

File I/O

SOLUTION

 1

Copying and Deleting Directories and Files

SOLUTION

 2

Reading and Writing JAR/ZIP Files

SOLUTION

 3

Java Object Persistence with Serialization

SOLUTION

 4

Using Random Access File I/O

SOLUTION

 5

Writing Text Filters

4285book.fm Page 1 Thursday, December 4, 2003 6:44 PM

CO
PYRIG

HTED
 M

ATERIA
L

2

File I/O

SOLUTION

1

Copying and Deleting Directories and Files

One of the advantages of the Java platform is that once you know a technique like opening and
reading files, that technique works on all computing platforms that support Java. In this solu-
tion you will build on the inherent portability of Java with a Java class library for general file
manipulations that will solve most of your file handling problems on any platform. We will
start by discussing the API of the class

FileUtils

 in order to get you started quickly. Later, we
will look at the implementation details.

It will be helpful if you open the file

FileUtils.java

 in the directory

S01

 in your favorite text
editor or Java IDE while reading this section. This class has five static methods:

●

The method

getNonDirFiles(String path)

 returns all files in a specified directory path
that are not subdirectory files:

static public Vector getNonDirFiles(String path)

 throws IOException;

●

The method

getFiles(StringPath, String[] extensions)

 returns all files in a directory
path that end in file extensions that are passed to the method in an array of strings:

static public Vector getFiles(String path, String[] extensions)

 throws IOException;

●

The method

getFiles(String path)

 returns a vector of all files in the directory path. The
elements of the returned vector are strings that include the full path to each file:

public static Vector getFiles(String path) throws IOException

●

The method

copyFilePath

 will copy either single files or entire directories, depending on
if the first argument is a file path or a directory path name:

public static final void copyFilePath (File sourceFilePath,
 File destinationFilePath)

 throws IOException;

PROBLEM

Your Java application needs to
be able to copy and delete individual files
and entire directories. You also want the
option of copying and deleting nested file
directories. You need to get lists of files
in directories.

SOLUTION

 I will present a Java utility class

FileUtils

 that you can use in your Java pro-
grams to copy and delete files and nested
directories and also get directory listings.

4285book.fm Page 2 Thursday, December 4, 2003 6:44 PM

3

Solution 1 • Copying and Deleting Directories and Files

●

The method

deleteFilePath

 deletes both single files and recursively deletes entire directories:

public static final boolean deleteFilePath(File filePath);

All five methods are public static. Since this class has no instance data, the class never main-
tains state. It makes sense to make the methods static so that you do not need to create a class
instance in order to use these utility methods. Here is an example for calling the first three
methods for listings files:

Vector non_dir_files = FileUtils.getNonDirFiles("./S01");
Vector txt_java_files = FileUtils.getFiles("./S01",
 new String[]{".txt", ".java"});

Vector all_files = FileUtils.getFiles("./S01");

In all cases, the returned vectors contain strings that are complete path names for the listed
files. When calling

getFiles(StringPath, String[] extensions)

, you build an array of
strings containing file extensions that you want to use for fetching files.

The method

copyFilePath

 copies either a single file or a complete directory (including
recursive copying of subdirectories), depending on whether the first argument,

sourceFilePath

,
is a path to a file or a path to a directory. If the first argument is a path to an individual file, then
the second argument,

destinationFilePath

, must also be a path to an individual file. If the first
argument is a path to a directory, then the second argument,

destinationFilePath

, must also
be a path to a directory. Here is an example of copying the contents of the directory

./temp123

to

./temp234

 and then deleting the original directory

./temp123

:

FileUtils.copyFilePath(new File("./temp123"),
 new File("./temp234"));

FileUtils.deleteFilePath(new File("./temp123"));

The method

deleteFilePath

 takes a file argument that can be either an individual file or a
directory.

