

Chapter

1

Language
Fundamentals

JAVA CERTIFICATION EXAM OBJECTIVES
COVERED IN THIS CHAPTER:
�

1.1 Write code that declares, constructs, and initializes

arrays of any base type using any of the permitted forms

both for declaration and for initialization.

�

1.3 For a given class, determine if a default constructor will

be created and if so, state the prototype of that constructor.

�

3.1 State the behavior that is guaranteed by the garbage

collection system.

�

3.2 Write code that explicitly makes objects eligible for

garbage collection.

�

3.3 Recognize the point in a piece of source code at which an

object becomes eligible for garbage collection.

�

4.1 Identify correctly constructed source files, package

declarations, import statements, class declarations (of all

forms including inner classes), interface declarations and

implementations (for

java.lang.Runnable

 or other interfaces

described in the test), method declarations (including the

main method that is used to start execution of a class),

variable declarations, and identifiers.

�

4.3 State the correspondence between index values in the

argument array passed to a main method and command-line

arguments.

�

4.4 Identify all Java programming language keywords and

correctly constructed identifiers.

�

4.5 State the effect of using a variable or array element of

any kind when no explicit assignment has been made to it.

�

4.6 State the range of all primitive formats, data types, and

declare literal values for String and all primitive types using

all permitted formats bases and representations.

�

5.4 Determine the effect upon objects and primitive values of

passing variables into methods and performing assignments

or other modifying operations in that method.

4276c01.fm Page 3 Thursday, October 9, 2003 12:08 PM

CO
PYRIG

HTED
 M

ATERIA
L

This book is not an introduction to Java. Because you are preparing
for certification, you are obviously already familiar with the funda-
mentals. The purpose of this chapter is to review those fundamentals

covered by the Certification Exam objectives.

Source Files

All Java source files must end with the

.java

 extension. A source file should generally con-
tain, at most, one top-level public class definition; if a public class is present, the class name
should match the unextended filename. For example, if a source file contains a public class
called

RayTraceApplet

, then the file must be called

RayTraceApplet.java

. A source file
may contain an unlimited number of non-public class definitions.

This is not actually a language requirement, but it is an implementation require-
ment of many compilers, including the reference compilers from Sun. It is there-
fore unwise to ignore this convention, because doing so limits the portability of

your source files (but not, of course, your compiled files).

Three top-level elements known as

compilation units

 may appear in a file. None of these
elements is required. If they are present, then they must appear in the following order:

1.

Package declaration

2.

Import statements

3.

Class definitions

The format of the package declaration is quite simple. The keyword

package

 occurs first and
is followed by the package name. The package name is a series of elements separated by periods.
When class files are created, they must be placed in a directory hierarchy that reflects their package
names. You must be careful that each component of your package name hierarchy is a legitimate
directory name on all platforms. Therefore, you must not use characters such as the space, for-
ward slash, backslash, or other symbols. Use only alphanumeric characters in package names.

Import statements have a similar form, but you may import either an individual class from
a package or the entire package. To import an individual class, simply place the fully qualified
class name after the

import

 keyword and finish the statement with a semicolon (;); to import
an entire package, simply add an asterisk (*) to the end of the package name.

4276c01.fm Page 4 Thursday, October 9, 2003 12:08 PM

Keywords and Identifiers

5

White space and comments may appear before or after any of these elements. For example,
a file called

Test.java

 might look like this:

1. // Package declaration

2. package exam.prepguide;

3.

4. // Imports

5. import java.awt.Button; // imports a specific class

6. import java.util.*; // imports an entire package

7.

8. // Class definition

9. public class Test {...}

Sometimes you might use classes with the same name in two different packages,
such as the

Date

 classes in the packages

java.util

 and

java.sql

. If you use the
asterisk form of import to import both entire packages and then attempt to use a
class simply called

Date

, you will get a compiler error reporting that this usage is
ambiguous. You must either make an additional import, naming one or the other

Date

 class explicitly, or you must refer to the class using its fully qualified name.

Keywords and Identifiers

The Java language specifies 52 keywords and other reserved words, which are listed in Table 1.1.

T A B L E 1 . 1

Java Keywords and Reserved Words

abstract class false import package super try

assert const final instanceof private switch void

boolean continue finally int protected synchronized volatile

break default float interface public this while

byte do for long return throw

case double goto native short throws

catch else if new static transient

char extends implements null strictfp true

4276c01.fm Page 5 Thursday, October 9, 2003 12:08 PM

6

Chapter 1 �

Language Fundamentals

The words

goto

 and

const

 are reserved words. However, they have no meaning in Java and
programmers may not use them as identifiers.

