
Realistic Assumptions For Software Reliability Models

David Zeitler
Smith's Industries Aerospace & Defense Systems, Inc.

4141 Eastern Avenue, S.E., Grand Rapids, MI 49518-8727
PHONE: (616)241-8168 / EMAIL: zeitler@si.com

Abstract

A definition of reliability appropriate for systems con-
taining significant software that includes trustworthi-
ness and is independent of requirements will be stated
and argued for. The systems addressed will encom-
pass the entire product development process as well as
both product and its documentation. Cost incurred as
a result of faults will be shown to be appropriate as a
performance measurement for this definition. This and
more realistic assumptions will then be shown to lead
to the use of auto-regressive integrated moving aver-
age (ARIMA) mathematical models for the modeling
of reliability growth.

Key Words: Reliability definition, trustworthiness,
growth models, software system reliability, model as-
sumptions.

1 GROUNDWORK

Most authors find the assumptions made in modeling
reliability questionable for application to the real world
of software development. To more firmly anchor the-
oretical development to the real world, I will start by
reviewing the reasons for reliability models in general
and specifically how considerations for the reliability of
software based systems dictate that we both change the
measurement of reliability considered and the assump-
tions upon which the model must be based.

1.1 Reliability Enhancement Frame-
work

A good framework from which to start considering soft-
ware reliability is presented in RADC-TR-87-171 [6].
It does a good job of identifying the tasks involved in
statistical reliability improvement and relating them to
the DOD-STD-2167A terminology. Too often, reliabil-
ity discussion begins at the mathematical models for

reliability growth and ignore the larger picture of the
full reliability program. The RADC document is also
the first attempt I've seen to pull together a specifi-
cation for implementation of a software reliability pro-
gram. I have added relationships to the framework to
show explicitly the presence of the three major types
of reliability models.

As shown in figure 1. There are four tasks in this
framework with associated outputs: Goal Specification,
Prediction, Estimation and Assessment. Goal Specifi-
cation is a nearly independent process that provides
targets for the development process based on an appli-
cation level model. Predictions take a second model
based on development metrics and provide feedback
into the design process. Estimations take test measure-
ments and a third model to provide feedback into the
test and burn in processes. Finally the assessments take
operational data and feed it back into all the models
to help tune their predictive and estimation capabili-
ties. The three models identified roughly correspond
to component count predictions, stress analysis predic-
tions and growth estimation models currently in use in
hardware reliability work.

So we have three separate models, each with a differ-
ent goal. The first two models are predictive in nature,
while the third is estimating the reliability of an exist-
ing product. Most current work is aimed at the devel-
opment of this third type of reliability model. Since the
strongest inferences will be possible at this later stage
of a program, this is also the most productive area to
be addressing.

1.2 Software, Hardware & Systems
Reliability

It is often stated that software reliability is very dif-
ferent from hardware reliability, but what exactly is
this difference? Usually the statement is made in re-
lation to the idea that software doesn't wear out, but

Reprinted from Proc. Int'l Symp. Software Reliability Eng., IEEE CS Press, Los Alamitos, Calif., 1991, pp. 67-74. Copyright ©
1991 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

12



the differences are more fundamental. Software is a set
of instructions, like a blueprint or schematic, it cannot
fail. It can however be wrong in a multitude of ways.

Analogous component levels for software and hard-
ware are illustrated in table 1. The basis of this anal-
ogy is comparative equality in the level of functionality
provided by the components on each side of the table.
For example, both resistors and processor instructions
provide a fundamental functionality for their respec-
tive disciplines. Note that on either side of this table
the levels shown are hazy. The table's primary pur-
pose is to illustrate relationships between software ter-
minology and roughly equivalent hardware structures
for comparison purposes.

Hardware reliability analysis almost exclusively ad-
dresses the first two levels of the hierarchy (discrete
components), with more recent work attempting to ex-
tend the models to the higher levels. Since usage of
parallel paths through the system is not uniform, this
type of analysis quickly becomes extremely complex
and highly dependent on the end users input distri-
bution.

From this relationship between hardware and soft-
ware we can see first that there are equivalent ways
of thinking of the two seemingly very different disci-
plines. Software is most comparable to the blueprints,
schematics and production process specifications of
hardware. At best, if we compare software programs
with hardware components, we then must think of de-
velopment methods, standards, etc. as the blueprints
or production specifications. Thus each program devel-
oped is analogous to an individual hardware unit from
production. We can now see from this analogy that sta-
tistical analysis of software must be carried out across
many software units to achieve the same effects as ap-
plying statistical analysis of hardware components to
many parts.

