
1
First Things

Anyone teaching a course [on AI] . . . will have to decide what
artificial intelligence is, even if only because inquiring minds

want to know.
—Stuart Russell and Eric Wefald (1991)

"Can machines think?" [is] as ill-posed and uninteresting as
"Can submarines swim?"

—Edsger W. Dijkstra (ca 1970)

Our minds contain processes
that enable us to solve problems we consider difficult.

"Intelligence" is our name
for whichever of those processes we don't yet understand

—Marvin Minsky (1985)

Introduction

From golems to androids, manmade intelligences have been a dream and night-
mare of mankind for centuries. In the 1950s, electronic brains led to the birth
of the science of artificial intelligence. Will AI, as the field is commonly called,
fulfill its promise to convert mankind's fantasies into reality?

We'll begin exploring the nature of AI by examining its goals, tools, and
accomplishments, and some of the debates it has engendered. Such an exami-
nation should give us a revealing picture of the current state of this promising
discipline.

Next, well discuss the why's and wherefore's of this text. Why the em-
phasis on mathematics? What do future chapters hold in store?

The final sections introduce two important topics: the computation prob-
lem and expert systems. The computation problem permeates AI, but is not

Chapter 1 First Things

always evident. Meeting it face to face now is important because overlooking
its presence is a ticket to disaster. Expert systems provide a unified way of
viewing most of AI.

1.1 Delimiting Al

We'll examine AI from three different viewpoints, or "coordinates":

goals,

methods or tools and (1-1)

achievements and failures.

For example, your goal may be to understand what AI is all about; your
method, talking to AI researchers; and your achievement, a new overview of
AI. Some parts of AI (such as machine learning) are primarily defined by
goals, others (such as neural networks) primarily by methods. Achievements
and failures give information on how a field has progressed.

Some Goals of AI

When you read the following list, interpret words like "reasoning" and "under-
standing" as referring to the results, not the methods. In other words, focus on
a program's output rather than its algorithm. (Mimicking human algorithms
is a concern of cognitive science, not AI.)

• Reasoning: Given some general knowledge together with some specific
facts, deduce certain consequences. For example, given knowledge about
diseases and symptoms, diagnose a particular case on the basis of infor-
mation about the symptoms. The most difficult type of reasoning is based
on what people call "common sense."

• Planning: Given (a) some knowledge, (b) the present situation, and (c) a
desired goal, decide how to reach the goal; that is, use goal-directed rea-
soning. How do planning and reasoning differ? They overlap, but, roughly,
reasoning seeks the answer to What?; planning seeks the answer to How?
For example, "What sort of student am I?" versus "How can I be an A
student?"

• Learning: Acquiring knowledge (learning) is a central issue since knowl-
edge must be acquired before it can be used. In some situations, it is
feasible to build knowledge into a system. In others, it is infeasible or un-
desirable. Then we want a system that can repeatedly extend its knowl-
edge base in a coherent fashion by acquiring new facts and integrating

1.1 Delimiting AI

them with previous knowledge, often by some process of abstraction. For
example, if a system is exposed to various examples of chairs, how can it
abstract the concept "chair"?

The previous goals are rather general in nature and are relevant to many parts
of AI. We now look at goals that may be viewed as more specific. Although
they draw on results in the previous areas, they are very much separate parts
of AI with their own tools and problems.

• Language Understanding and Use: Obviously, this relies heavily on reason-
ing and learning, but it deserves a separate category. "Common sense'*
plays an important role in language. Unfortunately, common sense is an
extremely elusive topic that appears to require a considerable knowledge
base. Attempts to understand spoken language must face additional com-
plications.

• Processing Visual Input: Vision is only one type of sensory input that
must be processed, but it is by far the most complex. Abstracting useful
information from visual input is proving very difficult.

• Robotics: Robotics must marry AI with engineering. In all but the sim-
plest industrial settings, reality is dauntingiy complex. The AI techniques
used in robotics must produce results in real time and, for an autonomous
robot, must not require excessive computer power.

Some Tools of AI

Knowledge about knowledge is the focus of AI. Knowledge is given either
declaratively—in declarative statements—or procedurally—by procedural rules.
Specific knowledge tends to be represented declaratively and general knowl-
edge procedurally. (The situation is not this cut-and-dried, but the distinction
is still useful.) Declarative knowledge is stored in what is called a knowl-
edge base. Knowledge about knowledge provides tools for interacting with the
knowledge base:

• Knowledge Organization Tools: Data structures and algorithms facilitating
the organization of the knowledge base.

• Knowledge Manipulation Tools: Methods for extracting new knowledge
from the knowledge base; for example, reasoning and planning.

• Knowledge Acquisition Tools: Methods for incorporating new knowledge
into the knowledge base or modifying the tools ("learning"). The border
between acquisition and manipulation is fuzzy.

In many areas of computer science, algorithms are primary and data struc-
tures are secondary. In contrast, knowledge representation is a central problem
in AI. The form of declarative knowledge (the data structures) limits what

Chapter 1 First Things

we can state and the ease with which we can manipulate it. APs declarative
knowledge is seldom considered "just data." Thus, the tools of AI could be
thought of in terms of what can be incorporated in the data structures. Here
are some data structures and where to find them and their tools.

• Limited Structure: Relatively unstructured search spaces are attractive
because they impose few restrictions. Sadly, the lack of structure makes
computations overwhelming for all but the simplest problems (Chapters 2
and 13).

• Mathematical Logic: Mathematical logic allows us to represent facts about
the world in a form that can be manipulated (Chapters 3-6).

• Logic-like Representations: Representational awkwardness and other hand-
icaps motivated some researchers to seek alternatives. Some approaches,
such as rule-based systems and semantic nets, can be recast in the frame-
work of logic (Chapter 6). Other approaches, such as reasoning by anal-
ogy as in case-based reasoning, use other methods and are lightly touched
upon in Chapter 14.

• Numerical Information: Numerical information can play a central role in
describing uncertainty about the world, as in "a 40% chance of rain"
(Chapters 8 and 9).

• Nonsymbolic Structures: The previous structures are designed to repre-
sent and manipulate information symbolically. A growing number of re-
searchers have questioned this approach (Chapters 10, 11, and 13).

On another level, we could say that the tools of AI are those things that
provide the basis for creating the knowledge tools. They tend to fall into four
areas:

• Hardware: AI makes heavy use of computers for developing and testing
ideas. Some parts can benefit from special-purpose devices.

• Software: AI's large software systems make it an important developer and
consumer of programming tools.

• Mathematics: Some parts of mathematics have proven useful in AI. (Every
formal manipulation of concepts is a part of mathematics.)

• Heuristics: Sometimes called "rules of thumb," heuristics are empirical
principles. Heuristics may use mathematics, but often do not.

1.1 Delimiting AI 5

What Has Al Given the World?

Many of AI's contributions contain no AI: They are simply tools that were
developed to aid AI research. We'll begin with these spinoffs and move on to
results that do contain some AI. There is no consensus on where to draw a
line between contributions containing little or no AI and those with signif-
icant amounts. Many draw the line just before or just after "game-playing
programs."

• Timesharing: Much early work on timesharing was done by MIT's project
MAC—a dual acronym meaning either "machine-aided cognition" or
"multiple-access computing." (Some wags called it "man against com-
puter.")

• Windows and Graphical User Interfaces: These were developed at Xerox's
Palo Alto Research Center to provide easier computer access for AI re-
searchers.

• Programming Paradigms: These include

• constraint propagation (now used in spreadsheet programs),
• object-oriented programming,
• functional programming (the basis of Lisp), and
• logic, or declarative, programming (the basis of Prolog).

• Fuzzy Controllers: "Fuzzy logic" leads to more stable and flexible means
of regulating machines.

• Game-Playing Programs: Game playing was a favorite topic in the early
years of AI research. By 1995, the best artificial chess player could beat
all but the best human players. Backgammon programs achieved a sim-
ilar level: One beat the world champion because lucky rolls of the dice
compensated for somewhat inferior play.

