Chapter 1

Probability Theory and
Performance Evaluation

In this chapter, we outline the elements of probability theory. Most readers will have taken
courses on probability and statistics, and this chapter is meant mainly as a refresher on tech-
niques that are used in the papers collected in this book. Probability is a vast subject, and
the Further Reading section contains a brief list of some introductory volumes.

1.1 Introduction

It is possible to make up a rigorous definition of probability, based on sigma algebras and
measure theory, but our interests are much more practical. From our point of view, there are
some things, called events, which have a given probability of occurring. For example, if you
have a “fair” coin, the probability of getting a tail upon tossing it is 0.5. This is a way of
saying that if you toss a fair coin N times, then

K Number of Tails out of N Tosses _ l (1.1)
Nesoo N =3 :

Two events that cannot occur at the same time are called mutually exclusive. For example,
if you have a memory module with one I/O port, you cannot have two simultaneous reads in



progress. Suppose that events e, eg, - - - , e, are mutually exclusive, and P (e;) is the probability

of e; occurring. Define E as the event that one of ej,eg, - - -, e, occurs. Then,
n
Prob {E occurs} = Z P(ei) (1.2)
i=1

The probability of any event must lie between 0 and 1. An event that occurs with probabil-
ity 1 is said to happen almost surely. This term points up a common misconception about
probabilities: namely, that an event with probability 1 is certain to occur, and an event with
probability 0 will never occur. This is not true. For example, suppose we run an experiment
which consists of choosing a random point in an interval [0, 1]. There is an uncountable infinity
of such points, and so the probability that we choose a given point (say, 0.55), is zero. In fact,
every outcome in this experiment will have probability zero!

Given events Aj, Ag,-- -, Ap the event that they all occur is expressed by A1NAaN---NAy,,
while the event that at least one of them occurs is denoted by A3 U AsU---UA,. The notation
arises from the fact that we can denote the event probabilities by area in a Venn diagram. In
such a diagram, Prob(A;) would be proportional to the area occupied by A;. The probability
of the event that either A7 or Ag (or both) occurred is proportional to the area of A3 U As.
Similarly, the probability of both A; and As occurring is represented by the area covered by
A1 N As.

We have
Prob (A; U Ag) = Prob (A1) + Prob (A2) — Prob (A1 N Ay) (1.3)

The Prob (A1 N A2) term corrects for the double-counting that occurs when both events occur.
We can extend Equation 1.3 recursively. For example,

Prob (41U A2 U A3) = Prob(A4;U A2) + Prob(A3z) — Prob ([A; U A3] N A3) (1.4)
Prob ([A1 U Ag] N Aj) Prob ([A1 N A3] U [A2 N A3))
= Prob(A; N A3)+ Prob (42N A3) — Prob([41 N AzlN[A2N As))
Prob (41 N A3) + Prob (A2 N A3) — Prob (A1 N AN A3) (1.5)

fl

Thus,

Prob (A1 UA3U Ag) = Prob (A1) + Prob(A3) + Prob (A3)
—Prob (A1 N Ag) — Prob (A1 N A3) — Prob (A2 N A3)
+Prob (41 N A2 N A3) (1.6)

It is probably easier to see this graphically, using a Venn diagram. See Figure 1.1, and relate
the area enclosed by the circles to the probabilities in Equation 1.6.
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Figure 1.1. Venn Diagram for Prob (4; U A3 U A3)

If Ay,---, Ay is the set of all possible events (n may or may not be finite), then

Prob(AjUA2U---UAy) =1 (1.7)

Two events A and B are said to be independent if
Prob (A N B) = Prob (A) x Prob (B) (1.8)

For example, if successive tosses of a fair coin are independent, the probability that we have a
head followed by a tail is 0.5 x 0.5 = 0.25. We can extend Equation 1.8 recursively. If 4, B,C
are independent events, then

Prob(ANBNC) = Prob(A4) x Prob (B) x Prob (C) (1.9)

One of the most useful concepts in probability theory is conditional probability. We denote
by Prob(B|A) the probability that event B occurs, given that event A has occurred. The
fundamental equation relating to conditional probability is Bayes’ law:

Prob (AN B)
=2 7 1.10
Prob (B|A) Prob (A) (1.10)
We can rewrite Bayes’ law as follows:
Prob (A N B) = Prob (B|A) x Prob (A) (1.11)
This leads to the following useful construct
Prob (AN B)
Prob (B IA) W



_ Prob(4|B) x Prob (B)
N Prob (4) (1.12)

1.2 Random Variables

A random variable can be formally defined as a mapping from the set of events to the real line.
That is, a random variable is a function, which associates a real number with each event. The
real number usually denotes some parameter of physical interest. For example, if the event is
accessing memory, we can define a random variable t4ccess Which is the memory access time.
Suppose we are given that an access is to cache with probability pcsche, to main memory with
probability pmain, to disks with probability pgisks, and to tape with probability piepe. Denote
by t(cache), t(main), t(disks), and t(tape) the access times associated with these various
media. We can now write

t(cache) with probability peache
; __ ) t(main) with probability pmain (1.13)
access ™ 1 ¢(disks) with probability paisks )
t(tape)  with probability piape

Associated with each random variable, X, is a probability distribution function (PDF),
Fx(z) = Prob{X <z} (1.14)

Assuming that t(cache) < t(main) < t(disks) < t(tape), we can write the PDF of tgccess as

0 if t < t(cache)
Pcache if t(cache) < t < t(main)
Ftoccess(t) = Pmain + Pcache if t(main) < t < t(disks) (1.15)
Pdisks + Pmain + Peache if t(disks) <t < t(tape)
1 otherwise

If the PDF is a differentiable function (that is, it can be differentiated), its derivative is called
the probability density function, (pdf). If the PDF takes discrete jumps (as was the case with
taccess in our example), a pdf does not exist and we can define instead a probability mass

function (pmf),
mx(z) = Prob{X =z} (1.16)



For example, the pmf of £4ccess is given by

Pcache if t = t(cache)
Pmain if t= t(ma«in)

Migecess (£) = Paisks if t = t(disks) (1.17)
Ptape if t = t(tape)
0 otherwise

The ezpectation, E[X], of a random variable, X, is its average or mean. If the random variable
takes discrete values from the set A = {a1, a3, -}, it has a pmf, and we have

E[z] = Z aimx(a;) (1.18)
i€A
If X has a pdf, we have
E[X] =/<:o zfx(z)dz (1.19)

If the expectation of X is finite, we can also determine it by the expression

E[X]=Lm0(1—Fx(m))dz—L0 Fo(2) da (1.20)

=-—00

If you remember elementary techniques of integration, you might try deriving Equation 1.20
from Equation 1.19.

Expectation is a linear operator. That is a fancy way of saying that

E[X1+ Xo+ -+ Xy = E[X1] + E[X2] + - -+ + E[Xn] (1.21)

The n'th moment of a random variable X is E[X™]. The first moment is, of course, the
mean. The variance of X is given by

VIX] = E[x? - (B[X])? (1.22)

The standard deviation of a random variable is the square root of its variance.
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Figure 1.2. Illustrating Variance

While the first moment gives us the average value, the variance tells us how much variation
or spread we can expect. For example, consider the random variables X and Y with pdf’s
shown in Figure 1.2. We have

0125 if —4<z<4 _ ) 0250 if —2<z<2
fx(@) = { 0 otherwise  fy(e) = { 0 otherwise (1.23)

While random variables both have a mean of 0, it is clear that X is more “spread out.” This
is reflected in the variances: V[X]| =8; V[Y] = 2.

Let us now turn to the distribution of the sum of independent random variables. This
will also give us an opportunity to demonstrate the usefulness of Bayes’ law. If X,Y are
independent random variables with pdf’s, then

o0
Prob(X +Y <w) = / Prob(X +Y <wNnNX =z)dz
T

=—00

— /°° Prob (X +Y < w|X =z)fx(z)dz

=-0Q

= /°° Prob (Y < w — z|X =z)fx(z)dz

=00

== /:o N fr(w —z)fx(z)dz (1.24)



We can apply this expression recursively to the sum of more than two variables. For example,

(o o]

Prob(X +Y + Z < w) = / fraz(w — 2)fx(z) dz (1.25)

r=—00

where fy4z is the pdf of the random variable Y + Z.

Let us now look at two important PDFs. Perhaps the simplest is the uniform distribution,
which we have already encountered in Figure 1.2. For a continuous random variable, the PDF
and pdf are

0 fr<a
z—a; . 1/(a2 —a1) ifa; <z <as
= fai<z < : = )
Fx(e) az — a1 Har <o <ar; fx(o) { 0 otherwise (1.26)
1 otherwise
The exponential distribution and density functions are given by
1= ifz>0 _J pe™ ifz >0
Fx(z) = { 0 otherwise ’ fx(z) = { 0 otherwise (1.27)

A random variable which is exponentially distributed is said to be memoryless. The reason for
this lies in the following computation:

Prob(X >zNX > a)
Prob (X > a)

Prob (x>a) .
P___BS__Z >
rob (X>a) ifa2a (1.28)
Prob (x>=z fa<az
Prob (x>a)

Prob(X > z|X > a)

Since Prob (X > t) = e #, we have

(1.29)

Prob(X >zNX > a) 1 ifa>z
Prob(X > z|X > a) = Prob (X > a) ={ e~HE=9) ifg < g



If a < =, we have from Equation 1.29 that
Prob(X > z|X > a) =Prob(X >z —a) (1.30)
which is a function of the difference between z and a. That is, for every § > —a,
Prob(X >z|X >a)=Prob(X >z +6|X > a+6) (1.31)

If, for example, a light bulb has an exponentially-distributed lifetime, the probability that it
will burn out over the next hour is not a function of how old it is, but only of whether it has
yet burned out or not. That is why this distribution is called memoryless. This property is
very important in mathematical modeling.

Associated with the exponential distribution is the Poisson process. Consider some events,
such as memory requests, that occur over a period of time. Let N (¢) denote the number of
such events over the interval of time [0,t]. The event-arrival process is called Poisson with rate

A(t) if:

o The probability of one or more events occurring in an interval [a, b] is unaffected by what
happened outside this interval.

e The probability of an event occurring in an interval [t,t + dt] is A(¢) dt.

o The probability of two events occurring in an interval of length dt is of the order of (dt)?
or less.

If A(t) = X for all ¢, we have a homogeneous Poisson process. We can show that

¢ n
Prob (N (t) = n) = e~ Joma ()2 {/FO M dz} (1.32)

n!

If A(t) = X for all ¢, we have

Prob (N (t) =n) = e*”i’%}z (1.33)

That there is a relationship between the Poisson process and the exponential distribution is
demonstrated as follows. Denote by 7 the time between two successive event occurrences. We
have
Prob(r >t) = Prob(N(t)=0)
e M (1.34)



Thus, the interarrival time (that is, the time between successive event arrivals) of a Poisson
process is exponentially distributed.

Another important process is the Bernoulli process. Consider a set of random variables,
X1,X2,:++,Xn,- -+, which can take only two values: 0 and 1. Thesum S, = X1+ Xo+-- -+ X,

n=1,2,---, is called a Bernoulli process.

Suppose Prob (X; = 1) =p, and Prob(X; =0)=1—-pforalli=1,2,---. Then,

P ifk=1
Prob(S1=k) = 1—p ifk=0 (1.35)
0 otherwise

Prob(S2 = k) = Prob(S1+ X3=k)
= Prob([Si=k-1NX2=1U[S1=kNX2=0])
= Prob(S; =k — 1)p + Prob(S1 = k)(1 - p) (1.36)

Prob (S, =k) = Prob(Sp—1 =%k~ 1)p + Prob(Sp—1 =k)(1 - p) (1.37)

It is easy to show (try it) that this series of equations yields
k

Prob (S, = k) = ( " )pk(l —p)~k (1.38)

where ( : ) is the number of combinations of n things, taken k at a time. You will no doubt

remember from elementary algebra that

n!
- Wk <
( . > = R fk<n (1.39)
0 otherwise



As an aside, perhaps the best way to compute these functions is to use the recursion

n n—1 n—1
As an elementary exercise, try proving this result.

1.3 Markov Chains

Markov chains are perhaps the most important tool in the development of mathematical perfor-
mance models. In this section, we will provide an informal (well, almost informal) treatment.
We will make no claims of rigor, restricting ourselves to some common sense observations and
basic mathematics.

Everyone is familiar with the idea of a finite-state machine (FSM). It consists of a finite
set of states and transition rules. At any time, the system must be in exactly one state. The
transition rules govern how the system moves from state to state, usually in response to a clock
and other inputs. The next state thus depends only on

e The present state;
e The input(s), if any; and

e The transition rules.

An FSM is deterministic (if it weren’t, computing would be impossible!). In other words,
if you have two identical FSMs, start them in the same initial state, and provide them with
identical inputs, you will get identical outputs. Markov chains are very similar to FSMs, except
in two crucial respects:

e They may have a finite or a countably infinite number of states.!

e Their state transitions are usually not deterministic: it is possible to have probabilistic
transition rules. That is, we can specify that the system will move from, say, state 1 to
state 2, with probability p; 2(i) in response to an input, i.

1By “countably infinite,” we mean that it is possible to set up a one-to-one mapping between the states of
the Markov chain and the set of integers. For example, the set of rational numbers is countably infinite, while
the set of real numbers is not. Consult any book on real analysis for further information.
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Figure 1.3. Markov Chain for First Coin-Tossing Example

Because their state transitions can be probabilistic, it is possible to take two identical Markov
chains, start them in the same initial state, apply identical inputs, and yet end up in different
states. When dealing with Markov chains, we are interested in finding the probability of the
chain being in a particular state.

A Markov chain may be either discrete- or continuous-time. A discrete-time chain only
undergoes state changes at integral multiples of some time granule (that is, a clock), while
continuous-time chains can undergo state changes at any time.

Let us consider a few toy examples of discrete-time chains. Consider a situation where we
toss an unfair coin once every clock period. We are not concerned with the total number of
heads and tails that result: only with whether that total number is odd or even. Given that
we start with even parity at time 0, what is the probability of having even parity at time =,
for any n = 1,2,---7 Let the probability of having a head be h; that of a tail is 1 — h.

There are only two states: odd and even. At any time, the next state that the system goes
to depends only on the present state, and the outcome of the present coin toss. It is therefore
a Markov chain.

Figure 1.3 shows the Markov chain associated with this example. The arcs are labelled
with the transition probabilities, which are calculated from the following table:

Present State | Event | Next State | Probability
Odd Head Even h
Odd Tail Odd 1-h
Even Head Odd h
Even Tail Even 1-h

11



We can write the probability of the system being in a state at time i as a function of its
state at time i — 1. That is,

Podd(i) = Podd(i —1) - (1~ h)+peven(i —1) -k (1.41)
Peven(i) = Podd(": - 1) h +Peve'n(i - 1) . (1 - h) (1'42)

Note that peven(i) + podd(i) = 1, since the chain must be in one of its states at any one time.
Thus, one of these equations is redundant. Let us drop Equation 1.42 from consideration, and
limit ourselves to Equation 1.41. We therefore have:

Podd(t) = Podd(i —1)- (1= h)+ (1~ pogd(i — 1)) - h
= podd(i—1)-(1—2h)+h, i>0 (1.43)

If h = 0, every toss of the coin will turn up tails, and there will be no state change, that is, the
system will be frozen at its initial state. If h = 1, every toss will turn up heads and there will be
a state change every clock period. In both cases, the memory of the initial state will propagate
to eternity. If » = 0, we will have lim; o0 Podd(i) = Podd(0), and if h = 1, lim;—c0 poda(i) does
not exist. Now, if 0 < h < 1, the limit lim; o podd(i) exists, and is independent of the initial
state (that is, pogq(0)): we can see this by inspection, and will not show this formally. How
can we obtain this limit? The easiest way of doing this (once we are assured that such a limit
exists) is to take limits in Equation 1.43 as follows:

lim poga(i) = lim poad(i — 1)(1 — 2h) + h (1.44)
100 100

But, limjo0Podd(i) = limieo podd(i — 1). For brevity, write lim;—co Podd(i) = 7odd- We
therefore have from Equation 1.44,

Todd = Todd (1 —2h)+h (1.45)
= Todd = 1/2 (1.46)

Equations such as Equation 1.46 are commonly referred to as balance equations. They can
usually be written down by inspection of the Markov chain, by balancing the “How” out of a
state with the “flow” into it. The intuitive argument is that if the probability of being in a
state does not change with time (which is the case here in the limit as time goes to infinity),
there must be an equality of flow into, and out of, each state. In our example, the “fow” out of
state odd was given by my4qh, and the flow into state even was given by (1 — mo44)h. Equating,

we obtain
Toddh = (1 — oad)h (1.47)

which yields the result 7ogq = 1/2.

