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Abstract

An experiment compared the perceived segregation of element-arrangement pat-
terns composed of the same two element types arranged in vertical stripes in the
top and bottom regions and in a checkerboard pattern in the middle region. The
elements in the patterns differed in hue. Patterns were equated for either lumi-
nance or for brightness. The experiment investigated the effects of the hues of
the squares, pattern size, and background luminance on the segregation of the
element-arrangement patterns. Perceived segregation was strong with a low lu-
minance black background but was greatly decreased by a high luminance white
background. Perceived segregation on a black background was stronger for blue
and green patterns than for green and yellow patterns. Perceived segregation in-
creased with a decrease in pattern size. Hue similarity, as rated by subjects in a
separate procedure, was a relatively weak factor for predicting perceived segrega-
tion. The results are consistent with the hypothesis that perceived segregation is
a function of cone contrasts.

1: Introduction

An element-arrangement pattern is composed of two types of elements that differ in the
ways in which they are arranged in different regions of the pattern. Figure 1 illustrates an
element-arrangement pattern in which the elements are red and blue squares arranged in a
striped pattern in the top and bottom regions and in a checkerboard pattern in the middle
region. The pattern is shown with black and white interspaces. Perceived segregation is
strong with black interspaces but is diminished by white interspaces. A brief review of past
research is presented to provide context for the experiment reported.
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Figure 1. An element-arrangement pattern composed of red and blue squares with
black and white interspaces. Perceived segregation with black interspaces is strong
while perceived segregation with white interspaces is reduced. Unfortunately the
photographic reproduction process distorts the image and the effect may be
diminished.

1.1: Achromatic Element-Arrangement Patterns

Research with achromatic element-arrangement patterns indicates that the information
for texture segregation takes place at a level of representation preceding the specification
of the squares and their properties. First, texture segregation in element-arrangement
patterns is not a direct function of the lightness differences of the squares. A striking
finding reported in fl] was that in element-arrangement patterns of light and dark squares
a large lightness difference could fail to yield strong texture segregation while a smaller
lightness difference could yield strong segregation. Second, texture segregation is not im-
paired by contour misalignment. Judgments of perceived segregation were the same when
the elements composing an element-arrangement pattern were aligned squares, misaligned
squares, circles or blobs [2], Third, texture segregation in an element-arrangement pattern
fails to scale. Sutter, Beck and Graham [3] found that perceived segregation was strongest
for patterns whose fundamental spatial frequency (the distance between the centers of two
columns of the same type of square) was approximately 4 cycles per degree. Patterns with
higher or lower fundamental spatial-frequencies segregated less strongly.

Beck, Sutter, and Ivry [4] showed that the perceived segregation of achromatic element-
arrangement patterns was qualitatively consistent with the hypothesis that differences in
the outputs of spatial frequency channels underlie the perceived segregation. They proposed
that the differential responses of oriented simple cell-like mechanisms to the striped and
checked regions of an element-arrangement pattern is the basis for the perceived segregation.
For achromatic element-arrangement patterns, Sutter, Beck, and Graham [3] showed that
the receptive fields that show strikingly different outputs to the different arrangements of



the squares in the striped and checked regions are the large receptive fields that are sensitive
to the fundamental spatial frequency of the texture pattern. These receptive fields match
the period of the pattern and signal the differences in the overall pattern of squares in the
striped and checked regions. In the striped region the changes of overall luminance occur
in the horizontal direction, strongly stimulating vertically oriented receptive fields, and in
the checkerboard region changes of overall luminance occur in a direction 45 degrees from
horizontal, strongly stimulating obliquely oriented receptive fields (see Figure 2). They
proposed that the differences in the outputs of these receptive fields are used by the visual
system to establish boundaries separating the regions of the pattern.

Excitatory and inhibitory lobes

•

a

Figure 2. An illustration of how the responses of large oriented receptive fields
sensitive to the fundamental frequency of a pattern can account for the segregation
of achromatic element-arrangement patterns composed of light and dark squares.
Top: Excitatory and inhibitory areas of an even symmetric receptive field. Bottom
left: Large vertical receptive fields respond strongly to the vertical columns of
squares in the striped region. Bottom right: Large oblique receptive fields respond
strongly to the diagonal columns of squares in the checkerboard region.

The large receptive fields that match the period of a pattern and respond differentially to
the striped and checkerboard arrangements of the squares do not have the right properties
to signal the lightness of the squares because they average over several squares. Perceived
segregation would thus not be expected to be a simple function of the lightness differences of
the squares. Similarly, large receptive fields would also not be sensitive to edge alignment.
Perceived segregation would therefore not be impaired by the misalignment of the squares.
Perceived segregation would also not be expected to scale since perceived segregation is a
function of the visual system's sensitivity to the fundamental spatial frequency. Propor-
tionally reducing the overall size to a pattern would increase perceived segregation up to
the point where the fundamental spatial frequency of the pattern has a spatial frequency
at the peak of the contrast sensitivity function.

Sutter, Beck, and Graham [3] further found that the perceived segregation in an element-
arrangement pattern is minimal when the area times contrast of large and small squares
were equal. The area times contrast of the large and small squares is the same when the
greater area of the large square is compensated for by the higher contrast of the small square.
Squares that have the same area times contrast produce the same output at the fundamental
frequency of the pattern, i.e., the frequency which when the excitatory region of a receptive
field falls on one column of squares, the inhibitory region of the receptive field falls on the
adjacent column of squares (see Figure 2). Although the contrast ratio—the ratio of the



contrasts of the two square types with the background—at which the minimum perceived
segregation occurred was correctly predicted by the outputs of simple cell-like mechanisms,
the amount of segregation at this minimum was incorrectly predicted. The amount of
perceived segregation depended also on the difference in the sizes of the squares. When
the area times contrast of the large and small squares were equated, perceived segregation
was greater as the size difference between the large and small squares increased. One
way of accounting for this discrepancy is by a more complicated spatial-frequency model
in which the initial linear filtering is followed by a rectification and a second filtering at
a lower spatial frequency [3]. Graham, Beck, and Sutter ([5]; see also [6]) showed that
texture segregation in element-arrangement patterns cannot be explained in terms of solely
linear operations, and the application of spatial frequency analysis to texture segregation
involves at least two nonlinearities. One nonlinearity is an intensity-dependent nonlinearity
which can be accounted for by either sensory adaptation occurring before the channels or
by a compressive intracortical interaction among neuronal responses which normalizes the
responses [7]. The second nonlinearity is a rectification-like nonlinearity that is like that
presumed to occur in complex cells [8].

1.2: Chromatic Element-Arrangement Patterns

Beck [9] and Pessoa, Beck, and Mingolla [10] investigated the perceived segregation
of element-arrangement patterns composed of equiluminant squares differing in hue. They
found that the luminance of the interspace region (i.e., the spaces between squares) strongly
affected perceived segregation, whereas the luminance of the surround (i.e. the space
surrounding a pattern) affected perceived segregation to a minor degree. For element-
arrangement patterns composed of squares differing in hue, perceived segregation was
strongly interfered with by high luminance interspaces but not by low luminance interspaces
(see Figure 1). It is important to note that the squares composing an element-arrangement
pattern do not have to be at precise equal luminance for perceived segregation to be di-
minished by a high luminance interspaces. Pessoa, Beck, and Mingolla [10] found that
perceived segregation tended to decrease with increasing luminance of the interspaces when
the squares composing an element-arrangement pattern differed in luminance. Perceived
segregation varied approximately inversely with the ratio of the background luminance to
the higher luminance square. Pessoa, Beck, and Mingolla [10] also found that perceived seg-
regation was approximately constant for constant ratios of interspace luminance to square
luminance. Stereoscopic cues that caused the squares composing the element-arrangement
pattern to be seen in front of the interspaces did not greatly improve perceived segregation
with high luminance interspaces. As in the case of achromatic element-arrangement pat-
terns, these results suggest that the explanation of the perceived segregation of chromatic
element-arrangement patterns is in terms of the early visual mechanisms that encode hue.

2: Blue and Green and Green and Yellow Element-Arrangement

Patterns

Scott Oddo, Ennio Mingolla and I are investigating texture segregation in chromatic
element-arrangement patterns. We are studying the degree to which brightness differences,
hue similarity, and differences in cone contrasts account for differences in the perceived
segregation of chromatic element-arrangement patterns. I present a preliminary report of
our results.



Five subjects rated the perceived segregation of element-arrangement patterns composed
of equal luminance blue (x = .146, y = .061) and green (x = .294, y = .551)1 squares and
of green (x = .295, y = .529) and yellow (x = .457, y = All)1 squares on a rating scale
from 0 to 4. The luminances of the blue square in the element-arrangement pattern of blue
and green squares and of the green square in the element-arrangement pattern of green
and yellow squares were set at 2.5 ft.-L. Equiluminance of the blue and green hues and of
the green and yellow hues was established using the criterion of minimally distinct borders
[11]. The procedure used is described in Pessoa, Beck and Mingolla [10]. Hues of equal
luminance are often not of equal brightness. The subjects also rated the perceived segre-
gation of element-arrangement patterns composed of blue and green squares and of green
and yellow squares judged equal in brightness. Equal brightness values were determined for
each subject by having the subject make heterochromatic brightness judgments. Subjects
adjusted the brightness of the green squares in an element-arrangement pattern composed
of blue and green squares to be equal in brightness to that of the blue squares, and the
brightness of the yellow squares in an element-arrangement pattern composed of green and
yellow squares to be equal in brightness to that of the green squares. The subjects also
rated the similarity of the two hues composing an element-arrangement pattern for simi-
larity on a scale from 0 to 4. The overall size of the patterns was varied by proportionally
decreasing the sizes and the separations of the squares making up the pattern. The fun-
damental spatial frequency of the patterns (the period between two columns of squares of
the same hue) was .5, 1, and 2 cycles per degree. The stimuli were presented on a high
luminance white background (16.3 ft.-L., x = .312, y = .325) and on a low luminance black
background (.23 ft.-L., x = .248, y = .254).

2.1: Results and Discussion

Figure 3 shows the mean segregation ratings with a black background and Figure 4 with
a white background as a function of pattern size. Perceived segregation was significantly
greater with a black background than with a white background for both the blue and green
and green and yellow element-arrangement patterns (F(l,4) = 93.4; p < .05). The in-
teractions of Background x Hue was significant (JF(1,4) = 14.3; p < .05). On a black
background the element-arrangement patterns composed of blue and green squares segre-
gated significantly more strongly than the element-arrangement patterns composed of green
and yellow squares (F(l,4) = 41.7; p < .05). On a white background the blue and green
element-arrangement pattern failed to significantly segregate more strongly than the green
and yellow element-arrangement pattern (F(l,4) = 1.02; p > .05) On both black and white
backgrounds, perceived segregation significantly increased with a decrease in pattern size
(an increase in the number of cycles per degree) (.F(2,8) = 46.0; p < .05). The interaction
of Background Luminance x Cycles per Degree was significant (^(2,8) = 30.1; p < .05).
This interaction reflects the greater increase in perceived segregation with decreased pattern
size on a black background than on a white background.

Brightness: Chromatic hues of equal luminance need not be of equal brightness. A blue
hue is commonly seen as brighter than an equiluminant green hue while equiluminant
green and yellow hues are commonly seen to be more nearly equal in brightness [12]. One
possibility, therefore, is that the greater perceived segregation of the blue and green element-
arrangement patterns than of the green and yellow element-arrangement patterns is due

1 These are the mean chromaticity coordinates of the hues judged by subjects to be of equal luminance.
The chromaticity coordinates for the equal brightness hues were similar.
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Figure 3. Mean segregation ratings on a
black background plotted as a function
of pattern size.

Figure 4. Mean segregation ratings on a
white background plotted as a function
of pattern size.

to the greater brightness difference between the equiluminant blue and green hues than
between the equiluminant green and yellow hues. The ratio of the luminance of the green
square to the luminance of the blue square and of the luminance of the yellow square
to the luminance of the green square at equal brightness is an ordinal measure of the
brightness difference between equiluminant hues. Figure 5 shows the mean ratios of the
luminance of the green square to the luminance of the blue square and of the luminance
of the yellow square to the luminance of the green square at equal brightness on a black
background. Figure 6 shows the mean luminance ratios on a white background. The
brightness difference between blue and green squares was significantly greater than between
the green and yellow squares on both black and white backgrounds (JF(1,4) = 8.51; p < .05).
The brightness differences are in accord with the judgments of greater segregation for
the blue and green equiluminant element-arrangement patterns than for the green and
yellow equiluminant element-arrangement patterns. However, Figures 3 and 4 show that
the equal brightness and equal luminance stimuli segregate alike. This clearly indicates that
brightness differences are not the principal factor underlying the difference in the perceived
segregation of the blue and green and the green and yellow element-arrangement patterns.