Implementation Details

Using the

java.io

 package classes, it is fairly simple get the contents of a file directory, as
shown in the following example:

String path = "./S01"; // must be a directory
File dir = new File(path);
// create a custom file filter to
// accept all non-directory files:
AllNonDirFileFilter filter = new AllNonDirFileFilter();

String[] ss = dir.list(filter);

The method

list()

 either takes no arguments, in which case all files are returned in the spec-
ified directory, or it takes one argument that is an instance of a class implementing the

java.io.FilenameFilter

 interface. Classes implementing this interface must define the fol-
lowing method:

public boolean

accept

(File dir, String name)

4285book.fm Page 3 Thursday, December 4, 2003 6:44 PM

4

File I/O

The file

FileUtil.java

 includes three inner classes that all implement the

FilenameFilter

interface:

LocalFileFilter

 (constructor takes an array of strings defining allowed file exten-
sions),

AllNonDirFileFilter

 (empty constructor, accepts all files that are not directory files),
and

AllDirFileFilter

 (empty constructor, accepts all files that are directory files).

Using the

java.io

 package classes, it is simple to copy and delete single files, but there is no
support for copying and deleting entire nested directories. The class

FileUtils

 methods

copyFilePath

 and

deleteFilePath

 use recursion to process nested directories. The processing
steps used by the method

copyFilePath

 are

1.

Check that both input arguments (source and target files) are either both single files or both
file directories.

2.

If you are copying directories, get all files in the source directory: for each file, if it is a single
file, copy it; if it is a directory file, recursively call

copyFilePath

 on the subdirectory.

The processing steps used by the method

deleteFilePath

 are

1.

If the input file path is a directory, get all files in the directory and recursively call delete-
FilePath on each file.

2.

If the input file path is a single file, delete it.

You can refer to the source file

FileUtils.java

 for coding details.

SOLUTION

2

Reading and Writing JAR/ZIP Files

The APIs for handling ZIP and JAR files are almost identical. In fact, the internal formats of
ZIP and JAR files

are

 identical except that a separate manifest file can be optionally added to
a JAR file (actually, you could create a manifest file and add it to a ZIP file also).

PROBLEM

You want to be able to write data
out in a compressed format (JAR, ZIP, and
GZIP) and later read this data. You want to
store different data entries in a single ZIP or
JAR file.

SOLUTION

You will use the standard utility
classes in the packages

java.util.zip

(for both ZIP and GZIP support) and

java.util.jar

 (for JAR support) to create
and read compressed ZIP and JAR files and
to create compressed GZIP streams.

4285book.fm Page 4 Thursday, December 4, 2003 6:44 PM

5

Solution 2 • Reading and Writing JAR/ZIP Files

I will cover examples of writing and reading ZIP files and JAR files; the JAR example program
in directory

S02

 is identical to the ZIP example program except I use

JarOutputStream

 instead
of

ZipOutputStream

,

JarInputStream

 instead of

ZipInputStream

,

 and

JarEntry

 instead of

ZipEntry

. The GNU ZIP format is popular on Unix, Linux, and Mac OS X; the classes

GZipOutputStream and GZipInputStream can be used if you prefer the GNU ZIP format to
compress a stream of data.

ZIP and JAR files contain zero or more entries. An entry contains the path of the original file
and a stream of data for reading the original file’s contents. The GZIP classes do not support
archiving a collection of named data items like the ZIP and JAR utility classes. GZIP is used
only for compressing and decompressing streams of data. The directory S02 contains three
sample programs:

ReadWriteZipFiles Demonstrates writing a ZIP file, closing it, and then reading it

ReadWriteJarFiles Demonstrates writing a JAR file, closing it, and then reading it

GZIPexample Demonstrates compressing a stream and then decompressing it

After you run the ReadWriteZipFiles example, the file test.zip will be created. Here is a list
of this ZIP archive file:

markw% unzip -l test.zip
Archive: test.zip
 Length Date Time Name
 ------ ---- ---- ----
 66 05-18-03 11:31 test.txt
 19 05-18-03 11:31 string-entry
 ------ -------
 85 2 files

The entry named test.txt was created from the contents of the file test.txt. The entry
named string-entry was created from the data in a Java string.