• Expert Systems: Commercial expert systems have been proliferating in
recent years and many businesses are using special-purpose software to
write expert systems for in-house use.

• Natural Language Interfaces: A limited ability to understand natural lan-
guage is providing friendlier user interfaces for some programs.

• Dictation Systems: Systems able to transcribe speech have begun to ap-
pear on the market. So far, vocabulary and speed are rather limited.

The flip side of achievement is failure—the skeleton in the closet. Here
are three of them.

• Wild Optimism: The seeds of a variety of failures were planted in the
1950s—the early, heady years of AI when almost everything was "just
around the corner." In the 1980s, a minor relapse into unbridled optimism
was caused by the rebirth of neural networks—a methodology inspired

6 Chapter 1 First Things

by the highly interconnected, self-modifying nature of biological neural
systems.

Game-Playing Programs: Many hoped that studying games would lead to
significant progress in AI. The rate of return has been low, however—
perhaps because competitions tend to focus on immediate improvement
rather than new ideas.

Ad Hoc Developments: Much research has been based on ad hoc methods
rather than solid foundations. People argue about whether seat-of-the-
pants design is inherent in the subject matter of AI or just a passing
stage. Advocates of ad hoc methods are called scruffiest advocates of
theoretical methods are called neats.

Results versus Methods: Cognitive Science

Artificial intelligence is an invention.
In contrast) a theory of human intellect is a discovery.

—Morton Wagman (1991)

For some, a major goal of AI is the construction of an artificial intelligence
having human-level abilities. Progress has certainly been made, but the goal
is still far away, if not impossible. Other people are concerned with the meth-
ods hurnans use to achieve their abilities. As noted earlier, these people are
cognitive scientists.

Like AI, cognitive science is an umbrella field related to "intelligence."
Cognitive science, which includes topics like cognition and consciousness,
seems to be striving to achieve many of the goals listed for AI. Unlike AI,
cognitive science focuses on learning how human minds achieve such goals
rather than on creating artificial methods for achieving them. There are a
variety of introductions to cognitive science; for example [14] and [49].

Allen Newell [32] was a major advocate for developing unified theories of
cognition that can be tested and expressed through programs. He argues co-
gently that both cognitive science and AI will profit from such attempts in
the short term, but will go their separate ways in the long term [32, p. 57]. To
see why this might be so, consider a crude parallel—a slightly fictional his-
tory of flight. Cognitive science corresponds to understanding bird flight, and
AI to creating artificial flight. Understanding and adapting some aspects of
bird flight informed the early development of artificial flight. Conversely, at-
tempts at artificial flight provided tests for the understanding of bird flight.
Major progress required an understanding of the principles of aerodynamics,
at which point the methods employed by birds were no longer relevant. (Ac-
tually, studying flying fish may have been more productive for early attempts
at flying.)

1.2 Debates

Exercises

1.1.A. What are some goals of AI?

1.1.B. What are some general tools of AI?

l.l.C. What are some contributions of AI?

1.1.D. What is the difference between AI and cognitive science?

1.2 Debates

There is nothing which is not the subject of debate, and in which
men of learning are not of contrary opinions. The most trivial

question escapes not our controversy, and in the most
momentous we are not able to give any certain decision.

—David Hume (1740)

Consciousness is a subject about which there is little consensus,
even as to what the problem is. Without a few initial prejudices

one cannot get anywhere.

—Francis Crick (1994)

One of the ongoing debats in AI is the definition of the AI field itself. Actually,
the variety in the field probably makes it impossible to give a concise definition
that is neither too broad nor too narrow. To see why this is so, try the much
simpler problem of defining what is meant by a sport. Your definition should
include bowling and recreational cycling, but not chess or dancing.

Here are three debates that provide some insights about AI.

Consciousness and Intelligence

A better understanding of cognitive science topics like intelligence and con-
sciousness could benefit AI research. Thus we'll look briefly at these debates,
even though they do not belong in AI.

A question like "Can machines think?" is difficult. We often start from the
premise that we understand what this question means when, in fact, ongoing
debates show that we have not yet figured out what we're talking about.
Even the first step—agreeing on the definition of "intelligence"—has not been
taken. Some people believe that the most famous proposed test for machine
intelligence, the Turing test, should be regarded as a definition of intelligence.
Other people disagree. (See Exercise 1.2.1.)

8 Chapter 1 First Things

Perhaps thought and intelligence are the wrong issues to address. Instead,
consciousness may be a more fundamental issue. We seem to know less about
this subject than some experts would like to believe. The study of conscious-
ness belongs to philosophy, psychology, and cognitive science. If this line of
study appeals to you, you may find the books by Churchland [8], Dennett [12],
and Moody [31] of interest.

The range of beliefs (or hopes) regarding intelligence and consciousness
is quite broad.

• At one extreme, strong AI supporters maintain that it is possible to cre-
ate an intelligent, conscious machine and that something like the Turing
test (Exercise 1.2.1) is adequate to determine if the machine is intelligent
and conscious. One expression of this is the physical symbol hypothesis of
Newell and Simon [33]. They define a physical symbol system to be some-
thing that is capable of manipulating physical patterns (such as data in
a computer or strengths of connections among neurons) and hypothesize
that such a system is necessary and sufficient for implementing general
intelligent behavior.

• At the other extreme are those who maintain either (a) that intelligent,
conscious behavior has a nonphysical component (as in Cartesian dual-
ism) or (b) that it involves something inherently biological. These people
conclude machines will never achieve such behavior.

Given the current state of AI, researchers need not worry about such issues
any more than the Wright brothers needed to worry about the sound barrier.

Symbols versus Connections

The symbols versus connections debate might also be described as "intelli-
gence by design" versus "intelligence as an emergent property."

The traditional approach to AI has been symbolic; that is, knowledge
is represented at a symbolic level comprehensible to us. The strict symbolic
viewpoint is that the way to make real progress in AI is through the develop-
ment of powerful data structures and algorithms for the representation and
manipulation of knowledge on a symbolic level. Most defenders of this view
believe the symbolic approach mimics conscious human reasoning. The choice
of a symbolic framework has been debated. Some want to base the symbolic
approach on mathematical logic; others insist that numerical methods should
play a central role.

There has recently been a revival of the connectionist approach. Like
much of AI, this approach was born amidst the rosy predictions of the 1950s.
It nearly disappeared in 1969 after Minsky and Papert [30] emphasized the
limitations of the methods then available. Interest blossomed anew in the
1980s. Since then, considerable research has been done using simulations of

1.2 Debates

networks of simple interconnected processors, that is, neural networks. Strict
connectionists believe that one should design complex networks of simple pro-
cessors and then train these networks. Intelligence, they maintain, will emerge
as a consequence, but won't be found in the parts of the network separately.
This is the sort of internal representation and manipulation of knowledge that
the human brain apparently uses on the physiological level, with neurons as
processors.

Which approach is better? The answer may depend on the application.
It may be best to combine the approaches—people are experimenting with
hybrid systems. At any rate, it's too soon to tell.

The Role of Theory

The word "theory" encompasses mathematics as well as such things as the
theory of general relativity. It does not include simple facts and rules of thumb
based on them. For example, the commonsense advices "get a good night's
sleep before an exam" is not a theory. It's a heuristic rule based on personal
observation. What, then, is the practical relevance of theory for AI?

"The theory is the program" view of some nontheorists is at one extreme.
This attitude should not be confused with the idea that computer programs
in AI (should) play the role of experiments—no one claims that a theory is
an experiment. In contrast, "The theory is the program" means you may ask
how well the program works but you can't ask for a foundation on which the
program is based.

At the other extreme is the ultra-logicist claim that, ultimately, AI will
succeed by employing a theoretically justified system of symbolic reasoning.

Naturally, most researchers' beliefs lie between these two extremes. The
issue then is "What is the best blend between heuristics and theory?" The
answer to this question depends on the researcher, on the subject, and on its
state of development: On the researcher, because abilities vary from person
to person; on the subject, because simpler areas are more easily fit into a
theoretical framework; and on the state of development because mathematics
is gradually making greater inroads into various areas of AI.