The greater luminance ratios yielding equal brightness of the hues with a white back-
ground than with a black background is the result of the inhibition of brightness by the
higher luminance white background. Without knowing the degree of inhibition one can
not determine whether the relative brightness differences of the hues on the black back-
ground were greater than the brightness differences on a white background. One is not able
therefore to decide whether the greater segregation on a black background than on a white
background reflects the greater brightness difference between the hues on a black back-
ground than on a white background. In a second experiment subjects rated the perceived
segregation of element-arrangement patterns composed of equiluminant purple (x = .310,
y = .162) and gray (x = .297, y = .301)1 squares on black and white backgrounds. The
purple square was set at 2.5 ft.-L. The luminances and chromaticity coordinates of the back

1 These are the mean chromaticity coordinates of the hues judged by subjects to be of equal luminance.
The chromaticity coordinates for the equal brightness hues were similar.
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Figure 5. Mean ratios of the luminance
of the green square to the luminance of
the blue square and of the luminance
of the yellow square to the luminance
of the green square when the blue and
green squares and the green and yel-
low squares were judged to be equally
bright. The mean ratios are for a black
background and are plotted as a func-
tion of pattern size.
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Figure 6. Mean ratios of the luminance
of the green square to the luminance of
the blue square and of the luminance
of the yellow square to the luminance
of the green square when the blue and
green squares and the green and yel-
low squares were judged to be equally
bright. The mean ratios are for a white
background and are plotted as a func-
tion of pattern size.

and white backgrounds were as in the first experiment. Figure 7 shows the mean segregation
ratings with black and white backgrounds as a function of pattern size. As with the blue
and green and green and yellow element-arrangement patterns, perceived segregation was
dramatically better on a black background than on a white background (F(l,4) = 54.07;
p < .05). The gray square in an element-arrangement pattern was assigned a value of 100
and subjects also made magnitude estimations of the brightnesses of the purple squares.
Figure 8 shows the magnitude estimations of brightness. The purple squares were judged
to be slightly brighter than the gray squares on a black background than on a white back-
ground. However, there is not enough difference in the magnitude estimations of brightness
to explain the effect of background luminance on perceived segregation.

Similarity: A second possibility is that perceived segregation is a function of hue similarity.
Figure 9 shows the mean similarity ratings with a black background and Figure 10 shows
the mean similarity ratings with a white background as a function of pattern size. The green
and yellow hues overall were judged slightly more similar than the blue and green hues. An
Anova of the similarity ratings showed that the differences in the similarity ratings of the
blue and green and the green and yellow hues were not significant (F(l,4) = 2.53; p > .05).
The correlations of the mean segregation judgments with the mean similarity judgments
was not significant with a white background (t(10) = 1.13, p > .05). The correlation of
the mean segregation judgments with the mean similarity judgments was -.69 with a black
background (tf(10) = 3.01, p < .05). However, the slope of the regression equation was
—3.5 and the intercept of the regression equation was 6.6. If perceived segregation were
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Equiluminant Purple and Gray Squares
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Cycles per Degree Figure 8. Mean magnitude estimations of
the brightnesses of the purple squares

Figure 7. Mean segregation ratings on plotted as a function of pattern size. The
black and white backgrounds as a func- gray squares were assigned a value of
tion of pattern size. 100.

a linear function of the similarity of the hues, the slope of the regression equation should
be —1.0 and the intercept of the regression equation should be 4.0. This suggests that hue
similarity is not the explanation for the greater perceived segregation of the blue and green
element-arrangement patterns than of the green and yellow element-arrangement patterns.

Cone Contrasts: A third possibility is that what is important are the early visual mecha-
nisms that encode the differences in hue of the squares composing an element-arrangement
texture pattern. For the perceived segregation of an achromatic element-arrangement pat-
tern, the luminance contrasts of the squares with the background is an important factor [1].
The analogous variable for chromatic patterns are the chromatic contrasts of the squares
with the background. Cone contrasts are a measure of the hue differences encoded by the
early visual mechanisms. The cone contrasts can be estimated from the long (Z-cone),
middle (M-cone), and short-wavelength (5-cone) cone responses. Macleod and Boynton
[13] present a transformation for converting the Judd color matching functions (or tri-
stimulus values x, y, and z) into £-, M-, and 6*-cone responses. The cone contrasts are
AX/X, AM/M and AS/S—the numerators are the differences between the long, middle,
and short-wavelength cone responses to the squares and their responses to the background;
the denominators are the cone responses to the background. Table 1 shows the mean cone
contrasts for the equal luminance and equal brightness patterns on black and white back-
grounds. The cone contrasts are consistent with the greater segregation of the blue and
green element-arrangement patterns than of the green and yellow element-arrangement pat-
terns. For both the equal luminance and equal brightness element-arrangement patterns,
there is a large difference between the ^-cone contrasts of the blue and green hues. For the
green and yellow hues, which showed weaker texture segregation, there are no strikingly
large differences in the contrasts of the three cones. The cone contrast responses of the
equiluminant and equal brightness stimuli are also similar. The main difference is that the
cone contrast differences for the L- and M-cones are greater for the equal brightness stimuli
than for the equiluminant stimuli. This is to be expected since the equal brightness stimuli
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differ in luminance.

Table 1. Estimated Cone Contrasts with a Black Background

Hue
Blue2

Green
SE
Green2

Yellow
SE

Equal Luminance

X-cone
6.38
9.28
1.02
9.88

10.54
0.61

M-Cone
11.35
9.80
1.07

10.44
7.35
0.36

Patterns

£-cone
54.73

0.96
0.17
0.91
0.67
0.05

Equal Brightness

Z-cone
6.38

17.14
5.40
9.88

13.11
1.68

M-cone
11.35
18.27
5.79

10.44
9.37
1.25

Patterns |

S- cone
54.73

1.61
0.52
0.91
0.86
0.12

Graham [6] hypothesized that the decrease in the perceived segregation of an achro-
matic element-arrangement pattern composed of squares differing in lightness with a high
background luminance is due to a compressive intensity nonlinearity that abolishes the
differences in the neural responses to the high and low luminance squares composing the
pattern. Analogously, a high luminance background which strongly stimulates the L-, M-,
and £-cones would be expected to decrease the differences in the cone responses to the hues
of the two squares. Table 2 shows the cone contrasts for the blue and green, and green and
yellow element-arrangement patterns with white backgrounds. Note that the differences
in the cone contrast on a white background are not nearly as great as those with a black
background. As mentioned above, Pessoa, Beck, and Mingolla [10] found that equal ratios
of background luminance to hue luminance yielded approximately the same perceived seg-
regation. It should be noted that keeping the ratio of the background luminance to the hue
luminance constant leaves the cone contrasts constant. The overall results are therefore
consistent with the hypothesis that perceived segregation in element-arrangement patterns
is determined by the encoding of hue by early visual processes.

Table 2. Estimated Cone Contrasts with a White Background

Hue
Blue2

Green
SE
Green2

YeUow
SE

Equal Luminance
I-cone

-0.90
-0.86

0.01
-0.85
-0.84

0.01

M-Cone
-0.81
-0.84

0.02
-0.83
-0.87

0.01

Patterns
S-cone

-0.37
-0.95

0.00
-0.95
-0.96

0.00

Equal Brightness
Z-cone

-0.90
-0.66

0.10
-0.85
-0.75

0.11

M-cone
-0.81
-0.60

0.12
-0.83
-0.80

0.09

Patterns |
S-cone

-0.37
-0.92

0.02
-0.95
-0.95

0.01

Pattern Size: Contrast sensitivity for chromatic gratings tend to decrease beyond 1 cy-
cle/deg [14]. The increase in perceived segregation with decreasing pattern size is therefore
not ascribable to the chromatic contrast sensitivity function. It is also not explainable by
any of the three factors we have studied, i.e., differences in the brightness, similarity, or

2The hues were set by the experimenter. SE = the standard error of the mean cone contrasts calculated
from subjects' equal luminance and equal brightness judgments.
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cone contrasts of the hues in an element-arrangement pattern. The magnitude estimations
of brightness presented in Figure 8 were similar across the three spatial scales and do not
account for the effect of pattern size. The rated similarity of the blue and green hues and
of the green and yellow hues shown in Figures 9 and 10 also did not vary with pattern size,
and would not explain the effects of pattern size on perceived segregation of the element-
arrangement patterns. Scaling of the patterns also leaves the cone contrasts constant. One
hypothesis is that the high spatial frequency information in the element-arrangement pat-
terns interferes with perceived segregation and that this interference is reduced when the
high spatial frequencies are outside the range of visual sensitivity. We are examining this
possibility.

Black Background

—#— Blue & Green Equal Brightness
-•#-— Blue & Green Equal Luminance
—D— Green & Yellow Equal Brightness
~ O — Green & Yellow Equal Luminance

— •

Figure 9. Mean similarity ratings on a
black background plotted as a function
of pattern size.

White Background

— • — Blue & Green Equal Brightness
— • — • Blue & Green Equal Luminance
— D — Green & Yellow Equal Brightness
— D ~ - Green & Yellow Equal Luminance

Figure 10. Mean similarity ratings on a
white background plotted as a function
of pattern size.
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Abstract

A multiresolution rn,odel for Gauss Markov random fields (GMRF) with ap-
plication to texture segmentation is presented. Coarser resolution sample fields
are obtained by subsampling the sample field at the fine resolution. Although the
Markov property is lost under such resolution transformation, coarse resolution
non-Markov random fields can be effectively approximated by Markov fields. We
present a local conditional distribution invariance approximation to estimate the
GMRF parameters at coarser resolutions from, the fine resolution parameters.
Our experiments with synthetic, Brodatz texture and real satellite images show
that this multiresolution technique results in a better segmentation and requires
lesser computation than the single resolution algorithm.

1: Introduction

There has been an increasing emphasis on using statistical techniques for modeling and
analyzing images. Typical image processing problems have the following aspects to be
dealt with: the identification of an appropriate model that reflects the prior beliefs and
knowledge about the family of images that are to be analyzed, the selection of a proper
observation model that reflects the nature of the transformations these images undergo
during observation, and the selection of a suitable error criterion to be optimized. For
many image processing problems, such as image enhancement, image restoration, texture
identification and segmentation, prior and observation models and error criteria can be
very efficiently selected in a statistical framework. Using statistical models in a Bayesian
framework enables posing many image processing problems as statistical inference problems.

Among several possible 2-D models for images most of the research has been restricted to
Markov random field (MRF) models, because of the local statistical dependence of images.

* This work was supported in part by Grant #ASC 9318183 from National Science Foundation. A
longer version of this chapter is due to appear in the IEEE Transactions on Image Processing.
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MRF models have been used to characterize prior beliefs about various image features such
as textures, edges and region labels. Since MRF models express global statistics in terms of
the local neighborhood potentials, all computations are restricted to a local window. This
spawned a lot of interest in developing algorithms that utilize local computations to achieve
global optimization [9]. But the main drawback is that the optimization schemes associated
with MRF energy functions are iterative. Typical MRF algorithms visit all lattice sites in a
specific order and perform a local computation at each site; this is repeated until some form
of convergence is reached. Even though the individual iterations involve only simple local
computations, the iterative nature of these algorithms contributes to the computational
burden. Two different approaches have been used to reduce the computational requirement.
The first is to use non-optimal, deterministic methods that converge to a local optimal point,
but still provide reasonably good results. Geiger and Girosi [8] and Zhang [24] use mean field
approximations that lead to deterministic relaxation algorithms. Wu and Doerschuk [23]
use a tree approximation that replaces the lattice on which an MRF is defined by an acyclic
tree which allows replacing the iterative MRF computations by recursive computations.

The second approach is to use multiresolution techniques. Two important aspects of
multiresolution approaches are: (1) divide and conquer and (2) action at a distance [21].
Research efforts on multiresolution models and analysis can be found in [22],[2],[10],[4] and,
[16]. We elaborate on the following, because of their relevance to our work.

Jeng, in [12], discusses the effect of subsampling resolution transformation on MRFs and
presents two results: first, the Markov property is not preserved for a general subsampling
scheme and, second, it is preserved under some specific subsampling schemes depending
on the size and shape of the neighborhood. In [15] Lakshmanan and Derin present an
excellent discussion on multiresolution GMRF models. It is shown that the GMRFs lose
their Markov property under subsampling and expressions for the power spectral density
functions at coarser resolution are obtained. It is also shown that for the special case of sec-
ond order GMR.Fs with separable autocovariances, the Markov property is retained under
subsampling. In addition, a covariance invariance approximation is presented to approxi-
mate the coarser resolution data by GMRFs. Many interesting properties of this estimator
such as maximizing the entropy and minimizing the Kullback-Leibler (KL) distance can
be found in [15].

We present a multiresolution model based on a KL distance measure. Given that the data
at the fine resolution is a GMRF, the goal is to obtain suitable models at coarser resolutions.
Data at coarser resolutions are obtained by subsampling the fine resolution data. Under
these resolution transformations, coarser resolution data are non-Markov. We present an
estimator to compute the parameters corresponding to the "best" GMRF approximation
at lower resolutions from the parameters at the fine resolution based on minimizing the
KL distance between the conditional densities (conditional relative entropy). We also show
that the computations for this estimator turn out to be similar to the psuedo likelihood
estimator [1], except that the sample covariances are replaced by covariances calculated
with respect to the non-Markov measure that is being approximated. We present results
on the existence of different sets of GMRF parameters at fine resolution that result in
statistically identical coarser resolution random fields. As an application, we consider the
texture segmentation problem and performe segmentation over multiple resolutions using
our multiresolution GMRF model. We show that the multiresolution technique performs
hotter than the single resolution approach.