Carrying this analogy just a bit farther, to parallel
hardware reliability we should be looking at the reli-
ability of individual CPU instructions much as hard-
ware has determined the reliability of individual com-
ponents. This is quite different from the current work
in software reliability, which jumps in at the higher
levels, treating the software as a black box, without
attempting to address the low levels which hardware
has built upon. Hardware has discrete components at
these levels that can be analyzed independent of the
particular use of the component. This examination of
fundamental software components independent of their
use will yield only that the components do not fail.
Therefore, something different must be going on when

we discuss reliability for software systems.
In hardware we are looking at reliability hazard func-

tions as the probability that an individual component
will fail. In software, we are looking at the probability
that a given component will be used in an inappropri-
ate manner. This implies that we are looking not at
the probability of failure of a concrete replicate of a
design, as in hardware, but rather at the probability
that the designer incorrectly uses a component in the
design. For example, choosing the correct packaging
of a resistance component for the target environmental
conditions and reliability requirements, bat using the
wrong resistance value in the circuit for the full range of
the circuits intended function (i.e., incorrect functional
design as opposed to incorrect environmental design).

Reliability analysis now recommends reduced part
counts and greater operational margins to Improve reli-
ability. In the context of the software system reliability
improvement process I'm suggesting, reliability might
also be suggesting that the use of complex components,
which have a high probability of misuse, be minimized.
This would reduce the probability of design errors.

An example of the kind of design criteria that might
come out of this type of analysis would be 'Reduce use
of complex non-programmable components'. Or per-
haps, the development of software modules unique to
the system should be minimized, since they probably
would not have the maturity and/or level of testing of
common software. As a confirmation that we're on the
right track, note that this agrees with common prac-
tice for quality software development today. So we can
see from this analogy that software reliability is signif-
icantly different from hardware reliability.

1.3 Separation of Software from Sys-
tem Reliability

We are at the point where the functionality of systems
are primarily resident in the software. Special purpose
or single purpose hardware is nearly a thing of the past.
Since we have shown above that software reliability is
more related to functionality than to physical compo-
nents, addressing software reliability is equivalent to
addressing system reliability. It is also equivalent to
addressing the reliability of the software/system devel-
opment process, since the reliability of the end product
is as much a result of the process that developed it as
of the product itself.

This then suggests that a system level approach to
the overall reliability problem will be more effective
than attempting to isolate either hardware or software.

13



Models

Application

Component

Growth

Figure 1: Software Reliability Framework

Tasks Metrics

Goal

Specification

Prediction

Estimation

Assessment

Application

Requirements,
Design, and

Implement at i on

Test

Measurements

Operational
Performance

Concept
Development

Software
Development

Operation

Table 1: analogous Hardware/Software Structures

Hardware
Primitive Components

Resistors,Capacitors, etc.
Integrated Chips

CPU, UART, MMU, etc.
Sub-circuits

RS422, ARINC, etc.
Boards

Serial I/O, Memory, etc.
Sub-systems (HWCI's)
Display, Keyboard, etc.

Software
Primitive Instructions
move, shift, add, etc.

Units
Procedures, Modules, etc.

CPC's
Packages, Objects, etc.

TLCSC's
Exec, I/O, etc.

Programs (CSCrs)
Operational Flight Program

Systems
Navigation System, Weapon System, Fuel Savings System, etc.

14



What's more, if we solve the reliability problem as dis-
cussed here, the solution will be equally applicable to
areas that hardware reliability has traditionally con-
sidered out of scope. A solution to software reliability
then should cover not only the software aspects of the
reliability question, but the wider system aspects si-
multaneously.

In [7] Fabio Schreiber concludes that the time is ripe
for the unification of several research areas into a uni-
fied investigation of system reliability. I am taking his
suggestion a step further here in including not only the
system performance, but also in effect the performance
of the development process as well. This is not only de-
sirable from the relationship of reliability to function-
ality, but is necessitated by the inadequacy of require-
ment specification techniques for complex systems.