*Exercises

To the student: These exercises are likely to be time-consuming. Most instructors
(myself included) won't assign any because of time pressure. Read them anyway—
they provide food for thought.

To the instructor: See above.

10 Chapter 1 First Things

1.2.1. The Turing test [51]: An evaluator E is allowed access to two subjects W (a
woman) and X (not a woman) only through a remote terminal. The experi-
menter tells E that exactly one of W and X is a woman and instructs E to
determine which it is by whatever method E wishes using the remote ter-
minal. Each of W and X attempts to react like a woman when responding
to E's questions. If E decides that X is a woman, then E has been deceived.
By averaging over many E's, W's, and X's, we can obtain a success rate for
deception. In particular, we can compute the deception rate when X is a
man—the deception rate for men. We can also compute the deception rate
for a computer program. In the Turing test, the program is declared to pos-
sess intelligence if its deception rate is at least as great as the deception rate
for men.

(a) Consider the following statement: "The Turing test is based on the idea
that the ability to misrepresent oneself is a measure of intelligence." Do
you agree? Why? If you agree with it, do you think that ability is a
measure of intelligence? Why?

(b) In some statements of the Turing test, the deception rate for a computer
program is simply required to exceed some value. Which version do you
think is better? Why?

(c) Suppose a species as intelligent as humans were found. (Intelligence in
this sentence does not refer to the Turing test, but to a "commonsense"
assessment.) Do you think such aliens could pass the Turing test? Why?

(d) Given the existence of an intelligent alien species, suggest and defend a
less species-biased test for computer intelligence.

(e) As stated, passing the Turing test depends on the computer's possess-
ing extensive knowledge of the nature of human beings, both physical
and psychological, as well as their culture, history, literature, and so
forth. Suggest and defend modifications of the Turing test that would
reduce the need for such knowledge. To what extent can such a need be
eliminated without affecting the validity of the test?

(f) More generally, can you formulate a better test?

1.2.2. Suppose we are considering cognitive skills, learning abilities, or some other
human skill that is relevant to AI. Imagine a three-sided debate:

1. The (nearly) best way to achieve this skill has been found by evolution.

2. By reason and experiment, we'll be able to improve considerably on
human skills.

3. Neither of the two previous views is correct.

Come to class prepared to carry out such a debate. (You may be assigned a
particular viewpoint to defend.)

1.2.3. For each of the three sides of the debate in the previous exercise, describe
the implications for AI work on a particular skill if the side is correct.

1.3 About This Text 11

1.2.4. Newell [34, p. 19] lists a variety of things a mind is able to do, many of which
are reproduced below. Which of these abilities do you think a computer
program should have in order to deserve being considered a major AI project?
Explain your choices.
Hint. There is a wide latitude for acceptable answers, but you may have to
decide what you mean by AI in order to answer.

(a) Behave flexibly as a function of the environment

(b) Exhibit adaptive (rational, goal-oriented) behavior

(c) Operate in real time

(d) Operate in a rich, complex, detailed environment

• Perceive an immense amount of changing detail

• Use vast amounts of knowledge

• Control a motor system of many degrees of freedom

(e) Use symbols and abstractions

(f) Use language, both natural and artificial

(g) Learn from the environment and from experience

(h) Acquire capabilities through development

(i) Operate autonomously, but within a social community

(j) Be self-aware and have a sense of self

1.3 About This Text

The paradox is now fully established that the utmost
abstractions are the true weapons with which to control our

thought of concrete fact.

—Alfred North Whitehead (1925)

Understanding in mathematics cannot be transmitted by
painless entertainment any more than education in music can
be brought by the most brilliant journalism to those who have
never listened intensively. Actual contact with the content of

living mathematics is necessary.

—Richard Courant (1941)

Teach nothing that pupils can teach themselves.

—Amos Bronson Alcott (1799-1888)

Mathematics is the term we use to describe the process of symbolically deduc-
ing conclusions from conceptual assumptions, whether these be the axioms of

12 Chapter 1 First Things

geometry, the laws of physics, or the assumptions in economics* utility the-
ory. Mathematics with bad assumptions is useless; with good assumptions, it
is a wonderful tool.

Heuristics is the term we use to describe empirical principles and tech-
niques, such as "Avoid the use of GOTO," "The best offense is a good de-
fense," and "graphical user interfaces." Good heuristics whose limits are well
understood are very useful.

Programming is a means of testing ideas, creating tools, and generating
information that may spark new research. Because of AFs complexity, we often
use special languages (most notably Lisp and Prolog) or simulator packages
(especially for neural nets).

Programming, heuristics, and mathematics are all important in AI.
Because AI is a large field, textbook authors must make choices. Most

authors emphasize heuristics and relatively simple programming exercises.
Since writing large programs and studying mathematics are time-consuming,
this approach allows the broadest coverage of topics. After learning some Lisp
or Prolog and taking a course that involves a large programming project, you
should be able to study AI programming methods and write such programs.
On the other hand, it's much harder to study mathematics on your own.

My goal is to provide an introductory AI course based on the most im-
portant mathematics and its applications. To keep the length manageable,
material must be cut. My algorithm is simple: Focus on important AI topics
that involve the most broadly applicable mathematics and cut back on oth-
ers. What does that leave? The main mathematical tools for representing and
manipulating knowledge symbolically are (a) various forms of logic for qual-
itative knowledge and (b) probability and related concepts for quantitative
knowledge. The main tools for manipulating knowledge nonsymbolically, as
in neural nets, are optimization methods and statistics. I've organized that
material as follows.

• Trees and Search: Since search plays a central role in AI, elementary
aspects of search trees are discussed in Chapter 2. Some additional aspects
of search are briefly discussed in Chapter 13 after the necessary probability
theory has been introduced in Chapter 12.

• Classical Mathematical Logic: First-order predicate logic, the starting
point for the use of logic in AI, is presented in Chapters 3 and 4. Prolog
is introduced to show how the concepts and results can be implemented
in a programming language. The reasoning engine in Prolog combines a
search strategy with a deductive method from logic. (You won't, however,
learn how to program in Prolog from this brief introduction.)

• Uncertainty in Reasoning: AI systems based on classical mathematical
logic have various shortcomings. Among these are the following:

• We can't easily allow for general rules that have exceptions (for exam-
ple, "mammals have legs" and "whales are mammals without legs").

1.4 The Computation Problem in AI 13

• We can't allow for uncertain statements (for example, "When the
barometer is falling, it often rains by the following day.")

Qualitative approaches based primarily on extending logic are discussed
in Chapter 6. Quantitative approaches are discussed in Chapters 8 and 9
after the necessary probability theory has been introduced in Chapter 7.

Automatic Classification: An alternative to incorporating knowledge-based
rules into expert systems is to design programs that develop their own
"rules" from examples. These are called pattern classifiers and are dis-
cussed in Chapters 10, 11, and 13. After discussing neural nets and opti-
mization in Chapter 11,1 digress to introduce some probability, statistics,
and information theory in Chapter 12. This is applied to neural nets and
decision trees in Chapter 13.

Other Things: The previous material omits important areas of AI. One is
robotics, in which sensory-input processing (especially vision) and motion
planning involve considerable mathematics. Another is language, where
linguistics and speech processing use mathematics. The final chapter con-
tains brief introductions to these omissions and to some less mathematical
topics so that you'll have a bit of background and some references for fur-
ther study.

1.4 The Computation Problem in AI

Any program that will successfully model even a small part of
intelligence will be inherently massive and complex. Consequently

artificial intelligence continually confronts the limits of modern
computer-science technology.

—J. Michael Brady, Daniel G. Bobrow, and Randall Davis (1993)

Designing algorithms is a central problem in almost any computer oriented
field, and AI is no exception. Unfortunately, algorithms are particularly trou-
blesome in AI. Three reasons for this are as follows.