The rest of the chapter is organized as follows. Section 2 introduces the GMRF and the
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basics of the resolution transformation. Section 3 presents the Markov approximation for
non-Markov fields based on local conditional distribution invariance approximation. Section
4 presents the many-to-one nature of transformation of the GMRF parameters from the fine
to coarse resolution. Section 5 presents various aspects of the multiresolution segmentation
and Section 6 gives synthetic and real experiments. Section 7 concludes the paper.

2: GMRFs and Resolution Transformation

In this section we introduce basic notations used in the rest of the chapter and also
present results on loss of the Markov property under resolution transformation [15].

2.1: The GMRF Model

We use the following notation :
t = (ti,t>2),& — (6'LJ«S2) : coordinates of grid points on a 2-D lattice
H = |,s : () < ,s'1 < M — 1,0 < S2 < N — 1} : a two dimensional lattice
X : a random field on 0, represented as a vector by a row-wise scan ordering
Xs: the random variable at site s
r/,'0,^: neighborhood sets

The set of lattice points that are contained in the neighborhood of a site 5 is denoted by
vyiS. The elements that are included in the neighborhood of the site marked s for different
neighborhood orders can be found in [6].

For the first order case, 77 = {(1,0), (0,1), (-1,0), (0, -1)} , and /?., = {s + r : 7- G 77}.
If X is modeled by a GMRF with a symmetric neighborhood 77, then X can be written

as [13]:

reri

where e is a zero mean, Gaussian noise, with autocorrelation given by :

( a2 ifr = (0,0)
E[e3ea+r] = I ~0ra

2 if r G rj (1)
I 0 otherwise.

Hence the GMRF can be completely characterized by the set of parameters {0,a2}. The
parameter set 6 should satisfy the following conditions :

1. 0r = 6Lr Werj

2. 1 - 0r$s > 0 Vsefl (2)

where r/> is a vector whose length is equal to the number of elements in the neighbor set 77.
The individual elements of 0Q are given by:

27TS1 27TS2, ( H , ,
c o s | ( - M - i \ r V 2 11 rer<-

The first, condition is necessary to ensure stationarity and the second to ensure that the
covariance matrix of X is positive definite.
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X exhibits the Markov property [13],

p{xs\xu\/t ^ s,t€tt) = p(xs\xs+r,r e rj)
1 _ r [*»-£r.

12

exp{-1"" ~T2' ' }• (3)

The power spectrum ^(a;) of X can be shown to be [13]:

2

5 * H = i -Ere^roos l^nwi + ^ w a ] ( 4 )

where u = { C J I , ^ } , and 0 < u\ < M — 1,0 <U2 < N — 1.

2.2: GMRFs and Resolution Transformation

Let 12(°) = ft= {(.si, s2) : 0 < 5! < M - 1,0 < s2 < N - 1} be a rectangular lattice and
M and TV are assumed to be powers of 2. The superscript stands for the level in the image
pyramid, il^ being the lattice at the fine resolution, Q^ represents the lattice which is
obtained by subsampling ft(°\ k times. Let X ^ represent a random field, obtained by
ordering the random variables on fi^. The parameters of a GMRF defined on a lattice
ilS^ are denoted by {(rk\ [cr'2](k}} and the associated neighborhood is denoted by T/*). The
covariance matrix and the power spectrum associated with X^"' are denoted by E^^ and
Si (a;) respectively. The probability distributions defined on a lattice Q^ are indexed by

Let X(o) be a GMRF defined on ft(°) with parameters {g(0), [a'2](0)} and a neighborhood
rf^K The power spectrum of X ^ can be written as in Eq. (4) :

af>M = J * (5)

where u> = {(aji,^) : 0 < ix>i < M — 1,0 < u>2 < N — 1}. The subsampling resolution
transformation is defined as:

x^ = xt1]

defined for all .s G 0^).
The power spectrum of X ^ can be shown to be [15]:

f M 4 E ^ + ̂ ') (6)
recfc

where r' - ($ru §r2) and Cfc = {r : 0 < n < 2* - 1, 0 < r2 <2k - 1}.
It can be observed that s£ ' (a;) cannot be written in the form of Eq. (4) with a finite

neighborhood. Therefore, the subsampled fields X̂ fc^ are non-Markov, except for the special
case of second order separable correlation GMRFs [15].
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3: Local Conditional Distribution Invariance Approximation

As mentioned in the last section, GMRFs become non-Markov when subsampled. How-
ever, if the coarser resolution data are modeled by the exact non-Markov Gaussian measures,
conventional optimization techniques based on Markov properties cannot be applied. In
this section we show that it is possible to obtain good Markov approximations for coarser
resolution fields.

In this section we present a technique to estimate the best GMRF parameters of a
non-Markov random field, based on a KL distance measure between local conditional dis-
tributions (conditional relative entropy) [5]. In MRF applications all optimizations are
performed based on the local conditional distribution, so, we believe an estimator based on
it should be well suited for image analysis applications. We also exemplify the connection
between this estimator and the pseudo likelihood estimator [1].

The Markov approximation presented in this section is based on linear estimation. Before
presenting the details, we will provide a known result regarding the linear estimation of
a GMRF. Let Z be a GMRF denned by (9,a2) with a neighborhood i/>. Then the best
estimate of Zs based on the elements of %/> is given by [3]:

and the mean square error

E(ZS - Zsf = a2.

The conditional density p(zs\zr,r G ip) ls Gaussian with conditional mean Yt,reii>@rZs+r a n d
conditional variance a1.

Let X be a random field with a stationary non-Markov probability measure p(x) and let
q*(x) be a GMRF approximation such that:

q*(xs\x8+r,r G rj) = arg min .D[p(zs | re s + r , r G 77) || q(xs\x8+r,r G rj)], (7)

where the minimization is performed over the entire family of GMRF pdfs with a chosen
neighborhood 77. In addition, under certain conditions (given at the end of the section),
q*(xs\xs+r,7- G rj) is exactly equal to p(xs\xs+r,r G 77).

Since <y(x) belongs to the family of GMRF densities, q(xs\xs+r,r G 77) will be of the form
given in Eq. (3).

t I \ l S [Xs~T,rey°r^s+r}\
q(xs\xs+r,r G 77) = - = = exp{ —^ — } .

Let (#*, {(T2)*) be the parameters-corresponding to q*{x). To simplify the notation, let Y
be the vector containing the neighborhood random variables in a proper order. For a first
order neighborhood,

Y = y -X"s+(i,o) X,+(o,i) ^s+(-i,o) ^s+(o,-i) J •

Now performing the minimization in terms of the parameters,

(gMff2]*) = arg min D[p(a;,|Y) || q(x,,\y_)}
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= argmin£;Jlog^{||
(g,<r*) L q(Xs\Y)

= arg max Ep [log q(X81Y)]

= argmin 5 logcr2 + - ^ ( £ P [ X S - X > r r ] 2 ) .
(e.<*2) L La rev

(8)

It, can he seen that, the 0* parameters corresponding to q* (x) are obtained by minimizing
the second term in the Eq. (8)

r - argminEp[X.s - ] [ > Y r . ] 2 (9)

and using the 9* obtained, we can estimate the [<J2]* that minimizes Eq. (8),

[<r2r = 25p[*,-2>*Y r]
2 . (10)

tlldll,

g* = &vgmmEp[Xs-0
TY]

0
•T\i-I ;er = [Bp(yf)]-'£p(isy) (ii)

and.

[a2]* = £;p(Xs
2)-Sp(XsY

T)[JBP(YY r)]^1£;p(X.,Y)
= EV{X2

S) - [6*]TEP(XSY). (12)

In addition, the estimated 6* parameters should satisfy the positivity conditions in Eq.
(2).

Now, returning back to multiresolution discussion, let X^ be a GMRF defined by
(#(0), [T 2 ] ( 0 ) ) and X^ be the field obtained by subsampling X^°\ k times. The non-Markov
X^ can be approximated by a GMRF by minimizing Eq. (7). The minimization requires
the autocorrelation values Ep(k)[Xs Xs+r] which can be computed, given the GMRF pa-
rameters for X^0) as shown below.

Epik)[Xik)xil] = EpW[X^>X^+r)}.

For any two lattice sites u and v in Q^ the correlation is given by [13]:

P(O>[ " " ' - MAT j ^ 1 - [^Yt
 (13)

where X'n = exp(y/-l^).
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Under the assumption that the covariance matrix with respect to p - measure is positive
definite, the function in Eq. (9) to be minimized is convex and is minimized over a convex
set defined by 1 — [tfk)Y(ts > 0, for Vs E Q. If the solution lies inside the convex set, it can
obtained from Eq. (11). Otherwise, a gradient descent procedure can be used.
Remarks:
1. If the 0* obtained from Eq. (11) satisfies the positivity conditions and if p is Gaus-
sian, then p(xs|.7;s+r,r G '/]) = q*(xs\xs+r,r G 77). Since p(x) is Gaussian, p(xs\xs+r,r G 77)
is also Gaussian with conditional mean Ylreri Q*xs+r (which is the best linear estimate of
XN in terms of Xs+r,r G 77) and conditional variance [<r2]* (which is the corresponding
minimum mean square error of the estimator) [19]. q*(x) being a GMRF with parameters
(0*, [a2]*), from the discussion at the beginning of this section, has the conditional distri-
bution r/*(.T.s.|.TiS.+,.,/• G 77) with the conditional mean £]r6r/0*.x".,•+?• and conditional variance
[rr2]* . However, the joint densities p(x) and q(x) on the whole lattice are not the same,
p(x) is a non-Markov density and q(x) is a Markov density.
2. It is worth observing that Eq. (8) is similar to the pseudo likelihood estimate [3], [1]
where the GMRF parameters are obtained by minimizing the products of local conditional
densities over the entire lattice. The pseudo likelihood estimator uses the sample covari-
anc.es obtained from the observed sample field, whereas our local conditional distribution
invariance estimator uses the covariances calculated with respect to the p - measure.

4: Parameters Resulting in Identical PDFs at Coarser Resolutions

In the previous section, we presented methods to approximate subsampled random fields
by GMRFs assuming that data at the fine resolution is modeled by a GMRF. It is also
necessary to analyze if different GMRF parameters at the fine resolution can result in
probabilistically identical coarser resolution random fields. Since we are dealing with Gaus-
sian fields, it suffices to check the covariance matrices of the subsampled fields instead of
the pdfs. However, the covariance elements are complicated functions of the parameters
(see Eq. (13)). Therefore, we look at the power spectrum of the subsampled random fields
which are simpler functions of the parameters. We show that there exists different sets of
GMR.F parameters, which on subsampling result in the same pdf at the lower resolution.
Since the parameter [a2]^ is a multiplicative factor in the power spectral function, we
assume it be equal to one and investigate the existence of different sets of 0 parameters
that result in the identical coarser resolution random fields.
Case 1: First order GMRF on ft(°)
The first order GMR.F model is defined by the parameters (0(i,o)i0(o,i)5 !)• ^or a n r s t 01"der
GMR.F at the fine resolution, the only set of parameters that results in the same power
spectrum at f^1) is (0(i,o), 0(o,i))> (-0(i,o)5 0(o,i))} (#(i,o)>-0(o,i))> (-0(i,o)>-0(o,i))-
Case 2: Second order GMRF on fi<°)
The second order GMR,F model is defined by the parameters (0(1,0), 0(o,i)' ^(1,1)' ^(-M)>
1). For a second order GMRF at the fine resolution, the only set of parameters that result
in the same power spectrum at JT̂ 1) is,
( 0 ( 1 , 0 ) ^ 0 ( 0 , 1 ) ^ 0 ( 1 , i ) > 0 ( - i , i ) ) ' ( ~ 0 ( i , o ) ) 0 ( o , i ) ' —0(1,i)> — 0 ( - i , i ) ) '

( 0 (1 ,0 ) : - 0 ( 0 , 1 ) 5 - 0 ( 1 , 1 ) 5 - 0 ( - l , l ) ) > ( - 0 ( 1 , 0 ) 5 - 0 ( O , l ) ' 0 ( l , l ) ' 0 ( - U ) ) -

Proof: The proof can be found in [14].
Similar results can be obtained for higher order cases.
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5: Texture Segmentation

Computer vision and image analysis algorithms use various visual cues to analyze and in-
terpret an image of a complex scene. These visual cues include, among others, photometric
and geometric cues. Photometric cues include shading, texture, etc., from which features
such as edges and regions are obtained. Texture is one of the basic characteristics of a
visible surface and provides useful information for scene segmentation and understanding.
Texture is a very important property for the analysis of remote sensed satellite images, their
segmentation into various vegetation classes. Texture classification and segmentation prob-
lems have been addressed by several authors with different approaches that can be broadly
classified into two, namely, structural [20],[11] and statistical [6],[7],[18],[17] approaches.

Texture segmentation problem is the labeling of pixels in a lattice to one of V texture
classes, based on a texture model and the observed intensity field. Each site in the lattice
carries a class label (say Ls = v,v G {1,2,... ,V}) and this label field is modeled by an
MRF. We do not directly observe the label field, but a function of the labels, the intensity
field. The intensity field is modeled by a GMRF, whose parameters depend on the value of
label field at that site. The goal is to estimate the unobserved label field from the observed
intensities by optimizing a suitable error criterion.

