alter the default capabilities
of ASP.NET’s browser-sniffing. You can use .NET’s HttpBrowserCapabilities class to manage
the web application behavior based on the kind of browser attempting to access the page.

Back in the days of the browser wars, redirecting users using different browsers was one way,
if an expensive one, to manage browser capabilities. Generally, today’s developers shy away
from expensive browser-sniffing routines because most modern browsers interpret standard
HTML in a reliable way, and you can use Cascading Style Sheets (CSS) to enhance visual lay-
outs. Browsers that don’t support CSS won’t display CSS-based visual enhancements, but if the
coding is done correctly, these browsers will still display the page reasonably well because they
understand the basic HTML elements that to render the pages.

The Art of Managing the Web.config File

4254c01.qxd 12/5/03 12:00 PM Page 29

30

Nevertheless, you may find yourself wanting or even needing to do some browser sniffing,
especially if you’re on a corporate intranet and you want to take advantage of, for example,
IE6’s extensive Dynamic HTML model. To make procedural decisions based on browser
make and version, you can do something like this:

if(Request.Browser.Browser.Equals(“IE”) && Request.Browser.MajorVersion >= 5)
Response.Write(“Good, you are using IE 5 or higher”);

clientTarget
.NET contains a collection of user agent aliases, which bind arbitrary names (for example,
“ie5”) to user agent information. You can add to this collection using your own aliases. Use
whatever name you want in the alias attribute, but the userAgent attribute to which you bind
the name needs to be recognizable by .NET, such as

Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)

Here’s an example of clientTarget code:
<clientTarget>

<add alias=”alias name to use”
userAgent=”identification of user agent” />

<remove alias=”alias name to remove” />
<clear />

</clientTarget>

compilation
This is an element that contains all the compilation settings used by ASP.NET:

<compilation debug=”true|false”
batch=”true|false”
batchTimeout=”number of seconds”
defaultLanguage=”language”
explicit=”true|false”
maxBatchSize=”maximim number of pages per

batched compilation”
maxBatchGeneratedFileSize=”maximum combined size

(in KB) of the generated source file per batched compilation”
numRecompilesBeforeAppRestart=”number”
strict=”true|false”
tempDirectory=”directory under which the ASP.NET temporary
files are created” >

<compilers>
<compiler language=”language”

extension=”ext”
type=”.NET Type”
warningLevel=”number”
compilerOptions=”options” />

</compilers>

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 30

31

customErrors
This element defines custom error messages for an ASP.NET application:

<customErrors defaultRedirect=”url”
mode=”On|Off|RemoteOnly”>

<error statusCode=”statuscode”
redirect=”url”/>

</customErrors>

If you wanted to redirect a user who was receiving a 404 File Not Found error, you could
do something like this:

<customErrors defaultRedirect=”generr.htm”
mode=”RemoteOnly”>
<error statusCode=”404”

redirect=”FNF.htm”/>
</customErrors>

You should turn custom errors on by making the mode value On when you are in development,
and turn them off when you are ready to go live by making the mode value RemoteOnly. Actually,
RemoteOnly doesn’t turn them off; it redirects the user to a custom error page so that they don’t
see the ASP.NET errors that are of benefit to you as a Web developer.

globalization
You encountered this element when introduced to the Web.config element earlier in the
chapter. The globalization element configures the globalization settings of an application:

<globalization requestEncoding=”any valid encoding string”
responseEncoding=”any valid encoding string”
fileEncoding=”any valid encoding string”
culture=”any valid culture string”
uiCulture=”any valid culture string” />

You might be wondering what the culture-related strings do. They provide ways to auto-
matically handle things like regional-specific date data-types. Dates in the United States are
typically structured as “August 11, 2003,” whereas dates in some other countries are typically
structured as “11 August 2003.” In addition, .NET sets the default currency to euro (instead
of the dollar) for cultures that use the euro.

httpHandlers
This element maps incoming URL requests to IHttpHandler classes:

<httpHandlers>
<add verb=”verb list”

path=”path/wildcard”
type=”type,assemblyname”
validate=”” />

The Art of Managing the Web.config File

4254c01.qxd 12/5/03 12:00 PM Page 31

32

<remove verb=”verb list”
path=”path/wildcard” />

<clear />
</httpHandlers>

Handlers accept requests and produce responses and manage them through page-handler
classes. One area where you might see this httpHandlers element used frequently is Web
Services, which allows a site to expose programmatic functionality via the Internet by
accepting messages and sending replies, and running complex functions based on this
communication.