• Complexity: Problem complexity makes designing and implementing al-
gorithms difficult.

• Time: Algorithms frequently explore potential solutions in the course of
searching for an acceptable one. For problems of realistic size, a simple
search process may take too long because of combinatorial explosion—
a rapid growth in the number of possible solutions. Unfortunately for
algorithm design in AI,

Very rapid growth is typical in AI problems.

14 Chapter 1 First Things

• Impossibility: It may be impossible to design an algorithm for the given
problem. Here's a specific example. We would like to design an algorithm
that takes as input (a) a computer program in some suitable language
and (b) some data for the program. The algorithm must determine if
the program will stop or run endlessly—the halting problem. In designing
the algorithm, we imagine an abstract computer having infinite storage.
(Of course, compromises will have to be made when we get around to
implementing the algorithm.) In a classic paper in 1935, Turing proved
that no such algorithm can exist. Thus, the problem is impossible.

Here are some ways of dealing with these problems.

• Find a much better algorithm: This is the ideal solution. Unfortunately,
we often cannot find a much better algorithm.

• Settle for an algorithm that sometimes fails: These are algorithms that
sometimes fail either by stopping with no solution or, worse, by giving
an incorrect solution. It's possible to create such an algorithm by impos-
ing a time limit on another algorithm. For example, the famous simplex
algorithm in linear programming has a very bad worst-case time and a
very good average-case time [6]. Thus, an intelligently designed time limit
would lead to a solution in most cases. For this approach to be useful, we
must know from theory or experience that failure is relatively rare.

• Settle for an approximate solution: Such a solution is often good enough.
Simon coined the term satisficing for finding a good enough solution.
Sometimes, obtaining good approximate solutions may be as difficult as
the original problem.

• Replace the problem with an easier one: Solving the easier problem may
produce useful results. Also, exploring the easier problem may lead to
ideas for the original problem.

• Give up: No comment.

All of these approaches are used in AI, often in combination. Inventing com-
promise algorithms is a tricky, creative business. Mathematics may help in
inventing and assessing compromises, but is seldom sufficient. The final weigh-
ing of gains and losses in a compromise is a value judgment based on your
goals.

How much time should an algorithm be allowed to take? More time often
means a better result. On the other hand, speed of response is important;
for example, a user is less likely to use a sluggish expert system than a quick
one. Figure 1.1 illustrates this idea. Unfortunately, the information needed to
construct the curves in the figure is seldom available. In this case, an anytime
algorithm can be quite useful. This is an algorithm that can be interrupted at
any time to obtain an approximate answer. Here's a simple example of such
an algorithm. Suppose we know that / is continuous on the interval [a, 6],
that /(a) < 0, and that f(b) > 0. We want to obtain an estimate for an

value

1.4 The Computation Problem in AI 15

calculation

net value
time

cost of delay "x
N

Figure 1.1 The typical effect of response time. The vertical scale measures value
in some unspecified manner. The upper dashed curve shows how the value of a result
varies with computation time. It ignores the costs of time delay. The lower dashed
curve shows the cost of delay in response time. The middle curve, which combines
the two, shows the net value of the response. Computation should end at the middle
curve's maximum: Even though more calculation would give a better result, the cost
of delay outweighs the gain.

x G («,&) such that f(x) = 0. Simply repeat the following two steps: Let
c = (a + b)/2. If f(c) < 0, let a = c; otherwise, let b = c. Whenever the
algorithm is interrupted, it returns the estimate c for x.

NP-Hard Problems

Theoretical computer scientists consider an algorithm to be fast if its running
time can be bounded by a polynomial in the number of bits needed to express
the input and the output. This means that, even in the worst case, the algo-
rithm is reasonably fast on very large problems. It says nothing about average
running time. Indeed, it may be very difficult to define an average running
time since it may be unclear what to average over.

In the theory of algorithms, a certain class of problems is called NP-
complete. Hundreds of problems of interest to computer scientists have been
shown to be NP-complete. It has been proved that either a fast algorithm
exists for all NP-complete problems, or no fast algorithm exists for any NP-
complete problem. Since no fast algorithm has been found after many years
of research, it seems unlikely that any exists.

An NP-hard problem is one that is at least as difficult as an NP-complete
problem. Even when a problem is NP-hard, there may well be an algorithm
that works well on the situations that arise in actual usage—that is, the worst
cases simply don't arise in practice. (Of course, as soon as you decide this and
release your program to the world, Murphy's law dictates that someone will

16 Chapter 1 First Things

come up with a use where the worst cases occur.) In other words, the relevant
time is the average running time over inputs that will actually occur. Unfor-
tunately, this time is usually difficult or impossible to determine theoretically.

Polynomial time algorithms and NP-complete algorithms are the bottom
levels of a whole series of increasingly more difficult problems that are studied
in complexity theory. Some AI problems are NP-complete. Many more are
even more difficult. As a result, compromises of some sort are often needed.

Aside. Here's a technical note for those who want to know a bit more about NP-
complete. Let \y\ denote the number of bits needed to describe y. We say that an
algorithm is (at most) "g time" if the running time of the algorithm with input x is
bounded by ^(|aj|).

Suppose we want to determine whether certain things in a set S have some
property F. This is called a recognition problem. A recognition problem is in the
class P if there exists a polynomial time algorithm that can determine if F(x) is
true or false. For example, S could be the positive integers and F could be "com-
posite" (not a prime). In this case, F(x) is true if and only if x is not a prime. No
polynomial time algorithm is known for this example.

It may be much easier to verify that F(x) is true for a given x if we're given
some additional information. This added information is called a certificate. Thus, a
certificate could change a hard problem into an easy one. (Of course, it might be
very hard to create such a certificate.) Note that this makes no provision for veri-
fying that F(x) is false. For the composite number example, a certificate c(x) for x
could be a factor of a;. To verify that F(x) is true, all we need to do is check that
x/c(x) is an integer between 1 and x.

A certificate-checking algorithm is NP if it is polynomial time and \c(x)\ is
bounded by a polynomial in |x|. "NP" stands for "nondeterministic polynomial."
It should be clear how polynomial applies to the definition, but where does non-
deterministic come in? An algorithm that makes lucky guesses could do the hard
part—that is, create c(x) in polynomial time by guessing. Guessing is a nonde-
terministic process. Combining this with the certificate-checking algorithm gives a
nondeterministic polynomial time algorithm for F(x). A recognition problem is in
the class NP if there exists an NP algorithm for it.

Suprisingly, there exists a class of "hardest" recognition problems in NP. These
are the NP-complete problems. In what sense are they hardest? Suppose we have a
g time algorithm for a problem. We say another problem is no harder than this if it
has a g(p) time algorithm for some polynomial p. This says that, to within a polyno-
mial adjustment, all NP-complete problems have the same running time bound and
no NP recognition problem has a larger bound. Let's put this another way. Suppose
that V is a recognition problem that has a polynomial time certificate checking al-
gorithm and let g be the running time for the best possible noncertificate algorithm
for some NP-complete problem. Then the best noncertificate algorithm for V is at
most g(p) time for some polynomial p.

Since a polynomial time algorithm can check if F(x) is true in polynomial time
even without a certificate, any problem in the the class P is contained in the class
NP. It's not known if the two classes are equal; however, this seems very unlikely.
Why? NP-complete problems have been studied extensively and no polynomial time

1.4 The Computation Problem in AI 17

algorithm has been found. (On the other hand, it hasn't been proven that a poly-
nomial time algorithm cannot exist.)

A problem is NP-hard if it is at least as hard as an NP-complete problem. An
NP-hard problem need not be a recognition problem.

Goals, Difficulties, and Compromises

Computation problems often force compromises—we saw some possible ones
earlier. In fact, compromise is a pervasive aspect of AI. Being aware of this
will help your understanding and creativity, so develop the habit of asking the
following questions:

What are the goals?
What are the difficulties?
What are the compromises?

Try going back to the previous section and picking out the goal(s), problem(s),
and compromise(s) involved in my writing of this text.

