
CHAPTER 1

Introduction

The need for load scheduling/sharing arises in many real-world situations. Common
examples include the scheduling of processing loads in distributed computing sys-
tems, the scheduling of production loads in manufacturing systems, and the schedul-
ing of available resources among many users. By and large, a scheduling problem
addresses the following question: What is the best possible way to organize a given
work load so that it can be completed in the shortest possible time? In a distributed
computing system, processing loads arrive from many users at random time instants.
A proper scheduling policy attempts to assign these loads to available processors so
as to complete the processing of all loads in the shortest possible time.

In recent years, with the advent of sophisticated and complex parallel and dis-
tributed computing systems, research in the area of load scheduling has gained con-
siderable momentum. This book is a contribution in one particular area in the broad
field of load sharing in parallel and distributed computing systems. Specifically, it
addresses issues associated with the distribution of arbitrarily divisible loads among
processors in a distributed computing system subject to communication delays. Here
we shall assume the words sharing, scheduling, and distribution to be synonymous,
although in a strict sense this need not be true, and use them interchangeably through-
out the book.

1.1 MULTIPROCESSOR AND MULTICOMPUTER SYSTEMS

Both multiprocessor and multicomputer systems are characterized by the presence
of several processors in the system. Multiprocessor systems are usually considered
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as computer systems that have several processors, but are serviced by a single set
of peripherals. Hence, these processors are not autonomous and such systems are
also known as parallel processing systems (PPS). In contrast, multicomputer sys-
tems consist of several autonomous processors connected via communication links.
Such multicomputer systems are also known as distributed computing systems (DCS).
These definitions are not rigid, and there exist a large number of systems that may not
be easy to classify as one or the other. For example, loosely coupled multiprocessor
systems (where each processor has a memory of its own, in contrast to tightly cou-
pled multiprocessor systems where the processors share a common memory) mimic
many of the characteristics of multicomputer systems and are also classified as dis-
tributed computing systems. A general distributed computing system normally has
physically well-separated autonomous processors connected via communication links
(Figure 1.1). In general, an entire parallel and distributed computing system, or a part
of it, may have one of a number of known topologies, such as: bus, star, linear, tree,
hypercube, ring, mesh, and so on.

Such systems may or may not be dedicated to a specific application. The main
purpose of a DCS is to offer a variety of services to the users. In a DCS, the
processing loads may arrive at many sites. A load submitted by a user at some site
may be processed right there or at a different site, depending upon the availability
of resources and the type of service demanded. When a job has to be processed at
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FIGURE 1.1 A Distributed Computing System (DCS)
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a different site, it is transferred via communication links. Since the processors are
physically well separated in a DCS, it takes a certain amount of time for the load
to reach its destination; that is, load transfer from one site to another is subject to
nonzero communication delays. Each processor in the network may be engaged in
processing its own load, while simultaneously involved in communication with other
processors. This is accomplished through dedicated communication coprocessors,
often called front ends, attached to the processors. These front ends are shown as
boxes in Figure 1.1. When a processor is not equipped with such front ends, it has
to perform the tasks of both communication and computation.

A parallel processing system attempts to exploit the inherent parallelism in a
problem by identifying those modules that can run concurrently so that the solution
is obtained in the shortest possible time. Quite frequently, this may involve transfer
and exchange of data from one processor to another. Communication overheads due
to delays associated with these operations can become substantially high and degrade
system performance unless an efficient scheduling policy is adopted.

In subsequent sections, we present a brief account of various aspects of load
scheduling/sharing. This discussion is intended to give an overview of some of the
important topics addressed in the literature on scheduling theory and is not meant
to be exhaustive as these topics are not directly relevant to the specific problem—
scheduling arbitrarily divisible loads—addressed in this book.

1.2 THE LOAD SCHEDULING/SHARING PROBLEM

In a broad sense, load scheduling/sharing problems can be classified in many ways.
One of the possible classifications is

• Static

• Dynamic

It is also possible to classify them as

• Deterministic
• Stochastic

In static scheduling, the objective is to find an optimal schedule of a given
number of loads to a set of processors. No dynamics of the system are taken into
consideration. The scheduling of, for example, n loads to a set of m processors so
that the time required to process all the loads is a minimum is one such problem. On
the other hand, if the dynamics of the process are considered, then the scheduling is
said to be dynamic. In the above example, if loads arrive at arbitrary time instants,
and the scheduling policy at any instant in time depends on the current state of the
system, then the scheduling is dynamic. It should be noted that the difference in the
above two classifications lies in the consideration of the time factor.