An

identifier

 is a word used by a programmer to name a variable, method, class, or label.
Keywords and reserved words may not be used as identifiers. An identifier must begin with a
letter, a dollar sign ($), or an underscore (_); subsequent characters may be letters, dollar signs,
underscores, or digits. Some examples are

1. foobar // legal

2. BIGinterface // legal: embedded keywords

3. // are OK.

4. $incomeAfterExpenses // legal

5. 3_node5 // illegal: starts with a digit

6. !theCase // illegal: must start with

7. // letter, $, or _

Identifiers are case sensitive—for example,

radius

 and

Radius

 are distinct identifiers.

The exam is careful to avoid potentially ambiguous questions that require
you to make purely academic distinctions between reserved words and

keywords.

Primitive Data Types

Java’s primitive data types are
�

boolean

�

char

�

byte

�

short

�

int

�

long

�

float

�

double

The apparent bit patterns of these types are defined in the Java language specification, and
their effective sizes are listed in Table 1.2.

4276c01.fm Page 6 Thursday, October 9, 2003 12:08 PM

Primitive Data Types

7

Variables of type

boolean

 may take only the values

true

 or

false.
The actual storage size and memory layout for these data items are not, in fact, required by the

language specification. The specification does dictate the apparent behavior; so, for example, the
effect of bit mask operations, shifts, and so on are entirely predictable at the Java level. If you write
native code, you might find things are different from these tables. This means that you cannot reli-
ably calculate the amount of memory consumed by adding up data sizes.

The exam is careful to avoid potentially ambiguous questions and asks
about variables only from the Java language perspective, not the under-
lying implementation.

The four signed integral data types are
� byte

� short

� int

� long

Variables of these types are two’s-complement numbers; their ranges are given in Table 1.3.
Notice that for each type, the exponent of 2 in the minimum and maximum is one less than the
size of the type.

Two’s-complement is a way of representing signed integers that was originally
developed for microprocessors in such a way as to have a single binary repre-
sentation for the number 0. The most significant bit is used as the sign bit,
where 0 is positive and 1 is negative.

T A B L E 1 . 2 Primitive Data Types and Their Effective Sizes

Type

Effective Representation

Size (bits) Type

Effective Representation

Size (bits)

boolean 1 char 16

byte 8 short 16

int 32 long 64

float 32 double 64

4276c01.fm Page 7 Thursday, October 9, 2003 12:08 PM

8 Chapter 1 � Language Fundamentals

The char type is integral but unsigned. The range of a variable of type char is from 0 through
216 − 1. Java characters are in Unicode, which is a 16-bit encoding capable of representing a wide
range of international characters. If the most significant 9 bits of a char are all 0, then the encoding
is the same as 7-bit ASCII.

The two floating-point types are
� float

� double

The ranges of the floating-point primitive types are given in Table 1.4.

These types conform to the IEEE 754 specification. Many mathematical operations can yield
results that have no expression in numbers (infinity, for example). To describe such non-numeric
situations, both doubles and floats can take on values that are bit patterns that do not represent
numbers. Rather, these patterns represent non-numeric values. The patterns are defined in the
Float and Double classes and may be referenced as follows (NaN stands for Not a Number):
� Float.NaN

� Float.NEGATIVE_INFINITY

� Float.POSITIVE_INFINITY

� Double.NaN

� Double.NEGATIVE_INFINITY

� Double.POSITIVE_INFINITY

T A B L E 1 . 3 Ranges of the Integral Primitive Types

Type Size Minimum Maximum

byte 8 bits −27 27 − 1

short 16 bits −215 215 − 1

int 32 bits −231 231 − 1

long 64 bits −263 263 − 1

T A B L E 1 . 4 Ranges of the Floating-Point Primitive Types

Type Size Minimum Maximum

float 32 bits +/–1.40239846–45 +/–3.40282347+38

double 16 bits +/–4.94065645841246544–324 +/–1.79769313486231570+308

4276c01.fm Page 8 Thursday, October 9, 2003 12:08 PM

Literals 9

The following code fragment shows the use of these constants:

1. double d = -10.0 / 0.0;

2. if (d == Double.NEGATIVE_INFINITY) {

3. System.out.println(“d just exploded: “ + d);

4. }

In this code fragment, the test on line 2 passes, so line 3 is executed.

All numeric primitive types are signed.