Exercises

1.4.A. Why are algorithms particularly troublesome in AI?

I.4.B. What are some ways of dealing with the problems to which algorithms in AI
often lead?

I.4.C. Roughly speaking, what are NP-complete and NP-hard problems?

I.4.D. Why may it not be too important that a problem is NP-hard?

1.4.1. Prove that the anytime algorithm for finding a solution to f(x) = 0 has
the following three properties. Assume that there is no roundoff error in the
computations.

(i) There is always such an x G [«, b],

(ii) After n iterations, the length of the interval [a, b] is 2~n times its original
length.

(iii) No matter how close to a solution of f(x) = 0 we want to be, we can get
that close if we allow the algorithm to run long enough.

18 Chapter 1 First Things

1.5 Expert Systems

"You really are an automaton—a calculating machine," I cried.
"There is something positively inhuman in you at times."

—Arthur Conan Doyle (Watson to Holmes) (1889)

Expert system research has, by general consensus, not been as
successful as its most vehement proponents still claim and it is
open to us to wonder just why. My view is that it is due to the

divergence between formalised rule and the social nature of being
an expert.

—Philip Leith (1990)

Definition 1.1 Expert System

As a rough working definition, an expert system for some special field is
an artificial system that

• exhibits abilities in that field,

• accepts input regarding a specific problem,

• delivers advice, actions, or something similar as its output, not just
organized data, and

• uses domain-specific knowledge.

The traditional AI definition was more restrictive. It required that the ex-
pert system obtain its results by a process akin to abstract reasoning, that
it be able to explain how it reached its conclusions, and that it exhibit abil-
ities at least comparable to those of a human being. The abstract reasoning
requirement probably arose from a combination of the desire for explanations
and an intellectual prejudice concerning how AI should be done. The desire
for explanations was based on the observation that people often insisted on
checking the computer's "reasoning" before accepting its conclusions. Finally,
if the system was not at least as good as a human in its area of expertise, no
one would use it.

The broader definition given here allows for expert systems that are
not based on a symbolic manipulation of data, for example, neural nets.
It also allows for systems in areas where humans exhibit little if any con-
scious reasoning, for example, in processing visual input. Finally, it allows
for useful systems that are less capable than humans but are still valuable

1.5 Expert Systems 19

Expert System Shells

Reasoning Hybrid Pattern Classification

Qualitative Quantitative Rule Decision Neural Networks
• Logic • Bayesian Extraction Trees • Hopfield-like
• Production Rules • Fuzzy Logic • Feed Forward
• Semantic Nets • Other • Other
• Other

Figure 1.2 Possible engines for expert system shells. "Other" signifies the most
blatant omissions. "Rule Extraction" develops input for "Reasoning" systems. "Hy-
brid" refers to systems that use more than one method, a practice that is becoming
more common.

in research or applications, for example, natural language processing sys-
tems.

Closely related to the notion of an expert system is that of an expert
system shell, which is important in the development of commercial systems.
Roughly speaking,

An expert system shell is to an expert system

as

a compiler or interpreter is to a program.

In this analogy, program statements correspond to domain-specific knowledge,
which is often expressed declaratively either in rules or in examples. Just like
interpreters and compilers, expert system shells tend to fall into two cate-
gories:

• Rule-based knowledge is normally used at run time in a symbolic reason-
ing process.

• Example-based knowledge is normally used at compile time in a pattern
classification process.

Figure 1.2 illustrates some of the possibilities for expert system shells.

20 Chapter 1 First Things

Constructing an Expert System

There are various steps to constructing an expert system. One possible break-
down is

• selection of a tractable problem,
• selection of an appropriate shell,
• acquisition and preparation of knowledge, and
• testing.

Actually blending and feedback take place among the steps. For example,
we might defer the shell choice until we have acquired some knowledge, or,
in the process of testing, we might decide that the knowledge base is inade-
quate.

Step 1. The Problem: To begin with, you must have a "good" problem, that
is, one for which an expert system is likely to be useful. How can you tell if
this is the case?

Best performance is usually obtained by choosing a narrow subject; that
is, one in which the knowledge base is well delimited. In particular, we should
avoid problems that involve "common sense." Some AI problems, like natural
language understanding, are plagued by the need for common sense.

Performance has generally been disappointing in areas where evolution
has apparently led to some "hard wiring" in human brains. The foremost
example is expert systems related to vision. Successful expert systems in such
areas have generally been limited to very specific problems such as identifying
handwritten Zip codes.

Step 2. Shell Selection: Once you've clearly stated the problem and gained
some understanding of the field, you should choose a method of implementa-
tion. You can program a system from scratch, but using an approriate shell
is usually much more efficient.

Step 3. Knowledge Acquisition: It is generally difficult to obtain accurate in-
formation from experts—they misstate the rules they use, forget important
factors, contradict themselves (and each other), and estimate numerical val-
ues poorly. Furthermore, their knowledge is probably poorly organized for use
in an expert system shell. Although the art of obtaining information from
experts is important in building an expert system, we won't study it.

In some areas, such as vision processing, experts do not use conscious
methods. In this case, you must either attempt to discover rules yourself or
you must abandon rules and create the expert system from a collection of
"typical" examples.

Step 4. Testing: Testing is often referred to as validation. You can expect
problems that will send you back to Step 3 repeatedly. It is hard to decide

1.5 Expert Systems 21

when a system has finally passed the testing phase and is ready for use. In the
first place, users typically come up with situations that software designers did
not anticipate. Second, we often do not expect 100% success, so it is hard to
judge the failures we observe. In this case, systems that provide explanations
are quite helpful—the reasons given for a wrong answer can help us decide if
we want to attribute it to a design error or to a limitation that we cannot (or
do not want to) overcome.

Examples of Expert Systems

To give you a more concrete appreciation, I'll briefly discuss a few of the many
expert systems that have been written. My choices were motivated by a desire
for breadth not by the commercial success, if any, of the system. Inevitably,
the brevity of the descriptions has led to some distortion.

LOGIC THEORIST (1956)
In the early years of the twentieth century considerable effort was devoted to
providing a solid foundation for mathematics. The most massive attempt was
Whitehead and Russell's Principia Mathematica (1910).

Aside. This search for a solid foundation is one of the modern impossibility problems.
Its impossibility was proved by Godel in 1931. He showed that any system based on
the usual methods of logical reasoning and arithmetic must contain true theorems
that could not be proved within the system ("incompleteness"). In another paper,
he showed that the real numbers could not be completely specified in such a system
("independence of the continuum hypothesis"). The classical impossible problems
are the trisection of the angle, the doubling of the cube, and the squaring of the
circle. The Renaissance impossible problem is the solving of the general fifth-degree
equation by radicals. The proof that TT is transcendental established the impossibility
of squaring the circle. Galois theory was used to establish the impossibility of the
other three problems.

Since the framework provided by Whitehead and Russell allows theorems
to be proved with no "understanding" of the concepts, it's a reasonable candi-
date for symbolic manipulation by computer. Newell, Simon, and Shaw took
up this task and produced LOGIC THEORIST.

As you've undoubtedly discovered, it's not always clear what steps must
be taken to prove a theorem. Because of this, LOGIC THEORIST used an
ad hoc trial-and-error method. An essential part of a triai-and-error method
is deciding what to try. The program used two approaches:

• Suppose the goal is to prove Z and we have an axiom or theorem that
says, "If A is true, then Z is true." We can attempt to prove A.

22 Chapter 1 First Things

• Suppose the goal is to prove that "If A is true, then Z is true," We can
try to find M such that one of the two statements

"If A is true, then M is true." and "If M is true, then Z is true."

is either an axiom or a theorem. Then we try to prove the other of the
two statements.

This method is related to the reasoning engine used in the Prolog language.
Unlike LOGIC THEORIST, Prolog has a theoretical foundation that pro-
vides power and clarifies its limits. On the other hand, the construction and
arrangement of Prolog statements are more critical to its success.