In the case of deterministic scheduling, all the characteristics of the processing
loads, such as their execution times and arrival times, are deterministic quantities
and are known a priori. On the other hand, if the arrival of the loads is a random
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process and/or the execution times are random variables with some known probability
distribution, then the scheduling of loads is said to be stochastic.

Static scheduling can be either deterministic or stochastic depending on whether
the execution times of the loads are known exactly or only in a stochastic sense. How-
ever, most static scheduling problems are considered to be deterministic and are usu-
ally solved using graph-theoretic techniques. Similarly, dynamic scheduling problems
could also be deterministic or stochastic, though they have usually been considered
in the stochastic framework and are solved using queueing-theoretic techniques.

Another related problem is called load balancing. It uses similar analytical and
computational techniques, but its primary objective is to ensure that all the processors
in the system are more or less equally loaded.

All the scheduling problems described above may be either preemptive or
nonpreemptive. In the case of preemptive scheduling, interruption and subsequent
resumption of execution of a load, either in the same processor or elsewhere, is per-
mitted. In nonpreemptive scheduling the currently executing load is allowed to run
till completion without any interruption.

In general, the formulation of a scheduling problem consists mainly of four
steps.

(i) Modeling the system
(ii) Defining the type of processing load

(Hi) Formulating an objective function (or cost function)
(iv) Specifying the constraints

The model describes the system, the type of network, the number of processors,
whether they are equipped with front ends or not, the topology of the network, and so
on. The type of processing load determines the scheduling algorithm. Different types
of loads are defined in the next section. In general, the objective of the scheduling
problem (the objective function) is as follows: Given a set of loads and a system,
what is the best possible mapping of these loads onto the processors such that the
desired cost function is optimized! As an example, the objective function could be
the minimization of the following:

Total cost = computation cost -f- communication cost (1.1)

Here the total cost refers to the processing time of a load or a set of loads.
As can be seen from Equation (1.1), the total cost takes into account both the com-
putation and the communication costs. The constraints for this problem may be the
limitations on the availability of processors and communication channels in the sys-
tem. Another objective could be to find the bounds on the number of schedules that
satisfy certain constraints on communication only. There is another class of schedul-
ing problems in which the objective is to optimally partition a multiprocessor system
into smaller subsystems and to then schedule loads onto these subsystems such that
the processing time is a minimum.

1.3 CLASSIFICATION OF LOADS

By and large, the scheduling problems discussed in the literature do not attempt to
formulate scheduling policies based on the type of jobs submitted by a user, except
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perhaps where resource constraints are involved. Usually, the stress has been on
designing efficient parallel algorithms in place of conventional sequential algorithms.
This requires identification of parallelism in an algorithm and is known as function
parallelism. However, there is another kind of parallelism that occurs in the data
and is called data parallelism. This is usually found in computational-intensive tasks
with computational loads that consist of large numbers of data points that must be
processed by programs, copies of which are resident in all the processors in the
system (for example, the SIMD architecture). This adds a new dimension to the
scheduling problem. Such loads can be split into several parts and assigned to many
processors. But the manner in which this partitioning (or load division) can be done
depends on the type of load. In this section we classify computational loads based
on their divisibility property.

Scheduling of loads has also been categorized as either job scheduling or task
scheduling. A job is defined to be composed of a number of tasks. If a job in
its entirety is assigned to a processor, it is called job scheduling, as in distributed
computing systems. If different tasks are assigned to different processors, it is called
task scheduling, as in parallel processing systems. Thus, the kind of scheduling
depends primarily on the type of load being processed. In Figure 1.2 we show a
classification of loads based upon their divisibility property, that is, the property that
determines whether a load can be decomposed into a set of smaller loads or not.