NOTE If you are extracting the files from a ZIP file containing nested directories, you will see entry
names that include the full file path for the included files. If you are saving files stored in
a ZIP archive, you need to create the full directory path for the files that you are extracting.
ZipEntry objects that contain only a directory entry can be determined by using the method
isDirectory(). You can create a new file directory for every directory ZipEntry object.
Alternatively, you can discard the directory path information in the ZIP entry names and
extract the files to the current directory.

After you run the ReadWriteJarFiles example, the file test.jar will be created. Here is a list
of this JAR archive file:

markw% jar tvf test.jar
 66 Mon May 19 14:40:26 MST 2003 test.txt
 19 Mon May 19 14:40:26 MST 2003 string-entry

4285book.fm Page 5 Thursday, December 4, 2003 6:44 PM

6 File I/O

The entry named test.txt was created from the contents of the file test.txt. The entry
named string-entry was created from the data in a Java string.

The GZIPexample program demonstrates compressing a file stream that is written to disk cre-
ating a file named test.gz.

NOTE The GZIP utility classes are also useful for compressing data streams transferred, for
example, via network sockets (which are covered in Solutions 29 and 30). You will also
look at Java streams in more detail in Solution 5 when you write a custom stream class.

Implementation Details
We will look at the ZIP example program in some detail; the JAR example program is identical
except for the class substitutions mentioned earlier. Java allows I/O streams to be nested, so you
can create a standard file output stream, then “wrap” it in a ZipOutputStream:

FileOutputStream fStream = new FileOutputStream("test.zip");
ZipOutputStream zStream = new ZipOutputStream(fStream);

The data that you write to a ZIP stream includes instances of the class ZipEntry:
ZipEntry stringEntry = new ZipEntry("string-entry");
zStream.putNextEntry(stringEntry);
String s = "This is\ntest data.\n";
zStream.write(s.getBytes(), 0, s.length());
zStream.closeEntry(); // close this ZIP entry
zStream.close(); // close the ZIP output stream

NOTE In this example, I simply wrote the contents of a string to the output stream associated with
the ZIP entry; a more common use would be to open a local file, read the file’s contents,
and write the contents to the ZIP entry output stream.

The instance of class ZipEntry labels data written to the ZIP output stream. You can then
write any data as bytes to ZIP output stream for this entry. After you close the ZIP entry,
you can either add additional ZIP entries (and the data for those entries) or, as I do here,
immediately close the ZIP output stream (which also closes the file output stream). The
example program ReadWriteZipFiles.java writes two ZIP entries to the ZIP output
stream.

4285book.fm Page 6 Thursday, December 4, 2003 6:44 PM

7Solution 2 • Reading and Writing JAR/ZIP Files

To read a ZIP file, you first get a java.util.Enumeration object containing all the ZIP
entries in the file:

ZipFile zipFile = new ZipFile("test.zip");
Enumeration entries = zipFile.entries();

The example program loops over this enumeration; here I will just show the code for reading
a single ZIP entry:

ZipEntry entry = (ZipEntry) entries.nextElement();
InputStream is = zipFile.getInputStream(entry);
int count;
while (true) {
 count = is.read(buf);
 if (count < 1) break; // break: no more data is available
 // add your code here to process 'count' bytes of data:
}
is.close();

After reading each ZIP entry and processing the data in the entry, close the input stream for
the entry.

The GZIP example program is very short, so I will list most of the code here:
// write a GZIP stream to a file:
String s = "test data\nfor GZIP demo.\n";
FileOutputStream fout = new FileOutputStream("test.gz");
GZIPOutputStream out = new GZIPOutputStream(fout);
out.write(s.getBytes());
out.close();
// read the data from a GZIP stream:
FileInputStream fin = new FileInputStream("test.gz");
GZIPInputStream in = new GZIPInputStream(fin);
byte[] bytes = new byte[2048];
while (true) {
 int count = in.read(bytes, 0, 2048);
 if (count < 1) break;
 String s2 = new String(bytes, 0, count);
 System.out.println(s2);
}
in.close();

You see again the utility of being able to wrap one input or output stream inside another
stream. When you wrap a standard file output stream inside a GZIP output stream, you can still
use the methods for the file output stream, but the data written will be compressed using the
GZIP algorithm.