In general, the flow out of a state in a discrete-time chain is the product of the probability
of being in that state and the transition probability.

12
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Figure 1.4. Markov Chain for Second Example: Birth-Death Process

Probabilities of the form lim; o0 podd(i) are called steady-state probabilities for obvious
reasons.

As a second example, consider the discrete-time chain in Figure 1.4. If the system is in
state i, at each clock tick, the probability of a transition to state i + 1 is a, and for all : > 0
the probability of a transition to i — 1 is b. This Markov chain represents a birth-death process:
the term arose from considering each move to the right a birth, and each move to the left a
death. The balance equations can be written down by inspection. Once again, denote by =;
the steady-state probability of being in state .

amo == b7r1
(a + b)ﬂ'i = amij-1+ b7r’i.+11 i>0 (148)

We also have the boundary condition that all the probabilities must add to one:
mo+m+ Tyt =1 (1.49)

To obtain the value of 7;, i = 0, 1, - -, we use Equation 1.48 to express all the m; in terms of
7o, and then use Equation 1.49 to solve for mg. We have from Equation 1.48 and some algebra,

w1 = (b/a)mo
my = (b/a)?mp
(1.50)
mn = (b/a)"mo
From Equations 1.49 and 1.50, we have
(1+ (b/a) + (b/a)® +---+ (b/a)* +--)m0 = 1
= ! (1.51)
TS T (b/a) '
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Figure 1.5. Markov Chain for Third Example: Coin Tossing

Note that we have 7; > 0 only if b/a > 1, that is, if b > a. It is only if b > a that steady-state
exists.

Let us now construct a third example of Markov chains. This time, let us count the number
of heads that are generated by n coin tosses, for n = 1,2, - - -. The Markov chain for this system
is shown in Figure 1.5. Note that this chain has an infinite number of states. State i represents
the situation where i heads have been obtained. Let p;(n) denote the probability of obtaining
i heads after n tosses. We have

pi(n) = hpi—1(n — 1) + (1 = h)pi(n — 1) (1.52)

Note that unless h = 0, the limit limp o pi(n) = 0, for all ¢ = 0,1,2,---. A state whose
probability goes to zero in the limit as time goes to infinity is called a transient state. In this
chain, every state is transient.

1.4 Queues

A queue is a waiting area where jobs are held, awaiting service. They are served in first-come-
first-served, or some other prespecified order. There is a vast literature on queues, and we
restrict ourselves here to providing the bare minimum needed to understand the papers in this

volume.

Let us begin with some notation. An A/B/C/D/E queue means the following:

e A refers to the arrival process.

B refers to the service process.

C is the number of servers.

D is the maximum number of jobs for which the queue has room. The default value is
00.

E is the maximum number of jobs. The default value is co.

14



For example, the queue A/B/1 refers to a queue with arrival process denoted by A, service
process denoted by B, and having a single server. Since the fourth and fifth fields are not
specified, the default values are assumed for the waiting room and the maximum number of
jobs.

We denote by M a Poisson arrival process or an exponentially distributed service process;
by D a deterministic arrival or service process, and by G a general arrival or service process.
For example, the queue M/M/1 means that:

e Jobs arrive according to a Poisson process.
¢ The service time of each job is exponentially distributed.
e There is one server.

e There is infinite waiting room and no limit on the number of jobs.

Similarly, the queue M/G/1 means that:

Jobs arrive according to a Poisson process.

[

The service time of each job is generally distributed (that is, there is no restriction on
the form the service-time distribution may take).

There is one server.

There is infinite waiting room and no limit on the number of jobs.

and the queue M/D/1 means that:

Jobs arrive according to a Poisson process.

e The service time of each job is deterministic, that is, each job takes exactly the same
service time.

e There is one server.

There is infinite waiting room and no limit on the number of jobs.

We shall not go into how to analyze these queues, but content ourselves with pointing out
some basic formulas. If the mean arrival rate into a queue is A, the expected waiting time in

15



the queue, W, and the mean number of jobs in the queue, L, are related by Little’s Law?:
L=\w (1.53)

The Pollaczek-Khinchine (PK) formulas apply to M/G/1 queues. Let W*(s) and B*(s) denote
the Laplace transforms of the pdfs of the job waiting and service times, let the arrival rate
be A, and let the mean job service time be 7. Further, let N(z) = Y52, wiz%, where m; is the
probability of i jobs in the queue. N (z) is called the z-transform of m;, i = 0, 1, cdots. The PK
formulas are as follows:

N(z) = B*(x\—)\z)g*z;j)/\(i)—_zz (1.54)
W) = s—i\(:—_;\g)*(s) (1.55)

The Laplace and z transforms can be used to find the moments of the waiting time and number
in the queue. It is easy to show that if A*(s) is the Laplace transform of a pdf a(z), the n’th
moment of that pdf is given by

d"A*(s)
— n ——
)" —= o (1.56)
and if N(2) is the z-transform of the pmf of random variable X, given by
_ dN(2)
E[lX] = ol I (1.57)
E[X(X -1) = ¢*N(z) 1.58
B dz2 1 (1.58)

Equations 1.56 and 1.58 are easy to verify. We can use them to find an expression for the mean
waiting time in an M/G/1 queue:

W = 2—(—1—%/—\7) {7‘2 + af} (1.59)

2There are some types of queues which do not follow Little’s law, but these will not be encountered in this
volume.
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where o, is the standard deviation of the service time. The mean number in the queue is given
by

/\2+0§

L=Xr+_——178_
Tt = ar)

(1.60)

Equations 1.59 and 1.60 are also sometimes referred to as the Pollaczek-Khinchine formulas.

1.5 The Role of Analytical Performance Models

It is important to understand where analytical models can, and cannot, be used. To ensure
that they are tractable, almost all analytical performance models are approximate. Also, there
is often no way to tightly bound the accuracy of such models. That is, one cannot guarantee
that the real performance measure is within z% of that predicted by the model, for some finite
x%. Usually, the only way to assess the accuracy of the model is to run a few simulations and
compare the simulation and model outputs.

The approximate nature of performance models is often acceptable for two reasons. First,
the models themselves might be used to explore design alternatives, and it is sufficient to
have approximate estimates to correctly rank the alternatives. Second, it may be impossible
to accurately estimate the input parameters for the model. For example, we may have only
an approximate idea of the workload. In such cases, approximate estimates are all that is
theoretically possible.

If more accurate performance characterization is needed (and we have sufficiently accurate
workload information to make it possible), the designer must turn to simulation or experiments
on a prototype. Of course, one has to pay for the additional accuracy: writing simulation
models and developing prototypes are neither easy nor inexpensive tasks.

One should also realize that the quality of the output of a performance model depends
also on the quality of the input data, and on the appropriateness of the chosen performance
measure. No matter how good the model may be, it cannot be expected to give accurate
results if the input data are wrong or not representative of the workload that the system will
be subjected to in practice. Collecting representative workload data is critical to accurate
performance prediction.

The appropriateness of the performance measure is a more subtle factor than the accuracy
of the model or the representative nature of the input data, but is no less important. A good
performance measure will have the following characteristics:
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(a) The measure will be relevant or meaningful in the context of the application.
(b) The measure will allow an unambiguous comparison to be made between machines.
(c) It will be possible to develop models to estimate this performance measure.

(d) The model to estimate this performance measure will not be very difficult to collect or
estimate.

It is usually impossible to meet all four requirements. (c) and (d) are essential if the measure
is to be practically meaningful, and we try to do the best we can with respect to (a) and (b).

This introductory chapter contains one paper. This is an excellent survey of performance
evaluation techniques. In addition, the authors also discuss the gathering of workload data
and simulation techniques.

1.6 Suggestions for Further Reading

1. L. Kleinrock, Queuing Systems, Vols. 1 and 2, New York: Wiley, 1975 and 1976.

This is an excellent, if slightly dated, introduction to performance evaluation using
queuing theory. It is meant for readers with a fair background in probability theory,
and is highly recommended.

2. K.S. Trivedi, Probability & Statistics with Reliability, Queuing, and Computer Science Applica-
tions, Englewood Cliffs: Prentice-Hall, 1982.

This is a very good introduction to probability techniques used in performance
evaluation. It requires no prior knowledge of probability.

3. W. Feller, An Introduction to Probability Theory and its Applications, (2 vols.), New York: John
Wiley, 1968, 1971.

This book is a classic. Many regard this as the best book on probability theory they
have ever read. Not only does it provide an excellent introduction to probability theory,
but it includes a wealth of examples which illustrate the applicability of probability
to a wide range of fields.

4. D.E. Knuth, R.L. Graham, and O. Patasnik, Concrete Mathematics, Reading: Addison-Wesley,
1989.

This is a well-written book containing much of the mathematics that computer
scientists should know.
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Abstract — The quantitative evaluation of computer per-
formance is needed during the entire life cycle of a computer
system. We survey the major quantitative methods used in com-
puter performance evaluation, focusing on post-1970 devel-
opments and emphasizing trends and challenges. We divide the
methods used into three main areas, namely performance mea-
surement, analytic performance modeling, and simulation per-
formance modeling, which we survey in the three main sections of
the paper. Although we concentrate on the methods per se, rather
than on the resuits of applying the methods, numerous application
examples are cited. The methods to be covered have been applied
across the entire spectrum of computer systems from personal
computers to large mainframes and supercomputers, including
both centralized and distributed systems. The application of these
methods has certainly not decreased over the years and we antici-
pate their continued use as well as their enhancement when needed
to evaluate future systems.

Index Terms — Computer performance measurement, com-
puter performance modeling, computer workload character-
ization, discrete event simulation, queueing networks.

I. INTRODUCTION

ERFORMANCE is one of the key factors that needs to be

taken into account in the design, development, configu-
ration, and tuning of a computer system. Hence, the quanti-
tative evaluation of computer performance is required during
the entire life cycle of a system. (The evaluation of a com-
puter system can also involve such factors as function, ease
of use, cost, availability, reliability, serviceability, and secu-
rity but we will not consider these factors here.) In this paper
we will survey the major quantitative methods used in com-
puter performance evaluation. We will focus on post-1970
developments and emphasize trends and challenges for the
future. We will concentrate on the methods per se, rather than
on the results of applying the methods, but will also cite
numerous application examples. The methods to be covered
have been applied across the entire spectrum of computer
systems from personal computers to large mainframes and
supercomputers, including both centralized and distributed
systems. (Although the methods have also been applied in
evaluating the performance of communication networks, we
will not consider network performance evaluation.) The main
challenge to be faced in computer performance evaluation is
that the development of the required performance evaluation
methods keep pace with the explosion of new system designs
brought on by rapid technological advances.

Manuscript received March 7, 1984; revised August 8, 1984,
The authors are with the IBM T.J. Watson Research Center, Yorktown
Heights, NY 10598.

As we will see, a broad spectrum of skills is needed in
computer performance evaluation. The skills range from de-
signing and implementing measurement instrumentation to
mathematically analyzing queueing models of computer per-
formance. While computer performance evaluation is of
great practical importance to computer manufacturers and
computer installation managers, it is also an area of consid-
erable research activity both in industry and universities. The
number of recent books which deal with aspects of computer
performance evaluation attests to the interest in this area.
Recent books include [57],[611,[69],[110], [117],[127],
[163], and [197]. Computer performance evaluation papers
regularly appear in computer science journals as well as in
more practically oriented publications and there are journals
that are devoted exclusively to the topic (e.g., Performance
Evaluation). In addition there are regularly held conferences
devoted exclusively to computer performance evaluation in-
cluding the highly practical conferences sponsored by the
Computer Measurement Group, Inc. and the more research
oriented conferences sponsored by ACM SIGMETRICS and
by IFIP.

We have divided computer performance evaluation meth-
ods into three main areas, namely performance measurement,
analytic performance modeling, and simulation performance
modeling. We will survey these areas in the remaining three
sections of the paper. Performance measurement is possible
once a system is built, has been instrumented, and is running.
However, modeling is required in order to otherwise predict
performance. Performance modeling is widely used not only
during design and development, but also for configuration
and capacity planning purposes. Performance models span
the range from simple analytically tractable queueing models
to very detailed trace driven simulation models. One of the
principle benefits of performance modeling, in addition
to the quantitative predictions obtained, is the insight into the
structure and behavior of a system that is obtained by de-
veloping a model. This can be particularly valuable during
system design and can result in the early discovery and
correction of design flaws. Finally, it is common that
performance measurement and both analytic and simulation
performance models are used during the life cycle of a sys-
tem. As more information about the design of a system be-
comes available, more detailed models can be developed.
Once the system can be measured, previously developed
models can be validated and modified if necessary. The
models can then be used with greater confidence to investi-
gate the performance effects of design enhancements and
configuration changes.

Reprinted from /EEE Trans. Computer_s, Vol. C-33, No. 12, Dec. 1984, pp. 1195-1220. Copyright © 1984 by The Institute of
Electrical and Electronics Engineers, Inc. All rights reserved.
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1I. PERFORMANCE MEASUREMENT

A. Introduction

The measurement of system performance is of great prac-
tical importance to computer installation managers and to
computer manufacturers. For example, in order to effectively
manage a computer installation performance measurement is
required to do the following.

1) Identify current performance problems and correct
them, e.g., by tuning or workload balancing.

2) To identify potential future performance problems
and prevent them, e.g., by upgrading system resources in a
timely manner.

These measurement activities are typically carried out in
an uncontrolled live user environment. Computer manu-
facturers typically measure performance in a controlled envi-
ronment using benchmarks which may be real workloads or
synthetic executable workloads. For interactive systems re-
mote terminal emulators are commonly used to provide a
reasonable approximation of an interactive environment. The
purposes of a computer manufacturer’s measurement activi-
ties include assessing the performance of a new system as
soon as a prototype is running, providing performance data
for competitive bidding, and helping customers configure
their systems to meet performance objectives.

Performance measurement is also a fundamental part of
research activities conducted at universities and elsewhere in
which new system designs are not simply proposed or studied
on paper but are implemented, tested, and studied empiri-
cally. An early example of a system that was heavily instru-
mented for performance measurement as part of research
activities is the Multics system, an advanced (for its time)
time sharing operating system developed at the Massachu-
setts Institute of Technology in the 1960’s [157]. Other early
examples are the C.mmp multiprocessor system developed at
Carnegie-Mellon University in the 1970’s [65], {100], and the
PRIME multiprocessor system developed at Berkeley in the
1970’s [56]. More recent examples are the Cm* multi-
processor system developed at Carnegie-Mellon University
starting in the 1970’s [67], [173], and the Erlangen General
Purpose Array currently being developed at the University of
Erlangen-Nurnberg [64]. The increasing support for experi-
mental computer science at universities will increase the re-
search use of performance measurement.

Another use of performance measurement is to obtain input
parameter values for and to validate performance models. A
discussion of such performance measurement in the context
of analytical queueing network models can be found in [156]
and in the context of a trace driven simulation model of
C.mmp in [134].