1.4 Definition of Software Reliability

Most authors that address the definition of systems re-
liability, address it in terms of adherence to require-
ments. With the present state of the art in require-
ments specification for complex systems, this hardly
seems reasonable. We cannot yet determine if a system
adheres to requirements when these requirements are
incomplete and/or ambiguous as they invariably are.

According to Webster's New Collegiate Dictionary,
two possible meanings of reliability seem to apply. The
first is consistency in response, in which case software
(or any other deterministic process) cannot be unre-
liable. Another definition has reliability meaning 'to
be dependable, or trustworthy'. The first definition
doesn't seem to fit at all. We can be sure that soft-
ware does not have perfect reliability. So it appears
reliability means to perform with little probability of
unexpected behavior, (i.e., we can depend on or trust
it). This is beyond just repeatable behavior and does
seem to get at the issue here. So if the system always
does what is expected of it, it is perfectly reliable. Thus
we see that trustworthiness is a major component of re-
liability.

Reliability is then more closely associated with meet-
ing user expectations, regardless of stated require-
ments. (Note: this is not in addition to meeting
requirements. Any given requirement, regardless of
source, may not meet user expectations and meeting
them will still be considered a failure!) Reliability is
then related to perceived failures as opposed to what
may be considered actual failures. It is well known that,
although we're making progress, the precise specifica-
tion of a complex system is not at this time possible.

The result is that there is room for user interpretation,
which can lead to perceived failures. These failures are
as expensive (or more expensive) than 'actual' failures.
In either case, the user is not satisfied with the opera-
tion of the system and it is considered unreliable.

So I am defining reliability as that which minimizes
the users perceived failures.

1.5 Measurement of Reliability

Perceived failures can be measured in terms of cost due
to user complaints, so I'm suggesting we use cost as a
measure of reliability. These costs consist of the lost
productivity or production due to down time, manage-
ment costs for handling the return of faulty product,
costs associated with negotiation of variances against
requirements, etc. The cost does not however stop at
the customer. We also will need to consider the cost
to the developer. This cost is in terms of the lost pres-
tige (and therefore presumably potential market share
in the future) as well as the immediate cost to analyze
and fix the product returned. This can be modeled as
a constant times the cumulative cost incurred by the
customer.

Measurement of perceived failures at the user is too
late to help us estimate the growth curve of the system
reliability during development. It will provide adequate
feedback into future reliability analyses, but a measure
of perceived failures during the development process is
needed. This can be obtained through the early appli-
cation of operational testing using actual users. Early
testing can be focused on the user interface, with grad-
ual incorporation of functionality as the integration of
the system progresses.

In [5] Ragnar Huslende lays out an extension of stan-
dard reliability concepts for degradable systems or any
partially operable system. As Huslende states, any sys-
tem can be viewed as degradable. Using cost as a mea-
sure of the system performance we can see that zero
cost is equivalent to the no-fault state of Huslende's
H(t). So I will be looking at cost as a measure of sys-
tem performance.

c(t) = cu(t) + cP'Cu(t) + cj(t)
where:

cu = cost to the user with respect to time
cp = impact of customers costs on developers
cj = developers cost to fix the product

This gives us a value that can be measured tangibly
(although not necessarily precisely) regardless of the

15



specifications, development process, or other variables
(controllable or not). Using the cost as our performance
measure also gives us a handle on the varying degree of
severity that failures tend to cause.

Measuring reliability performance as cost also allows
us to focus on those problems that are important to
us and the customer. We all know of little problems
that are annoyances in software based systems, but are
certainly not worth spending massive effort to correct.
Likewise, we all would consider any effort expended to
eliminate risk of life to be spent well. With cost as
our measure of reliability, little problems that are soon
worked around have a negligible impact on reliability,
while loss of life has a correspondingly large impact.

These costs can be measured through existing or aug-
mentation of existing accounting systems for tracking
product that has been fielded. For systems under de-
velopment, we, will need to make use of the user in-
teraction with early prototypes to measure relation to
expectations. This also implies that we need to make
the actual users an integral part of the standard testing
process in order to improve reliability of systems.

2 MODELING
Essentially all proposed reliability models are growth
models, an exception being the linear univariate pre-
dictive model(s) attempted by SAIC for RADC-TR-
87-171. The intent of the reliability growth modeling
process is to be able to predict, from actual failure data
collected during early development or testing, both the
expected end product reliability and the magnitude of
effort necessary to achieve the target reliability, and
hence the date when a system release can be achieved.
Reliability growth models have been applied to several
programs for these purposes. These applications have
shown considerable promise. Many programs now also
use an intuitive form of this by monitoring a problem
reporting system during the late stages of a program
with an eye toward determining when the software is
ready for release.