Few, if any, researchers claim that the formal methods of LOGIC THE-
ORIST and Prolog are used in day-to-day human reasoning. Nevertheless, a
large number of researchers believe that extensions of these ideas will prove
adequate for much of the reasoning needed in AI.

Mathematical logic and Prolog are discussed in Chapters 3, 4, and 6.

MYCIN (1972)
Beginning in 1972 at Stanford, Shortliffe and others developed MYCIN, which
is one of the best known expert systems. In its area of competence, MYCIN
was able to diagnose illnesses as well as or better than most physicians. It
was also able to explain how it reached its conclusions. Nevertheless, it never
received more than token acceptance from the medical community.

MYCIN is a rule-based system with uncertainty. In real life, many rules
are not certain. An example of such a rule is "If you do not study, then you
will get a bad grade." However, you might happen to be lucky, so the rule
may be valid only 95% of the time. A typical MYCIN rule has the form

If the result of test A is RA and .. . and the result of test Z is Rz,
then there is evidence that the disease organism is D.

Included with the rule is a numerical value in the interval [—1,4-1], called a
certainty factor (CF). This value is intended as a measure of the strength of
the rule's conclusion, given that its hypotheses are satisfied. In particular

{ 41, given the evidence, D is certainly correct;
— 1, given the evidence, D is certainly wrong;

0, the evidence gives no information about D.

The meaning of intermediate values is not so clear.
The MYCIN reasoning engine proceeds from diagnostic evidence toward

causes, eventually producing certainty factors for various diagnoses. In the
process, certainty factors are combined using an ad hoc rule. More recently,
certainty factors have been given a probabilistic interpretation, and Bayesian
nets have provided less ad hoc (but more complex) methods for combining
certainty factors.

Although numerical methods like that used in MYCIN provide ways of
incorporating uncertainty into reasoning, it is unlikely that human reasoning

1.5 Expert Systems 23

is based on such processes—people are notoriously poor at assigning numerical
values to evidence. On the other hand, the use of numerical methods might
lead to AI systems that reason more accurately than humans do.

Bayesian nets and certainty factors are discussed in Chapter 8.

NETtalk(1986)
DECtalk is a complicated rule-based system for converting written English
to spoken English. Sejnowski and Rosenberg developed the neural network
NETtalk to do the same thing. In contrast to DECtalk, NETtalk contains no
rules. Instead, it contains about 100 interconnected units (neurons). The net-
work was given paired samples of written and spoken English from which it
trained itself, using a process that adjusts the strengths of the connections be-
tween the neurons. NETtalk uses the seven most recent text symbols (letters,
punctuation, and spaces) to drive a digital speech synthesizer.

Networks have trained themselves for a variety of tasks. In contrast to
the more cognitive approaches used in the other examples, networks have no
cognitive information built in. Researchers believe that neural networks mimic
somewhat the low-level behavior of biological networks of neurons. As a result,
they believe that this approach may hold the key to designing AI systems that
have some of the capabilities of biological systems.

Neural nets are discussed in Chapters 11 and 13.

DEEP THOUGHT (1990)
Game-playing programs were a favorite research area in the early years of AI.
For various reasons, research interests have since moved in other directions,
but the area has not been completely abandoned.

Chess is the most actively researched game. Programs are available that
will easily beat average players. Thanks to faster processors, special-purpose
devices, and improvements in programs, the top silicon-based players are now
nearly as good as the top human players.

DEEP THOUGHT, by Hsu, Anantharaman, Browne, Campbell, and
Nowatzyk uses special-purpose hardware to search the possibilities for several
moves into the future. The quality of each possible position is evaluated and,
sometimes, further search is carried out. DEEP THOUGHT'S strength lies in
the depth to which it can search. In contrast, Nitsche's MEPHISTO searches
less and spends more time assessing the positional aspects of the situation.
DEEP THOUGHT plays at or near the grandmaster level and MEPHISTO
plays at a slightly lower level.

Search plays a major role in AI, but brute-force search has very limited
application owing to combinatorial explosion. Some researchers believe that
combining search techniques with "heuristic evaluations" and "methods of
abstraction" will prove important in some parts of AI.

Search is discussed in Chapter 2 and briefly in Chapter 13.

24 Chapter 1 First Things

CHATKB (1992)
Hekmatpour and Elkan developed CHATKB is an expert system to aid users
of certain VLSI design tools. The rapid acceptance of this system is in marked
contrast to that of others such as MYCIN. The difference may be due to the
fact that CHATKB users are already using computers on a regular basis for
other high-level activities such as CAD.

When faced with a user problem, CHATKB determines the category to
which it belongs. This is done by an iterative questioning process similar
to the game of Twenty Questions. Such processes are called decision trees.
Nonautomated decision trees have been used for many years in natural history
field guides for classifying plants and animals.

Each category contains a data base of previously analyzed problems.
CHATKB finds the closest matching problem in the data base for the current
problem's category. It then presents that problem and its solution to the user.
If the user rejects this solution, CHATKB presents the second best match,
and so on. Matching in this manner is a form of case-based reasoning.

Some researchers believe that this type of dichotomous approach—classify
then look for similar cases—is typical of higher level day-to-day human rea-
soning. Consequently, they expect some such method to play an important
role in the design of intelligent systems.

Decision trees are discussed in Chapter 13. Case-based reasoning is men-
tioned very briefly in Chapter 14.

Exercises

1.5.A. What is an expert system?

I.5.B. What are the steps in building an expert system?

Notes

Crevier [10] has written an informative, lively, nontechnical book on the his-
tory of AI based on his own background and on extensive interviews with
major researchers. He brings the participants to life and accurately explains
important concepts and achievements in layman's terms. You would probably
enjoy it.

If my brief treatment in Section 1.1 left you dissatisfied, you may wish
to look at other AI texts such as those by Charniak and McDermott [7],
Firebaugh [15], Ginsberg [18], Rich and Knight [39], Russell and Norvig [41],
and Winston [53].

Notes 25

For a discussion of topics that I've slighted, or for a less mathematical
discussion of those I've covered, consult some of the available textbooks and
surveys. The texts by Dean, Allen, and Aloimonds [11], Charniak and Mc-
Dermott [7], Firebaugh [15], Ginsberg [18], Rich and Knight [39], Russell and
Norvig [41], and Winston [53] are all broad-based introductions to AI, but
the discussions of neural networks may be limited. Of these, I particularly
recommend Ginsberg's and Russell and Norvig's texts. More mathematical,
but less broad, are those by Dougherty and Giardina [13], Lauriere [27], and
Shinghal [45].

Survey and expository articles can sometimes be found in journals and
in conference proceedings. Some journals, such as Artificial Intelligence: An
International Journal, publish special issues containing several such articles.
In addition, handbooks and surveys such as [3] and [46] and books such as
[38] appear from time to time. For briefer discussions, there is the encyclope-
dia [44].

Reading original sources in any field is often a good idea, but it can be
daunting because the authors usually assume readers are researchers with the
necessary background. A solution is provided by annotated collections, for
example, Morgan Kaufmann Publishers' Readings in ... books, such as [9]. A
source in neurocomputing is [2].

I mentioned functional programming and logic programming as two of the
paradigms that AI brought to computer science at large. Logic programming
as implemented in Prolog will be discussed in Chapters 3 and 4 to help your
understanding of logic. Functional programming ideas were implemented by
McCarthy in Lisp. The theoretical foundation is provided by the lambda
calculus^ developed primarily by the logicians Church and Kleene. I won't
be discussing these topics, but some AI texts have a Lisp-based introduction
to the subject, which is good if your focus is understanding Lisp. On the
other hand, MacLennan [28] discusses the general methodology of functional
programming from both a concrete and an abstract viewpoint without relying
on Lisp. For texts on Lisp and Prolog, see the notes at the end of Chapter 3.