We model the label field L by an MRF with a neighborhood ip\

p{L=Q = je*p\pYlU(la)] (14)
L sen J

where U(l.s) is the number of neighbors in %j) that have the same label as ls. This model is
also called a pairwise interaction model.

The local conditional probability of the label field is given by:

p ( M W g v = "PW'jl (15)

The GMRF parameters corresponding to a label v are denoted by (0(v),cr2(v)). The
conditional density of the intensity field can be written as follows, from Eq. (3):

p(X8 = xR\L8 = v,X8+r,r 6 rj)

= v^exp{~^)[Xs~^n
eAv)Xs+r)]2}- (16)

We restrict ourselves to the iterated conditional mode method (ICM) . The ICM solution
is obtained by performing the following optimization at each lattice site [1]:

max P(Xa\La,Xs+r,r e r))P(L8\L8+r,r e '</')•

This is equivalent to,

min - log(a'2(^)) + g ^ y b ' - E 9r{v)xs+rf - pU{L, = v)

(17)

the minimization is performed by visiting the pixels in raster scan order for all s e Cl and
stopped when no further changes in the labels occur.
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5.1: Multiresolution Segmentation

The segmentation algorithm presented above is a single resolution algorithm. As we have
discussed before, data at lower resolutions can be approximated by a GMRF. Thus the same
algorithm can be applied at lower resolutions too. Our multiresolution algorithm includes
the following steps. First, given the number of classes and the associated parameters at
the fine resolution, the GMRF parameters at lower resolutions are obtained by the local
conditional distribution invariance approximation. Then, segmentation is performed at the
coarsest, resolution using Eq. (17) with the corresponding parameters and the results of
segmentation are passed on to the immediate higher resolution. This is repeated until
the fine resolution is reached. At each resolution a confidence measure is attached to the
segmentation result at each pixel and propagated to the finer resolution. We address issues
regarding confidence measures in this section. After obtaining the segmentation result by
[CM convergence at one resolution, the results have to be propagated to the immediate
higher resolution. Since we obtain resolution transformation by subsampling, we have a
quad tree type of graph. If L^k' is the segmentation result at the A;th resolution, the labels
in the (k — l)th level are initialized as:

In addition, at level k, after the ICM converges, we attach a confidence measure Ci to
the segmentation result obtained at site s.

At level fc, after the convergence of ICM iterations, let v and v be such that,

vH = arg max P(XS\LS = ?;,X8+r,r G ̂ )P{LS = v\L8+r,r G 'tp)
7/€{l,2,...,Vr}

vN = arg max P{XS\LS = v,XH+r,r G rj)P(Ls = v\Ls+r,r G '</>)

v£{L,2,...,V},v^vs

and the confidence measure is defined as,

r ( t ) = P(Xs\vs,Xs+r)P(vs\Ls+r)
P(Xs\vs,Xs+r)P(vs\Ls+ry

 { >
These confidence measures at level k are propagated upwards to level k — 1 in the same

manner as in Eq. (18). At level A;, ICM is restricted to only those pixels with the confidence
measure such that, -^y > c ^ , where c^ is a confidence threshold at level k. Also from
the definition, 0 < -^y < 1.0. For the coarsest resolution c^ — 0, i.e., ICM is performed
over all sites in the lattice.

6: Experiments

We present experimental results with simulated, Brodatz texture images and real satellite
images to show that the multiresolution algorithms perform better than the single resolu-
tion both in terms of the classification accuracy and computational requirements. In all the
experiments, the confidence threshold c^ — {0.6,0.25,0.0}, is used for the different levels
with smaller values used at coarser resolutions. Multiresolution results presented in this
section are obtained by performing the algorithm over three resolutions. In all cases, per-
centages of correct classification and computational requirements are given in parenthesis.
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To compare the computational requirements between the single resolution and multires-
olution approaches, we define a unit of computation to be the computation required to
perform ICM at a single pixel site.

We generated texture images using the technique given in [3]. Three third order GMRF
textures are generated with parameters { (0(i,o) = 0.0934154, 0(Ojl) = 0.520252, 0(ljL) =
0.0303413, 0 ( 1 M ) = 0.0180476, 0(2,o) = -0.0216434, 0(Oi2) = -0.148331), a2 = 0.9342 },
{(}= (0.308257, 0.468389, -0.0755398, -0.0755797, -0.0407557, -0.100678), a2 = 1.8472 },
{0= (0.406875, 0.423393, -0.178478, -0.188702, -0.0649544, -0.121439), a2 = 1.264811 } .
Figure l(a) shows the composite image with these three textures. Figure l(b) shows the
single resolution segmentation result ( classification accuracy — 89.84%, computational
requirement = 2686976) and Figure l(c) shows the result for multiresolution segmentation
(96.75%. 431031).

We have tested our algorithm on textures from the Brodatz texture album. Figure 2(a)
contains grass, calf leather, wool, and wood textures. The original GMRF parameters
are estimated by maximum likelihood estimation. Figure 2(b) shows the single resolution
segmentation (86.04%), 1114112) and Figure 2(c) shows the multiresolution segmentation
(92.75%), 679444). We have another interesting plot of - ^ for the level k = 1 in Figure

2(d). The brighter points in this image correspond to points of low confidence measure.
As expected, all the boundary regions between different textures have low confidence mea-
sures. In texture segmentation, classification near the texture boundaries is usually more
ambiguous.

Figure 3(a) shows a section of a single channel of a multispectral sensor (MSS) image over
Africa. We chose three classes corresponding to river, forest, and deforestation. The GMRF
parameters obtained from small sections of a different part of the image are used to classify
the image shown. Unfortunately exact class maps are not available. Figure 3(b) shows the
single resolution result (unknown, 2160000) and Figure 3(c) shows the multiresolution result
(unknown, 426105). Clearly, we can see that the multiresolution algorithm lias performed
better, with lesser computation, than the single resolution algorithm.

Finally, we present results of multiresolution segmentation on a thematic mapper (TM)
image consisting of four classes corresponding to river, forest, deforestation and regrowth.
Figure 4(a) shows a, section of thematic mapper (TM) data and Figure 4(b) shows the
4-class multiresolution segmentation result.

7: Summary

Multiresolution models and algorithms play an important role in image analysis. These
algorithms not only help to reduce the computational time, but, also help to analyze the
given information at different spatial scales. We have presented a technique based on min-
imizing the KL distance, to estimate the parameters of GMRFs at coarser resolutions and
have used it for texture segmentation. GMRFs are widely used in many image processing
applications including restoration, segmentation, compression, etc., and the proposed mod-
els can be used for these applications. Also, this can be extended to perform unsupervised
texture segmentation. However, as mentioned in Section 4, GMRF parameters at a lower
resolution can correspond to more than one set of parameters at fine resolution. Hence
the problem of retrieving the GMRF parameters at fine resolution given the parameters at
coarse resolution has to be addressed for unsupervised segmentation.
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Figure 2: (a) Brodatz texture image, (b) Single resolution segmentation result, (c) Mul-
tiresolution segmentation result, (d) Confidence measures.
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Figure 3: (a) Remotely sensed MSS image, (b) Single resolution segmentation result, (c)
Multiresolution segmentation result.
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Figure 4: (a) Remotely sensed TM image, (b) Multiresolution segmentation result.
(b)

(a)



Feature Selection for Texture Segmentation

Michael Brady and Zhi-Yan Xie

1: Abstract

Wavelet transforms are attracting increasing interest in computer vision because they
provide a mathematical tool for multiscale image analysis. We develop a wavelet-based
approach to segmenting textured images and demonstrate its application to a range of nat-
ural images. First, we investigate the wavelet transform representation of an image at each
•scale and across scales. We show first that the subsampled wavelet multiresolution repre-
sentation is translation ally variant. More importantly, we show that a wavelet transform
of a signal generally confounds the phase component of the analysing wavelet associated
with that scale and orientation. The importance of this observation is that commonly used
features in texture analysis, such as squaring, or half-, full-wave rectification of a wavelet
transform, also depend on this phase component. This not only causes unnecessary spatial
variation of features at each scale but also makes it more difficult to match features across
scales.
As the main contribution of the paper, we propose a complete 2D decoupled local energy
and phase representation of a wavelet transform. As a texture feature, local energy is not
only immune to spatial variations caused by the phase component of the analysing wavelet,
but facilitates the analysis of similarity of across scales. The success of the approach is
demonstrated by experimental results for aerial Infrared Line Scan (IRLS) aerial, satellite,
and Brodatz images.

2: Introduction

Texture is a rich source of visual information about the nature and three-dimensional
shape of physical surfaces. Following the pioneering work of Azriel Rosenfeld [24], computer
texture analysis is ultimately concerned with automated methods to derive such information
using artificial systems. There are three major issues in texture analysis:

1. Texture discrimination - to partition a textured image into regions, each corresponding
to a perceptually homogeneous texture;

2. Texture classification - to determine to which of a finite number of physically defined
classes, such as wood or water, a homogeneous texture region belongs;

3. Shape from texture: to derive 3D surface geometry from texture information.

This paper is confined to texture discrimination- the first stage which has subsequently to
be. relied on by texture classification and by shape from texture.
Approaches to texture analysis are commonly divided into structural, statistical, model-
based and transform methods.
Structural approaches [24, 1] represent textures by well-defined primitives (microtexture)
and a hierarchy of spatial arrangements (macrotexture) of those primitives. Although there

28 0-8186-7644-2 $5.00 © 1996 IEEE
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is much benefit to be had from abstract descriptions of textures, they can still be ill-defined
for natural textures because the variability of both microtexture and macrotexture means
there is no clear distinction between them.
In contrast to structural methods, statistical approaches do not attempt to understand
"explicitly" the hierarchical structure of a texture, such as the primitives used in structural
approaches. Instead they represent a texture indirectly by the nondeterministic proper-
ties which govern the distributions and relationships between the grey levels of an image.
Methods based on second-order statistics [3, 4, 5, 13] (i.e. the statistics given by pairs of
pixels) have been shown to achieve higher discrimination rates than the power spectrum
and structural methods [25, 23]. However, such grey level statistics are of very limited
descriptive power and have not given satisfactory results in practice.
Model based image texture analysis [9, 11, 20], using stochastic and fractal models, attempt
to interpret an image texture by use of a generative image model or stochastic model. The
parameters of the model are estimated and used for texture analysis. In practice, the com-
putational complexity arising in the estimation of stochastic model parameters and the
difficulties of handling non-stationary textures are the primary problems. Although such
methods have had some success in supervised texture segmentation and classification, in
general they work poorly for nonsupervised texture segmentation. The fractal model has
been shown to be useful for modelling naturally occurring textures. However, although
it has been shown to be useful for texture segmentation [22, 21, 27], it lacks orientation
selectivity and is incomplete for describing local image structures.
Transform methods of texture analysis, such as the Fourier [2], Gabor [12, 10, 6, 15, 17],
and wavelet transforms [19, 8, 16], represent an image in a coordinate system that has an
interpretation that is closely related to the characteristics of a texture, such as frequency
or size. Methods based on the Fourier transform perform poorly in practice due to its lack
of spatial localisation. Although the Gabor transform can overcome the spatial localisation
problem to some extent, it is limited in practice because there is usually not a single reso-
lution at which one can localise spatial structures that form natural textured images. For
this reason, the wavelet transform offers the best hope.
A continuous wavelet transform (CWT) is defined by

i roo T _ h

WV/(fl,6) = - p / }(x)4i- )dx (1)

where a £ R+ ,6 £ R are scale and translation parameters and the wavelet ip(x) can be any
function that satisfies the invertibility condition, i.e. it has to be bandpass. By varying
the scale «, W,/,/(«,&) can capture not only large (low frequency) but also localised (high
frequency) components of spatial structures.
Compared with the Gabor transform, the wavelet transforms enjoy several advantages: i)
varying the spatial resolution allows it to represent spatial structures at the most suitable
scale; ii) there is a wide range of choices for the wavelet function i/)(x)m, and iii) the flexibility
of being able to choose a single (or a set of) wavelet function best suited to the image texture
in a specific application. All of these make the wavelet transform particularly attractive
for texture segmentation. We begin in Sections 3, 4 by pointing out two theoretical and
practical difficulties of using wavelets. Then in Section 5 we define a local energy model
that solves these problems. We show typical results on real textured images in Section 6.
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3: Translation Invariant Wavelet Multiresolution representation

If the scale and space parameters of CWT are sampled at {a = 2~J; b — 2""" •'•/?.; j , n E Z},
and if the wavelet 0(.r) is bi-orthogonal, then the wavelet transform is given by

WV(j,7i) = 22 r f(x)^(2Jx~n)dx
J — ,-x..

= </U-M-V,nU)> (2)

where <r ,•.»(•*') = 22 iji(2Jx — n). Wli,f(j,-n) defines a class of discrete wavelet transforms,
the so-called wavelet multiresolution representation (WMR), which can be computed by
recursive filtering.