Martin Trachtenberg in [8] provides a general for-
mulation of software reliability with the relationship
of his general model to major existing models. This
work is a good foundation upon which to base further
modeling work. In particular, my measure of reliability
performance as cost can be easily incorporated into the
model. Modification of the general model to incorpo-
rate dynamics is somewhat more complex however.

In Trachtenberg's model, failure rate is a function of

software errors encountered. He considers f=f(e) and
e=e(x) where f is the number of failures, e is the number
of errors encountered and x is the number of executed
instructions. To determine a failure rate, he differen-
tiates f(e(x(t)) with respect to time to obtain a form
in terms of current number of failures per encountered
error (s), apparent error density or number of encoun-
tered errors per executed instruction (d), and software
workload in terms of instructions per time unit (w).
Thus arriving at failure rate X(t) as below:

W = % = $;'£-% = '-d-v,
This model is intuitively attractive and does provide

a general structure from which other models can be
viewed. In the following paragraphs I will consider each
basic assumption and show the modification necessary
for a realistic model. When possible, I will be using the
notation from Trachtenburg's paper.

2.1 A Semi-structural Approach
As Schreiber stated in [7], cost based modeling can
be extremely complex. This due to the complexities
of incorporating variable failure impact into structural
equations for the process. In addition, adding the de-
velopment process into the reliability equations adds
human systems into the equations. I am suggesting
that an intermediate approach be taken. From a few
basic assumptions about the relationships expected, I
will be proposing a high level empirical model capable
of capturing the necessary characteristics of the pro-
cess, thereby avoiding the complexities of attempting
to specify the micro level structural model under which
the system actually operates.

2.2 Assumptions
Recent work (one specifically is Ehrlich, et al [3]) has
shown that in some applications the current growth
models proposed for software reliability provide reason-
able estimates of test effort needed. The work discussed
was specifically designed to meet the given assumptions
of the models. Necessary characteristics for using the
current available models vary, but generally include in-
dependence in the interarrival times of failures, uniform
magnitude of impact of failures (making failure rate a
reasonable measure of reliability), and uniform system
load during test and/or operation (i.e., random test
execution). None of these assumptions hold for many
real-time systems and avionic systems in particular.

A clear indication that we have autocorrelation even
in systems with uniformity in testing can be seen in the

16



telephony system test data analyzed by Ehrlich et.al.
The plots show a good match between the homoge-
neous Poisson model being fitted and the actual data,
but there is visual evidence of positive autocorrelation
in the data sets. This suggests the presence of auto re-
gressive factors needed in the model even for a process
which fits the assumptions well.

In systems that cannot be easily tested in a ran-
dom fashion, these auto regressive factors are likely to
be sufficiently significant to trigger an early release of
software or an over intensification of test effort by ex-
cursions from the too simplistic model that are merely
based on random variation. At the very least, they
will reinforce the positive feedback reactive effect seen
where increased failures during test causes increased
test effort (lagged by management response time con-
stants of course).

2.2.1 Time base for real time systems

Real time systems have a more-or-less uniform instruc-
tions (or cycles) per unit time pattern. This makes
measurement of instructions executed per unit time a
poor measure for system load. Instead, we need to be
measuring the number of instructions outside the oper-
ating system per time unit. This number will increase
proportionately with system load.

No changes in the equations are necessary here, since
we're just modifying the interpretation. This modifica-
tion transfers us from the time domain to the computa-
tion domain, as discussed in [1]. More specifically, we
are working in the application computation domain.

2.2.2 Cost of Failures

Including a non-constant cost for failures will remove
the uniform failure impact assumptions made in the
standard models, this puts our emphasis on cost per
unit time. The cost of a failure is both a function of
the fault that causes it and of the situation in which
the failure occurs.

c(f) = c(f,b)Pb(t)
where:
cj(a,b) = cost of failure a occurring

in situation b
Pb(t) = probability of situation b at time t

Since situations (or test cases) cannot occur ran-
domly in the types of systems we're looking at, but oc-
cur in the context of an operational profile, cost due to
the occurrence of any particular failure is a time based
function related to the operational profiles. These op-

erational profiles will produce a 'fine grain' correlation
structure in the occurrences of failures.