When the .NET runtime environment sees a request for a file with an .aspx extension, the
handler that is registered to handle .aspx files is called, which by default is the System.Web.UI
.PageHandlerFactory class. However, when an .asmx file is detected, Web Services are invoked
through a different class, the System.Web.Services.Protocols.WebServiceHandlerFactory.
By customizing this process through the Web.config file, you can determine which HTTP
requests are handled by using the verb attribute of the add child element of httphandlers.

<httphandlers>
<add verb=”GET” path=”*.asmx”
type=”System.Web.Services.Protocols.WebServiceHandlerFactory,
System.Web.Services” validate=”false” />
</httphandlers>

This code designates that for all GET requests, if the file being requested is an .asmx, the
system should create an instance of the WebServiceHandlerFactory, which lives in the
System.Web.Services.dll assembly. If you want the handler to accept all HTTP verbs, you
would change the verb value to”*”. This makes it possible to generate an HTML page that
describes a Web Service.

httpModules
The httpModules element adds, removes, or clears HTTP modules within an application.
Most of the processes you encounter using Dreamweaver .NET have everything you need
in the default settings. The httpModules element has three subelements: add, remove, and
clear. The add subelement has one attribute, type, which is the assembly and class name of
the handler you wish to include:

<httpModules>
<add type=”classname,assemblyname” name=”modulename” />
<remove name=”modulename” />
<clear />

</httpModules>

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 32

33

httpRuntime
This element configures ASP.NET HTTP runtime settings. This section can be declared at
the machine, site, application, or subdirectory level:

<httpRuntime useFullyQualifiedRedirectUrl=”true|false”
maxRequestLength=”size in kbytes”
executionTimeout=”seconds”
minFreeThreads=”number of threads”
minFreeLocalRequestFreeThreads=”number of threads”
appRequestQueueLimit=”number of requests” />

identity
Normally, all ASP.NET application operations are performed by a user named ASPNET.
This user is created automatically when you install the .NET Framework. Then, you have
to be sure the virtual directory (your web application) has been granted user privileges to
ASP.NET. Sometimes you’ll want to “impersonate” a user, which means that instead of using
the ASPNET user account, you’ll name another account for running the web application.
The identity element controls this process with some fairly self-explanatory attributes:

<identity impersonate=”true|false”
userName=”username”
password=”password”/>

machineKey
This element configures keys to use for encryption and decryption of a form’s authentication
cookie data and can be declared at the machine, site, or application levels, but not at the sub-
directory level:

<machineKey validationKey=”autogenerate|value”
decryptionKey=”autogenerate|value”
validation=”SHA1|MD5|3DES” />

pages
The page element identifies page-specific configuration settings such as session state and
page buffering:

<pages buffer=”true|false”
enableSessionState=”true|false|ReadOnly”
enableViewState=”true|false”
enableViewStateMac=”true|false”
autoEventWireup=”true|false”
smartNavigation=”true|false”
pageBaseType=”typename, assembly”
userControlBaseType=”typename” />

The Art of Managing the Web.config File

4254c01.qxd 12/5/03 12:00 PM Page 33

34

processModel
The processModel element configures the ASP.NET process model settings on Internet
Information Services (IIS) web server systems:

<processModel enable=”true|false”
timeout=”mins”
idleTimeout=”mins”
shutdownTimeout=”hrs:mins:secs”
requestLimit=”num”
requestQueueLimit=”Infinite|num”
restartQueueLimit=”Infinite|num”
memoryLimit=”percent”
cpuMask=”num”
webGarden=”true|false”
userName=”username”
password=”password”
logLevel=”All|None|Errors”
clientConnectedCheck=”HH:MM:SS”
comAuthenticationLevel=”Default|None|Connect|Call|

Pkt|PktIntegrity|PktPrivacy”
comImpersonationLevel=”Default|Anonymous|Identify|

Impersonate|Delegate”
maxWorkerThreads=”num”
maxIoThreads=”num” />

securityPolicy
This element manages security policy:

<securityPolicy>
<trustLevel name=”value” policyFile=”value” />

</securityPolicy>

sessionState
This element handles and directs session-state issues:

<sessionState mode=”Off|Inproc|StateServer|SQLServer”
cookieless=”true|false”
timeout=”number of minutes”
stateConnectionString=”tcpip=server:port”
sqlConnectionString=”sql connection string” />

trace
This element configures the ASP.NET trace service:

<trace autoflush=”true|false”
indentsize=”indent value”/>

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 34

35

trust
The trust element indicates the access security permission of an application:

<trust level=”Full|High|Low|None” originUrl=”url” />

webServices
This element controls the settings of XML Web services created using ASP.NET:

<webServices>
<protocols>

<add name=”protocol name” />
</protocols>
<serviceDescriptionFormatExtensionTypes>
</serviceDescriptionFormatExtensionTypes>
<soapExtensionTypes>

<add type=”type” />
</soapExtensionTypes>
<soapExtensionReflectorTypes>

<add type=”type” />
</soapExtensionReflectorTypes>
<soapExtensionImporterTypes>

<add type=”type” />
</soapExtensionImporterTypes>
<wsdlHelpGenerator href=”help generator file”/>

</webServices>

Deploying the Dreamweaver Control
Perhaps the most important thing you’ll do when developing a .NET application in Dream-
weaver MX will occur when you deploy the Dreamweaver Control. The Dreamweaver
Control is a DLL developed by Macromedia specifically for use with Dreamweaver MX.
This custom control is analogous to having hundreds of lines of code within a server script
tag, right in your web page. The difference is that in the case of Dreamweaver Control,
the code for the script lives in a different file (a source file called DreamweaverCtrls.cs,
available in the Macromedia directory that is installed when you install the program, at
DreamweaverMX\Configuration\ServerBehaviors\Shared\ASP.Net\Scripts\Source. This
script was compiled “at the factory.” Macromedia used the .NET compiler to compile the
code into the DLL, which turned it into a binary executable that .NET can access anytime
the control is called from within Dreamweaver.

Whenever you use Dreamweaver MX to create, for example, a DataSet (Insert ➢ Appli-
cation Objects ➢ DataSet), you’ll see that the Dreamweaver’s code output contains special
tags such as MM:DataSet. The definitions for these kinds of tags are made available through
the DreamweaverCtrls.dll. We’ll be covering the hows and whys of this methodology in
Chapter 5.

Deploying the Dreamweaver Control

4254c01.qxd 12/5/03 12:00 PM Page 35

36

When you create a .NET-driven data behavior, you’ll need to deploy the Dreamweaver
Control in order for .NET to recognize the Dreamweaver tags. To do this, go to Site ➢

Advanced ➢ Deploy Supporting Files. You’ll see a dialog box that asks you how you access
your site and to which directory you want to deploy (see Figure 1.10). Always deploy to the
bin directory of your application. This is Dreamweaver’s default. If the directory doesn’t exist,
Dreamweaver will create one for you.

Wrapping Up
If you want to start building applications properly from the ground up, configuring Dream-
weaver MX to work with .NET involves more than simply setting up your site definition.

Think of your website as a top-down process from the very beginning. Everything inherits
from the top down. In other words, if the top level of your configuration indicates that your
pages should be rendered in U.S. English, then all of them will be rendered in that language
until ASP.NET encounters a directory in your site that overrides this settings. Moreover, this
is how ASP.NET handles all object inheritance when code is involved, so it’s a concept you’ll
want to remember as you dive into application development in future chapters.

There are two steps to take in order to begin your site:

1. Define a site.

2. Set up your IIS environment for production.

Technically, the additional configuration options are optional. You’ll be able to serve pages
without them, but your efficiency will be compromised—so we strongly recommend that you
also configure the following as quickly as possible:

● Dreamweaver MX for use in versioning software

● The Web.config file, or at least the debugging elements it uses

The next chapter will look at the critical concept of workflow, examining how a web develop-
ment team moves across a project from inception to final production using Dreamweaver MX.

F I G U R E 1 . 1 0 :
Deploying the
DreamweaverCtrls.dll

Chapter 1 • Configuring Dreamweaver for ASP.NET

4254c01.qxd 12/5/03 12:00 PM Page 36