Literals
A literal is a value specified in the program source, as opposed to one determined at runtime.
Literals can represent primitive or string variables, and may appear on the right side of assign-
ments or in method calls. You cannot assign values into literals, so they cannot appear on the
left side of assignments.

boolean Literals

The only valid literals of boolean type are true and false. For example:

1. boolean isBig = true;

2. boolean isLittle = false;

char Literals

A char literal can be expressed by enclosing the desired character in single quotes, as shown here:

char c = ’w’;

Of course, this technique only works if the desired character is available on the keyboard at
hand. Another way to express a character literal is as a Unicode value specified using four hexa-
decimal digits, preceded by \u, with the entire expression in single quotes. For example:

char c1 = ’\u4567’;

Java supports a few escape sequences for denoting special characters:
� ’\n’ for new line
� ’\r’ for return

4276c01.fm Page 9 Thursday, October 9, 2003 12:08 PM

10 Chapter 1 � Language Fundamentals

� ’\t’ for tab
� ’\b’ for backspace
� ’\f’ for formfeed
� ’\’’ for single quote
� ’\” ’ for double quote
� ’\\' for backslash

Integral Literals

Integral literals may be expressed in decimal, octal, or hexadecimal. The default is decimal. To
indicate octal, prefix the literal with 0 (zero). To indicate hexadecimal, prefix the literal with 0x
or 0X; the hex digits may be upper- or lowercase. The value 28 may thus be expressed six ways:
� 28

� 034

� 0x1c

� 0x1C

� 0X1c

� 0X1C

By default, an integral literal is a 32-bit value. To indicate a long (64-bit) literal, append the
suffix L to the literal expression. (The suffix can be lowercase, but then it looks so much like a
one that your readers are bound to be confused.)

Floating-Point Literals

A floating-point literal expresses a floating-point number. In order to be interpreted as a
floating-point literal, a numerical expression must contain one of the following:
� A decimal point: 1.414
� The letter E or e, indicating scientific notation: 4.23E+21
� The suffix F or f, indicating a float literal: 1.828f
� The suffix D or d, indicating a double literal: 1234d

A floating-point literal with no F or D suffix defaults to double type.

String Literals

A string literal is a sequence of characters enclosed in double quotes. For example:

String s = “Characters in strings are 16-bit Unicode.”;

4276c01.fm Page 10 Thursday, October 9, 2003 12:08 PM

Arrays 11

Java provides many advanced facilities for specifying non-literal string values, including a
concatenation operator and some sophisticated constructors for the String class. These facil-
ities are discussed in detail in Chapter 8, “The java.lang and java.util Packages.”

Arrays
A Java array is an ordered collection of primitives, object references, or other arrays. Java arrays
are homogeneous: except as allowed by polymorphism, all elements of an array must be of the
same type. That is, when you create an array, you specify the element type, and the resulting
array can contain only elements that are instances of that class or subclasses of that class.

To create and use an array, you must follow three steps:

1. Declaration

2. Construction

3. Initialization

Declaration tells the compiler the array’s name and what type its elements will be. For example:

1. int[] ints;

2. Dimension[] dims;

3. float[][] twoDee;

Line 1 declares an array of a primitive type. Line 2 declares an array of object references
(Dimension is a class in the java.awt package). Line 3 declares a two-dimensional array—that
is, an array of arrays of floats.

The square brackets can come before or after the array variable name. This is also true, and
perhaps most useful, in method declarations. A method that takes an array of doubles could
be declared as myMethod(double dubs[]) or as myMethod(double[] dubs); a method that
returns an array of doubles may be declared as either double[] anotherMethod() or as
double anotherMethod()[]. In this last case, the first form is probably more readable.

Generally, placing the square brackets adjacent to the type, rather than following
the variable or method, allows the type declaration part to be read as a single
unit: “int array” or “float array”, which might make more sense. However, C/C++
programmers will be more familiar with the form where the brackets are placed
to the right of the variable or method declaration. Given the number of magazine
articles that have been dedicated to ways to correctly interpret complex C/C++
declarations (perhaps you recall the “spiral rule”), it’s probably not a bad thing
that Java has modified the syntax for these declarations. Either way, you need to
recognize both forms.

Notice that the declaration does not specify the size of an array. Size is specified at runtime,
when the array is allocated via the new keyword. For example:

4276c01.fm Page 11 Thursday, October 9, 2003 12:08 PM

12 Chapter 1 � Language Fundamentals

1. int[] ints; // Declaration to the compiler

2. ints = new int[25]; // Runtime construction

Since array size is not used until runtime, it is legal to specify size with a variable rather than
a literal:

1. int size = 1152 * 900;

2. int[] raster;

3. raster = new int[size];

Declaration and construction may be performed in a single line:

1. int[] ints = new int[25];

When an array is constructed, its elements are automatically initialized to their default values.
These defaults are the same as for object member variables. Numerical elements are initialized to
0; non-numeric elements are initialized to 0-like values, as shown in Table 1.5.

Arrays are actually objects, even to the extent that you can execute methods
on them (mostly the methods of the Object class), although you cannot sub-
class the array class. Therefore, this initialization is exactly the same as for
other objects, and as a consequence you will see this table again in the next
section.