1.3.1 Indivisible Loads

These loads are independent, indivisible, and, in general, of different sizes. This
means that a load cannot be further subdivided and has to be processed in its entirety
in a single processor. These loads do not have any precedence relations and in
the context of static/deterministic scheduling, these problems are considered to be

Processing Load

Indivisible Divisible

Modularly Divisible Arbitrarily Divisible

This book

FIGURE 1.2 Classification of Processing Loads
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analogous to bin-packing problems discussed in the literature. These problems are
known to be NP-complete and hence only heuristic algorithms can be proposed to
obtain suboptimal solutions in reasonable time. On the other hand, in the case of
dynamic/stochastic scheduling schemes, these loads arrive at different time instants
and the problem is to schedule them based on the availability and speed of the
processors or only on the state of the system.

1.3.2 Modularly Divisible Loads

These loads are a priori subdivided into smaller loads or tasks based on some charac-
teristics of the load or the system. These smaller loads are also called tasks/subtasks
or modules, and hence the name. The processing of a load is said to be completed
when all its modules are processed. Usually these loads are represented as graphs
whose vertices correspond to the modules, and whose edges represent interaction
between these modules. This modular representation of a load is known as Task
Interaction Graph (TIG) in the literature. If these modules are subject to precedence
relations, then a directed graph is used. On the other hand, if the graph is not directed,
though the modules may exchange information, then it is assumed that they can be
executed in any order. They can also be totally independent, in which case they may
be modeled as indivisible loads, each consisting of a single module.

1.3.3 Arbitrarily Divisible Loads

This kind of load has the property that all elements in the load demand an identical
type of processing. These loads can be arbitrarily partitioned into any number of
load fractions. These load fractions may or may not have precedence relations. For
example, in the case of Kalman filtering applications, the data is arbitrarily divisible
but precedence relations exist among these data segments or load fractions. On the
other hand, if the load fractions do not have precedence relations, then each load frac-
tion can be independently processed. This book addresses the problem of scheduling
arbitrarily divisible loads, which do not have precedence relations, among several
processors. Such loads are encountered in many applications. We describe some of
them below.

1.4 DIVISIBLE LOADS: APPLICATIONS

Feature extraction and edge detection in image processing. In computer
vision systems, image feature extraction is an extremely important function. This
basically consists of two levels of processing, namely, a local computation followed
by a nonlocal interprocessor communication and computation. The first level of com-
putation partitions the given image into many segments. Each of these segments is
processed locally and independently on different processors. This is done to extract
local features of the image from different segments. In the second level of compu-
tation, these local features from different processors are exchanged and processed to
extract the desired feature. It is at the first level of computation that the load can
be considered to be arbitrarily divisible without any precedence relations. Similarly,
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edge detection is a very well-known problem in image processing. Here the objec-
tive is to detect the edge or boundary of an image. As before, the given image can
be arbitrarily partitioned into several subframes of varying sizes (that is, each may
contain a different number of pixels) and each of these subframes can be processed
independently.

A practical situation in which processing of such data may frequently be nec-
essary involves the space shuttle orbiter, which collects massive volume of image
data that has to be communicated to the earth station for processing (by a parallel or
distributed computing system). This kind of data also has the potential of arbitrary
divisibility. The data can be partitioned and sent directly for processing to a number
of processors situated at various geographical points on the surface of the earth, in
which case they incur considerable communication delay. Depending on the location
of the processing units the communication delays will be different.

Signal processing. A simple application involves the problem of recovering
a signal buried in zero-mean noise. The raw data consists of a large number of mea-
surements that can be arbitrarily partitioned and shared among several processors.
Another application involves passing a very long linear data file through a digital
filter. This might be for frequency shaping purposes (that is, passing the data through
a low pass filter) or for pattern matching (that is, passing the data through a matched
filter designed to find a particular pattern). In either case the data file may be par-
titioned among a number of processors. Each processor runs the same filter on its
segment of the data. Some care must be taken at the partition boundaries (overlap-
ping the segments slightly is one possibility) when the results are reported back to
the originating processor. For the frequency shaping case the output is a filtered data
record while for the pattern matching case the results are the location(s) in the data
file where the desired pattern was found.