The discussion about what constitutes AI continues. Almost any textbook
will begin with a discussion of what AI is about and articles appear from time
to time in journals and magazines; see, for example, [43]. The nature of AI and
other topics of debate appear in the essays edited by Graubard [19]. These
were written for a general audience. The essays in Partridge and Wilks [36]
and in volume 47 of Artificial Intelligence (nos. 1-3, Jan. 1991) are more
technical. Material on the connectionist versus symbolic debate can be found
in [37] and in [40].

AI frequently employs complex nonlinear feedback systems. Their behav-
ior is often counterintuitive—at least until extensive experimentation leads
to the development of a new intuition. For the simplest such systems, mathe-
matical control theory has produced some theoretical results. Forrester has ex-
plored complex systems by simulating corporations, cities [16], and the entire

26 Chapter 1 First Things

world. Many other people have simulated complex systems and attempted to
obtain heuristic principles and theoretical results. Progress has been painfully
slow. It is quite possible that this area will remain intractable, but giving up
now would be extremely premature.

Turing's proof of the impossibility of the halting problem depends on the
concept of finite automata. You can find a proof in Bender and Williamson's
text [4, pp. 178-179], any book on automata theory, or some texts on discrete
mathematics. The ideas relating to Figure 1.1 are discussed more thoroughly
by Russell and Wefald [42, Ch. 1]. For further discussion of NP-completeness,
see the texts by Papadimitriou and Steiglitz [35] and Wilf [52] or see the
article [20]. Garey and Johnson's [17] classic book on the subject lists many
NP-complete problems, but the list is now much longer.

A discussion of expert systems can be found in many AI texts. There are
also books devoted to expert systems. These include Stefik's [48] extensive
introduction; the text by Jackson [24], which covers a large part of the material
found in a standard AI course; the text by Lucas and van der Gaag [26],
which treats fewer topics but in greater depth; and the collection [50], which
discusses a variety of applications, devoting a few pages to each. The chapter
discussion passed quickly over the difficult problem of knowledge acquisition.
Many techniques, problems, and specific examples are discussed in [25].

Biographical Sketches

John McCarthy (1927-)
Born in Boston, he received a bachelor's degree from Caltech and a doctorate
from Princeton, both in mathematics. He received the 1971 Turing Award.

McCarthy named the field; he invented the name "artificial intelligence"
when writing the proposal for the first AI conference. In 1957, he and Minsky
founded the Artificial Intelligence Group at MIT. While there, McCarthy
invented timesharing and Lisp. In 1963, McCarthy moved permanently to
Stanford, where he founded and directed SAIL (Stanford Artificial Intelligence
Laboratory). The MIT and Stanford groups have had a profound influence on
AI for many years.

His major concern has been understanding "commonsense" reasoning so
that it can be used in AI. As a result, he's focused on achieving a funda-
mental understanding of knowledge and has advocated a publicly accessible
knowledge base for common sense.

Many interesting stories about McCarthy can be found in the biography
by Hilts [21, pp. 197-287]. The sketch by Israel [23] provides more technical
information.

Notes 27

Marvin Minsky (1927-)
Born in New York City, he studied at Harvard and Princeton, receiving a
doctorate in mathematics. As a postdoc at Harvard, he designed the first con-
focal microscope, a device which is now quite important in optical microscopy.
Minsky received the 1969 Turing Award.

In 1957, McCarthy and Minsky founded MIT's Artificial Intelligence
Group, where he has continued to inspire excellent thesis research in a va-
riety of areas including

• MACSYMA (the forerunner of Maple and Mathematica),
• analogical reasoning (A is to B as C is to which of the following?),
• language comprehension, and
• robot vision.

Minsky introduced the idea of "frames," which are used in AI and, more
recently, in object-oriented programming languages. In 1969, Minsky and Pa-
pert dealt a blow to perceptrons—a type of neural network—by proving that
they were quite limited [30].

Recalling his student days, Minsky remarked that "The problem of intelli-
gence seemed hopelessly profound. I can't remember considering anything else
worth doing." [5, p. 77]. His career has focused on learning what computers
are capable of doing on nonarithmetic problems.

Bernstein's [5, pp. 9-128] biographical account contains extensive quota-
tions from Minsky.

Allen Newell (1927-1992)
Born in San Francisco, he received a bachelor's degree in physics at Stan-
ford and began a doctorate in (pure) mathematics at Princeton. Concerned
about a lack of breadth, he left Princeton for RAND where he met Herbert
Simon. Newell received a doctorate in industrial administration under Simon
at Carnegie Tech (now Carnegie-Mellon University), where he became a pro-
fessor. Newell and Simon received the 1975 Turing Award.

He and Simon began a long and fruitful cooperation in 1955 when, with
J. C. Shaw, they designed the list-processing language IPL and used it to write
the LOGIC THEORIST, a program that was able to prove results found in
Russell and Whitehead's Principia Mathematica. As a result, Newell, Shaw,
and Simon are often called the parents of AI. The realization that computers
are more than just rapid arithmetic calculators—that they can be used to
manipulate symbols—was an important observation at the time and is now
taken for granted.

In 1956, Newell, Simon, Chomsky, McCarthy, Minsky, and others launched
cognitive science at a conference at MIT.

The focus of Newell's career has been the formalization of problem solving
and complex task performance by human beings. The scope of this undertak-
ing has grown over the years, moving from attempts to model the performance

28 Chapter 1 First Things

in specific cognitive areas to a drive to model the entire cognitive process. This
has culminated in SOAR, a blend of AI and cognitive psychology. Theories of
how humans solve problems provide the motivation for this ongoing program-
ming project whose aim is to simulate significant aspects of human cognition.

More information about Newell and SOAR can be found in [29] and about
his interaction with Simon in [47].

Herbert A. Simon (1916-)
Born in Milwaukee, he studied at the University of Chicago, where he received
a doctorate in political science. In his autobiography [47, p. 85], he relates that
by this time he "had made a modest beginning in mathematics, a basis for
subsequent self-instruction." Most of his career has been spent at Carnegie-
Mellon University (CMU). Newell and Simon received the 1975 Turing Award.
Simon received the 1978 Nobel Prize in Economics.

After being involved in the establishment of the CMU Graduate School of
Industrial Administration, he began his shift to AI and cognitive psychology in
1955. He contributed to the establishment of CMU's fruitful interdepartmental
computer science program.

As the preceding biographic sketch mentioned, Simon and Newell worked
jointed for many years. But, unlike Newell, Simon has continued to focus on
more limited problem-solving simulations rather than on the entire cognitive
process.

Much of Simon's career has focused on the implications of "bounded ratio-
nality" in economics and cognitive science. Traditional economics postulates
a very knowing and rational man; he has complete knowledge of all relevant
factors, including the details of his own preferences, and is able to carry out
any amount of reasoning (and computation). In the early 1950s, Sirnon broke
with this tradition and postulated bounded rationality—incomplete knowledge
of factors and preferences and limited reasoning abilities.

Simon's autobiography [47] is part of the Alfred P. Sloan Foundation
Series—a growing collection of generally excellent autobiographies by promi-
nent contemporary scientists.

Alan M. Turing (1912-1954)
Born in London, he took his degrees in mathematics at Cambridge, where he
remained until joining the British war effort in 1938 as their first cryptanalyst.
There he played a major part in setting up the system for routinely decoding
the German Enigma code. After World War II, Turing spent time at the
National Physical Laboratory and at Manchester.

The ACM's Turing Award is named after him, as are Turing machines and
the Turing test of Exercise 1.2.1 (p. 10). (The Turing Award lectures through
1985 are collected in [1].) Turing machines illustrate Turing's focus on logic
and computation. A Turing machine is an elegantly simple abstract computer.
Using these simple computers, he showed that the halting problem for com-
puter programs has no computable solution. This was done in 1935, before

References 29

the birth of the electronic computer. Using the lambda calculus, Church also
showed the existence of well defined noncomputable functions. This nonex-
istence result has implications for first-order logic, which is the subject of
Chapters 3 and 4.

Hodges [22] has published a thorough nontechnical biography of Turing.
For more information on Turing machines, consult a text on automata theory.