The advantage of performance measurement over perfor-
mance modeling is, of course, that the performance of the
real system is obtained rather than the performance of a mod-
el of the system. Interactions may be present in a system that
affect performance and are difficult to capture in a model. If
they can be captured, say in a very detailed simulation model,
the model may take extremely long to program and run. An
example illustrating this is a recent paper on cache per-
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formance [42] where measured cache hit ratios differed con-
siderably from those in comparable trace driven simulation
studies due to such effects as operating system references,
task switching, and instruction prefetching which are not
normally represented in simulation studies of cache per-
formance. Among the disadvantages of performance mea-
surement are the need for a running system, not just a design,
the measurement instrumentation required, the need for a
dedicated system if controlled measurements are to be taken,
the time consumed to set up and make a measurement run,
and the difficulty of modifying the system so that the effect
of system changes can be studied.

A method that has recently been used to evaluate per-
formance that lies somewhere between system measurement
and detailed simulation modeling is virtual machine emu-
lation. A virtual machine is an execution environment that is
functionally the same as a target system other than the actual
physical system on which the environment runs. One use of
virtual machines is to do functional prototyping. Although
the functional properties of the target system are maintained,
real-time properties and hence performance are not. IBM’s
VM/370 control program supports multiple virtual machines
on a single physical system. Canon et al. [31] describe an
enhancement to VM/370 that adds timing simulation via a
virtual clock in order to closely approximate the real-time
properties of a target system. The user specifies the processor
and I/O device timing characteristics of the target system.
Executable workloads can be run on the emulated system and
performance measured. Virtual machine emulation does not
exactly reproduce the performance of the target machine
since the timing characteristics of the target machine’s de-
vices are only approximated. For more detail and validation
results see [31] and for a discussion in the context of emu-
lating distributed systems and networks see [202]. Emulation
capabilities are not widely available and this approach, while
interesting, does not appear to be widely used.

Numerous measurement studies have been reported on in
the literature although their number is dwarfed by the number
of analytic or simulation modeling studies. For example,
Schwetman and Browne [172] reported on experiments on a
large multiprogrammed computer system at the University of
Texas. The experiments were conducted in a controlled envi-
ronment using an artificial batch workload and had the pur-
pose of studying the variations in performance produced by
changes in resource availability and scheduling. Recent ex-
amples include measurement studies of the speedup achieved
when running algorithms on a multiprocessor [67]. per-
formance enhancements to a relational database system
{188], cache performance of a minicomputer [42], the per-
formance of a new virtual memory management technique
{146], the computational speed of supercomputers [26], the
degree of parallelism achieved by a processor array [64], and
the paging characteristics of a virtual memory system for
an object oriented personal computer [15). In addition to
measurements aimed at evaluating some aspect of system
performance, the measurement of program performance has
received considerable attention. The importance of mea-
suring program performance was demonstrated in [ 108]. It is



particularly important for programs written in very high level
languages where there is no simple mapping between source
code and machine operations so that performance is difficult
to predict. This point is discussed and illustrated in detail in
[46]. Our concern, however, will be aspects of system perfor-
mance rather than program performance.

The focus of the remainder of this section is not on the
applications of performance measurement but rather on the
methods and tools that are used in performance mea-
surement. The measurement of new systems often requires
new tools and techniques as we will see. The topics we will
cover are measurement instrumentation, workload character-
ization, and statistical aspects of performance measurement
including design of experiments and analysis of results.

B. Instrumentation

We will review some of the principles of measurement
instrumentation, present an early important example, and
then several recent examples that illustrate trends and chal-
lenges. A thorough discussion of measurement instrumen-
tation principles can be found in [57, chapter 2] and in [6],
chapter 5].

The basic means of instrumenting a system for per-
formance measurement purposes are hardware probes and
software (or microcode) probes. Hardware probes are high-
impedance electrical probes that are connected to the hard-
ware device being measured. They can be used to sense the
state of hardware components of the system, e.g., registers,
memory locations, and data transfer paths. The term hard-
ware monitor refers to a measurement device that uses hard-
ware probes. A hardware monitor is typically external to the
measured system and does not interfere with the measured
system or alter its performance. The sensed signals can be
combined in order to sense more complex states than those
measured directly. The resulting signals together with the
output of a real-time clock can be processed to detect events
(state changes) of interest which can then be counted or
recorded as a trace (time stamped sequence of events). In
addition, times between events can be obtained by counting
clock pulses between events. Hardware monitors are com-
monly implemented using both high-speed hardwired logic
and slower speed stored program logic. A mini- or micro-
computer may interface with the monitor to set up and control
a measurement session and reduce, analyze, and display the
collected data. Hardware monitors usually do not have access
to software related information such as which process caused
an event, although there are exceptions as discussed later in
the examples. This is a disadvantage of hardware monitors
along with their cost and often their lack of ease of use.

Software probes are instructions added to the measured
system (i.e., to the operating system or to application pro-
grams) to gather performance data. They may gather data by
reading memory locations or otherwise sensing status. A
measurement device that uses software probes is called a
software monitor. (Microcode probes may also be used.)
Since the monitor’s instructions run on the measured system
and hence use system resources they alter, possibly signifi-
cantly, the performance of the system. In some cases this
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effect is straightforward to compensate for, e.g., by sub-
tracting out the CPU utilization and other resource usage due
to the monitor, but in other cases it may not be. Thus, soft-
ware monitors produce performance estimates that may differ
from the true performance of the system running without the
monitor.

A software monitor can be either event driven or timer
driven or both. In event driven monitoring the probes detect
events, e.g., instruction executions, storage accesses, 1/O
interrupts, and then collect data. In timer driven monitoring
data are collected (sampled) at specified time instants. This
sampling is typically accomplished by generating interrupts
based on a hardware clock or interval timer and then passing
control to a data collection routine. Sampling typically re-
quires less code and that code is executed less frequently
than event driven monitoring. Hence., it interferes less with
the measured system. However, sampling introduces addi-
tional errors in the performance estimates since status is only
sampled periodically. These sampling errors can be decreased
by increasing the sampling frequency, and hence the inter-
ference. Other errors can occur using sampling if care is not
taken. For example, if certain system routines are not inter-
ruptable then their contribution to CPU utilization will not be
measurable by sampling as described above. Hardware moni-
tors need not produce true performance values either, e.g.,
due to the resolution of the real-time clock (see [61,
chapter 5]). However, they are typically much more accurate
than software monitors. It is therefore important that the
accuracy of a software monitor be tested, perhaps by com-
paring its measurements to those of a hardware monitor. One
such study of accuracy and methods for correcting the soft-
ware measurements can be found in [19].

It is possible to combine the advantages of hardware moni-
tors (speed and accuracy) with those of software monitors
(flexibility and easy access to software related data) by judi-
ciously combining hardware and software probes in a so-
called hybrid monitor, examples of which will be given
below. The software causes of hardware events can be readily
measured with a hybrid monitor.

An early important example of measurement instrumenta-
tion was that done for the Multics system at the Massachu-
setts Institute of Technology [157]. Multics was an innovative
multiprogrammed time sharing operating system that sup-
ported multiprocessing, demand paging, and sharing, among
other features. Measurement instrumentation was integrated
into the system at the early design phase and software probes
were an integral part of the operating system. Measurement
was directed towards a detailed understanding of operating
system performance and was very successful in revealing
unsuspected performance problems. The hardware (GE 645)
on which Multics ran provided features that were exploited
by the measurement facilities. These hardware features were
a program readable clock and program loadable clock com-
parison register for generating timer interrupts, a memory
cycle counter for each processor, and an externally drivable
1/0 channel via which a separate computer could externally
monitor memory contents. The many software monitor facili-
ties that were implemented are discussed in detail in [157].



Included were timer and counter facilities for selectable
operating system modules and limited tracing facilities. The
performance interference caused by these facilities was found
to be acceptably small. A remote terminal emulator was
implemented to simulate interactive users but due to physical
limitations the number of simulated users was small. There-
fore, an internal driver was also implemented to generate
heavier loads. Real-time graphical displays of performance
were generated using the separate computer that served as an
external monitor.

We next briefly discuss recent examples of monitors that
illustrate trends in this area. Each monitor is described in
detail in the references that are given. DIAMOND [90] is a
hybrid monitor developed by DEC for internal use. Hardware
probes sense the program counter, the CPU mode, channel
and /O device activity, and a system assigned task id which
is contained in a special register. A software probe senses the
user’s id which is also contained in a special purpose register.
All sensed signals are buffered in a digital interface and then
analyzed by a microcoded machine to obtain traces and histo-
grams of various kinds. A separate minicomputer controls the
measurement. Emphasis was placed on ease of use. There is
a natural language interface with interactive dialogs for new
users. The interface facilitates the set up of a measurement
session, replication of experiments, maintenance of a mea-
surement log, and report preparation.

XRAY [14] is a low overhead event and timer driven
software monitor developed by TANDEM for networks of
TANDEM/16 computer systems. It is integrated into the
GUARDIAN network operating system. Networkwide mea-
surements are controlled from a single node with data col-
lected and analyzed locally at each node. The emphasis is on
measuring hardware utilizations and access rates, both in
total and the contributions by specified processes. Counters
are employed that are incremented using microcoded in-
structions in order to keep the overhead low. The counters are
periodically written to files. The primary use of the monitor
is for bottleneck detection. A language is provided for the
selection of hardware components and processes to be mea-
sured and this selection can be changed online while data are
being collected. The language also facilitates browsing
through the data and real-time displays are provided. There
is no time synchronization between nodes so that typically no
attempt is made to correlate data from different nodes,

A hybrid monitor was developed by Olivetti for its S6000,
a single-bus architecture minicomputer, and similar ma-
chines [60]. Data are captured by hardware probing of the
bus’s address and data lines. Additional general hardware
probes were provided as well as a clock pulse signal from the
measured system. Low overhead software probes were in-
serted in the operating system. Event traces, event counts,
and times between events were obtained from the measured
signals using hardwired logic. However, this processing is
controlled via the contents of registers that are loadable
by the user via a controlling minicomputer. This separate
computer both controls the measurements and analyzes the
results.

The Erlangen General Purpose Array is a tightly coupled

23

hierarchically organized multiprocessor being developed at
the University of Erlangen-Nurnberg. It is an extensible array
of elementary “pyramids,” each pyramid consisting of a top
control processor and four bottom working processors. The
control processor is multiprogrammed and the working pro-
cessors can execute in parallel on behalf of one program at a
time. Both hardware and software monitors were imple-
mented to study in detail the dynamic behavior of the paral-
lelism achieved by the system as well as more traditional
performance measures {64],[86]. The hardware monitor,
Zahlmonitor I11, records event traces as well as event counts
and elapsed times. Software events can be measured by prob-
ing a register that contains system assigned process numbers,
as well as by other hardware means. The trace for a single
processor consists of a time ordered sequence of the pairs
(process executing, execution time). The asynchronous
traces from the different processors are merged by the hard-
ware into a single well-ordered trace. (So far measurements
have been reported for only a single pyramid.) Such detailed
trace information has been used, for example, to compare dif-
ferent methods of process synchronization {64]. Traces of
I/0 activity are also obtained and can be related to the
processor traces. In addition to the hardwired logic used to
implement the above functions a minicomputer is used to
control the measurements, analyze the traces, and provide
graphical displays. A software monitor for tracing software
events on each processor was also implemented and graphical
methods were developed for dynamically displaying parallel
activities.

A general trend is illustrated by these examples. In terms
of applications the measurement of multiple processor sys-
tems, ranging from tightly coupled to geographically distrib-
uted systems, is of increasing interest. In order to understand
the complex interactions that occur in such systems when
they run parallel or distributed programs and the effect of
these interactions on performance, special instrumentation
will be required. Flexible and easy to use monitors, either
hardware monitors that can access software related data,
hybrid monitors, or low overhead software monitors, are fun-
damental tools that will aid in gaining this understanding.
Hardware and hybrid monitors are being made flexible and
easy to use by the use of a controlling computer that provides
a user friendly interface including real-time graphics ca-
pabilities for displaying measurement results. A further
discussion of using a separate computer for controlling dis-
tributed system experiments can be found in [63], which
includes a description of a distributed system experimental
testbed developed at Honeywell.

C. Workload Characterization

The performance of a system obviously depends heavily on
the demand for hardware and (application and system) soft-
ware resources of the workload being processed. Therefore,
the quantitative characterization of the resource demands of
workloads is an important part of computer performance
evaluation studies. This is true for both measurement and



modeling studies. Workload characterization provides a ba-
sis for constructing representative synthetic executable
workloads to drive a system being measured or for obtaining
representative parameter values for analytic or simulation
performance models. A comprehensive discussion of work-
load characterization can be found in [61, chapter 2]. We will
focus on methods used to characterize workloads for per-
formance measurement studies. However, much of what we
will say is also applicable to workload characterization for
analytic or simulation models.

We can distinguish three types of workloads suitable for
performance measurement studies, namely, live workloads,
executable workloads consisting of portions of real work-
loads, and synthetic executable workloads. By live work-
loads we mean real workloads generated and executed in a
live user environment. Live workloads are not suitable for
controlled and reproducible measurement experiments and
will not be considered here. The other two types of workloads
are not executed in a live user environment. They are gener-
ated and submitted for execution using a program called a
driver that simulates a live user environment. A driver that
runs external to the system being measured and simulates
interactive users is called a remote terminal emulator. Re-
mote terminal emulators have been used for many years in
performance measurement studies. A portion of a real inter-
active workload that is suitable for driving an interactive
system using a remote terminal emulator can be obtained by
tracing the sequences of think times and commands generated
by each user logged on to a system as the system executes.
However, traces can be expensive to obtain and store and are
not flexible in terms of the workload characteristics they
represent. Synthetic executable workloads have the advan-
tage that they can be made parametric and hence flexible in
representing workload characteristics. For example, parame-
ters can control the amount of computation a program does
and the number of files and records it reads or writes. They
have the disadvantage of possible lack of realism, i.e., they
may not adequately represent features of real workloads that
can significantly affect system performance.

We next summarize the steps that comprise a common
approach to characterizing an existing real workload. Exam-
ples of workload characterization studies in which several,
if not all, of these steps are applied can be found in [1},[3],
[18],[61, chapter 2], [75]1,[76], (130}, [174], and [184]. If a
system has a mixed workload, e.g., batch, interactive. and
database, then this approach can be applied separately to each
such distinct part of the workload. The five steps that comprise
this approach are as follows.

1) Selection of the workload component to be character-
ized. For example, when characterizing a batch workload the
component may be a job or a job step, when characterizing an
interactive workload it may be a session, a sequence of com-
mands or a single command, and when characterizing a data-
base workload it may be a transaction.

2) Selection of the features (parameters) used to character-
ize a component. The features may be hardware resource
demands [1], [3], e.g., processor instructions or time, mem-
ory space used, number of 1/O’s to various devices, or soft-
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ware resource demands [75], [76], e.g., number of calls to
compilers, editors, file handlers. An advantage of using
hardware resource features is that hardware resource de-
mands directly impact system performance. An advantage of
using software resource features is that the resulting charac-
terization may be more system independent.

3) Workload measurement. The real workload is mea-
sured while executing to obtain the feature values for each
measured workload component. Typically, data are obtained
for a large number of components. For example, mea-
surements collected over a period of a month or more yielded
data on over 10000 job steps in the studies reported on in
[3],[174]. The result is a large collection of multivariate
data.

4) Exploratory data analysis. In this step empirical distri-
butions and sample moments of each of the features may be
obtained. In order to obtain comparable ranges for feature
values, features with highly skewed distributions may be
transformed, e.g., by taking the log of the values. Com-
ponents having feature values that are outliers may be deleted
and different features may be scaled to lie in a common
interval. The deletion of outliers requires great care since
outliers may have very large resource demands and hence
strongly influence system performance. Transformations
and/or scaling are often applied to the data if the next step
is performed.