If you want to initialize an array to values other than those shown in Table 1.5, you can com-
bine declaration, construction, and initialization into a single step. The following line of code
creates a custom-initialized array of five floats:

T A B L E 1 . 5 Array Element Initialization Values

Element Type Initial Value Element Type Initial Value

byte 0 short 0

int 0 long 0L

float 0.0f double 0.0d

char ‘\u0000’ boolean false

object reference null

4276c01.fm Page 12 Thursday, October 9, 2003 12:08 PM

Class Fundamentals 13

1. float[] diameters = {1.1f, 2.2f, 3.3f, 4.4f, 5.5f};

The array size is inferred from the number of elements within the curly braces.
Of course, an array can also be initialized by explicitly assigning a value to each element,

starting at array index 0:

1. long[] squares;

2. squares = new long[6000];

3. for (int i = 0; i < 6000; i++) {

4. squares[i] = i * i;

5. }

When the array is created at line 2, it is full of default values (0L) which are replaced in lines
3–4. The code in the example works but can be improved. If you later need to change the array
size (in line 2), the loop counter will have to change (in line 3), and the program could be dam-
aged if line 3 is not taken care of. The safest way to refer to the size of an array is to append the
.length member variable to the array name. Thus, our example becomes:

1. long[] squares;

2. squares = new long[6000];

3. for (int i = 0; i < squares.length; i++) {

4. squares[i] = i * i;

5. }

Java allows you to create non-rectangular arrays. Because multi-dimensional
arrays are simply arrays of arrays, each subarray is a separate object, and there
is no requirement that the dimension of each subarray be the same. Of course,
this type of array requires more care in handling because you cannot simply
iterate each subarray using the same limits.

Class Fundamentals
Java is all about classes, and a review of the Certification Exam objectives will show that you
need to be intimately familiar with them. Classes are discussed in detail in Chapter 6, “Objects
and Classes”; for now, let’s examine a few fundamentals.

The main() Method

The main() method is the entry point for standalone Java applications. To create an applica-
tion, you write a class definition that includes a main() method. To execute an application, type

4276c01.fm Page 13 Thursday, October 9, 2003 12:08 PM

14 Chapter 1 � Language Fundamentals

java at the command line, followed by the name of the class containing the main() method to
be executed.

The signature for main() is

public static void main(String[] args)

The main() method is declared public by convention. However, it is a requirement that it be
static so that it can be executed without the necessity of constructing an instance of the corre-
sponding class.

The args array contains any arguments that the user might have entered on the command
line. For example, consider the following command line:

% java Mapper France Belgium

With this command line, the args[] array has two elements: France in args[0], and Belgium
in args[1]. Note that neither the class name (Mapper) nor the command name (java) appears
in the array. Of course, the name args is purely arbitrary: any legal identifier may be used, pro-
vided the array is a single-dimensional array of String objects.

Variables and Initialization

Java supports variables of three different lifetimes:

Member variable A member variable of a class is created when an instance is created, and it
is destroyed when the object is destroyed. Subject to accessibility rules and the need for a ref-
erence to the object, member variables are accessible as long as the enclosing object exists.

Automatic variable An automatic variable of a method (also known as a method local) is cre-
ated on entry to the method and exists only during execution of the method, and therefore is
accessible only during the execution of that method. (You’ll see an exception to this rule when
you look at inner classes, but don’t worry about that for now.)

Class variable A class variable (also known as a static variable) is created when the class
is loaded and is destroyed when the class is unloaded. There is only one copy of a class vari-
able, and it exists regardless of the number of instances of the class, even if the class is never
instantiated.

All member variables that are not explicitly assigned a value upon declaration are automat-
ically assigned an initial value. The initialization value for member variables depends on the
member variable’s type. Values are listed in Table 1.6.

4276c01.fm Page 14 Thursday, October 9, 2003 12:08 PM

Class Fundamentals 15

The values in Table 1.6 are the same as those in Table 1.5; member variable initialization values
are the same as array element initialization values.

A member value may be initialized in its own declaration line:

1. class HasVariables {

2. int x = 20;

3. static int y = 30;

When this technique is used, nonstatic instance variables are initialized just before the
class constructor is executed; here x would be set to 20 just before invocation of any
HasVariables constructor. Static variables are initialized at class load time; here y would
be set to 30 when the HasVariables class is loaded.