References

1. ACM Turing Award Lectures. The First Twenty Years: 1966 to 1985,
ACM Press, New York (1987).

2. J. A. Anderson and E. Rosenfeld (eds.), Neurocomputing. Foundations of
Research, MIT Press, Cambridge, MA (1988).

3. A. Barr, P. R. Cohen, and E. A. Feigenbaum (eds.), The Handbook of
Artificial Intelligence, Vols.1-4, Morgan Kaufmann, San Mateo, CA, and
Addison-Wesley, Reading, MA (1981, 1982, 1989).

4. E. A. Bender and S. G. Williamson, Foundations of Applied Combina-
torics, Addison-Wesley, Reading, MA (1991).

5. J. Bernstein, Science Observed, Basic Books, New York (1982).
6. K. H. Borgwardt, The Simplex Method. A Probabilistic Analysis, Springer-

Verlag, Berlin (1987).
7. E. Charniak and D. McDermott, Introduction to Artificial Intelligence,

Addison-Wesley, Reading, MA (1985).
8. P. M. Churchland, Matter and Consciousness, rev. ed., MIT Press, Cam-

bridge, MA (1988).
9. A. Collins and E. E. Smith (eds.), Readings in Cognitive Science, Morgan

Kaufmann, San Mateo, CA (1988).
10. D. Crevier, AI: The Tumultuous History of the Search for Artificial In-

telligence, BasicBooks, New York (1993).

11. T. Dean, J. Allen, and J. Aloimonds, Artificial Intelligence Theory and
Practice, Benjamin/Cummings, Redwood City, CA (1994). Includes dis-
cussions of time and space complexity of AI algorithms.

12. D. C. Dennett, Consciousness Explained, Little, Brown, Boston (1991).
13. E. R. Dougherty and C. R. Giardina, Mathematical Methods for Artificial

Intelligence and Autonomous Systems, Prentice Hall, Englewood Cliffs,
NJ (1988).

14. M. W. Eysenck and M. T. Keane, Cognitive Psychology: A Student's
Handbook, Lawrence Erlbaum Associates, Hillsdale, NJ (1990).

30 Chapter 1 First Things

15. M. W. Firebaugh, Artificial Intelligence: A Knowledge-Based Approach,
Boyd and Fraser, Boston (1988).

16. J. W. Forrester, Urban Dynamics, MIT Press, Cambridge, MA (1969).

17. M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide
to the Theory of NP-Completeness, W. H. Freeman, New York (1979).

18. M. Ginsberg, Essentials of Artificial Intelligence, Morgan Kaufmann, San
Mateo, CA (1993).

19. S. R. Graubard (ed.), The Artificial Intelligence Debate. False Startsf

Real Foundations, MIT Press, Cambridge, MA (1988). Reprinted from
Daedalus 117 (1988).

20. J. Hartmanis, Overview of computational complexity theory, Proceedings
of the Symposia in Applied Mathematics 38 (1989) 1-17.

21. P. J. Hilts, Scientific Temperaments. Three Lives in Contemporary Sci-
ence, Simon and Schuster, New York (1982).

22. A. Hodges, Alan Turing: The Enigma, Simon and Schuster, New York
(1983).

23. D. J. Israel, A short sketch of the life and career of John McCarthy. In
V. Lifschitz (ed.), Artificial Intelligence and Mathematical Theory of Com-
putation: Papers in Honor of John McCarthy, Academic Press, Boston
(1991).

24. P. Jackson, Introduction to Expert Systems, 2d ed., Addison-Wesley, Read-
ing, MA (1990). This is considerably expanded from the first edition.

25. A. L. Kidd (ed.), Knowledge Acquisition for Expert Systems, Plenum
Press, New York (1987).

26. P. Lucas and L. van der Gaag, Principles of Expert Systems, Addison-
Wesley, Reading, MA (1991).

27. J.-L. Lauriere, Problem Solving and Artificial Intelligence, Prentice Hall,
Englewood Cliffs, NJ (1990). Translated from the 1987 French edition by
J. Howlett.

28. B. J. MacLennan, Functional Programming. Practice and Theory, Addison-
Wesley, Reading, MA (1990).

29. J. A. Michon and A. Akyiirek (eds.), SOAR: A Cognitive Architecture in
Perspective, Kluwer, Dordrecht (1992)

30. M. L. Minsky and S. Papert, Perceptrons: An Introduction to Com-
putational Geometry, MIT Press, Cambridge, MA (1969). It has been
reprinted with some additional discussion as Perceptrons: An Introduction
to Computational Geometry, Expanded Edition, MIT Press, Cambridge,
MA (1988).

31. T. C. Moody, Philosophy and Artificial Intelligence, Prentice Hall, Engle-
wood Cliffs, NJ (1993).

32. A. Newell, Unified theories of cognition and the role of Soar. In [29], 25-79.

References 31

33. A. Newell and H. A. Simon, Computer science as empirical inquiry: Sym-
bols and search, Communications of the ACM 19 (1976) 113-126. This
is their 1975 ACM Turing Award Lecture.

34. A. Newell, Unified Theories of Cognition, Harvard University Press, Cam-
bridge, MA (1990).

35. C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algo-
rithms and Complexity, Prentice Hall, Englewood Cliffs, NJ (1988).

36. D. Partridge and Y. Wilks (eds.), The Foundations of Artificial Intel-
ligence. A Sourcebook, Cambridge University Press, Cambridge, Great
Britain (1990).

37. S. Pinker and J. Mehler (eds.), Connections and Symbols, MIT Press,
Cambridge, MA (1988). Reprinted from Cognition: International Journal
of the Cognitive Sciences 28 (1988).

38. Z. W. Ras and M. Zemankova, Intelligent Systems. State of the Art and
Future Directions, Ellis Horwood, New York (1990).

39. E. Rich and K. Knight, Artificial Intelligence, 2d ed., McGraw-Hill, New
York (1991). This is a major revision of Rich's first edition.

40. D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Parallel
Distributed Processing. Explorations in the Micro structure of Cognition.
Volume 1: Foundations, MIT Press, Cambridge, MA (1986).

41. S. Russell and P. Norvig, Artificial Intelligence. A Modern Approach,
Prentice Hall, Englewood Cliffs, NJ (1994).

42. S. Russell and E. Wefald, Do the Right Thing: Studies in Limited Ratio-
nality, MIT Press, Cambridge, MA (1991).

43. R. C. Schank, Where's the AI? AI Magazine 12 (1991) 38-49.

44. S. C. Shapiro (editor-in-chief), Encyclopedia of Artificial Intelligence,
2d ed., John Wiley and Sons, New York (1992).

45. R. Shinghal, Formal Concepts in Artificial Intelligence, Chapman and
Hall, London (1992).

46. H. E. Shrobe and the American Association for Artificial Intelligence
(eds.), Exploring Artificial Intelligence: Survey Talks from the National
Conferences on Artificial Intelligence, Morgan Kaufmann, San Mateo,
CA (1988)

47. H. A. Simon, Models of My Life, Basic Books (1991).
48. M. Stefik, Introduction to Knowledge Systems, Morgan Kaufmann, San

Mateo, CA (1995).
49. M. A. Stillings, N. H. Feinstein, J. L. Garfield, E. L. Rissland, D. A.

Rosenbaum, S. E. Weisler, and L. Baker-Ward, Cognitive Science: An
Introduction, MIT Press, Cambridge, MA (1987).

50. E. Turban and P. R. Watkins (eds.), Applied Expert Systems, North-
Holland, Amsterdam (1988).

32 Chapter 1 First Things

51. A. M. Turing, Computing machinery and intelligence, Mind 59 (1950).
Reprinted in [9 pp. 6-19].

52. H. S. Wilf, Algorithms and Complexity, Prentice Hall, Englewood Cliffs,
NJ (1986).

53. P. H. Winston, Artificial Intelligence, 3d ed., Addison-Wesley, Reading,
MA (1992). This is the first edition containing material on neural nets.