5) Cluster analysis. The measured components (perhaps
after transformation and/or scaling), or a random sample of
the measured components, are partitioned into clusters such
that components in the same cluster have similar feature
values. The purpose is to treat all components in a cluster as
being effectively identical so that a compact workload char-
acterization can be obtained. For example, in studying work-
loads from over 100 systems Artis [3] found that in each case
many thousands of job steps could be partitioned into
15-20 clusters based on eight hardware resource oriented
features. Cluster analysis was originally developed in the
context of biological taxonomy and has been applied in a
wide variety of disciplines. A large number of clustering
algorithms exist (e.g., [78],[143]). The algorithms most
commonly applied to workload characterization are variants
of the K-means (also called nearest centroid) algorithm. The
basic algorithm and some of its variants are presented in
[78, chapter 4]. The basic algorithm partitions the components
into a specified number of clusters in order to locally minimize
the partition error, defined to be the sum over all components
of the Euclidean distance between a component and the cen-
troid (center of mass) of the cluster to which it has been
assigned. An initial partition is chosen and components are
moved one at time between clusters in order to reduce the
partition error until a local minimum is achieved. Criteria for
choosing the number of clusters are presented in [78]. Vari-
ants applied to workload characterization can be found in
[11, (3], [174]. Issues in applying cluster analysis to work-
load characterization are discussed in [2], [61, chapter 2].

It is possible to construct synthetic executable workloads
based on the above type of workload characterization. The
components of the synthetic workload can be parameterized



and the parameter values chosen to match the feature values
of a cluster, specified for example by the cluster’s centroid.
An interesting example of this is given in [3] where the
clusters also provide a basis for workload forecasting. Re-
ports on the construction and use of parametric workloads can
also be found in [172], [184]. (Cluster analysis was not used
in these studies and representative feature values were ob-
tained by sampling.) Unfortunately, most papers on work-
load characterization using cluster analysis do not report on
the actual construction and use of parametric workloads and
it is not clear how widely this is done.

Most workload characterization studies have used hard-
ware oriented features. In [75] and [76], software resource
demands were used instead. The workload component was an
interactive job (sequence of tasks) and seven software re-
source demands were used to characterize each component.
After clustering was performed the sequence of software re-
sources used by each job in a cluster was modeled by an
absorbing Markov chain. The purpose was to obtain a more
realistic workload model than one which assumes that suc-
cessive resource demands are statistically independent. The
data indicated that the Markov chain had to be either
nonhomogeneous or higher than first order (i.e., the current
resource demand depends on the past several resource de-
mands) in order to provide a statistically adequate model.
(Details of the statistical tests used are given in [76].)

The type of workload characterization we have described
also provides a basis for determining representative parame-
ter values for analytic and simulation performance models.
For example, cluster analysis can be used to determine the
job classes to be used in a product form queueing network
model (see Section II1) and to assign representative values to
the mean service demands in the model. (Only the means of
the service demands affect the performance of such models.)
The number of jobs in each class in the model can be chosen
to be proportional to the number of jobs in each cluster. If
service demand distributions were needed, e.g., for non-
product form models or simulation models, they could be
obtained from the empirical distributions of the feature val-
ues within each cluster.

One of the main challenges in workload characterization is
to develop synthetic executable workloads that yield approxi-
mately the same system performance as the real workloads
they represent. Despite considerable activity in workload
characterization there is little published evidence of success
in this regard. An approach in which workload components
are directly characterized by the system performance they
yield rather then by their resource demands is described in
[58], [61, chapter 2]. Although this approach may prove suc-
cessful in meeting the above challenge it yields a highly
system dependent workload characterization. Issues related
to the adequacy of resource demand oriented workload char-
acterizations are discussed in [59] where queueing network
models are used to show that simple characterizations can
yield the same model performance as more complex ones.
Most workload characterization has involved batch and to a
lesser extent interactive workloads. Therefore, a key area
that needs to be addressed is characterization of database
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workloads. Another challenge is to develop synthetic exe-
cutable workloads to drive new systems when relevant real
workloads are nonexistent. This is the case for multi-
processor systems that support parallel processing and for
distributed systems. A facility to generate synthetic exe-
cutable workloads for the Cm* multiprocessor system is
described in [178). A high-level language is provided for
representing a synthetic parallel program as a type of data
flow graph. The processing activities specified by the nodes
of the graph are realized using a library of system specific
routines. There is clearly a continuing need for synthetic
workload generation in the performance evaluation of new
systems.

D. Statistical Methods

It is important that sound experimental methods be em-
ployed in performance measurement studies. The purpose of
a study should be clearly formulated, the measurement ex-
periments should be carefully designed, and the resulting
data should be carefully analyzed so that meaningful conclu-
sions can be made. This is true whether measurement is done
in a live user environment or in a controlled environment.
While common sense can play an important role in this re-
gard, so can statistical methods. Statistical methods have
been discussed in some detail in performance evaluation
books, e.g., [57, chapter 2], [110, chapter 5], and articles
written for the performance evaluation community, e.g.,
[9].[166]. Application examples are discussed in these books
and articles. We will first discuss the random nature of per-
formance measurement data and will advocate that con-
fidence intervals be obtained in order to account for this
randomness when producing performance estimates. We will
then discuss regression analysis and statistical design of ex-
periments and representative applications of these methods.
We will conclude with a discussion of why these two methods
have rarely been used in performance measurement studies.

1) The Random Nature of Measurement Data: Random
fluctuations are often present in performance measurement
data. This is the case when synthetic executable workloads
are at least in part probabilistically generated. For example,
successive think times and successive command types may be
probabilistically chosen when generating a synthetic inter-
active workload. Even without this obvious source of ran-
domness, repetitions of a measurement session can yield
nonidentical data due to factors that are uncontrollable or too
difficult to control from session to session. Such data can also
be considered to fluctuate randomly. This is the case when
measurement is conducted in a live user environment due to
the uncontrolled nature of the workload. Therefore, a mea-
sured data sequence, e.g., a sequence of measured response
times, should be viewed as a random sequence. Any per-
formance estimate produced from such a sequence, e.g., the
sample average, should be viewed as a random variable. The
same situation arises in discrete event simulation when a
probabilistic model is simulated. Many methods have been
developed for statistically analyzing simulation outputs,
e.g., see Section IV-B of this paper and [117, chapter 6].
Typically, the methods are used to obtain confidence in-



tervals in addition to point estimates. (The definition of a
confidence interval is given in Section IV-B.) Confidence
intervals should also be obtained when dealing with system
measurements, particularly when synthetic probabilistic
workloads are used. In practice they very rarely are.

An application to a performance measurement study of a
broadly applicable method for obtaining confidence intervals
that was originally developed for simulation output analysis
can be found in [85]. The method was applied to estimating
steady state characteristics of transaction response time se-
quences in a database system. Measurement was done in a
controlled environment using synthetic workloads with
probabilistically selected transaction types and transaction
arrival times. Confidence intervals for the mean response
time and for quantiles of the response time distribution were
obtained at several transaction rates for two system variants
and used to compare the two variants. The method used,
called the spectral method (see Section 1V-B), obtains a con-
fidence interval for a steady state parameter from a single
output sequence, i.e., repeated measurement sessions are not
necessary. The method is broadly applicable since it makes
only weak probabilistic assumptions about an output se-
quence. For example, it does not assume members of the
sequence are independent or normally distributed. An alter-
native broadly applicable method of obtaining confidence
intervals is independent replications which requires statisti-
cally independent and identical repetitions of a measurement
session. While this is feasible when synthetic proba-
bilistically generated workloads are used, it may not be pos-
sible in a live user environment.

2) Regression Analysis: Regression analysis can be used
to approximate the functional dependence of one or more
variables (called dependent variables) on another collection
of variables (called independent variables). The approximate
functional relationship can then be used to predict values of
the dependent variables from values of the independent vari-
ables. Each dependent variable is expressed as a postulated
function of the independent variables and a collection of
parameters plus a random error term. While the form of the
function is assumed known, the parameter values are not.
Usually, a linear relationship is postulated (linear re-
gression), i.e.,

y=a t+tax + - +ax +e 2.1
where y is a dependent variable, x;’s are the independent
variables, a;’s are the parameters, and ¢ is the random error.
The parameter values are estimated from n observed values of
all the variables. i.e.. from v, .x,;.* - . x.i = .-+, n. and
an informal measure of goodness of fit is obtained. If the errors
for different observations are assumed to be independent and
normally distributed with zero mean and identical variances
then confidence intervals for the parameters can be obtained
and formal statistical tests of goodness of fit can be applied.
Details and further discussion can be found in the concise
presentations in [9), [110, chapter 5|. and in standard texts on
regression analysis, e.g.. [50]. In an example due to Bard [6].
which is discussed in [9], the CPU time consumed by an
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operating system (the dependent variable) is linearly related
to the number of calls to certain operating system services
(the independent variables). The parameters have a physical
interpretation, i.e., they are the CPU times per call for each
of the services represented. These overhead parameters could
not readily be measured but the number of operating sys-
tem calls of each type and the total operating system CPU
time could be measured. Estimates for the overheads were
obtained using linear regression. A subsequent study [10]
revealed inadequacies in this linear model which were cor-
rected to some degree. This illustrates that the application of
statistical methods may not be straightforward.

3) Design of Experiments: Statistical design of experi-
ments is used to design experiments whose purpose is to esti-
mate the effects of multiple controllable factors on measured
responses. Separate sets of measurements are made with
the factors set at different specified levels. A key aspect of
the designs is that the factors are varied simultaneously
rather than one at a time in order to facilitate estimating the
effects of interactions between the factors. Typically, a linear
model with additive random error is used to approximate the
relationship between a measured response and the effects of
the factors. For example, for a two-factor experiment where
factor 1 has I levels and factor 2 has J levels, the linear
model would be

yi=m+a +b +c; +¢; (2.2)
where m is the overall mean, and for factor 1 at level i and
factor 2 at level j, y; is the measured response, a; is the main
effect of factor 1, b; is the main effect of factor 2, ¢; is the
interaction effect of factors 1 and 2, and ¢, is the error term.
The errors for measurements at different levels are assumed
to be independent random variables with zero mean and iden-
tical but unknown variances. If measurements are obtained
for all combinations of the factor levels the experiment is
called a full factorial experiment. The measured responses at
the different combinations of factor levels (including, if pos-
sible, replicated measurements at each combination) are used
to estimate the overall mean and the main and interaction
effects in the linear model. A technique called analysis of
variance is used to determine the significance of the effects.
If the errors are assumed to be normally distributed then
formal statistical tests can be applied. If the number of factors
and levels is so large that a full factorial experiment is too
costly then a fractional factorial experiment can be con-
ducted. In such an experiment measurements are obtained for
only certain combinations of factor levels. Although all inter-
action effects cannot be estimated with fractional experi-
ments, all main effects and some interactive effects can be.
More detail on design of experiments can be found in [110,
chapter 5], [166], [197, chapter 11], and in standard texts on
design of experiments, e.g., [20], [43].

An often cited application of design of experiments to
performance measurement studies can be found in [198],
[199]. (The first paper reports on the application and con-
clusions while the second describes the statistical methods
used.) The effects of four factors (e.g.. paging algorithm,



main memory size) on various measures of paging per-
formance were estimated by varying each factor at three
levels using a full factorial design resulting in 81 different
combinations of factor levels. For one performance measure
the conclusion was that three main effects and one interaction
effect predominated. Bard and Schatzoff [9] discussed this
example and showed that the same conclusions could have
been obtained with a fractional factorial design using only
16 combinations instead of 81.

The above experiments were performed in a controlled
environment. An application in a live environment due to
Margolin etal. [131] is discussed in [9]. The purpose was
to compare the effects on performance of two different
free storage management algorithms. Measurements were
taken on eight days in two consecutive weeks (Mondays—
Thursdays only). Rather than run algorithm A the first week
and algorithm B the second week the algorithms were as-
signed to days so that each algorithm was run twice each
week and once on each of the corresponding days of the
weeks. The purpose was to eliminate as much as possible
the otherwise uncontrollable effects of day of the week
and week-to-week workload variations. Clearly, this is
good common sense and formal methods are not necessary to
arrive at this design. Bard and Schatzoff [9] give a formal
description of the design as well as the analysis of variance
results. It turned out that the effects of day and week were so
small and of algorithm so large that the careful design was not
required. However, in other cases it might be.

An interesting application of design of experiments to
simulation model validation is given in [167]. Identical multi-
factor experiments were carried out for performance mea-
surements of a system and for a trace driven simulation model
of the system. The criterion for model validity was that the
same significant effects be identified from both experiments.

4) Conclusion: The application of regression analysis
and statistical design of experiments to performance mea-
surement studies has been rare. This was noted by Grenander
and Tsao [74], who tried to motivate their increased use, and
it remains true today. While their lack of use may be due to
lack of familiarity with these methods by performance ana-
lysts, it is also true that these methods are not straightforward
to apply in performance measurement studies. This is partly
because they are based on assumptions about the data, e.g.,
independent errors with common means and variances, that
may be far from true for performance data. Also, there is
typically a large number of variables that can affect per-
formance and their effect may be more complex than can be
explained by standard statistical models. Published work on
the application of regression analysis and statistical design of
experiments in performance measurement studies indicates
that successful application of the methods requires the in-
volvement of both experienced applied statisticians and expe-
rienced computer performance analysts. It is rare that both
skills reside in one person. Nonetheless, by carefully ap-
plying these methods more meaningful conclusions can be
drawn from performance measurement studies than would
otherwise be possible. Therefore, we recommend their in-
creased use in such studies.
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III. ANALYTIC PERFORMANCE MODELING

Computer systems can generally be characterized as con-
sisting of a set of both hardware and software resources and
a set of tasks, or jobs, competing for and accessing those
resources. Examples of hardware resources include main
memory and devices such as CPU’s, channels, disks, tape
drives, control units, and terminals. An example of a soft-
ware resource is a lock for a database item. Because there are
multiple jobs competing for a limited number of resources,
queues for the resources are inevitable and with these queues
come delays.

It is therefore natural to represent, or model, the system by
a network of interconnected queues. The purpose of the
model is to predict the performance of the system by esti-
mating characteristics of the resource utilizations, the queue
lengths and the queueing delays. Analytic performance
models are queueing network models for which these charac-
teristics may be found mathematically (or analytically).
Therefore, research in performance modeling methodology
has essentially been research in queueing theory. Key ad-
vances in computer performance modeling have also been
seen as fundamental breakthroughs in queueing theory.
Queueing theory has attained new relevance because of the
computer performance modeling application. Furthermore,
to a great extent, the direction of queueing theory has been
influenced and driven by this application.

Queues are also inevitable in communications systems and
a closely related topic is performance evaluation of commu-
nications systems. Indeed, the telephone system provided
motivation for the earliest work on queueing theory [54].
Communications systems consist of messages accessing
hardware resources such as switches, channels, buffers, and
computers. Software resources in a communications system
result from the system’s communications protocols. Such a
software resource might be a message passing token in a ring
network or a limit on the number of messages on a route
imposed by a window flow control scheme. The distinction
between computer and communications systems is dimin-
ishing. However, the focus of this paper is on computer
systems. Analytic models have also had substantial impact in
performance evaluation of communications systems (e.g.,
[106], [107], [170]).

In this section we will give an overview of the role of
analytic modeling in computer performance evaluation and
highlight the major methodological advances that have taken
place over the last decade. These advances are threefold.

1) Identification of a broad class of models, called prod-
uct form queueing networks, having a mathematically trac-
table solution.

2) Development of computationally efficient and numeri-
cally stable algorithms for product form queueing networks.

3) Development of accurate and computationally efficient
algorithms to approximate the solution of large product form
queueing networks and queueing networks that do not fall
into the product form class.

We will close the section by indicating what we believe are
the key challenges which performance modeling and queue-
ing theory must meet in order to maintain relevance in com-



puter science throughout the next decade.

A. The Role of Analytic Models

Analytic performance modeling has become widely ac-
cepted as being a cost effective evaluation technique for esti-
mating the performance of computer systems. Analytic
models are cost effective because they are based on efficient
solutions to mathematical equations. However, in order for
these equations to have a tractable solution, certain sim-
plifying assumptions must be made regarding the structure
and behavior of the queueing network model. As a result,
analytic models cannot capture all of the detail that can be
built into simulation models. Nevertheless, for many types
of systems the key resources and workload requirements can
be analytically modeled with sufficient realism to provide
insight into the bottlenecks and key parameters affecting
system performance. It is generally thought that carefully
constructed analytic models can provide estimates of average
job throughputs and device utilizations to within 10 percent
accuracy and estimates of average response time to within
30 percent accuracy [127, p. 14]. We cite three areas where
this level of accuracy is usually considered sufficent and
where analytic models have had substantial impact, namely
capacity planning, I/O subsystem performance evalua-
tion, and as a preliminary design aid in development of
new systems.