Automatic variables (also known as local variables) are not initialized by the system; every
automatic variable must be explicitly initialized before being used. For example, this method
will not compile:

1. public int wrong() {

2. int i;

3. return i+5;

4. }

The compiler error at line 3 is, “Variable i may not have been initialized.” This error often
appears when initialization of an automatic variable occurs at a lower level of curly braces than
the use of that variable. For example, the following method below returns the fourth root of a
positive number:

1. public double fourthRoot(double d) {

2. double result;

3. if (d >= 0) {

4. result = Math.sqrt(Math.sqrt(d));

5. }

T A B L E 1 . 6 Initialization Values for Member Variables

Element Type Initial Value Element Type Initial Value

byte 0 short 0

int 0 long 0L

float 0.0f double 0.0d

char ‘\u0000’ boolean false

object reference null

4276c01.fm Page 15 Thursday, October 9, 2003 12:08 PM

16 Chapter 1 � Language Fundamentals

6. return result;

7. }

Here the result is initialized on line 4, but the initialization takes place within the curly braces
of lines 3 and 5. The compiler will flag line 6, complaining that “Variable result may not have
been initialized.” A common solution is to initialize result to some reasonable default as soon
as it is declared:

1. public double fourthRoot(double d) {

2. double result = 0.0; // Initialize

3. if (d >= 0) {

4. result = Math.sqrt(Math.sqrt(d));

5. }

6. return result;

7. }

Now result is satisfactorily initialized. Line 2 demonstrates that an automatic variable may
be initialized in its declaration line. Initialization on a separate line is also possible.

Class variables are initialized in the same manner as for member variables.

Argument Passing: By Reference or By
Value
When Java passes an argument into a method call, a copy of the argument is actually passed.
Consider the following code fragment:

1. double radians = 1.2345;

2. System.out.println(“Sine of “ + radians +

3. “ = “ + Math.sin(radians));

The variable radians contains a pattern of bits that represents the number 1.2345. On line 2, a copy
of this bit pattern is passed into the method-calling apparatus of the Java Virtual Machine (JVM).

When an argument is passed into a method, changes to the argument value by the method
do not affect the original data. Consider the following method:

1. public void bumper(int bumpMe) {

2. bumpMe += 15;

3. }

Line 2 modifies a copy of the parameter passed by the caller. For example:

1. int xx = 12345;

2. bumper(xx);

4276c01.fm Page 16 Thursday, October 9, 2003 12:08 PM

Argument Passing: By Reference or By Value 17

3. System.out.println(“Now xx is “ + xx);

On line 2, the caller’s xx variable is copied; the copy is passed into the bumper() method and
incremented by 15. Because the original xx is untouched, line 3 will report that xx is still 12345.

This is also true when the argument to be passed is an object rather than a primitive. How-
ever, it is crucial for you to understand that the effect is very different. In order to understand
the process, you have to understand the concept of the object reference.

Java programs do not deal directly with objects. When an object is constructed, the constructor
returns a value—a bit pattern—that uniquely identifies the object. This value is known as a ref-
erence to the object. For example, consider the following code:

1. Button btn;

2. btn = new Button(“Ok“);

In line 2, the Button constructor returns a reference to the just-constructed button—not the
actual button object or a copy of the button object. This reference is stored in the variable btn.
In some implementations of the JVM, a reference is simply the address of the object; however,
the JVM specification gives wide latitude as to how references can be implemented. You can
think of a reference as simply a pattern of bits that uniquely identifies an individual object.

In most JVMs, the reference value is actually the address of an address. This
second address refers to the real data. This approach, called double indi-
rection, allows the garbage collector to relocate objects to reduce memory
fragmentation.

When Java code appears to store objects in variables or pass objects into method calls, the
object references are stored or passed.

Consider this code fragment:

1. Button btn;

2. btn = new Button(“Pink“);

3. replacer(btn);

4. System.out.println(btn.getLabel());

5.

6. public void replacer(Button replaceMe) {

7. replaceMe = new Button(“Blue“);

8. }

Line 2 constructs a button and stores a reference to that button in btn. In line 3, a copy of
the reference is passed into the replacer() method. Before execution of line 7, the value in
replaceMe is a reference to the Pink button. Then line 7 constructs a second button and
stores a reference to the second button in replaceMe, thus overwriting the reference to the
Pink button. However, the caller’s copy of the reference is not affected, so on line 4 the call
to btn.getLabel() calls the original button; the string printed out is “Pink”.

4276c01.fm Page 17 Thursday, October 9, 2003 12:08 PM

18 Chapter 1 � Language Fundamentals

You have seen that called methods cannot affect the original value of their arguments—that
is, the values stored by the caller. However, when the called method operates on an object via
the reference value that is passed to it, there are important consequences. If the method mod-
ifies the object via the reference, as distinguished from modifying the method argument—the
reference—then the changes will be visible to the caller. For example:

1. Button btn;

2. btn = new Button(“Pink“);

3. changer(btn);

4. System.out.println(btn.getLabel());

5.