3.1: Translation Invariant WMR

The WMR has been shown useful in image compression because of its completeness and
compactness. However. W>/(j,/?.) is translationally variant:

W,:,f(j,n) = 22 < f(x-xolVjM)>

= 2i<f(x)^n_VxQ(x)>

+ 22 < f(x), iPj,n-m (•/:)>

for an arbitrary translation ;i*o, ;i'o = 2~:lm; in G Z woiri: in general be satisfied. In
other words, if two identical signals were to appear in different positions, their wavelet
transform representations can be very different which is unacceptable for most signal and
image processing applications, in particular it badly affects texture segmentation.
One way to overcome this problem is to avoid the scale-dependent subsampling b — 2~~^n
by setting b — », that is by keeping the same number of samples as the original signal.
More precisely, for a signal f(n) the wavelet transform is redefined to be

ITV/(J>) = 2J ] T / ( A ; ) ^ ( A : - •/,.))
k

In this way, W^f(j^n) becomes translationally invariant.
The ID wavelet multiresolution representation has been extended to 2D [19] which is defined
by

Aj(m*n) - < f(x,y),22j4>(2jx - m)<t>(2jy - n) >

D{\ nun) = < /(a\ y), 2?(i)(2Px - m)2J^{2Jy - n) >

Djf( m,n) = < f(x, y), 2j4i2jx - m)2j</>(2jy - n) >

DJ
(l(nun) = < f(x^j),2jtl>{2jx-m)2jv(2Jy-n) > (3)

The mother wavelets associated with DJ
x(m, ??.), DJ

y(m,n), D:'{( nun) are

^ . ( . r ^ ) = <t>(x)4iy) (4)
Vy{.r*y) = ip(x)0(y) (5)
*rf(.r,y) = w(x)ip(y) (6)
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where cp and ip are the ID scaling (low-pass) and wavelet function (high-pass), respectively.
D r , D]r D,t are called the horizontal, vertical and diagonal detail images (channels), re-
spectively, which, give strong responses to spatial structures in the horizontal, vertical and
diagonal directions1.
Similarly, it can be shown that A,Dx,Dy,Dci are trans] ationally variant. To overcome
this problem, we change scale-dependent sampling to uniform sampling as in ID, but in
both the .r and y directions. More precisely, an oversampled 2D wavelet multiresolution
representation is defined by

Aj(m, n) = < / ( : i \ ?y), 2j(/>{2j(x - m))2j<f>(2j(y - /?,)) >

Di(m.n) = < / ( . T , s / ) , 2 2 ^ ( 2 J ' ( a r - m ) , 2 j ( y - n ) ) >

Dj
y(m<n) = <f(x,y),22jVy(2

j(x-m),2j(y-n))>

D{(m,n) = < f(x,y),22jVd(2
j(x - m),2J(y - 11)) > (7)

in which case A*Dx*Dy. and Dc{ become translationally invariant.
Although the representation given in Eqn. 7 sacrifices the compactness compared with the
representation given by Eqn. 3, they provide translational invariance which is essential for
texture segmentation, and many other image processing tasks.

4: Phase Dependence of The Wavelet Transform

Considered as a. linear convolution with a set of bandpass filters, the wavelet transform
enables the image "gradient" to be computed at multiple spatial scales. However the
wa.velet transform coefficients themselves are not suitable as texture features because they
are always zero mean at each scale since J^X}ip(x)dx = 0. Therefore some non-linear
operation is necessary [18].
The most commonly used features are full- and half-wave rectification and the square power
of the wavelet, detail signals. We have shown [28], however, that in general those features
are coupled with the local phase component that depends not only on the analysed signal
but also on the analysing wavelet at that scale. This dependency causes two problems that
greatly affect practical texture segmentation: "spurious" spatial variations of features at
each scale; and the difficulty of matching features across scales.

To illustrate, consider the oversampled 2D wavelet transform of a synthetic, images shown
in Figure 1. The surfaces of J9j(m, ??.), DJ

y(m,n), D3
d(m,n) oscillate in space depending on

the shape of the wavelets. Patches of moduli \DJ
{(m,n)\ at different scales are shown in

Figure 2 (top row), and they are clearly affected by the oscillation of the wavelet. Such per-
formance is unacceptable for texture analysis because one wants a uniform feature response
in those regions of the image which have uniform texture, while a wavelet is typically an
oscillating, wave-like function. Hence, some, other nonlinear operation must be found to
derive features which can be invariant to the phase component at each scale and can also
be matched from one scale to another.
hi ID, we have previously [26, 28] developed a decoupled local energy and phase represen-
tation of a real-valued wa.velet transform using the Hilbert transform [28]. In the following
section, we show how to extend this representation to 2D.

'The orientation of the spa.tial structure is defined as perpendicular to the direction of maximum gradient.
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5: Decoupled 2D Local Energy and Phase Representation

The principal theoretical difficulty in extending the local energy and phase representation
of the ID wavelet transform to 2D is that there does not exist a universal 2D Hilbert
transform. Nevertheless, we propose a definition for the local energy and local phase of a.
2D wavelet transform which not only provides a complete representation of a, 2D wavelet
transform in scale-space, but also facilitates the local energy to be independent of the phase
components of the analysing wavelets. Moreover, the relationship between a 2D wavelet
I lausform and its local energy is established both in scale-space and in frequency space.

5.1: Horizontal and Vertical Channels

Recall the mother wavelets associated with the horizontal and vertical channels given in
Eqns: 4,5. i>(.(m,??) can be considered as a ID wavelet transform with respect to &(y) for
each column (y axis) after first smoothing each row (x axis) with <j>(x). Similarly, D:y(m,n)
ca.n be considered as a ID wavelet transform for each row after first smoothing each column,
hi I liese case, the local energy and phase can be defined as ID [28]:

Definition 5.1 For a real valued «/' and f(x<y) G L 2(Z 2) the local energy px, py and the
local phase {pXi <py of DJ

x(m.,n) and Dy(m,n) are given by

pi(m,n) = y/[Di(m,n)]* + [Hy{Di(m,n)}]*

fiiim.n) = y/[Di(m,n)]* + [Hx{Di(m.n)}]*
Hy{DUm,n)}

^ i (m ,u ) = Atan2 J • x )S

D3
x(m,n)

HADUm.n)}
S*J(m,n) = Atan2 xX.*K ' "

Dy(m,n)

where //,..{.} (Iiy{.}) denotes the Hilbert transform of the ID function D(m,n) when n (in)
is fixed.

5.2: Diagonal C h a n n e l

The mother wavelet associated with the diagonal channel D3
d(m, n) is $f/(;i\ y) = </'(;t Y*p(y)-

In this case, if i/'// is the Hilbert transform of ifi, we construct four complex functions as
follows

G'i(.r, y) = Wx) + iil>H{x)\Wv) + i^My)] (8)
^ 2 ( ^ , V) = Wx) - iil>H(x)][il>(y) - i^H(y)] (9)

G3(x,y) = [il>(x) + ii/>H(x)][il>(y) - ir/>H(y)] (10)
G±(x,y) ^ Wx)-iiPH(x)][iP(y)+iipH(y)} (11)

Noticing the conjugacy relationships

G{(m, n) = GJ
2(m, n) GJ(m, n) = GJ

4{m, n)

only one pair {GJ
k,{m,n);k = 1,3} or {GJ

k(m,n);k = 2,4} needs to be considered. In the
following, we use the first pair. Substituting ^d(x,y) with {Gk(x,y);k = 1,3} in Eqn. 7,
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we generate two complex images by:

D G { ( m , n) d= < f ( x , </), 22jGk(2
j(x - m ) , 2j(y - n)) > ; k - 1 ,3 ( 1 2 )

= (f(x, y) * 22jGk( -2jx, -2jy)) (13)

The properties of functions {DGJ
k(m,n);k = 1 , 3 } are essential for deriving the decoupled

local energy and local phase representation of the diagonal channel. We present them in
the following lemma.

Lemma 5.1 For each scale j The functions DG\(m,n) and DG:!^(m,n) can be represented
by DJ

i{(m, n) as

DG{(m\ n) = Dj
d(m, n) - Hy{Hx{DJ

d(m, n)}} +

i(Hx{Dj
d(m,n)} + Hy{Dj

d(nun)}) (14)

DGi(m,n) = jDJ(m, n) + Hy{Hx{D3
d[m, n)}}

+ i(Hx{DJ
d(m,n)} - Hy{DJ

d(m,n)}) (15)

and they (jive a strong response to spatial structures at, or close to ^- and ~, respectively.

Proofs', see Appendix.
Now we are in the position to define the local energy and local phase of the diagonal channel.

Definition 5.2 The functions DG\(m,n), DGJ
3[m*n) are complex functions and can be

written as

DGi(m,n) = pi_y(m,n)el^~y{mjl)

The [pJ
r+y(ni, n)]'2 andipJ

xJty(m, n) are called the local energy and the local phase of DJ
d(m* n),respective L

at or close to ~. The [pJ
x-y(m,n)]2 and <^._y(m,7i) are called the local energy and the local

phase of Dd(m<n),respectively, at or close to ~ .

Now we have defined four local energy channels for each scale j , denoted by pT(m,n),
p:'f/(m.n), p:'v+il{m,n), p:)

x_y(m,n), which are oriented in the horizontal, vertical and f ,^f
directions, respectively. Comparing the local energy and the wavelet detail images shown in
Figure 1, the phase dependency embedded in the wavelet detail images has been removed
in the local energy representations. Moreover, the local energy images at different scales
become comparable in terms of shape similarity as indicated by the correlation of the images
a.djacent scales shown in Figure 2 (bottom row).

5.3: Properties of The Local Energy and Local Phase

The following theorem shows that the local energy and local phase defined above provides
a. complete representation of the 2D wavelet transform. The local energy and the wavelet
transform are equivalent in the frequency domain (conserve energy), but they are very
different in scale-space.

Theorem 5.1 For a real valued ij)(x) and f(x,y) G L 2(Z 2) ,
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/ . The wavelet transform D:
x{m,n), Dy'(m,n) and DJ

d(m,n) can be represented com-
pletely by the local energies and local phases and are given by

DJ
V(m,n) ~ p:'x(m., n) cos(p x(m,n) (16)

Dj
y(m,n) = /9j(m, n) cos<pj(m,n) (17)

DJ
d{m.n) = -{p:i

x+y(in,n) c,os<p3
x+y(ni,n) + p*x_y(m, n) cos<pi_y(m, n)) (18)

3. For each, scale j < 0.

m n in n

££[£>(,», n)]2 = ^EEK("'-»)I2 (20)
•m n m n

E E W " 1 ' " ) ] 1 = ^ E D [ " W m ' » ) ] 2 + bi-/»'-»)]2) (2i)
in n " m n

Proofs: see Appendix.
The wa.velet detail images and their associated local energy images are very different in
sraJe-space: the former confounds the phase component, the latter does not. Further, from
Eqns. 16, 17, 18, it is clear that full-, half-wave rectification or squaring of the wavelet
1.ransform also confound the phase component. The difference between the modulus and
I he local energy of the wa.velet transform are shown in Figure 2.

6: Application to Texture Segmentation

To overcome the phase dependency and spatial localisation problems, we suggest that
the local energies be used as local features. Using these features, we develop a computation
scheme that is used for texture segmentation. The scheme is depicted in Figure 3.

At the iirst level, the 2D oversampled wavelet transform is applied to an image.
This transform decomposes an image into a. stack of images, each of which is given by
an oversampled wa.velet detail image denoted by D(0,j,x,y) at sampled orientation 0 =
•j fl-i. • • •, 0v } and sampled scale a = {2~7; j = - 1 , - 2 , • • •, - J} . For a 2D separable wa.velet
transform, an image is decomposed into a pile of images {D'^{x,y), D:

y(x,y), DJj(x,y)\ j =
- 1 , - 2 . - • • , - . / } . _ _ _ . . . . . .