1) Capacity Planning: Analytic models play a key role in
capacity planning. Capacity planning is the process of deter-
mining future computing system hardware needs based on
projections of the growth in the workload and hence in the
demand for processing power, memory space, and 1/O activ-
ity. Capacity planning generally consists of three steps.

1) Measurement and data reduction of the current system.

2) Construction and validation of a queueing model of the
current system.

3) Extending the model to incorporate new devices and
running the model against projected future workloads.

The system is parameterized by key factors such as the
speeds and numbers of the CPU'’s, disks, and channels and
the size of main memory (which affects paging rates). The
rate of transactions arriving to the system (or the number of
users and the users’ think times) and the transaction workload
requirements are also parameters of the model. The key pa-
rameters are varied until a configuration meeting both the
cost and performance objectives of the organization is deter-
mined. Because the queueing models can be solved effi-
ciently, a large number of model runs can be made allowing
a thorough search of the parameter space. Due to the uncer-
tainties in future workloads, the accuracy of the queueing
model is more than sufficient for this purpose.

There are a number of commercial capacity planning pack-
ages currently available including BEST/1 (from BGS Sys-
tems) for IBM MVS systems [29] and the VM Performance
Planning Facility (from IBM) for IBM VM systems (based on
a model described in [7]). In addition to a queueing compo-
nent, these packages both contain interfaces to measurement
facilities and data reduction capabilities.
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2) 1/O Subsystem Modeling: Because of the vast differ-
ence between 1/O access times and main memory access
times, 1/0 subsystem performance has become a dominant
factor affecting overall system performance. This is expected
to continue in the future as processors and main memories
become faster whereas access times for mechanically acti-
vated disks are not expected to decline much further. Memory
hierarchies have been constructed to mask this speed differ-
ence and I/0 subsystems have been constructed to get the best
possible performance out of the memory hierarchy.

Analytic models are widely used to predict the per-
formance of I/O subsystems. They have been successfully
used to analyze the performance of proposed changes in I/O
subsystem architecture. Examples include modeling buff-
ered, or cached, disk units and dynamic path selection both
of which attempt to reduce 1/O service times. Buffered disks
attempt to reduce the probability of a seek while dynamic
path selection tries to reduce the probability of the additional
rotation that occurs because the transfer path is busy when
a disk attempts to reconnect to a channel for data trans-
fer [21],[23]. More detailed discussions of I/O subsystem
models, with additional references, may be found in [117],
[127].

3) Preliminary Design Aid: Analytic models have been
successfully applied to study the performance of proposed
future computer architectures or systems. An analytic model
can provide insight into the key factors affecting performance
of a proposed system, and determine the sensitivity of per-
formance to parameter changes. Such a model can provide
guidance into the overall design of the system and also be
useful in the development of more detailed simulation models
as the design matures. For example, the analytic model could
determine where effort should placed in building the simu-
lation model; if performance is not a problem in some sub-
system, then that subsystem need not be modeled in great
detail. The analytic model could also be used to limit the
range of parameters to be used in the more expensive runs of
the simulation model.

An example of such a study can be found in [73]. This
model studies the overall design considerations and tech-
nology tradeoffs for the memory interconnection structure of
several hypothetical future multiprocessor systems. One of
the systems consists of a few high performance processors,
each with its own local memory. There is also a large semi-
conductor memory that is shared by all processors. Upon a
page fault to the local memory, a page must be transferred
from the shared memory. Contention occurs for both the
modules of the shared memory and for transfer buses between
the shared and local memories. The system is parameterized
by the numbers of processors, memory modules, and buses,
the memory access and bus transfer times, and the page fault
rate. The purpose of the model is to determine the bus band-
width required to support the processors at a reasonable per-
formance level.

B. Product Form Queueing Networks

Queueing theory has a long history beginning with the
work of Erlang [54]. It is not our intention to give a history



of queueing theory, but rather to highlight recent method-
ological advances that have had a significant impact on
computer performance evaluation. We start with a sim-
ple example.

Fig. 1 represents a simple model of a computer system,
called a central server model with terminals. There is a fixed
number N of users, each with his own terminal, submitting
transactions to the system, Each user is represented by a job
in the network. When a transaction is submitted it goes
through a number of CPU-1/O cycles; it executes on the
CPU, performs 1/0 on one of the I/O devices, and returns to
the CPU, repeating this process until the transaction is com-
pleted. Between transactions the user is in the think state. Let
the node in Fig. | representing the terminals be service
center 1, the CPU be service center 2, and the 1/0 devices be
service centers 3, -+, M. In order to completely define the
model, the following must be specified.

1) The queueing disciplines at each of the centers.

2) The service requirements of jobs at the centers.

3) The routing of jobs between centers.

When the above are appropriately defined, the evolution of
the system can frequently be modeled by a continuous time
Markov chain. For example, suppose that the service disci-
plines at the devices are all first come first served (FCFS),
that the think times and the service times at each device are
independent random variables with a common exponential
distribution, and that when a job leaves center i, it proceeds
to center j with probability p;. Let @;(¢) denote the queue
length at center i at time ¢. Then @ = {Q(1) = (Q,(1),-* -,
Qu (1)), t = 0} forms a continuous time Markov chain. Let
n = (n,, -+ ,ny) and define p(n,t) = Prob {Q(r) = n}.

Finding p(n, t) requires solving a system of linear differ-
ential equations with constant coefficients. However, the
limiting, or stationary, distribution p(n) = lim,.. p(n,1)
can be found by solving a system of linear equations, called
the global balance equations, which, for each state, equates
the rate of flow into the state to the rate of flow out of the
state. In this application, we are usually interested in the
stationary Gistribution not only for reasons of mathematical
convenience but also because a time average converges to its
stationary value. There is one linear equation for each state
of the system. In the above example there are

N+M - l)
3.1
( M-1 3.1
equations since that is the size of the set {n:n, + -+ +

ny = N}. Thus, the number of states becomes unmanageably
large as N and M increase.

For a restricted class of networks called product form
networks, including the above example, the solution to the
global balance equations can be shown to be a product of
terms where the form of each term is explicitly given. More
specifically,

M
pin) = (1/GIN) 1 pin) (3.2)
i=1
where G(N) is a normalization constant chosen to make the
probabilities sum to one. Performance measures such as the
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mean response time, mean queue lengths, and device utiliza-
tions can be computed once G(N) is known. The importance
of the product form solution is not only that it gives the form
of the stationary distribution, but also that efficient algo-
rithms exist to compute G(N) and the relevant performance
metrics (in order M(N + 1) operations). The existence of
computationally efficient algorithms for a broad class of
models makes analytic queueing models an attractive tool for
applied performance modeling studies of computer systems.

Jackson [97] was the first to show a product form solution
in a general network of queues. He was motivated by job-
shop, or manufacturing, applications. Jackson considered an
open network, meaning a network in which jobs arrive from
an external source, pass through some sequence of service
centers, and eventually depart from the system. The class of
Jackson networks allows only a single type, or chain, of jobs
with a Markovian arrival process dependent on the total
population of the network. Service disciplines are FCFS,
service demands are exponential with queue length depen-
dent service rates, and routing is Markovian. The routing
probabilities appear in the solution only through terms re-
lating the relative number of visits jobs make to the cen-
ters, called visit ratios. Gordon and Newell [72] extended
Jackson’s results to cover closed networks; networks such as
the central server model with terminals in which there are
neither external arrivals nor departures but rather a fixed
number jobs circulating indefinitely.

1) The Convolution Algorithm and BCMP Net-
works: Buzen [27],[28] was the first to develop a com-
putationally efficient algorithm, the convolution algorithm,
for Gordon and Newell’s class of closed networks. Let G(n)
denote the normalization constant for a network with n jobs
and centers 1,-+,j. In this notation G(N) = Gu(N).
Buzen's algorithm computes G(N) by convolving arrays ac-
cording to the recursion

GI(") = ZG'-p(i)xj(" —- i)
i=0
where X,(i) is defined in terms of the relative visit ratio and
the service rates of center j and G,(i) = X\(i).

Baskett, Chandy, Muntz. and Palacios-Gomez [ 11] greatly
extended the class of product form networks. Their general-
ization allowed for the following.

1) Multiple types, or chains, of jobs. Jobs in different
chains can have different routing probabilities and different
service demand distributions (at non-FCFS service centers).

2) Mixed networks, meaning networks with both open and
closed chains.

(3.3)
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3) New service disciplines including infinite servers (1S),
processor sharing (PS, a limiting case of round robin as the
quantum size goes to zero), last come first served preemptive
resume (LCFSPR, of little importance in practice), in addi-
tion to FCFS.

4) General service demand distributions at IS, PS, and
LCFSPR service centers.

The service demand distribution at any FCFS center must
be exponential and all jobs receiving service at that center
must have the same mean service demand regardless of type.
These networks have come to be called BCMP networks.

For a network consisting of only closed chains, the product
form is as follows. Define n;; to be the number of chain j jobs
at center i, n; = (ny;,*,nu), (il =ny; + ny +
-+« + ny; and let p;; be the relative visit ratio of chain j jobs
to center i times the mean service demand of chain j jobs at
center i. Let u(n) be the service rate at center i when there
are n jobs at center i and let A;(n) = p () ui(2) - pin).
The stationary distribution is given by

M
plny. ) = (1/GIN) ] piln;)

i=1

3.4)
where

K
pi(n) = Ad|n)) |n| T (/i) 3.5)
Jj=1
where M is the number of sevice centers and K is the number
of closed chains. In the above, only those states for which
ny + -+ + ny = N; for each chain j have nonzero proba-
bility where N = (N,,*-+,Ny), and N, is the population of
closed chain j.

Kelly [102] has a somewhat different, but in many ways
equivalent, formulation of queueing networks yielding prod-
uct form. The BCMP formulation has become the most
widely used in practice. Although the class of product form
networks has been somewhat extended beyond the BCMP
networks, e.g., certain types of state dependent routing in
[196], these extensions have not been found to be particularly
useful in applications. It is now generally thought that the
class of product form networks will not be significantly
extended beyond the BCMP networks.

Reiser and Kobayashi [154] developed a generalization of
the convolution algorithm for BCMP networks. The com-
putational complexity of this and other algorithms depends
essentially on the number of service centers. the number of
closed chains, and the populations of the closed chains. This
assumes that the extent of any population dependent arrival
rates for open chains is limited [117].[160]. For closed net-
works with queue length independent service rates the
convolution algorithm requires on the order of

K
MKTT( + Ny)

k=1

(3.6)

operations to compute G (N). This is again a considerable
savings compared to the computational cost of solving the set
of linear balance equations of the underlying continuous time
Markov chain; there would be at least
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3.7

equations.

2) The Mean Value Analysis Algorithm: Reiser and
Lavenberg [155] developed a new algorithm, the Mean Value
Analysis (MVA) algorithm, for product form networks. This
algorithm computes mean performance measures such as
utilizations, throughputs, mean queuve lengths, and mean
response times directly without explicit computation of the
normalization constant G (N ). The algorithm was first devel-
oped for closed networks with fixed rate and queue length
dependent rate servers only, but has been extended to cover
a broader range of product form networks including state
dependent routing and more general forms of state dependent
service rates [153],[160]. For networks with either IS or
fixed rate service centers, MVA has an intuitively appealing
justification, making it easier to teach than the convolution
algorithm. MVA also provides a basis for approximations for
either large product form networks or nonproduct form
networks. It is also easier to program than the convolu-
tion algorithm and it avoids certain numerical instabilities
present in the convolution algorithm. MVA is based on two
simple principles.

1) Little’s formula L = AW which is a generally appli-
cable theorem relating the mean queue length L to the
throughput A and the mean waiting time W.

2) The “Arrival Theorem™ [120], [175] which states that in
a stationary product form network, the state distribution that
a job sees upon arrival to a service center is equal to the
stationary distribution of the network with that job removed.

In this paper we will describe MVA for a closed product
form network with either IS or fixed rate service centers. The
key equation of the MVA algorithm relates, according to the
Arrival Theorem, the mean response time of a job at a service
center to the mean queue length of a network with one job
removed. For a network with fixed rate service centers define
1 to be the rate at service center i, S; to be the mean service
demand of chain j jobs at center i, y; be the relative visit ratio
of chain j jobs at center i, and let R;(n), L;(n). and A;(n) be
the mean response time, mean queue length, and throughput,
respectively, of chain j jobs at center i in a network having
n = (n;, -, ng)jobs. For fixed rate service centers, the key
MVA equation is

K
Ri(n) = (S;/m) (1 + ZLki(” - ¢)) (3.8)
k=1
where e; is a vector of zeros except for a one in position j. By
the Arrival Theorem. L;;(n — e,) is the mean chain k queue
length when a chain j job in a network with population n
arrives at center i. For FCFS service centers (3.8) says that a
job’s response time consists of waiting for those jobs in front
of it on arrival plus its own service time. For IS service

centers
Ri(n) = S;/n,. (3.9)

An application of Little’s formula to the mean cycle time
(time between arrivals of the same job) of center i yields



n;

Ap(n) = — (3.10)

E (yjm/yji)Rim(n)
m=1

and an application of Little’s formula to the mean queue
length at center i yields

Li(n) = Ai(n)R;i(n).

Equations (3.8)—(3.11) define a recursion allowing one to
proceed from populations n — ¢; for j = 1,-+-,K to
population n.

For the above networks, the computational complexity for
MVA is comparable to that of convolution for both single and
multiple chain networks. For these networks MVA requires
on the order of MN|N; - * - Ny storage locations as opposed to
2NN, - + - Ny storage locations for the convolution algorithm.
For networks with queue length dependent rate service
centers, the computational and storage requirements of both
algorithms are greater than those listed above; see [117],
[160].[204] for more complete discussions of the com-
putational complexity of these two major algorithms for prod-
uct form networks. Lavenberg [117]. Sauer | 160}, Reiser [153].
and Chandy and Sauer [39] describe several other algorithms
for solving product form networks.

3.11)

C. Algorithms for Large Product Form Networks

The computational complexity given in (3.6) and the stor-
age requirements for solving product form networks become
prohibitive for multiple chain networks having a large num-
ber of closed chains or a few closed chains with large popula-
tions. Such networks are becoming increasingly important
with the advent of distributed processing. For example,
Goldberg et al. [70] consider a model of the LOCUS local
area distributed operating system. Their model contains sites
connected by a communications network. Each site is essen-
tially a central server model with terminals and the users
logged on at each site are modeled by a separate closed chain.
In today's environment there could easily be 50 sites with,
say, 5 users per site. The operations count to exactly solve
such a product form network would be larger than 6. A
number of algorithms has been developed to solve, either
exactly or approximately, networks of this size.

1) The Tree Convolution Algorithm: Lam and Lien [113]
developed the Tree Convolution algorithm to exactly solve
networks in which each chain visits only a few centers
(sparseness) that are clustered in certain parts of the network
(locality). Such networks are common in models of commu-
nications systems. Because of the sparseness and locality
properties, many states have probability zero. The Tree Con-
volution algorithm tries to avoid summing over states with
probability zero. The algorithm builds trees of centers rep-
resenting the order in which subnetworks are convolved
together. The trees are carefully chosen in an attempt to
minimize a cost function capturing space—time complexity.
Spectacular savings can occur. Lam and Lien considered a
model of window flow control in a communications system.
The model had 64 channels (service centers), 32 virtual
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routes (chains), and a widow size of 3 for each route
(Nx = 3). They report a decrease from 10? operations for
both Convolution and MVA to 10° operations for the Tree
Convolution algorithm. Similar savings in storage were ob-
tained. A tree version of MVA has also been developed
[200].