4285book.fm Page 7 Thursday, December 4, 2003 6:44 PM

8 File I/O

SOLUTION 3
Java Object Persistence with Serialization

The Java package java.io contains two stream classes that are able to respectively write and
read Java objects that implement the java.io.Serializable interface: ObjectOutputStream
and ObjectInputStream. Most Java standard library classes implement the Serializable
interface, and it is simple to write your own Java classes so that they also implement the
Serializable interface. The Serializable interface is a marker interface that contains no
method signatures that require implementation: its purpose is to allow Java’s persistence mech-
anism to determine which classes are intended to be serializable.

NOTE In addition to using Java object serialization as a lightweight and simple-to-use object per-
sistence mechanism, it is also widely used in Remote Method Invocation (RMI), which I will
cover in Solutions 30 and 31.

The file SerializationTest.java in the directory S03 provides a complete example of defin-
ing a Java class that can be serialized, writing instances of this class and other standard Java
classes to an output stream, then reading the objects back into the test program. While saving
standard Java objects is simple, I will first cover the details of making your own Java classes
implement the Serializable interface. Consider the nonpublic class DemoClass that is
included at the bottom of the file SerializationTest.java:

class DemoClass implements Serializable {
 private String name = "";
 private transient Hashtable aHashtable = new Hashtable();

 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

 public Hashtable getAHashtable() {return aHashtable; }

PROBLEM You create Java objects in your
programs that you would like to be able to
save to disk and then later read them back
into different programs.

SOLUTION You will use Java serialization to
write objects to an object output stream and
later read them back in from an object input
stream.

4285book.fm Page 8 Thursday, December 4, 2003 6:44 PM

9Solution 3 • Java Object Persistence with Serialization

 public void setAHashtable(Hashtable aHashtable) {
 this.aHashtable = (Hashtable)aHashtable.clone();
 }
}

There are two aspects to this class definition that deal specifically with object serialization
issues: the class implements the Serializable interface and the use of the keyword transient
to prevent the serialization process from trying to save the hash table to the output stream dur-
ing serialization and to prevent the deserialization process from trying to read input data to
reconstruct the hash table. If you do not use the keyword transient when defining your Java
classes, then all class variables are saved during serialization. All of a class’s variables must also
belong to classes that implement the Serializable interface or be marked with the transient
keyword. The following code creates test data to be serialized:

// define some test data to be serialized:
Hashtable testHash = new Hashtable();
Vector testVector = new Vector();
testHash.put("cat", "dog");
testVector.add(new Float(3.14159f));
DemoClass demoClass = new DemoClass();
demoClass.setName("Mark");
Hashtable hash = demoClass.getAHashtable();
hash.put("cat", "dog");

The following code serializes this data:
// now, serialize the test data:
FileOutputStream ostream = new FileOutputStream("test.ser");
ObjectOutputStream p = new ObjectOutputStream(ostream);
p.writeObject(testHash);
p.writeObject(testVector);
p.writeObject(demoClass);
p.close();

The standard Java container classes Hashtable and Vector can be serialized if all the objects that
they contain can also be serialized. If you try to serialize any object (including objects contained
inside other objects) that cannot be serialized, then a java.io.NotSerializableException will
be thrown. When you write the Java objects to a disk file test.ser in the test program, you’ll
once again wrap a file output stream inside another stream, this time an instance of class
ObjectOutputStream. The class ObjectOutputStream adds an additional method that can be
used on the output stream: writeObject.