Here we will briefly describe a feature extraction problem in which the arbitrary
divisibility property of the image data is exploited to expedite processing. Consider
an image in the form of a cluster of pixels that may be a subset of the original
image array. The primary task of image feature extraction is to process this data to
generate a representation that facilitates higher level symbolic manipulations. It is
possible to exploit data parallelism at this stage of processing by assigning different
portions of the image array to each of the processors in a parallel or distributed
processing system. There could be several subtasks that must be executed to achieve
this goal. For example, computation of Hough transforms and region moments are
two universally recognized tasks that have to be performed in a majority of situations.
In addition, these tasks allow us to exploit data parallelism to the full extent.

To illustrate the above point, consider the Hough transform of straight lines
in an image. It is given as an array B(p,0), each element of which represents the
number of pixels whose spatial coordinates (x, y) in the given image array satisfy
the equation

p =x cos0 + y sin<9 (1.2)

For each pair (JC, y), the value of p is computed for a set of discrete values of 0. Thus,
each point in the (x,y) plane generates a curve in the (p,0) plane. Based on the
nature of these curves and their relative positions one can identify B(p, 0) and obtain
information about the features in the given image array. Note that the computation
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of Hough transform for each point in the image array is done independent of any of
the other points. This aspect makes the data (image array) arbitrarily divisible.

Similarly, the {k + /)th order region moment of a cluster of image data is
computed as

kyll(xty) (1.3)

where /(JC, y) is the image intensity of the pixel (JC, y). The complete set of moments
of order n consists of all moments of order less than or equal to n. Here, too, it is
apparent that the data can be arbitrarily divided among the processors to carry out
the required computations.

As an illustrative example, let us assume that the data to be processed in the
above manner is stored in a (512 x 512) image array. Let the computations done on
a single pixel take 1 unit of time in any of the processors in a network consisting of
four identical processors (/?o, p\, Pi, Pz) connected through a bus and having separate
local memories (shown in Figure 1.3). The data to be processed is resident in po,
which can communicate segments of the data, one at a time, to the other processors. If
the communication delay in sending the data is negligible then it is wise to distribute
the data in four equal parts. For example, each processor can be assigned 128 rows
(see Figure 1.4, left side), thus incurring a processing time of (1 x 128 x 512) time
units. This strategy is normally recommended in the literature. However, when the
communication delay is not negligible, as when the processors are well separated,
then this strategy is no longer optimal. Suppose the time delay for communicating one
pixel from one processor to another is 10 percent of the computation time per pixel.
Then the times taken by each processor to complete its computation is (1 x 128 x 512)
time units for po, (1.1 x 128 x 512) time units for p\, (1.2 x 128 x 512) time units
for p2, and (1.3 x 128 x 512) time units for p$. Thus, the processing of the complete
data is over only after processor p$ completes its computation. Hence, the presence
of communication delay has increased the processing time by 30 percent. But it is
obvious that we can exploit the arbitrary divisibility property of the data to improve
performance. For example, let us allocate 147 rows to po, 134 rows to p\, 121 rows
to /?2, and 110 rows to p$ (see Figure 1.4, right side). Then the processing time for
each processor is (1 x 147 x 512) time units for po, (1.1 x 134 x 512) time units
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FIGURE 1.4 Partitioning of Data for Image Feature Extraction

for /?,, (0.1 x 134 x 512 + 1.1 x 121 x 512) time units for /?2, and (0.1 x 134 x
512 + 0.1 x 121 x 512 + 1.1 x 110 x 512) time units for /?3. From the above, we
find that p\ takes the maximum time to complete its computation. For comparison,
we can rewrite this time as (1.152 x 128 x 512) time units and note that this strategy
has produced a 15 percent reduction over the naive equal division strategy.

The above example demonstrates how the arbitrary divisibility property of the
data can be exploited to enhance the performance of a real-world image feature
extraction algorithm. However, note that since we have allocated data in terms of
rows, the data is not arbitrarily divisible in the true sense, but may be considered to
be so for large volumes of data. We shall clarify this point in detail in Chapter 2.

Although we use the words scheduling, snaring, and distribution interchange-
ably in the context of an arbitrarily divisible load, which is shared or distributed
among several processors, the phrases load sharing and load distribution appear to
be more appropriate.