2) Bounds for Product Form Networks: A number of
algorithms that produce upper and lower bounds on the
performance measures in product form networks has been
developed. The bounds are produced with much less com-
putational effort than would be required to solve the model
exactly. A discussion of simple bounds for queueing net-
works may be faund in [127]. We next discuss two recently
developed methods that allow a tradeoff between the com-
putational effort and the tightness of the bounds. The limiting
case (in a sense to be made precise below) of both of these
methods yields an exact solution.

The first method, based on a multiple integral representa-
tion and asymptotic expansion of G(N), has been devel-
oped by McKenna et al. [137], McKenna and Mitra [135]),
Ramakrishnan and Mitra [150], and McKenna and Mitra
[136]. Currently, the method applies to mixed networks with
at least one IS center visited by each closed chain, single-server
fixed rate service centers. and an assumption of “normal usage”
which states roughly that the utilizations are not too close to
one. The requirement for an IS center will frequently be met
in practice since a set of users at terminals is modeled by an
IS center.

The integral representation of G (N') comes about by using
the integral representation for the factorial terms in (3.5)

n! j e “x"dx, (3.12)
0

and by applying the multinomial theorem to simplify terms in
the sum over all possible states. The multiple integral is then
expressed in terms of a “large parameter” N, i.e.,
G(N) = I(N). It is suggested to choose N to be the maxi-
mum over i and j of the ratio of the sum over k of the p;'s
for IS centers visited by chain j to p; for non-IS centers
visited by chain j. An asymptotic expansion for /(N) is

developed

I(N) ~ X, A/N". (3.13)

n=1

The coefficients A, turn out to be related to the normalization
constants of certain product form networks, called pseudo-
networks, with small populations. /(N) is estimated by tak-
ing the first m terms in (3.13). Bounds on the difference
between /(N) and its m term estimate are also obtained.
These bounds become tighter as m increases and converge to
the exact result as m — «,

Ramakrishnan and Mitra [150) report that, in practice,
usually less than four terms are required in the expansion to
obtain satisfactory results. They report solving some very
large networks, including a one-term expansion of a network
with 23 service centers, 17 chains, and 1000 jobs in each
chain. Different expansions are required for “heavy usage”;
these have been worked out completely for some particular



networks [137] and are anticipated for general networks.
The second bounding technique is the Performance Bound
Hierarchy (PBH) developed in [51], [52]. We first consider a
network with a single chain and single server fixed rated
centers. The level i bounds are produced by obtaining opti-
mistic and pessimistic bounds on the performance measures
of a network with N — i jobs, and then applying the MVA
equations (or a slight modification of them for the optimistic
bounds) until population N is reached. The initial bounds at
population N — i are trivially obtained from simple asymp-
totic bounds (e.g., [127]). Letting Al (N) and Al(N) denote
the optimistic and pessimistic level i bounds on the throughput
at some center in a network with population N, then the PBH
produces a nested hierarchy of bounds in the sense that

Ak(N) = Xeo(N) < AN) = Xp(N) = AG(N) - (3.14)

where A(N) is the exact throughput. Nested bounds for mean
queue lengths and mean response times are also obtained.
The level N bounds correspond to exact application of MVA.
For single-chain networks, the bounds are of theoretical
interest only since it is not very costly to solve such net-
works exactly.

The methodology has been extended to multiple chain net-
works in [51], although the procedure is significantly more
complicated. A nested hierarchy of bounds is also obtained in
this case. The computational complexity to obtain the level i

bounds is order
+i
MK(K i ').

(3.15)

Algorithms, called looping algorithms, to improve the initial
bounds are also described; it was found empirically that the
level i looping bounds are usually about as tight as the ordi-
nary level’i + 2 bounds.

In practice, the bounds produced by both methods tend to
loosen as congestion in the network increases. A limited
comparison between the PBH bounds and the integral repre-
sentation bounds showed that, for comparable computational
effort, neither method dominated the other [51].

3) Approximation Algorithms for Large Product Form
Nerworks: Approximation methods provide a still cheaper
alternative to solving product form networks consisting of
single-server fixed rate and IS centers. The decreased cost is
offset by the fact that bounds on the errors introduced by the
approximate solution method are usually not available. The
analyst must rely on experience gained in validation studies
to judge whether or not the approximation method is reliable.
For a given network, it is impossible to judge the quality of
the approximation other than to compare it to a result ob-
tained by a more costly method (exact solution, bounding
technique, or simulation).

There have been a number of methods suggested for ap-
proximately solving large product form networks. These
methods typically rely on MVA for motivation. In a multi-
chain product form network the key MVA equation for single-
server fixed rate centers given in (3.8) implies a recursion
over all possible populations n for which0 = n < N. The
approximate MVA methods eliminate the need for this recur-
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sion by estimating L,(n
proposed estimating

Ly(n)
Li(n) (n;; — 1)/n;

The MVA equations can then be reduced to a set of X non-
linear equations which are typically solved by successive
substitution [117]. Existence of a physically meaningful solu-
tion has been shown in [48] but uniqueness and convergence
have not been shown except for the case of single-chain
networks [51]. The algorithm has been shown empirically to
be fairly accurate for most networks (errors greater than
20 percent are rare) and is known to yield exact results in the
limit as the chain populations increase to infinity.

Chandy and Neuse [37] describe the Linearizer approxi-
mation algorithm which is designed to improve the accuracy
of the Bard-Schweitzer algorithm for smaller populations.
Linearizer is basically an iterative technique to improve esti-
mates of F(n) where

- ¢;). Bard [8] and Schweitzer [171]

k#j

3.16
k-j (3.16)

Li(n — e) = {

F (n) — {(Lki(n - ej)/nki) - (lei(n )/"ki) k #-’
ki (Li(n — e)/(n; — 1)) — (Ly(n)/nj) k=j.
(3.17)

and the Bard-Schweitzer algorithm assumes Fy(n) = 0. The
iteration begins by applying Bard—Schweitzer at populations
N and (N — ¢,) for all k. At each iteration, values of F;,(N)
obtained from the previous iteration are used to calculate new
estimates of Fj,(N). Neither existence, uniqueness, nor con-
vergence has been shown, although this has not been a prob-
lem in practice and the method provides quite accurate results
for most models (errors greater than 2 percent are extremely
rare).

Another approach to dealing with large closed chain popu-
lations is to replace a closed chain by an open chain with an
appropriately chosen arrival rate. In a closed product form
network with an IS center having mean service times S,
Lavenberg [116] has shown that as the populations N, in-
crease in such a way that N,/S, converges to a constant A,,
then the stationary distribution converges to that of a network
having open chains with Poisson arrival rates A,. He also
gives adjustments to compensate for the finite popula-
tions N,. In related work, Zahorjan [205] showed that re-
placing a closed chain by an open chain (in certain classes of
single-chain product form networks) with the same through-
put yields pessimistic results in the sense that mean response
times are larger in the open chain representation and can, in
fact, be substantially larger.

The model of LOCUS described earlier has been solved
approximately by a method described in [48]. The method as
applied to the LOCUS model assumes that most of the work
done by a job is processed at its local site and only occa-
sionally does a job visit a foreign site. The method loops
through the sites representing the effect of foreign jobs at a
local site by an open chain and representing the processing at
foreign sites by an IS delay. This method was somewhat less
accurate, but significantly faster than Linearizer on large
LOCUS models.



D. Nonproduct Form Networks

Although the class of product form networks has proven
quite useful, there are many important features which, when
incorporated into a model, lead to queueing networks vio-
lating the product form assumptions. Such features include
priority scheduling disciplines, general service time distribu-
tions at queues with FCFS disciplines, and certain blocking
phenomena. In models of computer systems, the blocking
frequently arises because a job requires more than one
resource before it can be processed. Examples include the
following.

1) Holding a channel and a disk drive before data transfer
can occur.

2) Obtaining a memory partition before job processing can
occur.

3) Obtaining a database lock before the data item can be
read from disk.

Increasing model realism often leads to models without
product form. There are three ways to solve such networks:
exactly, approximately, or by simulation. Unless the model
has very special structure, the computational cost of exact
solution techniques quickly gets out of hand due to the explo-
sion in the size of the state space. However, in general, such
structure is hard to find and exact solution is, for all practical
purposes, impossible. The main focus of this section is on
approximation methods; simulation will be discussed in
Section 1V. However, before discussing approximations, we
will describe several general classes of nonproduct form
models for which special structures do exist along with rela-
tively efficient computational algorithms.

1) Models Having a Matrix Geometric Solution: Neuts
[145] has studied a general class of Markovian models, aris-
ing frequently in applications, for which computationally
efficient algorithms can be constructed. Neuts calls this
class “Models of the GI/M/1 Type” since they are a two-
dimensional generalization of the GI/M/1 queue. The form of
the solution to this class is called the “Matrix Geometric
Solution.” We discuss the solution for discrete time Markov
chains; an analogous treatment for continuous time Markov
chains is also given in [145]. The state space consists of the
set of two-dimensional pairs (i,j) where i = 0 and
1 =< j < B for some finite constant B. Transitions can
occur from state (i, j) to states (i',j') where 0 < i' =i + 1.
Although a somewhat more general structure can be accom-
modated, the basic structure of the transition matrix of the
Markov chain is

By A, 0 0 0
po|B A A 0 0 (3.18)

B, A, A, A, 0

where A; and B; are square B-by-B matrices. Letting x, be
the stationary distribution of the kth block, i.e., states of the
form {(k,j), 1 =< j =< B}, then, assuming irreducibility and
a stability condition,

X = xoRk (3-19)
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where R is the minimal nonnegative solution to the nonlinear
matrix equation

R = 3 R'A,

k=0

(3.20)

and x, is a left eigenvector (corresponding to the eigenvalue
one) of the matrix

B[R] = 2 R*B,, (3.21)
k=0

i.e., Xo = xoB[R] withxs(I — R) 'e = | where e is a vec-
tor of ones. Recursive algorithms to compute R exist and are
particularly simple for quasi-birth and death processes in
which transitions can only occur from (i,j) to (i’,j') for
i"=i—1,ii+ 1. In general, the algorithms should be
computationally efficient provided B is not too large, A, = 0
for large values of &, or the spectral radius of R is not too
close to one.

A computer performance evaluation example is given by
Latouche [115] who considers a system consisting of C
CPU’s and J /O devices. There is a single queue for the
CPU’s and another queue for the 1/0 devices. There is a total
of M memory partitions and arriving jobs can only enter the
system if a partition is free, otherwise it queues for the next
available partition. This is an example of simultaneous re-
source possession since jobs must simulataneously own both
a memory partition and a device before receiving service.
Nelson and Iyer [ 144] applied the Matrix Geometric approach
to study performance tradeoffs in a model of a replicated
database. A variety of other applications can be found
in [ 145].

2) Matrix Methods for Nearly Decomposable Models: A
number of matrix iterative methods, called aggregation/
disaggregation methods, which converge to the exact solu-
tion of nearly decomposable Markovian models has been
recently studied by Cao and Stewart [32]. A Markovian
model is termed nearly completely decomposable if the state
space can be partitioned in such a way that the transition
matrix P can be written as

P, P, Py,
Py Py Py

P = (3.22)
Py Py, Py

where the off diagonal block matrices P; fori # j are nearly
zero. Thus, transitions are most likely to occur within blocks
and transitions between blocks are infrequent. Models of this
type arise frequently in applications as will be discussed in
the section on approximations. In aggregation/disaggregation
methods, the states within a block are lumped together to
form a single aggregate state. These methods then compute
the stationary probabilities of the aggregate states and the
conditional state probabilities given the aggregate state.
These quantities are computed exactly in the limit as the
number of iterations tends to infinity. Cao and Stewart {32}
showed that a number of previously described such proce-



dures can be placed in the same framework of being related
to block matrix iterative methods. They also established con-
vergence criteria and determined the convergence rates of the
methods. At each step of the iteration, a set of linear equa-
tions must be solved for each of the aggregate states of
the model. In addition, a set of equations describing the
rate of flow between aggregate states must be solved. The
methods avoid working directly with the original transition
matrix P and their efficiency is thus related to the number of
aggregate states and the number of states in each of the
aggregate states. These methods appear promising for mod-
erate sized problems, but we know of no reports in the litera-
ture in which these methods have been used to solve the kind
of very large scale models that arise in performance modeling
applications.

3) Approximation Methods: We will not give a compre-
hensive survey of approximation methods, but rather de-
scribe the general approaches that are used and comment on
the validation of approximations. Surveys of approximation
techniques along with more detailed descriptions can be
found in [38], [48], [117], [162]. In addition, Lazowska et al.
[127] describe a number of approximation techniques for
modeling specific subsystems.

For product form networks, both exact solution techniques
and bounding techniques have been developed as discussed
earlier. Due to both the complexity and the explosion in size
of the multidimensional state spaces that arise, neither exact
solution techniques nor bounding techniques for general
classes of nonproduct form networks have been forthcoming.
The bounding techniques for product form networks have
been based on the special nature of those networks, either
through the convolution or MVA equations. Since these
equations do not apply to nonproduct form networks, the
bounding techniques cannot be applied. Approximation tech-
niques (based on either limit theorems or heuristics) are thus
the only viable alternative to simulation. Because error
bounds are usually not available with an approximation tech-
nique, the accuracy of the method in any particular case
can only be determined by comparison to simulation (or the
exact solution if the state space is small enough). In order to
develop generally applicable and reliable approximation
techniques that can be incorporated into a package for, say,
capacity planning, it is necessary to thoroughly validate the
approximation over a wide range of parameter values by
comparison to simulations. While it is relatively easy to sug-
gest approximations, it is difficult, tedious, and computa-
tionally expensive to validate them.

Thus, although there is a plethora of methods for approxi-
mating the solutions to nonproduct form networks incorpo-
rating a variety of features, very few of these techniques have
been thoroughly validated. An ideal validation study iden-
tifies a practically important class of models and key parame-
ters of that class. Validations are then performed over the
entire range of the parameter space and errors are quantified
in terms of the parameters. A qualitative interpretation of the
errors is then given, identifying where (in the parameter
space) the approximation performs well and where it fails.
Bryant et al. [25] performed such a validation for networks
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incorporating priority scheduling. They considered a set of
two queue networks and parameterized the model in terms
of the total utilization of the priority server p and the fraction
of that utilization devoted to the high-priority jobs f. Contour
plots of errors over the parameter space were given showing
that several of the proposed methods were reliable as long as
both p and f were not too close to one. The implication of the
validation studies is that the approximation can be applied in
practice with confidence provided these parameters are kept
out of the extreme region where the method fails. There are
few other such systematic validation studies reported in the
literature. This type of comprehensive study becomes more
difficult to design and expensive to perform in networks
having more than two queues for which there may be more
than two key parameters.

The major approaches to developing approximations are
based on either limit theorems or heuristics. The limit theo-
rems provide theoretical justification for an approximation
whereas the heuristics are based on common sense and ex-
perience. There are two general classes of limit theorems
used to justify approximations.

1) Heavy traffic limit theorems which lead to diffusion
approximations.

2) “Nearly Completely Decomposable System” limit
theorems which lead to a class of approximations called hier-
archical decomposition, or aggregation, approximations.

Heavy traffic limits were originally obtained for classical
queueing problems such as the waiting time process in a
GI/G/1 queue as the traffic intensity approaches one [103}.
They have been extended to both open networks of queues
with high traffic intensities and general service times (e.g.,
[66], [94],[95],{151]) as well as to closed networks with
large populations (e.g., [91]). The heavy traffic limit theo-
rems show that as the traffic intensity approaches one, a
properly scaled version of the queue length process con-
verges in distribution to a diffusion process. Kobayashi [109]
and Gelenbe |68] have applied diffusion approximations to
queueing network models of computer systems. However, in
practice, diffusion approximations have not been widely used
because most systems do not operate with all service centers
at or near full capacity. Furthermore, proper treatment of the
boundary conditions of the multidimensional diffusions
generally leads to an intractable system of partial differential
equations [77].