6. public void changer(Button changeMe) {

7. changeMe.setLabel(“Blue“);

8. }

In this example, the variable changeMe is a copy of the reference btn, just as before. How-
ever, this time the code uses the copy of the reference to change the actual original object rather
than trying to change the reference. Because the caller’s object is changed rather than the callee’s
reference, the change is visible and the value printed out by line 4 is “Blue”.

Arrays are objects, meaning that programs deal with references to arrays, not with arrays
themselves. What gets passed into a method is a copy of a reference to an array. It is therefore
possible for a called method to modify the contents of a caller’s array.

How to Create a Reference to a Primitive

This is a useful technique if you need to create the effect of passing primitive values by reference.
Simply pass an array of one primitive element over the method call, and the called method can
now change the value seen by the caller. To do so, use code like this:

 1. public class PrimitiveReference {

 2. public static void main(String args[]) {

 3. int [] myValue = { 1 };

 4. modifyIt(myValue);

 5. System.out.println(“myValue contains “ +

 6. myValue[0]);

 7. }

 8. public static void modifyIt(int [] value) {

 9. value[0]++;

10. }

11. }

4276c01.fm Page 18 Thursday, October 9, 2003 12:08 PM

Garbage Collection 19

Garbage Collection
Most modern languages permit you to allocate data storage during a program run. In Java, this
is done directly when you create an object with the new operation and indirectly when you call
a method that has local variables or arguments. Method locals and arguments are allocated
space on the stack and are discarded when the method exits, but objects are allocated space on
the heap and have a longer lifetime.

Each process has its own stack and heap, and they are located on opposite
sides of the process address space. The sizes of the stack and heap are limited
by the amount of memory that is available on the host running the program.
They may be further limited by the operating system or user-specific limits.

It is important to recognize that objects are always allocated on the heap. Even if they are
created in a method using code like

public void aMethod() {

 MyClass mc = new MyClass();

}

the local variable mc is a reference, allocated on the stack, whereas the object to which that variable
refers, an instance of MyClass, is allocated on the heap.

This section is concerned with recovery of space allocated on the heap. The increased lifetime
raises the question of when storage allocation on the heap can be released. Some languages
require that you, the programmer, explicitly release the storage when you have finished with it.
This approach has proven seriously error-prone, because you might release the storage too soon
(causing corrupted data if any other reference to the data is still in use) or forget to release it
altogether (causing a memory shortage). Java’s garbage collection solves the first of these prob-
lems and greatly simplifies the second.

In Java, you never explicitly free memory that you have allocated; instead, Java provides
automatic garbage collection. The runtime system keeps track of the memory that is allocated
and is able to determine whether that memory is still useable. This work is usually done in the
background by a low-priority thread that is referred to as the garbage collector. When the gar-
bage collector finds memory that is no longer accessible from any live thread (the object is out
of scope), it takes steps to release it back into the heap for re-use. Specifically, the garbage col-
lector calls the class destructor method called finalize() (if it is defined) and then frees the
memory.

Garbage collection can be done in a number of different ways; each has advantages and dis-
advantages, depending on the type of program that is running. A real-time control system, for
example, needs to know that nothing will prevent it from responding quickly to interrupts; this
application requires a garbage collector that can work in small chunks or that can be inter-
rupted easily. On the other hand, a memory-intensive program might work better with a gar-
bage collector that stops the program from time to time but recovers memory more urgently as

4276c01.fm Page 19 Thursday, October 9, 2003 12:08 PM

20 Chapter 1 � Language Fundamentals

a result. At present, garbage collection is hardwired into the Java runtime system; most garbage
collection algorithms use an approach that gives a reasonable compromise between speed of
memory recovery and responsiveness. In the future, you will probably be able to plug in different
garbage-collection algorithms or buy different JVMs with appropriate collection algorithms,
according to your particular needs.

This discussion leaves one crucial question unanswered: When is storage recovered? The best
answer is that storage is not recovered unless it is definitely no longer in use. That’s it. Even though
you are not using an object any longer, you cannot say if it will be collected in 1 millisecond, in 100
milliseconds, or even if it will be collected at all. The methods System.gc() and Runtime.gc()
look as if they run the garbage collector, but even these cannot be relied upon in general, because
some other thread might prevent the garbage collection thread from running. In fact, the documen-
tation for the gc() methods states:

Calling this method suggests that the Java Virtual Machine expends effort
toward recycling unused objects

How to Cause Leaks in a Garbage Collection System

The nature of automatic garbage collection has an important consequence: you can still get
memory leaks. If you allow live, accessible references to unneeded objects to persist in your
programs, then those objects cannot be garbage collected. Therefore, it may be a good idea to
explicitly assign null into a variable when you have finished with it. This issue is particularly
noticeable if you are implementing a collection of some kind.