1.5 COMMUNICATION DELAY

As demonstrated in the example given in the above section, a crucial aspect in the
modeling of a parallel and distributed computing system is the communication delay
incurred during transfer of load through the links. These delays, in general, are due to
communication processing time, queueing time, transmission time, and propagation
time. In order to evaluate the performance of a system, the mathematical model must
take into account all these delays. However, for the ease of analysis, approximate
models can be employed.

When a load, or a part of it, is communicated to other processors via communi-
cation links, the delay (the time it takes to reach the destination) incurred is reflected
in the objective function as communication costs, as shown in Equation (1.1). A
good scheduling policy must take into account these communication delays. In the
case of scheduling modularly divisible loads, it is assumed that the communication
costs between two interacting modules are known a priori. In the literature, many
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computational-intensive loads have been considered arbitrarily divisible, and are usu-
ally partitioned and distributed equally among several identical processors. As shown
above in the discussion of Figure (1.4), this equal partitioning is optimal if one con-
siders a system where communication delays are negligible. However, if the same
application were to be carried out in a system where communication delays were
significant, the load distribution strategy would have to take this delay into account.

1.6 DIVISIBLE LOAD THEORY

Most of the parallel processing literature concentrates on identifying and exploiting
inherent parallelisms in sequential programs and on producing parallel programs that
can run on multiprocessor systems. However, there is another kind of parallelism
that can be exploited. This is the parallelism inherent in large computational loads.
There exists a large class of loads that involve very large data files that must be
processed by programs, copies of which are resident in all the processors in the
system. In general, such a load (data file) can be one of the types mentioned in
Section 1.3 or a mix of some or all of them; that is, some segments of the load
can belong to one category while the others belong to a different category. Identi-
fication of these segments in a given load will be the first step toward exploiting
parallelism in the data. This knowledge, coupled with system-dependent constraints,
like communication delays and processor characteristics, can then be used to partition
and share the load optimally among the processors in the network. There is no well-
established theory in the literature that helps a user to accomplish this goal. But, judg-
ing from its applicability from the viewpoint of scheduling computational-intensive
loads, such a theory will indeed be useful. We will call this theory, which identifies
and exploits data parallelism in a computational load, Divisible Load Theory (DLT).
We wish to add a word of caution that the theory cannot yet be considered com-
plete, but is rather at an incipient stage. However, many key concepts that form the
basis of DLT have been studied extensively in the literature on scheduling and load
balancing.

It is not our intention to cover divisible load theory in this book, but rather
to apply some of its fundamental concepts to the problem of scheduling arbitrarily
divisible loads in which each data point receives independent processing. Though
there has been a considerable body of literature dealing with scheduling/sharing of
indivisible and modularly divisible loads, until recently arbitrarily divisible loads and
loads of the mixed type have not received much attention. Only very recently has
there been interest in the scheduling of arbitrarily divisible loads. Studies in this area
address the following question:

Given an arbitrarily divisible load without precedence relations and a multi-
processor/multicomputer system subject to communication delays, in what proportion
should the processing load be partitioned and distributed among the processors so
that the entire load is processed in the shortest possible time?

One of the major issues is that of computation-communication trade-off rela-
tionships. The answer to the above question depends entirely on this issue and we
will devote considerable attention to it here. Since this is the first attempt in this
direction, we adopt a simplified linear system model for study. This yields a contin-
uous mathematical formulation and provides a flexible analytical tool. Like previous
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linear models in other areas (for example, electric circuit theory and queueing theory)
this leads to tractable analysis and a rich set of results.

Apart from the applications specified in Section 1.3.3 for arbitrarily divisible
loads, there are situations in which one may need to process a large volume of data in
almost real time. Such applications include target identification, problems in search
theory, and processing of data in distributed sensor networks. In these applications,
processing the load in the shortest possible time is a most crucial requirement, and
these are precisely the situations in which divisible load theory becomes even more
important. However, not all such loads need be arbitrarily divisible. In general, these
loads are of a mixed kind.

Finally, we stress that this book presents important theoretical developments
concerning scheduling strategies for arbitrarily divisible loads, but does not cover
issues related to implementation of these strategies on any specific parallel or dis-
tributed computing system. Implementation issues, which are a subject of study in
themselves, are beyond the scope of this book.
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