The theory behind hierarchical decomposition is treated in
Courtois [45]. A nearly completely decomposable Markov
transition matrix Q can be rewritten in the form Q@ = A +
eB where A is a stochastic block diagonal matrix with, say,
M blocks and € is small. For such systems, interactions
between states within a block are much greater than those
between blocks. This allows an accurate approximation to the
stationary distribution of the Markov chain defined by Q to
be computed by solving for the stationary distribution of each
of the blocks of A and then computing the stationary distribu-
tion of an M-by-M transition matrix P which approximates
the transition rates between blocks. This method is exact as
€ — 0. Whereas decomposition finds approximations for
the stationary probabilities of the aggregate states and the



conditional state probabilities given the aggregate state,
these quantities are computed exactly (in the limit as the num-
ber of iterations — =) for the matrix iterative aggregation/
disaggregation methods that were discussed in the previous
section. However, the aggregation/disaggregation methods
will generally involve substantially more computational ef-
fort than decomposition. In computer performance ex-
amples, if M is small and the blocks are chosen to correspond
to product form networks, then a computationally efficient
solution procedure results. Although error bounds are, in
principle, possible to compute [45], [186], this does not seem
to have been done for any very large scale applications.
We now consider an example of how decomposition has
been used to model simultaneous resource possession in
single chain networks [4], [44], [117], [159]. In the central
server model with terminals pictured in Fig. 1, suppose that
there is a limited number of memory partitions P. A job must
acquire one of these partitions before its processing can begin
and queueing is FCFS for the partitions. A block, or aggre-
gate state, corresponds to the number of jobs using or waiting
for partitions. This leads one to consider fixed multi-
programming levels in the (product form) CPU-I/O central
server “inner” model. For each possible multiprogramming
level,n = 1, .-+, P, let a(n) be the throughput of jobs at the
CPU divided by the average number of visits a job makes to
the CPU before returning to the terminals; this corresponds to
the rate of jobs leaving the CPU-1/0O complex when the
multiprogramming level is n. These throughputs are then
used as queue length dependent rates for an aggregate server
representing the CPU~1/O complex in a cyclic two service
center “‘outer” model consisting of the terminals and the ag-
gregate server. The aggregate server has rates u(n) defined
by
a(n)
a(P)

Selection of these rates models limiting the maximum multi-
programming level to P. The two service center outer model
also has product form and in this particular case reduces to a
birth and death process. Thus, the approximate solution to
the nonproduct form network is efficiently obtained by solv-
ing two related product form networks.

There is also a second justification for this method that is
provided by a theorem due to Chandy, Herzog, and Woo [34]
which states that the above procedure yields exact results in
product form networks. In the above example, this corresponds
to not having a limit on the multiprogramming level. i.e., P
equals the total population of the network. The theorem states
that a product form network can be solved exactly by replacing
a subnetwork of service centers by a single service center with
queue length dependent service rates. The rates are determined
by solving, for each population, a network in which the service
times of all service centers outside the subnetwork are set to
zero, in effect “shorting™ out the rest of the network. This
theorem is sometimes called Norton’s theorem since it is a
queueing analog to Norton’s theorem in analysis of electrical
circuits. The theorem has been extended to multiple chain
networks in [111].

0<n=P

3.23
n=P. ( )

p(n) = {
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Hierarchical decomposition has been used to model a vari-
ety of features in nonproduct form networks including the
simultaneous resource possession example given above, pri-
ority scheduling disciplines [161] and certain types of paral-
lelism [82]. In practice it has been found to be a highly
accurate approximation technique and is a cornerstone of
much applied modeling work.

However, decomposition has limitations for multiple chain
models. For example, suppose the central server model with
terminals has K chains and a limited number of memory
partitions P, for each chain k. Then throughput rates for each
chain py(n,,- -+, ng) must be computed for each possible
multiprogramming level (n,, « * -, ng) where 0 < n, < P, for
k =1,--+,K. Assuming the inner model still has product
form, these could (at least in theory) be calculated in one pass
of MVA. However, the outer model no longer satisfies prod-
uct form and its solution requires solving the global balance
equations for a K-dimensional birth and death process. The
size of the state space is (N, + 1) -+« (Nx + 1) where N, is
the number of jobs in chain k. The transition matrix is sparse
and can be solved by matrix iterative methods provided the
product of the N,’s is not too large. Sauer [159] considered
this model for two chains and N, = 40 and N, = 4 and found
that decomposition provided quite accurate results. Howev-
er, for models with more than two chains the method becomes
computationally infeasible because of the explosion in the
size of the state space. A method proposed independently by
Brandwajn [22] and Lazowska and Zahorjan [126] attempts
to circumvent this problem by iteratively solving a sequence
of K one-dimensional birth and death processes rather than
one K-dimensional birth and death process. The rates used
for chain k are essentially obtained by setting the populations
of the other chains to estimates of their mean values. Only
limited validations of this approach have been done; it is
generally less accurate than complete decomposition but is
obtained at much lower cost.

It is sometimes possible to prove limit theorems for
particular models allowing theoretically justified ap-
proximations. Salza and Lavenberg [158] prove a theorem
showing that the sojourn time in a central server model con-
verges to an exponential distribution as the feedback proba-
bility converges to one. This result is used, along with
decomposition, to approximate the response time distri-
bution in a central server model with terminals; the response
time distribution in queueing networks is not analytically
tractable except in special cases (e.g., [165],[201]). Other
examples of special limit theorems are given by Mitra and
Weinberger [142] and Lavenberg [118] who have used
asymptotic expansions to estimate the probability of lock
contention in a model of a database system as the size of the
database increases.

Approximations based on heuristics have been used to
model a wide variety of features in queueing networks. There
are two major approaches upon which such heuristics are
based.

1) The MVA equations and the Arrival Theorem.

2) lterative methods.
Some approximation methods are based on a combination



of approaches, for example, iteration and decomposition
[221], [126]. Still other approximations use specially tailored
techniques.

A primary use of the MVA approach has been to model
service disciplines and distributions other than those allowed
in product form networks (8], [25], [152]. For some service
disciplines or distributions, if the distribution of the number
of jobs seen upon arrival of a job to a service center is known,
then the mean response time at that service center can be
calculated either exactly or approximately. In the MVA based
approach, the distribution of jobs seen on arrival is assumed
to be given by the Arrival Theorem; namely, it is the station-
ary distribution of a network with that one job removed.
Because the Arrival Theorem is not valid except in product
form networks, the method is an approximation. Reiser [152]
considers an approximation to model the FCFS discipline for
centers having exponential distributions with different
means. If center i is FCFS, then the requirement for product
form is that the mean service demands S; are independent of
J. For distinct S;;’s the suggested approximation is to modify
(3.8) as follows:

IS
Rji(n) = (l/#i) (Sj.‘ + ZSMLH(" - ej)) , (3.24)
k=1

which states that a job’s average response time is its own
average service time plus the mean queue length of jobs
found on arrival times the average service time of each job.
If all the service times are identical, (3.24) reduces to (3.8).
A modification using the mean residual life (from renewal
theory) for distributions other than exponential was also sug-
gested by Reiser [152] and approximations for priority queue-
ing disciplines have been proposed by Bryant et al. [25] and
Chandy and Lakshmi [36].

A second general heuristic approach to analyzing non-
product form networks is iteration. In this approach, a
sequence of simplified networks is solved so that, upon con-
vergence, the solution closely approximates the solution of
the network of interest. If each network in the sequence has
product form, the overall method is computationally efficient
provided convergence is obtained in a reasonable number of
iterations. This approach can often be shown to be equivalent
to finding the fixed point of a multidimensional set of non-
linear equations x = f(x) [41], [48], [81], [82]. Existence of
a solution can frequently be shown by applying the
Brouwer fixed point theorem [147]. The equations are typi-
cally solved by successive substitutions, i.e., x™*! = f(x").
If the function f can be shown to be a contraction mapping,
then convergence and uniqueness are guaranteed. However,
in performance applications f usually cannot be shown to be
such a mapping. The function f is generally a complicated
function usually involving the solution of a product form
network and the variables x represent performance measures
of the network.

Heidelberger and Trivedi [81] consider a model of parallel
processing in which a primary job spawns an asynchronous
task whenever it passes through a particular node in the net-
work. The primary jobs are represented by a closed chain.
The overall model does not have product form but it is ap-
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proximated by a product form network having an extra open
chain representing the spawned tasks. The Poisson arrival
rate of the spawned tasks is set equal to the throughput of the
primary jobs at the spawning node. The throughput of pri-
mary jobs depends on the arrival rate of spawned jobs and
the fixed point problem reduces to finding that arrival rate
for which the primary job throughput equals the spawned
task arrival rate. Uniqueness and convergence were proven
for this example and an extensive validation study was
performed.

Iterative methods have also been applied to analyzing net-
works incorporating a wide variety of features including
simultaneous resource possession [98], [99], general service
time distributions [132], database lock contention [194], and
parallel processing systems in which tasks requiring syn-
chronization are spawned [82]. Selection of the approxi-
mating simplified networks is still an art form.

E. Operational Analysis— An Alternative Viewpoint

We have presented the analysis of queueing networks from
the stochastic process point of view. For example, using the
theory of Markov processes, product form can be shown
formally to hold provided certain assumptions on service
time distributions, arrival processes, stochastic routing and
queueing disciplines are met. A recently developed alterna-
tive viewpoint is Operational Analysis which relates mea-
surable quantities in queueing networks [30], [47],[127].
The measurable quantities are not assumed to be random
variables. The operational viewpoint is that if a system is
measured during an interval [0, T}, say, then certain relation-
ships between variables must hold provided the system satis-
fies certain operational assumptions during the interval. For
example, if a queue length can only change by either plus or
minus one job when there is an arrival or departure, then the
number of arrivals must equal the number of departures pro-
vided T is chosen so that the queue length at time zero equals
the queue length at time 7. More subtle relationships can be
shown as well including an operational analog of Little’s
result Ly = Ay Wy provided the queue is empty at times zero
and T [53],[128]. In this equation L; = (1/T) [JL(s)ds
where L (s) is the queue length at time s, A; = N(T)/T where
N(T) is the number of arrivals (and departures) from the
queue in [0, T], and Wy = (1/N(T)) ZP W (i) where W(i) is
the waiting time of customer i. In fact, this sample path
version of Little’s result predates the first papers on opera-
tional analysis by about 15 years. In the operational frame-
work, the fraction of time spent in a state is the analog of a
state probability. Using this analog, product form can also be
shown to be an operational law provided certain operational
assumptions are satisfied during the measurement period.
These include homogeneity assumptions on routing and de-
vices. For example, device homogeneity assumes that the
departure rate from a center depends only on the queue length
of that center and not on the state of any other center. Opera-
tional versions of MVA and the Arrival Theorem have been
derived as well.

The obvious question is how the operational assumptions
are related to the stochastic assumptions. This has not been



investigated in much detail. However, there is an interesting
analysis by Bryant [24] showing that, in the limit as the
length of the measurement period T — %, the only M/G/1
queue satisfying the operational assumption of homogeneous
service times is the M/M/1 queue, i.e., the queue with ex-
ponential service times. The assumption of homogeneous
service times is thus analogous to the assumption of a fixed
(queue length independent) rate server with exponential ser-
vice times. We conjecture that there are similar results for
networks relating operational to stochastic assumptions. For
example, one can show (using ergodic properties of finite
state space continuous time Markov chains) that the opera-
tional assumptions necessary for product form hold in the
limit with probability one (along an appropriate sequence of
regeneration points) for the class of single chain closed prod-
uct form networks with queue length dependent exponential
centers. Furthermore, the homogeneous service time as-
sumption can be shown to hold in the limit for such networks
with queue length independent exponential centers. For such
closed single chain models, no other general class of well-
defined stochastic queueing models has been identified
for which the operational assumptions hold, with prob-
ability one, in the limit. Whether or not such a class exists is
an open question.

One claimed advantage of the operational viewpoint is that
itallows one to test the assumptions and to provide bounds on
errors induced when the operational assumptions are vio-
lated. Indeed, although it is possible to formally test in a
statistical sense the stochastic assumptions, there are few
quantitative sensitivity results in queueing theory. However,
the sensitivity results for operational analysis can frequently
be interpreted in the stochastic setting. For example,
Suri [190] provides sensitivity results, in the form of gra-
dients, for deviations from the homogeneous service time
assumption. The gradients can be used to obtain error bounds
for performance measures predicted by assuming homoge-
neous service times in networks in which this assumption is
slightly violated (the bounds are valid only in an appropri-
ately defined neighborhood about the homogeneous point).
These results can also be interpreted as being gradients and
bounds on stochastic queueing networks when service rates
are not constant.

Operational analysis thus provides a different set of
assumptions on which to base and interpret certain results
primarily about product form queueing networks. It has
broadened the appeal of queueing networks to include those
who feel uncomfortable making stochastic assumptions such
as independence, stationarity, and exponential distributions.
A challenge for operational analysis is to provide major new
results, rather than (as has been the case) to merely provide
operational versions of existing theorems which were origi-
nally derived using stochastic analyses.

F. Future Challenges

Analytic performance modeling has been an extremely
useful tool for evaluating the performance of computing
systems of the 1970’s and early 1980's. However, computing
systems are rapidly advancing and analytic modeling tech-
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niques must advance with them in order to maintain rele-
vance in the late 1980’s and into the 1990’s. Distributed
processing, parallel processing, and radically new computer
architectures present significant modeling challenges and
opportunities.

Distributed processing systems will become common-
place. These systems will serve large numbers of users, con-
sist of many devices, and will incorporate large databases,
both centralized and distributed. High levels of performance
will be key. Performance needs to be designed into these
systems, not only in determining the number of devices and
their speeds, but also in designing operating system algo-
rithms to dynamically manage the system. Optimization of
queueing networks will thus become more important both in
terms of distributed system design and load balancing. Some
optimal load balancing results for queueing networks are
beginning to emerge [192], however, major new advances in
this area are required. Further work is needed in database
modeling where satisfactory methods for analyzing lock con-
tention are also just starting to emerge [71],[118],[142],
[148], (193], [195]. Particular attention needs to be paid to
modeling distributed databases.

Parallel processing systems will also become widespread
as hardware costs continue to decline. By parallel processing
we mean multiple subtasks running concurrently and cooper-
ating to solve some larger task. Parallel processing will come
about as a result of new computer architectures, such as data
flow and multiple microprocessor architectures, which are
explicitly designed to take advantage of parallelism. Parallel
processing will also arise as the result of distributed data-
bases and the requirement for highly reliable and available
systems. There have been very few techniques developed to
analyze such systems [55], [81],[82], [87] and much work
remains to be done.

In meeting these challenges approximations will play a key
role. If possible, computable error bounds need to be devel-
oped, although this looks extremely difficult for nonproduct
form networks. Improved methods for applying hierarchical
decomposition in multiple chain models need to be de-
veloped. A consistent and comprehensive framework for
validating approximations needs to be developed and ap-
plied. The validations need to include stress cases to identify
when approximations fail as well as when they are succesful.
Finally, there has been very little work on validating com-
binations of approximations. Most approximation studies
have focused on introducing a single nonproduct form feature
into an otherwise product form network. Exceptions to this
are the previously mentioned capacity planning tools [7],
[29] which incorporate a variety of approximations simulta-
neously and have been validated against measurements.

1V. SIMULATION PERFORMANCE MODELING

Simulation is an extremely versatile and useful tool in
computer performance evaluation. Whereas analytic tech-
niques have limitations on the range of features that can be
modeled, a simulation model can be constructed to an almost



arbitrary level of detail. This allows one to model extremely
complex situations that are analytically intractable. Further-
more, whereas analytic models typically provide only mean
values, simulations can provide estimates of distributions
and higher moments. In addition, dynamic, or transient, be-
havior can be studied using simulation while analytic models
can usually be used to study only steady state behavior. In
fact, a major application of simulation is to validate analytic
models.

There are two distinct types of simulation that have be-
come widespread in computer performance evaluation.

1) Trace Driven Simulation: This is a simulation of a
deterministic model that is driven by a sequence, or trace,
obtained from measurements of an existing system. The
model often does not have a queueing structure. Trace driven
simulations have been primarily used to study the per-
formance of storage hierarchies and of processor pipelines.