In this example, assume the array storage is being used to maintain the storage of a stack. This
pop() method is inappropriate:

1. public Object pop() {

2. return storage[index--];

3. }

If the caller of this pop() method abandons the popped value, it will not be eligible for garbage
collection until the array element containing a reference to it is overwritten. This might take a
long time. You can speed up the process like this:

1. public Object pop() {

2. Object returnValue = storage[index];

3. storage[index--] = null;

4. return returnValue;

5. }

4276c01.fm Page 20 Thursday, October 9, 2003 12:08 PM

Summary 21

Summary
This chapter has covered quite a bit of ground and a large variety of topics. You learned that a
source file’s elements must appear in this order:

1. Package declaration

2. Import statements

3. Class definitions

There should be, at most, one public class definition per source file; the filename must match the
name of the public class.

You also learned that an identifier must begin with a letter, a dollar sign, or an underscore;
subsequent characters may be letters, dollar signs, underscores, or digits. Java has four signed
integral primitive data types: byte, short, int, and long; all four types display the behavior
of two’s-complement representation. Java’s two floating-point primitive data types are float
and double, the char type is unsigned and represents a Unicode character, and the boolean
type may only take on the values true and false.

In addition, you learned that arrays must be (in order):

1. Declared

2. Constructed

3. Initialized

Default initialization is applied to member variables, class variables, and array elements, but not auto-
matic variables. The default values are 0 for numeric types, the null value for object references, the
null character for char, and false for boolean. The length member of an array gives the number
of elements in the array. A class with a main() method can be invoked from the command line as a
Java application. The signature for main() is public static void main(String[] args). The
args[] array contains all command-line arguments that appeared after the name of the application
class.

You should also understand that method arguments are copies, not originals. For argu-
ments of primitive data type, this means that modifications to an argument within a method
are not visible to the caller of the method. For arguments of object type (including arrays),
modifications to an argument value within a method are still not visible to the caller of the
method; however, modifications in the object or array to which the argument refers do appear
to the caller.

Finally, Java’s garbage collection mechanism may only recover memory that is definitely
unused. It is not possible to force garbage collection reliably. It is not possible to predict when
a piece of unused memory will be collected, only to say when it becomes eligible for collection.
Garbage collection does not prevent memory leaks; they can still occur if unused references are
not cleared to null or destroyed.

4276c01.fm Page 21 Thursday, October 9, 2003 12:08 PM

22 Chapter 1 � Language Fundamentals

Exam Essentials
Recognize and create correctly constructed source files. You should know the various kinds
of compilation units and their required order of appearance.

Recognize and create correctly constructed declarations. You should be familiar with decla-
rations of packages, classes, interfaces, methods, and variables.

Recognize Java keywords. You should recognize the keywords and reserved words listed in
Table 1.1.

Distinguish between legal and illegal identifiers. You should know the rules that restrict the
first character and the subsequent characters of an identifier.

Know all the primitive data types and the ranges of the integral data types. These are sum-
marized in Tables 1.2 and 1.3.

Recognize correctly formatted literals. You should be familiar with all formats for literal
characters, strings, and numbers.

Know how to declare and construct arrays. The declaration includes one empty pair of square
brackets for each dimension of the array. The square brackets can appear before or after the array
name. Arrays are constructed with the keyword new.

Know the default initialization values for all possible types of class variables and array elements.
Know when data is initialized. Initialization takes place when a class or array is constructed.
The initialization values are 0 for numeric type arrays, false for boolean arrays, and null for
object reference type arrays.

Know the contents of the argument list of an application’s main() method, given the command
line that invoked the application. Be aware that the list is an array of Strings containing
everything on the command line except the java command, command-line options, and the
name of the class.

Know that Java passes method arguments by value. Changes made to a method argument are
not visible to the caller, because the method argument changes a copy of the argument. Objects
are not passed to methods; only references to objects are passed.

Understand memory reclamation and the circumstances under which memory will be
reclaimed. If an object is still accessible to any live thread, that object will certainly not
be collected. This is true even if the program will never access the object again—the logic
is simple and cannot make inferences about the semantics of the code. No guarantees are
made about reclaiming available memory or the timing of reclamation if it does occur. A
standard JVM has no entirely reliable, platform-independent way to force garbage collec-
tion. The System and Runtime classes each have a gc() method, and these methods make
it more likely that garbage collection will run, but they provide no guarantee.

4276c01.fm Page 22 Thursday, October 9, 2003 12:08 PM

Key Terms 23

Key Terms
Before you take the exam, be certain you are familiar with the following terms:

array local variable

automatic variable member variable

class variable method local

compilation units object reference

floating-point reference

garbage collector static variable

identifier string literal

literal

4276c01.fm Page 23 Thursday, October 9, 2003 12:08 PM

24 Chapter 1 � Language Fundamentals

Review Questions
1. A signed data type has an equal number of non-zero positive and negative values available.