Our early measurements for growth estimation are
taken during the integration of the system. This in-
tegration process limits the nature of the profiles to
functions currently integrated and operational. Thus
we will also see a 'coarse grain' correlation structure to
the occurrences of failures.

For our cost based reliability measurement we re-
place failure rate, with cost rate {j(t)) based measures.
These cost based measures will be more directly usable
by management and give planners a better handle on
appropriate test effort feedback into the development
process. We can also see that this process level feed-
back into the product will impact failure occurrences.

7(0 = £
_ dc df_ de_ dr_
~~ dj ' de ' dx ' dt
= c - s - d - w

2.2.3 Failure inter-arrival time

Software can be viewed as a transfer function. Its in-
put must be taken as the combination of the values
present at its inputs and the state of its memory at
the beginning of execution. Output is the combina-
tion of values presented to its outputs and its internal
state upon completion of execution. In many software
systems, this transfer function is applied to essentially
independent inputs and the system state is reset be-
fore each execution. In real-time avionic software, and
most other real-time software systems, the inputs are
sequences of highly correlated values applied to a sys-
tem that retains its internal state from the previous
input set.

Clearly then, the assumption of random distribution
of inputs is not feasible here. Therefore a primary as-
sumption of our growth models cannot be applied. We
must then prepare our models for the likely autocorre-
lation of failure occurrence. This will imply some form
of time-series model for the occurrence of software fail-
ures.

It also can be argued that a piece of code with many
faults being found is likely to have more faults remain-
ing in it, since the same factors that produced the faulty
code affect the remainder of the code as well. Combined
with this is the operational profile nature necessary for
most real time systems testing. The operational pro-
file ensures that the conditions that caused a failure
must persist for some period of time, thus increasing

17



the probability of recurrence or related failure detec-
tion.

So we see that software systems failure occurrences
are not independent, and in fact, will exhibit corre-
lation structure that is dependent on the correlation
structure of the inputs coming from an operational pro-
file as well as on the system itself. This is not easily
modelable in general.

2.2.4 Fault correction process

When a fault is corrected, the same process as that
which created the fault is used to fix it. The fix then has
a probability of introducing new faults (or not correct-
ing the original fault) that is clearly not zero. If we look
at the magnitude of the change in changed or added in-
structions, schematic symbols, drawing symbols, etc.,
(Me) and the probability of introducing faults as the
proportion of faults (eo) to instructions at the begin-
ning of the program (I), po = (^) and let pe(t) = the
probability of fixing a fault at time t, we can view the
remaining faults in the code at time t as
e(t) = e(t - 1) + pe(t) • (Me • po - 1)
rather than
e(t) = e(t - 1) - Pe(t)

Using B as the linear lag operator, we have

(l-B)e(t)=p.(t)-(M,-po-l)

The right hand side of the previous equation repre-
sents the random process of finding and fixing faults in
the system. This random process is the combination of
the above processes of failure inter-arrivals, fault recur-
rence and fault removal. Since together these represent
a dynamic process driven by random noise, we can let
the rhs = Oo+0(B)et} e(t) is a white noise driver for the
process. We can see then that the fault content of the
system is modelable as a standard autoregressive inte-
grated moving average (ARIMA) [2] time-series model.

Note that this relationship implies that the fault con-
tent of the system is not strictly decreasing and in fact
may exceed the initial fault content.

2.2.5 Recurrent faults &: fault removal

Faults are not removed immediately in the real world.
Often minor faults are determined to be not worth the
effort to f\x at all. Thus a realistic model of software
maintenance must be a cost prioritized queue. The re-
sult is a clear dependence of the number of failures per

fault on the cost of removing the fault when compared
with the cost of encountering the fault and the expected
number of occurrences of the fault if its not fixed.

For our context, the queueing process can be ex-
pressed as a finite difference equation using the sum
of the expected cost of not fixing the faults as the state
variable. State changes occur whenever there is a fault
with an expected cost for not fixing greater than the
cost of repairing. The fault fixed will be the one with
the highest return (not necessarily the first or last).