2) Stochastic Discrete Event Simulation: This is typically
a simulation of a queueing model that is driven by sequences
of random (or pseudorandom) numbers with user specified
distributions. These random sequences are used for obtaining
service times, routing, etc. Occasionally, trace data are used
(possibly in conjunction with random sequences) to drive
queueing model simulations, e.g., [177]. Discrete event
simulations have extremely broad applicability and have
been used extensively in computer performance evaluation.

In this section, we will discuss these two types of simu-
lation. Since stochastic discrete event simulations are sta-
tistical experiments, their outputs are random and require
careful statistical interpretation. We will describe some of the
statistical problems that arise in analysis of simulation output
data, including confidence interval generation and simu-
lation run length control.

A. Trace Driven Simulation

In the design of storage hierarchies, trace driven simula-
tion has been used to study the performance effects of paging
algorithms (e.g., [5],[12]), cache management algorithms
{182], database buffering strategies [ 179], buffered, or cached,
disks [180]. and Jong-term file migration policies [181].

An appropriate trace, or script, is obtained by measuring a
system. For example, in studies of cache performance a job
is run and the sequence of memory address (page and line)
references is recorded. A software model of the cache or-
ganization and its management algorithms is constructed.
These management algorithms determine how data are
brought into and removed from the cache. The software
cache model takes the address reference sequence as input
and simulates the behavior of the cache. The model can be
easily changed to reflect different cache organizations and
management algorithms. The key performance measure of
interest in such studies is usually the cache miss ratio, the
fraction of references not found in the cache. The miss ratio
is critically dependent on the size of the cache and it is
common to plot the miss ratio as a function of the cache size.
These curves can be efficiently generated in one pass through
the address trace using a “stack processing algorithm” [133]
for a broad class of demand paging algorithms, including the
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Least Recently Used replacement algorithm. Stack process-
ing is applicable to performance evaluation of multilevel
memory hierarchies, not just a single-level cache.

The combination of a flexible software model and repeat-
able workloads enables one to study a variety of cache
organizations under identical workloads without having to
build hardware. Using a set of representative measurement
traces increases model realism and avoids the necessity
of constructing possibly complicated stochastic workload
models. However, obtaining representative traces for multi-
programming environments may be difficult in practice.
Consider a page reference trace from a multiprogramming
system which includes references from the operating system
dispatcher which is invoked upon page faults. When such a
trace is run against a model simulating different paging algo-
rithms, a reference from the trace that caused a page fault in
the measured system may not cause a page fault in the simu-
lated system. However, the trace still consists of the refer-
ences from the dispatcher which should not be invoked in the
simulator. As a result of this type of consideration, many
traces are taken from single jobs running in uniprogramming
environments. Smith [182] simulated task switching by
switching between traces of different jobs at periodic inter-
vals. As noted in Section II-A, Clark [42] observed differ-
ences between measurement and trace driven simulation
results for these reasons among others.

Trace driven simulation is also a powerful tool in the per-
formance analysis of processor pipeline design. Instruction
traces, obtained from measurements, are used to drive a soft-
ware model of the pipeline. The model may be of arbitrary
detail. For example, the model may or may not include the
effects of a finite size cache. The key performance measure
in pipeline studies is usually the instruction throughput, the
number of instructions per machine cycle. Lang et al. [114]
describe in more detail a general approach to modeling pipe-
lines. Pipeline simulators, which tend to be built by manu-
facturers for use in machine development, are often
proprietary. However, examples of pipeline simulators in the
open literature include those by Kumar and Davidson [112]
who modeled the IBM 360/91, Smith [183] who studied
branch prediction strategies for the CDC CYBER 170 archi-
tecture, Srini and Asenjo [185] who considered a variety of
changes in the Cray-1S architecture, and MacDougall [129]
who considered the IBM 370 architecture.

B. Stochastic Discrete Event Simulation

Stochastic discrete event simulations are driven by se-
quences of pseudorandom numbers generated by the com-
puter. In addition to specifying the model structure. the
analyst must also specify the distributions of these se-
quences. The term discrete event refers to the fact that
events in the simulation can only occur at a countable number
of points in simulated time and not continuously. Discrete
event simulations are much more widespread in computer
performance evaluation than are continuous simulations and
we not will discuss continuous simulation at all.

The development of simulation models is greatly facili-
tated by the use of general purpose simulation modeling lan-



guages, such as GPSS, SIMSCRIPT, GASP, and SLAM,
overviews and examples of which are given in [125]. These
and other simulation languages ease development of simula-
tion models by providing high-level constructs and features
common to all simulations, such as random number genera-
tion, event scheduling, queue management, and statistics
gathering and reporting. A number of these and other simula-
tion languages are beginning to appear on microcomputers
[149]. Simulation modeling packages specifically designed
for computer performance evaluation have also been devel-
oped, e.g., RESQ [164], PAWS [96], and QNAP [140].
These packages provide higher level modeling constructs
particularly well suited for simulation of queueing network
models of computer performance. Even higher level pack-
ages exist for modeling particular computer systems; e.g.,
SNAP/SHOT [187], used in capacity planning, includes built
in models of certain IBM devices and control programs.

General texts on simulation include [62], [125]. These
texts treat basic simulation modeling concepts, random num-
ber generation, statistical analysis of simulation output data,
and give overviews of simulation languages. References
[110] and [117] contain sections on various aspects of simu-
lation as applied to computer performance evaluation.

1) Statistical Analysis of Simulation Output: Discrete
event simulation is controlled statistical experimentation.
Models are driven by random input sequences, such as ser-
vice times, and produce random output sequences, such as
response times, from which estimates of the response time
distribution and/or its moments are obtained. If the simu-
lation is rerun under identical conditions (but driven by dif-
ferent statistically independent input sequences), the output
estimates will be different, often dramatically so. Thus, as in
the case of measurements, sound statistical methods are re-
quired to interpret the results of simulation models. We will
give an overview of some of the statistical aspects of simu-
lation output analysis. More complete discussions are in
{104], [105], [117, chapter 6], [123].

Because simulation outputs are random, it is important to
assess the amount of variability in estimates that is due purely
to random sampling effects. In addition to assessing statis-
tical accuracy, it is important to be able to adjust the length(s)
of the simulation run(s) so as to obtain estimates of specified
accuracy. These two problems of accuracy assessment and
run length control can be addressed through the use of con-
fidence intervals. Suppose u is some unknown output char-
acteristic of the model to be estimated, e.g., the mean steady
state response time. An interval (L, U) with random end-
points L and U is said to be a 100(1 — a) percent confidence
interval for w if Prob{L = u < U} =1~ a. For(l — a)
close to one, there is a high probability that the unknown
parameter u is between L and U. The confidence interval is
usually formed in such a way that a point estimate j1 of u lies
in the interval and is frequently the midpoint of the interval.
Formation of such a confidence interval generally requires an
estimate of the variance of {t. The width of the interval U-L
is then a measure of the accuracy of ji. The narrower the
interval, the more confidence can be placed in the estimate.
Simulation run length control algorithms have been devel-
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oped that allow a model to be run until confidence intervals
of suitable accuracy (as defined by the analyst) have been
obtained or until a CPU time limit is exceeded [83], [121].

Classical statistical techniques can be applied when esti-
mating transient characteristics since multiple independent
replications can be performed thereby generating iid (inde-
pendent and identically distributed) observations. However,
simulation studies of queueing network models of computer
performance often involve estimating steady state character-
istics. There are a variety of procedures for generating con-
fidence intervals for steady state characteristics. Standard
statistical approaches based on iid observations cannot be
directly applied since simulation output sequences are usu-
ally both autocorrelated and nonstationary. The auto-
correlation arises because of queueing; if the waiting time of
a job at a device is large, then it is likely that the waiting time
of the next job will also be large. Nonstationarity is a con-
sequence of the model’s initial conditions; if all jobs in the
model of Fig. 1 are started in the think state at the terminals,
then the first job arriving to the CPU experiences no queueing
whereas subsequent arrivals may require queueing.

Suppose we let X;,- -+, Xy be the response time output
sequence generated by the simulation and that we are inter-
ested in estimating the mean steady state response time
p = lim,. E(X,). The usual estimate for p is the sample
average

N
A= (1/N)ZX,. “.1)

n=1
The problem of nonstationarity is that for small n, E(X,) # u
which in general means that E(ft) # u. The typical approach
for dealing with this problem, which is also called the prob-
lem of the initial transient, is to determine an N, such that
E(X,) = u for n = N,, delete the observations before Ny,
and then estimate u by

N
B=/N=N) 2 X,.

n=Ng+1

4.2)

This will be an approximately unbiased estimate of pu.
Schruben [169] has proposed statistical tests for stationarity
that can be used to test the adequacy of an N,.

The other difficult problem is dealing with the auto-
correlation. Suppose that a satisfactory N, is found so that
{X.,n = Ny} is approximately a (covariance) stationary se-
quence. Then the central limit theorem states that, for large
N, (i — p)/o (i) is approximately normally distributed with
mean zero and variance one where o*({1) is the variance of fi.
If the X,'s are iid, then a*(i) = aX(X)/(N — No) where
o*(X) is the variance of X,. However, this equation is
not valid for correlated observations. For large sample sizes,
the correct expression for the variance of correlated obser-
vations is

> m) (4.3)

k= -

o) = (*(X)/(N — No))(

where p; is the autocorrelation between X, and X,.,. Thus,
the variance of a correlated sequence equals the variance of



an independent sequence times an expansion factor (the sum
of the autocorrelation function) which measures the amount
of correlation in the sequence. This expansion factor is usu-
ally positive in simulations of queueing networks, and it can
easily be much larger than one. For example, in the M/M/1
queue with traffic intensity 0.90, the expansion factor is 367
[16]. It cannot be ignored in generating confidence intervals
since assuming positively correlated observations are inde-
pendent leads to severe underestimation of the variance and
confidence intervals which are much too narrow.

There are two general approaches to dealing with the cor-
relation when generating confidence intervals.

1) Avoid it by organizing the simulation output into iid
observations.

2) Estimate the correlation and compensate for it.

There are three methods to avoid the correlation. The first
method is to use independent replications. This has the
advantage of simplicity but the disadvantages of being sensi-
tive to the effects of the initial transient and wasteful of data
if the transient portion is discarded from the beginning of
each replication. The second method is called batch means
(e.g., [124],]138]) which operates on a single run. The
sequence is divided into long blocks, or batches. of length B
so that the means of the batches are approximately iid. If B
is so chosen, then classical statistical methods can be applied.
However, selection of an adequate B is a difficult statistical
problem and there is currently no completely satisfactory
method. The third method is called the regenerative method
(e.g., [93]) which is based on the fact that some stochastic
sequences, called regenerative processes, contain regen-
eration points which delimit the sequence into iid blocks of
random length. However, the method is not generally appli-
cable since most processes arising in computer performance
evaluation are either not regenerative or contain too few
regeneration points to produce valid confidence intervals un-
less the run is extremely long.

A single-run method, called the spectral method, that esti-
mates the correlation in the sequence is described in [83].
This method uses the fact that o?(1) = p(0)/(N — N,)
where p(0) is the spectral density of the process at zero fre-
quency. The spectral density is the Fourier cosine transform
of the covariance function {y,} of the process defined by

p(f) = > yicos2mfk).

k=~x

(4.4)

Spectral estimation techniques are applied to estimate p(0).
This method has been shown empirically to produce satisfac-
tory results for a variety of computer performance models and
has been incorporated into a run length control procedure.
The problems of combining initial transient detection and
deletion, confidence interval generation, and run length con-
trol into one automatic procedure have been investigated by
Heidelberger and Welch [84]. Procedures combining the
transient tests in | 169] with the spectral method were tested.
Although generally acceptable results were obtained. there
were extreme cases of slowly developing transients in which
the methods failed. Further work is needed in this area.
The above procedures are used to place a confidence inter-
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val on a single parameter which can be expressed as a mean.
Both moments and points on a probability distribution can
be expressed as means. Analagous techniques also exist for
generating confidence intervals for quantiles [80], [92].
Multivariate statistical procedures can be applied to place
simultaneous confidence intervals on more than one parame-
ter (e.g., [125], [168]), although this is rarely done in prac-
tice. Regression and design of experiments are potentially
useful techniques in simulation modeling. For example,
Jones [101] used design of experiments and analysis of vari-
ance to design and analyze simulation experiments in-
vestigating factors affecting disk subsystem performance.
However, because of the difficulties in identifying key
parameters and specifying a functional form and the require-
ment for independent observations with identical variances,
these techniques have not been widely used by simulation
practitioners. These are essentially the same reasons that
were cited in Section 1I-D for why such techniques have not
been applied frequently in measurement studies.

The variance expansion due to the autocorrelation in the
output sequences [see (4.3)] poses another difficulty besides
variance estimation; it implies that quite a long simulation
run may have to be performed before a reasonable level
of accuracy is attained. Variance reduction techniques at-
tempt to decrease the variance of an estimate by using known
information about the system being simulated. For example,
Lavenberg er al. [119] propose using known information
about service times and job routing in a variance reduction
technique known as control variables. While variance reduc-
tion techniques are an attractive possibility for cutting down
on simulation run lengths and have been much studied in
the literature, they have been rarely successful in real appli-
cations [122].

Ho er al. |89] and Suri [ 189] have proposed an interesting
technique called perturbation analysis for estimating the gra-
dient of a performance measure with respect to some input
parameter of the simulation, e.g., a mean service time. The
gradient estimate is obtained from a single run by carrying
along certain ancillary information which measures the effect
of an infinitesimal change in the parameter on the sample
path. The gradient estimates can be used in sensitivity analy-
sis or optimization procedures. Questions of the unbiased-
ness and ergodicity properties (convergence with probability
one) of the gradients estimates have been addressed in some
specific instances {88],[191]. General conditions for these
properties to hold have been given in [33), although these
conditions appear difficult to verify in practice. The method
has also been proposed to study the effects of finite changes
in parameters, e.g., increasing a buffer size. Although some
empirical validations have been done. little is known about
the statistical properties of such estimates. Perturbation anal-
ysis should also prove applicable in trace driven simulations
and measurements of real systems.

C. Future Challenges

As computer systems become larger and more compli-
cated, analytic modeling will become more difficult and
simulation will play an increasingly important role in per-



formance evaluation. A key challenge is to be able to devise
computationally efficient techniques to simulate models of
increasingly complex systems. Effective generally appli-
cable variance reduction techniques need to be developed,
although this appears unlikely. Innovative approaches, such
as perturbation analysis, need to be developed, refined, and
applied in practice. Hierarchical modeling techniques should
be applicable in simulation modeling as well as in analytic
modeling. However, some preliminary studies [17] indicate
that such an approach is not always computationally attrac-
tive and there are difficult statistical issues to be faced. How-
ever, hybrid modeling techniques that contain both analytic
and simulation components, often in a hierarchical structure,
have occasionally been successfully applied in practice
(e.g., a model of IBM’s MVS operating system by Chiu and
Chow [40]) and should prove to be an effective approach in
the future. Shanthikumar and Sargent [176] survey hybrid
modeling techniques.

Parallel processing holds promise for increasing simu-
lation efficiency. A potentially attractive approach is to coor-
dinate the activities of multiple microprocessor systems.
However, control of distributed simulation is analagous to
ensuring consistency in distributed databases. Therefore,
synchronization and deadlock detection algorithms are re-
quired (e.g., [35]) for distributed simulations just as concur-
rency control algorithms [13] are required for distributed
databases. The challenge is to be able to effectively partition
models in such a way that both the overhead for these algo-
rithms is small and that high levels of parallelism can be
achieved. Prototype systems and languages are beginning to
appear (e.g., [203]).

Computer graphics will also play an increasingly im-
portant role in simulation. Graphics can be used to facilitate
model input [49]. Data analysis, both in general and in simu-
lation applications, will employ graphical techniques and
these are starting to appear [79], [117, chapter 6). Real-time
graphic animation of simulation is an intriguing possibility
{139], [141]. Such real-time graphics present exciting oppor-
tunities for interactive control and analysis of simulation
models.
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