The second level is a nonlinear operation to remove the phase dependency from each
image D{0.j,x, */), to obtain a pile of local energy images p{9,j,x, y) given by

pi(*
pj(*
f>l+y

,y)

,y)
(x, y)

8
0
6

= 0
7T

~ 2
n

~ 4

This level operates only within a single scale, hence it is also called intra-scale nonlinear
fusion. The local energy images of a Infrared line scan (IRLS) aerial images are shown in
Figure 4.
The third level derives two texture features in wavelet scale-space, i.e. a. multi-scale
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orientational measure a(j,x,y) and an energy measure F{j*x,y). This level is composed
of two sub-processes, namely inter-scale clustering and inter-orientation fusion. The
inter-scale clustering is denoted as a c within a circle in Figure 3 because this process
is actually implemented by correlation, and it is designed to associate the local energy
descriptors p(9,j,x,y) across scales such that the spatial localisation problem is minimised
globally. More precisely, for each p(0,j, x, y), a new feature image pf(9,7, ,r, y) is computed
by

Pi(x-txl[j},y~tyl[j}) 0 = 0
,.» • , p{/(x-tx2[j],y-ty2[j]) $=%

"<^'*<*> = pi^x-txlljU-Wlj]) * = J <*»
Pi-y(x-tx4[j},y-ty4[j}) 0 = 3 *

where /,H., tyl is a. translation vector which is determined by a correlation process such that
p'{0 — Q*j*x*y) across scales are better aligned in space according to the image structure
giving rise to the descriptors. Similarly, the vectors of tx2,ty2Jx3,ty3 and txA,ty4 can be
determined for the orientations 7r/2,7r/4 and 37r/4, respectively.
Unlike the other levels given above, the inter-orientation fusion is not universal. It is
specific to each application and to the meaning of different orientation channels. Currently,
a simple formula is used to combine four oriented local energy images into quantitative and
orientational measures of local energy denoted as F(j, x,y) and a[j, ,T, y) which are defined
bv

F(:i,^y) = JW(0J,x<y)\e=o]2 + [p'{OJ,x<y)\e=I]*

+c * yf[p'(0J,x*y)\e=l?]* + [f/(9J,x, y)]2\d=^ (24)

«<**.*> = ^Z^yfh ' (25)
In other words, the total local energy F(j,x,y) is given by a weighted sum of two parts,
each part determined by an orthogonal pair of local energy measures. The combined local
energy images F(j,x,y) are shown in Figure 4.
The fourth level is segmentation, which is carried out in four steps. The first step is filter-
ing F{j, A\ y) by Gaussian smoothing, which allows texture density in a. local neighbourhood
to be computed. The resultant images are then input for clustering at the second step. This
exploits the observation that in the feature space, a well-chosen set of features induces well
separated clusters corresponding to different classes. Minimisation of the Kullback infor-
mation distance [14] is applied at each scale and the value of the threshold is determined
automatically. One problem of this simple thresholding is that intensity edges are some-
times misclassified as urban textures in our experiments. This is because the Kullback
clustering method only uses simple global statistics (i.e. histogram) and limited texture
classes (only two classes). Currently, this effect is minimised by applying post-processing.
It can be removed by exploiting the fact that the local energy for isolated intensity edges
and intensity edge surrounded by many other edges in its neighbourhood (i.e. typical ur-
ban texture) behave very differently across scales [26]. The third step is post-processing.
Morphological opening and closing is used to remove intensity edges, isolated small patches
and holes. Finally, texture boundaries are detected by finding the points of discontinuity
in the image.
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6.1: Results

The texture segmentation scheme given above is implemented and has been tested on
more than 30 real aerial and satellite images. Typical results are shown in Figure 5. Fig-
ure 5 (a), (b) show typical IR.LS images taken from a low flying aircraft. The goal (part
of a system under development for matching images on successive fly-pasts and match-
ing/constructing a map) is to segment rural and urban areas. The patches in Figure 5 (b)
correspond to parks within the surrounding urban area. Figure 5 (c) shows the segmen-
tation of a satellite image taken over Plymouth area, the segmentation result is matched
quite well with the map over same area. Finally Figure 5 (d) shows the segmentation of
two Brodatz textures [7] (cotton canvas and woolen cloth).

7: Conclusions

In this paper, we have introduced an oversampled wavelet multiresolution representation
to achieve translation invariance. Then, we developed a complete, decoupled local energy
and phase representation of a 2D oversampled wavelet transform. This representation not
only provides a better understanding of the wavelet transform in space at each single scale,
but also facilitates matching across scales. The usefulness of this decoupled local energy
and phase representation is demonstrated by its application segment textures in several
classes of natural images.

8: Proofs

Lemma: 5.1 For k = 1, Eqn. 12 can also be written by

DG{(m,n) = < f(x,y),22jG1(2
J(x - m),2J(y - n)) >

= < f(x, */), 22iVd(2
j(x - 7?7), 2j(y - n)) >

- < f(x,yl22jHx{Hy{Wd(2
j(x - ™),2J"(y ~ n))}} >

+ i < f(x,y),22jHx{Vd{2j(x - m),2j(y - n))} >

+ / < f(x,y),22'Hy{Wd(2
j(x - m),2j(y - n))} >

by noticing Hy{Hx{Dj
d(mnn)}} = < f(m,n),2^Hx{Hy{^d(2^(x - m),V(y - »?.))}} >, we

have

DG\(in,n) = DJ
d(m,n) - Hv{Hx{D3

d{m,n)}} + i(Hx{Dd(m,»)} + Hy{Dd(m,n)})

To study the orientation selectivity of DGj(m,n), we note that

DG\(a. v)={ 4D/(u,v) if u < f and v < f
[ 0 otherwise

where we adopt the convention that ii, v < y for positive frequency and u,v > y for

negative frequency. However, it is known that the distribution of \D(i'(u,v)\ is dominant

at or close to the J and —• axes. Hence the distribution of \DG'[{u,v)\ is only possible to

be dominant at or close to ~ axis. In other words, DG\(m,n) only gives strong response

to spatial structures in or close to the direction2 J . DGJ
3(m,n) can be proved in a. similar

"hi other words, it gives strong response to spatial structures whose maximum gradient is in, or close to
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way.
•

Theorem: 5.1

1. Using Eqii. 14, 15, we ha.ve

Re{DG{(m,n)} = DJ
d(m,n)~ Hy{Hx{D^m,n)}}

Re{DGJ
3(m,n)} = D^m,n)+ Hy{Hx{DJ

d(m,n)}}

Adding them together,

DJ
d(m, n) = ±(Re{DGi(m% n)} + {DG{(m, n)})

- T^Px+i, COS( tpx+y ) + (>.v-y COS( ̂ , . _ y ))

2. For each scale 7, applying ParsevaJ's theorem, we have

in n u v

•u v

- EEl/(tt'(')r2|*<i(2-J«,2-^)|2 (26)

Considering the Fourier transform of the wavelet \Pc(f, we have

4
I

16
|*rf(2-Ai,2-^)|2 = ^|]TG',(2-^,2--M|2

/ / J II

= i(|G1(2--'«,2--'i;)|2 + |G3(2-'«,2--'«)|2) (27)

Substituting Eqn. 27 to Eqn. 26,then

W|7^(m,/ / ) |2 - ^J2\h^v)G1(2'iu,2'Jv)\2 + \fiu,v)G3(2-Ju,2-jv)\2)
U V

*~ m n

= ^ E EU^+»("»» w))2 + (pi_,(m, n)f)
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Figure 1. The wavelet decompositions of a synthetic image, top to bottom (from left
to right): original synthetic image; the detail images at j = — 2,j — —3; the local
energy images at scale j — —2, —3, respectively. The Daubechies wavelet of length
4 is used throughout,
ordinary paragraph.
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Figure 2. Comparison between the modulus and the local energy of the wavelet
transform. Top row (left to right): the plot of patches of \DJ

d\ of the synthetic image
at scales j = — 1 , —2, —3, respectively; middle row: the plot of the local energy p3

x_y

for the same patch at scale j = — 1 , —2, —3, respectively; bottom row: the plot of
the linear correlation coefficients of two local energy images at adjacent scales,
j = — 1 , —2 and j = —2, —3 respectively,
ordinary paragraph.
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I Texture boundary detection ; FOUTH LEVEL

r r r ^ ^ - Feature. .Clustering..

Inter-orientation Fusiop
THIRD LEVEL

Associate Local Energy Across Spates

SECOND LEVEL

vWavelet Local Energy Operation

FIRST LEVEL

Oversampled Wavelet Transform

Figure 3. A schematic view of texture segmentation system in wavelet scale-space.
The 1st level is to represent an image by a set of wavelet detail images D(9, s, x, y),
where each column and row is corresponding to the wavelet representation at
different orientation and scale, respectively; the 2nd level is to derive a set of
local energy images p(0,s,x,y) by applying the local energy operation to each of
the images; the 3rd level is to derive two feature images F(s, x, y) and a(s, x, y) at
different scales; the 4th level is to detect texture boundaries,
ordinary paragraph.



Figure 4. The left (middle) column from top to bottom: the local energy images
p{0, s, x, y) at scale j = — 1 (j = —2) in horizontal, vertical, | and ^ directions; the
right column (top to bottom): original image 256 x 256, the combined local energy
image F(s,x,y) at scale s = 2~j,j = — 1 , —2, respectively, where c — 3.0 and the
segmentation result,
ordinary paragraph.



44

(a) (b)

(c) (d)

Figure 5. Examples of texture segmentation results. Texture boundaries are ex-
tracted and superimposed on their original images. Top row: Urban regions have
been extracted for real IRLS aerial images; bottom row (left to right): Urban regions
have been extracted for a satellite image, cotton canvas (in right bottom corner)
have been picked up from woolen cloth background for a Brodatz montage image,
ordinary paragraph.
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Abstract

This paper describes a new transform to extract image regions at all geometric and pho-
tometric scales. It is argued that linear approaches such as convolution and matching have
the fundamental shortcoming that they require a priori models of edge geometry. The
proposed transform avoids this limitation by letting the structure emerge, bottom-up, from
interactions among pixels, in analogy with statistical mechanics and particle physics. The
transform involves global computations on pairs of pixels followed by vector integration
of the results, rather than scalar and local linear processing. An attraction force field is
computed over the image in which pixels belonging to the same region are mutually at-
tracted and the region is characterized by a convergent flow. It is shown that the transform
possesses properties that allow multiscale segmentation, or extraction of original, unblurred
structure at all different geometric and photometric scales present in the image. This is
in contrast with much of the previous work wherein multiscale structure is viewed as the
smoothed structure in a multiscale decomposition of image signal. Scale is an integral
parameter of the force computation, and the number and values of scale parameters asso-
ciated with the image can be estimated automatically. Regions are detected at all a priori
unknown scales resulting in automatic construction of a segmentation hierarchy, in which
each pixel is annotated with descriptions of all the regions it belongs to. Although some of
the analytical properties of the transform are presented for piecewise constant images, it is
shown that the results hold for more general images, e.g., those containing noise and shad-
ing. Thus the proposed method is intended as a general approach to multiscale, integrated
edge and region detection, or low-level image segmentation.

1 Introduction

This paper is concerned with the problem of low level image segmentation, or partition-
ing of an image into homogeneous regions, that represent low level image structure. A
region can be characterized as possessing a certain degree of interior homogeneity and a
contrast with the surround which is large compared to the interior variation. This is a
satisfactory characterization from both perceptual and quantitative viewpoints. The type
of homogeneity (constancy, smoothness) and the magnitude of the contrast may vary, and
the regions may have arbitrary size and shape. Different values of allowed homogeneity and
contrast lead to different partitioning of image into regions. As greater homogeneity and
lower contrast values are allowed, new, smaller regions emerge in the partition. Thus, a
decrease in the minimum acceptable contrast leads to increased, hierarchical decomposition
of the image, which culminates in constant-value regions at the bottom of the hierarchy.
The depth of the hierarchy and the values of region homogeneity, contrast, shape and size
parameters associated with the different levels vary across the image. Features such as
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depth and branching factor of the tree thus defined are unrelated across subtrees, each
solely determined by the image a.nd therefore a priori unknown. The homogeneity and
contrast parameters associated with different image regions will be said to form the set of
photometric scales present in the image, while the region shapes and sizes will be said to
define the geometric scales present.

Finding a solution of the low level segmentation problem poses two main challenges.
First, a valid image region must be detected regardless of its shape, size, degree of ho-
mogeneit}', and contrast. Second, all geometric and photometric scales at which regions
happen to occur across an image must be identified. If these two problems are solved, the
result will be a segmentation tree representing the mult is c ale, low level, image structure. To
obtain such a tree for an arbitrary image using intensity based homogeneity and contrast
is the objective of image segmentation pursued in this paper.

Limited work has been done to meet both of the above challenges. Much of the previous
work on multiscale analysis is concerned with a scale-space decomposition of the image
signal, determined by a single scale parameter. The decomposition amounts to a blurring
of the image to different degrees. The image structure is present across this scale-space
continuum and the extraction of image regions of different sizes and contrasts from this
continuum is not addressed. Further, even if they were extracted, the regions in the dif-
ferent decompositions would be correspondingly smoothed. Automatic estimation of scale
parameters is typically not addressed. Even at a given scale, robust detection of a region
continues to be an area of active investigation, mainly through the work on edge detection.
Region detection such that the detected boundaries are closed and coincident with the true
region boundaries regardless of region parameters is not a solved problem. Most methods
are linear and often use restrictive region models, e.g., allowed geometric and photometric
complexity of edges. Although these models simplify processing, they cause fundamen-
tal limitations in the detection accuracy and sensitivity achieved which is partly why the
problem of region and edge detection continues to evade a satisfactory solution.

A central theme of this paper is to achieve both of the above goals of accurate region
detection and automatic scale estimation. This is accomplished by introducing a new trans-
form which converts an image into another image harving two major properties. First, for a
specific pair of scale values, the transform leads to well-defined signatures of corresponding
image regions which are easy to detect. The transform definition incorporates the duality
of interior- and edge-based descriptions of regions. Thus, the transform performs integrated
edge and region detection, and can be viewed as a multiscale blob and edge detector at the
same time. Second, all scale values for which regions occur in the image can be computed
by analyzing the results of the transform as the scale values used are varied.

A major motivation for the transform comes from a desire to develop a segmentation
method which is not rigidly bound to specific models of regions, e.g., models of spatial
variation. It is desired that groupings of pixels that reflect a smooth photometric variation
and stand in relative contrast to their surround be detected as regions, regardless of the
exact nature of variation and contrast values. This appears necessary to deal with the
variety characteristic of real imagery. To achieve such performance, the transform computes
affinities among image points or pixels for grouping with other pixels, letting the structure
emerge bottom-up from "interactions" among the pixels instead of imposing a priori chosen
models of region edges and interior. As one consequence of this, the emergent region
geometry is not restricted, since pixels can group together to form any connected set.