A. True

B. False

2. Choose the valid identifiers from those listed here. (Choose all that apply.)

A. BigOlLongStringWithMeaninglessName

B. $int

C. bytes

D. $1

E. finalist

3. Which of the following signatures are valid for the main() method entry point of an applica-
tion? (Choose all that apply.)

A. public static void main()

B. public static void main(String arg[])

C. public void main(String [] arg)

D. public static void main(String[] args)

E. public static int main(String [] arg)

4. If all three top-level elements occur in a source file, they must appear in which order?

A. Imports, package declarations, classes

B. Classes, imports, package declarations

C. Package declarations must come first; order for imports and class definitions is not
significant

D. Package declarations, imports, classes

E. Imports must come first; order for package declarations and class definitions is not
significant

5. Consider the following line of code:

int[] x = new int[25];

4276c01.fm Page 24 Thursday, October 9, 2003 12:08 PM

Review Questions 25

After execution, which statements are true? (Choose all that apply.)

A. x[24] is 0.

B. x[24] is undefined.

C. x[25] is 0.

D. x[0] is null.

E. x.length is 25.

6. Consider the following application:

 1. class Q6 {

 2. public static void main(String args[]) {

 3. Holder h = new Holder();

 4. h.held = 100;

 5. h.bump(h);

 6. System.out.println(h.held);

 7. }

 8. }

 9.

10. class Holder {

11. public int held;

12. public void bump(Holder theHolder) {

13. theHolder.held++; }

14. }

15. }

What value is printed out at line 6?

A. 0

B. 1

C. 100

D. 101

7. Consider the following application:

 1. class Q7 {

 2. public static void main(String args[]) {

 3. double d = 12.3;

4276c01.fm Page 25 Thursday, October 9, 2003 12:08 PM

26 Chapter 1 � Language Fundamentals

 4. Decrementer dec = new Decrementer();

 5. dec.decrement(d);

 6. System.out.println(d);

 7. }

 8. }

 9.

10. class Decrementer {

11. public void decrement(double decMe) {

12. decMe = decMe - 1.0;

13. }

14. }

What value is printed out at line 6?

A. 0.0

B. 1.0

C. 12.3

D. 11.3

8. How can you force garbage collection of an object?

A. Garbage collection cannot be forced.

B. Call System.gc().

C. Call System.gc(), passing in a reference to the object to be garbage-collected.

D. Call Runtime.gc().

E. Set all references to the object to new values (null, for example).

9. What is the range of values that can be assigned to a variable of type short?

A. Depends on the underlying hardware

B. 0 through 216 − 1

C. 0 through 232 − 1

D. −215 through 215 − 1

E. −231 through 231 − 1

10. What is the range of values that can be assigned to a variable of type byte?

A. Depends on the underlying hardware

B. 0 through 28 − 1

C. 0 through 216 − 1

D. −27 through 27 − 1

E. −215 through 215 − 1

4276c01.fm Page 26 Thursday, October 9, 2003 12:08 PM

Answers to Review Questions 27

Answers to Review Questions
1. B. The range of negative numbers is greater by one than the range of positive numbers.

2. A, B, C, D, E. All of the identifiers are valid.

3. B, D. All the choices are valid method signatures. However, in order to be the entry point of an
application, a main() method must be public, static, and void; it must take a single argument
of type String[].

4. D. This order must be strictly observed.

5. A, E. The array has 25 elements, indexed from 0 through 24. All elements are initialized to 0.

6. D. A holder is constructed on line 3. A reference to that holder is passed into method bump()
on line 5. Within the method call, the holder’s held variable is bumped from 100 to 101.

7. C. The decrement() method is passed a copy of the argument d; the copy gets decremented,
but the original is untouched.

8. A. Garbage collection cannot be forced. Calling System.gc() or Runtime.gc() is not 100
percent reliable, because the garbage-collection thread might defer to a thread of higher priority;
thus B and D are incorrect. C is incorrect because the two gc() methods do not take arguments;
in fact, if you still have a reference to pass into any method, the object is not yet eligible to be
collected. E will make the object eligible for collection the next time the garbage collector runs.

9. D. The range for a 16-bit short is −215 through 215 − 1. This range is part of the Java specifi-
cation, regardless of the underlying hardware.

10. D. The range for an 8-bit byte is −27 through 27 −1. Table 1.3 lists the ranges for Java’s integral
primitive data types.

4276c01.fm Page 27 Thursday, October 9, 2003 12:08 PM

4276c01.fm Page 28 Thursday, October 9, 2003 12:08 PM