It is also simple to read serialized objects from an input stream; in this case, I use a file input
stream (wrapped in ObjectInputStream) to read the test.ser file:

InputStream ins = new java.io.FileInputStream("test.ser");
ObjectInputStream p = new ObjectInputStream(ins);
Hashtable h = (Hashtable)p.readObject();

4285book.fm Page 9 Thursday, December 4, 2003 6:44 PM

10 File I/O

The example program SerializationTest.java in the directory S03 contains additional
code demonstrating how to test the class type of objects as they are deserialized; here, you know
that the first object that was written to the file was a hash table. Similarly, you can read the
other two objects in the same order that they were written to the file test.ser:

Vector v = (Vector)p.readObject();
DemoClass demo = (DemoClass)p.readObject();

The object demo (class DemoClass) will not have the instance variable aHashtable defined. It
has a null value because it was declared transient in the class definition.

NOTE No class constructor is called during deserialization. In the example program, the nonpublic
class DemoClass has a default constructor (no arguments) that prints a message. When you run
the example program, please note that this message is printed when an instance of DemoClass
is constructed for serialization, but this message is not printed during deserialization.

Changing Java’s Default Persistence Mechanism
The SerializationTest.java example program uses Java’s default persistence mechanism
with the modification of the class DemoClass using the transient keyword to avoid persisting
one of the class variables. In general, you use the transient keyword for class data that either
cannot be serialized or makes no sense to serialize (e.g., socket and thread objects). You can also
customize Java’s persistence mechanism. There are three ways to customize persistence:

● Implement custom protocol by defining the methods writeObject and readObject.

● Implement the Externalizable interface instead of the Serializable interface.

● Override default version control.

If you chose to customize the protocol for saving instances of one of your classes, then you
must define two private methods:

private void writeObject(ObjectOutputStream outStream) throws IOException
private void readObject(ObjectInputStream inStream) throws IOException,
ClassNotFoundException

When you implement these methods, you will usually use two helper methods:
defaultWriteObject in class ObjectOutputStream and defaultReadObject in class
ObjectInputStream; for example:

private void readObject(ObjectInputStream inStream) throws IOException,
ClassNotFoundException {
 inStream.defaultReadObject();
 // place any custom initialization here
}

4285book.fm Page 10 Thursday, December 4, 2003 6:44 PM

11Solution 3 • Java Object Persistence with Serialization

private void writeObject(ObjectOutputStream outStream) throws IOException {
 outStream.defaultWriteObject();
 // place any custom code here (not usually done)
}

You can alternatively create a new protocol for serializing your classes by not implementing
the Serializable interface and instead implementing the Externalizable interface. To do
this you must define two methods:

public void writeExternal(ObjectOutput out) throws IOException
public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException

ObjectOutput is an interface that extends the DataOutput interface and adds methods for
writing objects. ObjectInput is an interface that extends the DataInput interface and adds
methods for reading objects.

NOTE Regardless of whether you use default serialization, write your own readObject and
writeObject methods, or implement the Externalizable interface, you simply call the
methods readObject and writeObject in your programs and the Java Virtual Machine
(JVM) will automatically handle serialization correctly.

You might be wondering what happens if you change your class definitions after saving appli-
cation objects to a disk file using serialization. Unfortunately, in the default case, you will not
be able to read the serialized objects back because Java’s default class version control mecha-
nism will detect that the serialized objects were created from a different version of the class.
However, there is a mechanism you can use to insure that serialized objects for a class are still
valid for deserialization: overriding the default static class variable serialVersionID. For
example, for the class MyDemoClass, use the Java toolkit utility program serialver:

> serialver MyDemoClass
MyDemoClass: static final long serialVersionID = 1274998123888721L

Then copy this generated code into your class definition:
public class MyDemoClass implements java.io.Serializable {
 static final long serialVersionID = 1274998123888721L;
 // … rest of class definition:
}

For example, if you now add a class variable, the deserialization process will continue without
error, but the new variable will not have a defined value.