The transform computes a family of force fields for a given image where the force vector
at a point denotes its affinity to the rest of the image. On either side of a region boundary,
the pixels have high affinities, but there is little affinity between pixels across regions.
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The strength of interaction between pixels, and consequently their affinities, depend upon
their distances and contrasts, and this allows association of the computed affinities and
segmentation with spatial and photometric scales. Since the transform allows interaction
between a pixel and all other pixels, it can be viewed as collecting globally distributed
evidence for image structure and making it available locally, e.g. at the locations of region
edges and medial axes (The medial axis of a region is defined as the locus of points inside
the region which are equidistant from two or more points on the region boundary [6, 17]).
The regions are encoded in the force field via distinct signatures amenable to robust, local
identification. In this sense, the transform performs Gestalt analysis.

This paper introduces the transform and shows how it can be used for segmentation
(the basic idea of the transform can be found in [1]). It does not present specific seg-
mentation algorithms. The segmentation is intended to represent low-level image structure
at all scales, thus with applicability to textured as well as smooth images. To analyze
and illustrate the basic properties of the transform, we model regions, whenever necessary,
as possessing uniform gray levels and step edges. However, the transform properties and
segmentation results are shown to apply to images containing general types of regions as
discussed above, e.g., having shading and noise. Section 2 discusses some basic desired
characteristics of segmentation and how they motivate the proposed approach. Section 3
describes the transform, describes some of its properties of interest, and shows how these
properties facilitate multiscale segmentation. Section 4 analyzes the segmentation perfor-
mance of the transform. Section 5 presents concluding remarks.

2 Background and Objectives

In this section, we first discuss past work on the two major subproblems of image seg-
mentation: structure detection at a single scale and multiscale analysis (Sec. 2.1). This
leads us to formulate the characteristics desired in a satisfactory segmentation (Sec. 2.2).

2.1 Two Aspects of Image Segmentation

We will first review the past work on photometric and geometric models of a region
used for segmentation at a single scale. [26] estimates a 2D functional that minimizes
a cost function comprised of the difference between the images and estimated intensity
values, the length of detected edges, and the variation in the functional away from edges,
which are combined using a priori chosen relative weights. Morphological methods are
used in [23] to detect regions as intensity hills in grayscale landscape. Although, a region
can be detected by identifying either its interior pixels or edges, the latter method has
been investigated more extensively. An edge separates two different regions and thus two
different types of gray level populations. Edge detection methods use different models of
edge geometry, and gray level variation along edge as well as within region. These models
are fitted to local pixel populations to determine if an edge is present or not. Such local
responses are then combined to derive a more global segmentation. Clearly, the validity of
the models of the edge as well the gray level populations are critical factors in achieving
a. valid segmentation. We will now review some models used in the previous work. It is
common to treat the problem of edge detection as mainly that of selecting a point along
the intensity profile across edge, assuming such a profile can be extracted from the image.
Accordingly, a model of the intensity profile is used to precisely define an edge and to
optimally detect its location. Different types of intensity models of an edge have been
proposed, according to the nature of the two populations and the spatial profile of the
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transition from one to the other across the edge [30, 29, 5, 11, 14]. To meet the assumption
that edge profile through a pixel can be identified, it is common in edge detection work to
implicitly or explicitly use a model of edge curvature. The use of such geometric model
constrains the number of possible, different subdivisions of the pixel neighborhood (e.g., a
3x3 or a 5x5) into two regions which must be analyzed to detect the presence of an edge
in the neighborhood. For example, the assumption of local straightness of edge is common
which makes it very easy to select neighborhoods on the two sides of the edge. [22] assumes
that the edge is locally straight (and that the intensity changes linearly along a direction
parallel to the edge.) Nalwa and Binford [27] assume straightness to extract a sample edge
profile. Even the computation of gradient which is common to many edge detectors, e.g.,
the diffusion based methods [21, 34],romeney), implicitly assumes local edge straightness.
The same can be said about Laplacian based edge detectors. The use of straightness is
very explicit in the different types of discrete edge masks each of which is meant to detect
a different edge orientation [31]. To detect intensity facets meeting at an edge [13], a model
of edge geometry is required so candidate neighborhoods from each side of the edge can be
identified. The work on optimal edge detection (e.g., [9]) is also subject to the validity of
the assumed model of the edge geometry. In short, the work on edge detection has lead
to different approaches to estimate edge location and orientation for edges having some
(implicitly or explicitly) assumed local curvature properties. Image edges do not always
conform to these assumptions, and deviations lead to detection errors. Examples of such
errors incurred using the Laplacian-of-Gaussian operator for different edge geometries can
be found in [4]. To avoid some of these problems, [12] uses the Markov random field model
to obtain an estimate similar to that in [26] but allows for end points, corners and junctions
in the edge models used. Another example of an approach that avoids the dependence on
geometric models of edge is given in [28] where interpixel correlations in spatio-temporal
space are considered instead of interwindow correlations.

The second major aspect of segmentation is related to scale. As we stated earlier, scale
as pursued in this paper is associated with both geometric and photometric sensitivity
to detail. Thus, a pixel may simultaneously belong to different regions each having a
different contrast value and size, giving rise to the tree representation mentioned earlier.
Large regions may be said to have a coarse spatial scale while smaller sizes may be said
to be associated with finer spatial scales. Analogously, an edge contour which separates
two regions of a given contrast scale may not be detected at a higher scale associated
with a larger contrast. The exact number and parameters of scales for a given image are
a priori unknown. Therefore, multiscale segmentation must automatically estimate these
parameters and detect the corresponding regions. Although the general notion of multiscale
operators has been examined for a long time [32], there has been limited work on definition,
analysis and automatic estimation of multiscale image structure as pursued in this paper.
Our objective here is to separate original (unsmoothed) image structure at different scales
(regions with different sizes and contrasts), as well as identify the spatial and topological
relationships among the regions. We obtain a multiscale structural decomposition of the
image, and not a multiscale decomposition of the image signal as performed in much of the
past work [18, 35, 36, 20] where coarse scale structure is detected from blurred images and
is therefore a smoothd version of the original image structure. In addition to accruing edge
displacement error [4], the latter leads to artifcats due to multiscale analysis, e.g., phantom
edges [10]. Among other approaches to multiscale segmentation, multiscale blob detection
using morphological methods is described in [7, 19], and computation of multiscale medial
axis representation is discussed in [25, 3, 17].
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2.2 Desired Characteristics and Objectives

The above discussion leads us to the following desired characteristics of multiscale struc-
ture detection and segmentation.

A. Shape and Topology Invariance: The regions should be correctly detected regardless
of their shapes and relative placement. For example, an edge point must be detected at
only one and the correct location, regardless of whether the edge in the vicinity of the point
is straight, curved or even contains a corner or a vertex where multiple regions meet.
B. Photometric Scaling: It should be possible to detect all regions which are in contrast
to their surround, regardless of the actual degree of within-region homogeneity and the
value of the contrast. Regions having large contrast may be associated with higher scales.
C. Spatial Scaling: It should be possible to detect all regions regardless of their shapes
and sizes. Higher scales may be associated with larger regions.
D. Stability and Automatic Scale Selection: Image structures associated with differ-
ent scales correspond to segmentations that are locally invariant to changes in geometric
and contrast sensitivities. Since the contrasts and sizes of regions contained in an arbitrary
image are a priori unknown, they should be identified automatically.

The transform presented in this paper has been motivated by the objective of achieving
these desired characteristics. Specifically, the objective is to derive multiscale segmentation
of the image and represent it through a hierarchical, tree structure in which the different
image segments, their parameters, and their spatial interrelationships are made explicit.
The bottom (leaf) nodes of the hierarchy correspond to regions consisting of individual
pixels or connected components of constant gray level, and the path from a leaf to the
root node specifies how the leaf regions recursively merge with adjacent regions to form
larger regions each of which is homogeneous with respect to its surround and is charac-
terized by its own contrast. Alternate representations of the same image structure and
contrast information are also possible, e.g., by ordering regions according to contrast. In
this paper, we will not dwell on the different possible data structures that could be used for
representation. Rather, we will demonstrate how the transform extracts information about
the a priori unknown region geometries, homogeneities and contrasts, and associates this
structural information with each image pixel. Any specific image representation may be
constructed from such annotated pixel array.

3 The Transform and Image Segmentation

In this section we first discuss how the problems with the previous methods and the
desired characteristics of the segmentation motivate an approach such as that underlies
the proposed transform (Sec. 3.1). We then introduce the transform (Sec. 3.2) and
present its properties (Sec. 3.3) that demonstrate how the transform makes explicit the
image structure and facilitates image segmentation, and why the resulting segmentation
possesses the desired characteristics listed in Section 2.2. Section 3.4 describes how a given
image region appears in the vector field computed by the transform. In Sec. 3.5, we
discuss the estimation of the unknown scale parameters associated with an image, which
are required to extract the unknown structures present in different parts of the image.
Sec. 3.6 describes the hierarchical image structure that is extracted as the final result of
segmentation. Whenever necessary, we will consider const ant-value regions to analytically
and qualitatively describe the transform behavior. However, the properties of the transform
responsible for its segmentation capability remain valid for images containing more general
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types of regions, such as those having noise (statistical constancy) and shading (smoothly
varying values or higher-order homogeneity) as will be explained in Sec. 4. Thus, the
transform is proposed for use in segmentation of piecewise smooth images.

3.1 Overcoming Limitations of Linear Processing via the Transform

In the literature, different models of edge profile (step, ramp, roof) and their validity have
been investigated. However, the limitations and impact of the assumptions made about edge
geometry have received limited attention. Since any convolution kernel for edge detection
must incorporate a template for the expected edge geometry, no linear, convolution based
approach would avoid the limitations resulting from the use of geometric models of edge. In
the digital case, one could attempt to circumvent the problem by enumerating all possible
edge geometries in a neighborhood. But the number of resulting kernels will fast increase
with neighborhood size and will be prohibitively large for any reasonable size neighborhood.

The inspiration for the proposed solution comes from physics where microscopic homo-
geneity of physical properties leads to islands of, say, similar particles or molecules. An
island shape is congruent with the space occupied by a set of contiguous, similar particles,
whatever the complexity of the boundary! The particles group together and coalesce into
regions based on the similarity of their intrinsic properties only, regardless of their relative
locations. The common property of particles then characterizes the region they form. As
an alternate analogy, the grouping process is like the alignment of microscopic domains over
an area of ferromagnetic material. The key process is that of interaction among particles
which leads to bindings among similar particles.

The problem of segmentation has similarities to the above physical process. The goal is
to find a partition of the image, regardless of the boundary complexity, such that each cell
of the partition has a characteristic property, say, homogeneity of gray level. This analogy
suggests a formulation of the segmentation process in terms of a suitably defined method
of interpoint interaction - one that would group, bottom-up, each set of points of the same
property to form a region having a boundary of any complexity. Being a parameter of
the grouping process, different acceptable degrees of the presence of the property within
a region would yield groupings over different regions, making scale an integral part of
structure detection.

In the next section, we introduce a transform which achieves the above grouping.

3.2 The Transform

The transform converts the image I into a vector field F. The vector F p at an image
location p is defined as

F P • = / rfa(rpq,<Ta(p))d5(A/,<T5(p))ppqdq (1)

where
r p q = unit vector in the direction from p to another image location q;
as(p) = spatial scale parameter at p; related to the shortest distance to region boundary;
all valid crs(p) values are computed automatically;
<jg(p) = photometric scale parameter at p; denotes contrast of region with surround; all
valid crg(p) values are computed automatically;
A/ = absolute gray level difference between image points under consideration;
ds(a.,b) — A nonnegative, nonincreasing function of ||a||, not identically 0 for ||a|| < 6, and
0 for ||a|| > 6, and
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dg(a,b) — A nonnegative, nonincreasing and symmetric function of a, not identically 0 for
a < 6, and 0 for a > b.

Since dg(a,b) as defined above cannot be a linear function of a for unrestricted values of
a, the transform is a function of image input.

3.2.1 Formulation of the Transform

Having stated the definition of the transform, we will now explain the motivation behind
this formulation, and construct the definition from basic principles.

Consider a region R and a point P inside it. It is desired that the similarity of P to
all the other points within R, relative to those outside R, be recognized, regardless of
the distance to and curvature of the nearest region boundary. To do this, the transform
defines a neighborhood around P which is sufficiently small so that the pixels within the
neighborhood which have the most influence on the computation at P are within R. The
similarity is estimated by comparing the gray level at P with those of the points in the
neighborhood, rather than testing some (position independent) gray level statistics of points
withing the neighborhood, or comparing the statistics of different sets of pixels near P. An
estimate of the local shape of R near P, specifically of the nearest region border, is computed.
This is achieved by a vector integration of the results of pairwise comparisons of points at
different orientations, instead of computing a scalar, weighted average at P as is done in
linear methods. Contiguous points having compatible estimates of local shape of R are
grouped together. This results in the detection of an arbitrarily large region of arbitrary
shape.