Thus we can see that known faults may never reach
zero (as one would expect) and that the expected num-
ber of recurrences of a failure due to a given fault is
a function of both the cost to fix it and its expected
impact on lifetime cost of the system. Since the cost to
fix is known to be increasing with time during devel-
opment and the expected impact is dependent on the
operational use of the system, we will have the number
of failures occurring for each fault being dynamic also.

3 Summary

I have shown here that we can expect the occurrences of
failures and the magnitude of their impact to vary dy-
namically in time and that they are all interdependent.
Thus our model is clearly dynamic and an a priori de-
termination of its order (let alone the exact structure)
will be difficult. This is identically the case for work in
social, economic and other human systems. Not really
a surprise since we can see from the necessary defi-
nition of reliability in terms of customer expectations
that products containing significant software compo-
nents are deeply embedded in human systems. The
approach taken to modeling and forecasting in human
based systems is fitting autoregressive integrated mov-
ing average models to the real world data. I'm suggest-
ing here that we need to do the same for estimating
reliability growth.

In the September '90 QualityTIME section of IEEE
Software [4], Richard Hamlet has an excellent discus-
sion of quality and reliability. He clearly delineates for
us the distinction between failures and faults. I sus-
pect that Mr. Hamlet will disagree with my definition
of reliability, as will Parnas. If however, we separate
trustworthiness from reliability as suggested, we end
up with the conclusion that software systems are per-
fectly reliable. If this is the case, we then should drop
this thrashing over software reliability, and attack the
problem of software trustworthiness. Webster however
includes trustworthiness as a part of reliability. I will

18



then stand by my arguments. Reliability of software
systems is a measure of how much trust the user can
put in the software performing as expected.

More realistic assumptions are necessary for applica-
tion of reliability growth modeling to software systems.
The assumptions are:

• Failures do not have equal impact.

• Failure rates have dynamic structure.

• The fault removal process is a cost prioritized
queue depending on the ratio of expected cost to
cost to fix.

• Fault content has a dynamic structure and is not
strictly decreasing.

I have shown that, because of my definition and these
less restrictive assumptions on our model, software reli-
ability must be modeled as an ARIMA time series. The
intent here is not to replace existing models. They have
already shown their value in some real world situations.
My intent is to provide an avenue for further applica-
tion of reliability analysis in software system develop-
ment applications where the restrictive assumptions of
current models will make them of little use.

3.1 Further research.

Considerable empirical work is needed to validate my
claims. Costs need to be collected to perform this em-
pirical work. Initial efforts could however make use of
estimates from existing information and/or apply sim-
ulation techniques to initially validate the approach by
showing that ARIMA models could produce the kinds
of behavior known to be present in the software sys-
tem development process. Eventually, it is hoped that
information gained from this more empirical approach
will lead to greater understanding of the process and
structural models.

References

[1] Beaudry, M. Danielle, Performance-Related Re-
liability Measures for Computing Systems, IEEE
Transaction on Computers, Vol c-27. No. 6, June
1978, pp 540-547.

[2] Box, George E. P. & Gwilym M. Jenkins, Time Sc-
ries Forecasting and Control, Holden-Day 1976.

[3] Ehrlich, Willa K., S. Keith Lee, and Rex H.
Molisani. Applying Reliability Measurement: A
Case Study, IEEE Software, March 1990.

[4] Hamlet, Richard New answers to old questions,
IEEE Software, September 1990.

[5] Huslende, Ragnar, A Combined Evaluation of Per-
formance and Reliability for Degradable Systems,
ACM-SIGMETRICS Conf. on Measurement and
Modeling of Comput. Syst., 1981, pp. 157-163.

[6] Methodology for Software Reliability Prediction,
RADC-TR-87-181, Science Applications Interna-
tional Corporation for Rome Air Development Cen-
ter 1987.

[7] Schreiber, Fabio A., Information Systems: A Chal-
lenge for Computers and Communications Reliabil-
ity, IEEE Journal on Selected Areas in Communica-
tions, Vol. SAC-4, No. 6, October 1986, pp 157-164.

[8] Trachtenberg, Martin, A General Theory of Soft-
ware Reliability Modeling. IEEE Transactions on
Reliability, Vol. 39, No. 1, 1990 April, pp 92-96.

4 Acknowledgements

Thanks to Gerry Vossler and Derek Hatley for their
review of this work and to Smiths Industries for their
support. I would also like to thank the reviewers who
pointed me toward related work in systems reliability
which was quite helpful.

19