4285book.fm Page 11 Thursday, December 4, 2003 6:44 PM

12 File I/O

SOLUTION 4
Using Random Access File I/O

The class RandomAccessFile implements the DataInput and DataOutput interfaces, but it is not
derived from the base classes InputStream and OutputStream. As a result, you cannot use the
typical Java I/O stream functionality on instances of class RandomAccessFile. Think of a ran-
dom access file as a randomly addressable array of bytes stored in a disk file. The file pointer
acts like an index of this array of bytes. The class RandomAccessFile has three methods for
accessing the file pointer of an open random access file:

void seek(long newFilePointer) Positions the file pointer to a new value.

int skipBytes(int bytesToSkip) Skips a specified number of bytes by moving the file
pointer.

long getFilePointer() Returns the current value of the file pointer.

The example program RandomAccessTest.java in the directory S04 opens a random access
file for reading and writing and writes 50 bytes of data:

RandomAccessFile raf = new RandomAccessFile("test.random", "rw");
// define some data to write to the file:
byte[] data = new byte[50];
for (int i = 0; i < 50; i++) data[i] = (byte) i;
// by default, a random access file opens at the beginning,
// so just write the data:
raf.write(data, 0, 50);

The following code reads this data back in reverse order, which is inefficient but serves as an
example. Here you are reading one byte of data at a time, starting at the end of the file and mov-
ing to the beginning of the file using the method seek:

// read back the data backwards (not efficient):
int count;
for (int i=49; i>=0; i--) {

PROBLEM You need to randomly access
data in a file.

SOLUTION Use the class RandomAccessFile
to open a file for random access.

4285book.fm Page 12 Thursday, December 4, 2003 6:44 PM

13Solution 4 • Using Random Access File I/O

 raf.seek(i);
 byte[] littleBuf = new byte[1];
 count = raf.read(littleBuf, 0, 1);
 if (count != 1) {
 System.out.println("error reading file at i="+i);
 break;
 }
 System.out.println("at i=" + i + ", byte read from file=" +
 littleBuf[0]);
}
raf.close();

The constructors of class RandomAccessFile takes two arguments. The first argument can be
either a string file path or an instance of class java.io.File. The second argument is always a
string with one of these values:

“r” Opens file as read-only.

“rw” Opens file for reading and writing.

“rws” Opens the file for reading and writing and guarantees that both the file contents and
file maintenance metadata are updated to disk before returning from any write operations.

“rwd” Opens the file for reading and writing and guarantees that the file contents are
updated to disk before returning from any write operations.

The options “rws” and “rwd” are useful to guarantee that application-critical data is imme-
diately saved to disk. There are several different methods for reading and writing byte data; in
this example, I use the most general purpose read and write methods that take three arguments:
an array of bytes, the starting index to use in the array of bytes, and the number of bytes to read
or write. Although the logical model for random access files is an array of bytes, the class
RandomAccessFile also has convenient methods for reading and writing Boolean, short, integer,
long, and strings from a file, starting at the current file pointer position.

NOTE While there are legitimate uses for random access files, you should keep in mind the inef-
ficiency of managing the storage of an array of bytes in a disk file. In some ways, random
access files are a legacy from the times when random access memory (RAM) was expen-
sive and it was important to reduce memory use whenever possible. For most Java appli-
cations, it is far more efficient to store data in memory and periodically serialize it to disk
as required. A good alternative is to use a relational database to store persistent data
using the JDBC portable database APIs (see Solutions 34–39).

4285book.fm Page 13 Thursday, December 4, 2003 6:44 PM

14 File I/O

SOLUTION 5
Writing Text Filters

Before I get into implementing custom streams for supporting custom text filtering, we will
take a brief overview of stream classes in the Java package java.io. The abstract base classes
InputStream and OutputStream form the basis for byte handling streams. Streams for handling
character data are derived from the base classes Reader and Writer. Since you are interested in
processing text, in this solution we will only deal with character streams that are derived from
the class Reader. The following illustration is a UML class diagram for the standard Java I/O
classes Reader and InputStreamReader: the example class WordCountStreamReader, its base
class InputStreamReader, and InputStreamReader’s base class Reader.

PROBLEM You need a framework for pro-
cessing text files.

SOLUTION You will use a custom Java I/O
stream class to perform text filtering by
applying a sequence of filtering operations
on input stream opened on the text data.

#Reader() : Reader
#Reader(s:Object) : Reader
+read() : int
+read(in buf:char[]) : int
+read(in buf:char[], in start:int, in count:int) : int
+skip(in num:long) : long
+ready() : boolean
+markSupported() : boolean
+mark(in pos:int)
+reset()
+close()

Reader

+InputStreamReader(ins:InputStream) :InputStreamReader
+InputStreamReader(ins:InputStream, charSetName:String) :InputStreamReader
+InputStreamReader(ins:InputStream) : InputStreamReader
+getEncoding() : String

InputStreamReader

Reader <- InputStreamReader

InputStreamReader <- WordCountStreamReader

-count : int=0
+WordCountStreamReader(ins:InputStream) : WordCountStreamReader
+read(in cbuf:char[]) : int
+read(in cbuf:char[], in start:int, in num:int) : int
+read() : int
+getWordCount() :int

WordCountStreamReader

4285book.fm Page 14 Thursday, December 4, 2003 6:44 PM

15Solution 5 • Writing Text Filters

Indirectly, the example class WordCountStreamReader inherits the methods of class Reader
that are actually used to read from an input stream. You override these methods by calling the
super class method and then performing application-specific filtering operations (in this case,
counting the words in the character stream). In addition to defining a class constructor (which
simply calls its super class constructor), the example class defines the method getWordCount
that can be called at any time to get the number of space-delimited words read from the input
stream.

The example stream class overrides all three read methods that are indirectly inherited from
the class Reader. In each case, the read methods call the inherited read method with the same
signature to actually read from the input stream, then look for word breaks:

public class WordCountStreamReader extends InputStreamReader {
 public WordCountStreamReader(InputStream ins) {
 super(ins);
 }
 public int read(char[] cbuf) throws IOException {
 int count = super.read(cbuf);
 for (int i=0; i<count; i++) {
 if (cbuf[i] == ' ') this.count++;
 }
 return count;
 }
 public int read(char[] cbuf, int start, int num)
 throws IOException {
 int count = super.read(cbuf, start, num);
 for (int i=0; i<count; i++) {
 if (cbuf[i] == ' ') this.count++;
 }
 return count;
 }
 public int read() throws IOException {
 int character = super.read();
 if (character == ' ') this.count++;
 return character;
 }
 public int getWordCount() {
 return count+1;
}
 private int count = 0;
}

NOTE In this example, you are simply counting spaces between words. In most real applications,
you would use the java.util.StringTokenizer class to separate a string into individual
words.

4285book.fm Page 15 Thursday, December 4, 2003 6:44 PM

16 File I/O

This is a simple class, but it demonstrates the basic strategy for defining new stream classes
to act as text filters: use inherited methods to actually perform stream read operations while
adding desired filtering behavior.

NOTE There are many applications that can use custom text filtering stream classes. For example,
translating the input stream from English to German using the BabelFish web services,
removing HTML markup from an HTML input stream (that is, leaving only plain text), and
performing spelling correction.

The ability to wrap Java streams inside other Java streams is a powerful technique that is
greatly enhanced by writing custom stream classes to perform application-specific filtering and
information extraction operations.

TIP Remember: you can nest streams inside each other to any reasonable depth. For example,
if you implemented a custom stream for translating English to German and another
custom stream for stripping HTML tags, then your application might wrap (or nest)
streams like this: new WordCountStreamReader(new EnglishToGermanStreamReader
(new StripHtmlTagsStreamReader(new InputStream(…)))). This would allow you to
count the translated German words without counting HTML tags.

4285book.fm Page 16 Thursday, December 4, 2003 6:44 PM