To capture the local region geometry, the transform computes an attraction-force field
over the image wherein the force at each point denotes its affinity to the rest of the image.
The force vector points in the direction in which the point experiences a net attraction from
the points in the rest of the image. For example, a point inside a region would experience
a force towards the interior of the region. This force is computed as the resultant of
attraction-forces due to all other image points. If .F(p,q) denotes the magnitude of the
force vector F(p,q) with which a pixel P at location p is attracted by another pixel Q at
location q, then the transform is given by

F(p,q) = F(p,q)rpq ,

where rpq denotes the unit vector in the direction from P to Q, i.e.,

* _ q - p
r p q - | | q - p | |

In the real image plane, an image is transformed into a continuous vector field. The
vector F p at point P is given by

F p = / F(p,q)rpqdq (2)

where q can be any image location other than p. In the discrete case,

We need to specify what forms the force function -F(p,q) could take. We will do so by
identifying the characteristics that any such function must possess, to yield the correct seg-
mentation for a given pair of spatial and photometric scales as well as exhibit appropriate
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Figure 1. The medial axis of the region W is the locus of points equidistant from
multiple points on W's border, shown here by dotted lines. A point P's distance to
the nearest border point is given by 6(p). A disk D of radius > S' may intersect with
W in more than one connected components (e.g., point P), or it may intersect with
other regions as well (e.g., point Q). For points along the medial axis, 8' = 8 (e.g.,
point T). The spatial scale parameter as at any point is defined as a value between
8 and 8' (radius of the middle circle for point P).

behavior across multiple scales. Specific choices of force functions having these character-
istics will then define different instances of the transform.

Since the presence of an edge of a region at any given spatial scale must be determined
by its adjoining regions rather than by distant points across other intervening regions, the
force F exerted on a given pixel P by another pixel Q should be a nonincreasing function of
the distance between P and Q. Further, a pixel should be attracted more to a pixel within
its own region than to one in a different region, and the attraction between two pixels
should depend only on the magnitude of their gray level difference and not its sign. This is
accomplished by making F to be a nonincreasing and symmetric function of the difference
between the gray levels of P and Q.

Since both spatial and photometric vicinities are relative to the scales of interest, let us
now consider how to integrate the scale information in the computation of F. Consider
a region W which exists amidst many other regions in an image (Fig. 1). To detect any
structural characteristics of W, the computation of F at a point must not extend to nonlocal
parts of VV or to other regions, since otherwise the result will depend upon nonlocal structure
of W or multiregion structure. To be specific, first consider the situation where a point P
is inside W but not on its medial axis. Let S(p) denote the distance to the unique border
point (or border segment) of W closest to P, and let D denote a disk of radius r = <5(p)
centered at P. If r is increased, for some value r = ^'(p) > <5(p), D'S intersection with W
will begin to consist of multiple disconnected regions or D will begin to intersect with other
regions near W (e.g., regions Y and Z in Fig. 1). Now consider the second situation where
the point P is along the medial axis of W. For any such point, 8f(p) = S(p) since a disk
of radius > S(p) will intersect W in multiple disconnected components, and possibly other
regions. In order that F p reflects the structure of W surrounding P, it must be ensured
that the contribution to F at p from points at a distance > S'(p) is negligible. Such spatial
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locality of computation is enforced by including a spatial (or geometric) scale parameter
<JS in the definition of F. crs(p) associates a "cut-off distance" with p such that the points
farther than this distance make negligible contribution to F value at p. In particular, we
define the spatial scale parameter <rs(p) at each point p in some region R as having a value
given by <rs(p) = 6(p) + a(Sf(p) - £(p)), where 0 < a < 1. Thus, <5(p) < as(p) < 6'(p) at
all points inside R except along the medial axis where as(p) = S(p) = S'(p). To achieve
the desired monotone dependence of F on the spatial scale as well as on the distance as
discussed in the previous paragraph, we make it proportional to a function e/s(rpq,crs(p)),
where c?s(rpq,<7s(p)) is a nonnegative, nonincreasing function of ||r||, not identically 0 for
||rpq|| < <rs(p), and 0 for ||rpq|| > <75(p).

Just as the spatial scale parameter is chosen to ensure that F at p depends on spatial
structure in the neighborhood of p, the photometric (contrast, or gray level) scale parameter
at P is determined by the degree of gray level homogeneity and contrast of a specific region
of interest containing P. It ensures that F at p is determined by points within the region,
i.e., the point experiences negligible attraction to another point having gray level difference
larger than a cut-off value characteristic of within-region gray level variability. To achieve
this, we make F proportional to the function dg(AI, cr5(p)), where A/ denotes the absolute
gray level difference between points P and Q, and vg(p) is the photometric scale parameter.
dg(AI, <jg(p)) is a nonnegative, nonincreasing and symmetric function of A/, not identically
0 for Ai < <7<,(p), and 0 for A/ > <rfl(p).

Thus, Fp can be written as defined earlier in Equation (1), namely,

Fp = ds(rpci,as(p))dg(AI,ag(p))rp<ldq
Jq^p

Two observations follow from the above definition of F. First, the scale parameters at
different points within a region R are mutually dependent since they are all determined by
the structure of R. In particular, as at a point P inside a region R depends on P's location
relative to R's boundary, and all points inside R havp the same ag value which corresponds
to the contrast of R with its surround. For example, in a piecewise constant image, as

varies continuously and ag is piecewise constant. Second, since the region structure is to be
determined in the first place, <7S and ag are a priori unknown to the segmentation algorithm
and must be computed at each point. Since a point in general belongs to many different
regions at different scales, <JS and ag will have multiple values at a point.

Note that when a homogeneous region (or background) is at least partly enclosed by
the image border, the computation of F will be undefined at those image points P whose
nearest border point is on image boundary. This is because the computation of crs(p)
involves points at distances > 8(p) from p (Fig. 1) and some such points are outside
the image. To resolve this problem., we will treat the entire image as surrounded by a
hypothetical, constant-value region whose contrast relative to the given image is infinite.
Accordingly, for computational purposes, the points outside the image will be assumed to
be accessible but having a gray level of infinity. This would yield the given, finite size
image as the largest and least homogeneous region within the hierarchical segmentation of
the hypothetical, infinitely large image.

3.3 Properties

In this section, we present some properties of F which collectively describe the relation-
ship between the spatial structure of F and the image structure, and consequently, suggest
F as a means of image segmentation. For brevity, the proofs are outlined for only some of
the properties; the rest can be found in [2].
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Figure 2. The force at a point P inside a homogeneous region points inward (Property
2).

1. Null Response: Suppose an image contains a const ant-value disk, an arbitrary num-
ber of arbitrarily located other regions not intersecting with the disk, and a const ant-value
background. Then the value of F is zero at the disk center.

2. Inward Attraction: Let P be a point inside a homogeneous region W. Let D be the
disk of radius crs(p) centered at P which intersects with W and its border with a homoge-
neous region X of contrast C. Let M and TV be the two points where the borders of D and
W intersect (there will be exactly two such points by definition of as). Then, for <rg < C,
there exists a point S along W's border within D and between the points M and N such
that the direction of F p at P is given by the vector from S to P, i.e., F p = fcrsp, where
k is a positive constant and r s p denotes the unit vector from S to P. Thus F p points inward.

Proof: Let L denote the region of intersection between D and X (Fig. 2). If we construct
another region L' such that L and L' are symmetric about P, with the segment M'N' being
symmetric to MN, then the force at P due to the neighborhood (D-L-L') will be 0 by
symmetry (see Property 1). Therefore, the force F p at p is due to the points in the regions
LUL' and is given by,

F p = F p L + F p Z / (3)

where Fp£ and FpLt denote the forces at p due to regions L and L', respectively. Now
for all qi G L , it is given that A/(p,q1) > ag. Therefore, dg(A/(p, qx), ag) = 0 from the
definition of dg. For all q2 G £', A/(p,q2) = 0 < ag. Since dg is a nonincreasing function
of A/ not identically 0, and A/(p,q2 G V) — 0 < ag < A/(p,qa G £), we have

c/5(A/(p,q2),a5) > 0 - dg(AI(p, q i ) , ag). (4)
Thus FP£ = 0, and consequently, F p = Fp£/. Since ds is not identically 0 and nonnega-

tive, it follows from Equations (1) (3) and (4) that F p I / > 0. Therefore, F p = Fp L , > 0.
Since Fp^/ is the net force on P due to all points q2 G L', the direction of Fp^/ must be
given by the unit vector rps» for some point S" G L\ If S' denotes a point of intersection
of the line joining P and S" with the segment M'N', then the direction of F p is given by

X >

x
L~^^~^-
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X

Figure 3. Divergence. If a point P in region W and another point P' in region X are
infinitesimally far from each other, and hence also from the boundary between W
and X, then the force vectors at P and P' are equal and opposite (Property 3).

the unit vector rps/. Therefore, F p = &rps/, where k is a constant. But for each point s'
on segment M'N', there is another point s on segment MN where the line PS intersects the
segment MN, and rps> = rsp. Therefore, F p = fcrsp .

3. Divergence: Consider a pair of points P and P' inside and outside, respectively, a
homogeneous region W, and infinitesimally close to W's boundary. Then FpXFp/ = 0,
i.e., the force vector undergoes direction reversal across the boundary, regardless of the
shape of the boundary.

Proof: Let P' belong to region X (Fig. 3). Consider the line / through P and P', and
the forces at P and P' due to points along / and within a distance <ra(p)(= crs(p

f)). Let
Fiw(P) denote the total attraction force at P along / due to and towards the points in-
side W. Let Fix(P) denote the total attraction force at P along / due to and towards the
points inside X. Analogously, let Fix (P') and Fiw (P') denote the total attraction forces
on P' along / due to and towards the points inside X and W, respectively. Then the to-
tal attraction force Flw (P) at P towards W is given by FiW(P) = (Fiw(P) - FiX(P))w
where w is the unit vector along / and towards W. Similarly, the total attraction force
Fix (P') at P' towards X is given by Flx(P

f) = (Fix(P') - FiW(Pf))Z where x is the unit
vector along / and towards X. Since each of W and X is a constant-gray-level region, we
have Fiw(P) = Fix(P') and further since F is an even function of gray level difference,
Fix(P) = FiW(Pf). Therefore, Fiw(P) = -FiX(Pf)- Now the total force FW(P) at P
towards W is given by FW(P) = foFiW(P)d6 and the total force F,Y (P') at P' towards

W

\ FJB2%.»£*)--"V;""

......,.^^5.V.... I'....

1
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X is given by Fx(P') = Jo Fix(P')dO. From the previous three equations we see that,
Fw(P) = -~'Fx(Pf), which means that there is a directional discontinuity of magnitude w
between the force vectors at P and P'.

4. Orthogonality: Consider two points P and Q inside a homogeneous region W such
that the unit vector r p q is orthogonal to the region boundary at the point S where the line
PQ intersects region boundary, and is directed into W. If the intercept of W's boundary
with the disk D of radius r = crs(p) centered at P is symmteric about the line PQ, then
the direction of F p is given by rp q , i.e., F p = &rpq for some positive constant k, i.e., F p

is orthogonal to the boundary.

5. Medial Axis: At all points P along the medial axis of a region, Fp = 0.

Proof: This follows directly from the definition of as. For any point P along the medial
axis, 6(p) — Sf(p). Therefore, crs(p) = S(p). Since the force at P due to points farther than
crs(p) is negligible (from the definition of <rs(p)) and since all points within the distance
<js(p) form a homogeneous region, it follows from Property 1 that F p = 0. (Note that here
the detected axis is medial in the sense of [6]. Other related shape axes are based on local
symmetery [8] or inertia [33]).

6. Convergence: At points near and on either side of the medial axis of a region R, F is
directed towards the medial axis. That is, F points away from the closest border segment
in the sense described in Property 2.

7. Smoothness: If dg(AI, ag) is a continuous function of A/, and ds(r, as) is a continuous
function of r and <7S, then F is a spatially continuous function at all nonboundary points
of a region.

Proof: Consider a point P inside a completely homogenous region R, and another point T
inside R and arbitrarily close to P. Then,

FP = / 4(rp q ,0-5(p))^(A/(p,t),^(p))rp qdq
•7q^p

and

Ft - / d.(r tq, <Js(t))dg(AI(t, q), ^(t))f t qdq

Now for any third point Q, A/(p, q) = A/(t, q) since P and T have the same gray level. Fur-
ther, since P and T are arbitrarily close, (rtq—rpq) is arbitrarily small. Also, <rs(t) — crs(p) is
arbitrarily small from the definition of as. Therefore, for any given choice of ag(p)(= cr^(t)),
(Fp — Ft) is arbitrarily small. Consequently, F p is continuous everywhere within a region.

8. Closure: For any piecewise constant image, the contours along which F exhibits
divergence are closed.

3.4 A Region's Signatures

The above properties of the transform collectively suggest the following structure of F
associated with an image region R, or the signatures of R in the F-field. When a ag value
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corresponding to R's contrast is used to compute F, it leads to much attraction between
pixels within R and little attraction between pixels across R's boundary. Further, if the
crs value at each point is chosen corresponding to R, then R is characterized by a spatially
smooth and inward force flow, where the force lines emanate from the region border and
converge at R's medial axis given by F = 0. The direction of F undergoes a divergent
discontinuity of magnitude IT across the entire region border except at those border points
where F = 0, i.e., border points which also lie on the medial axis such as corner points.
Thus F's magnitude along a region's border varies but is 0 at corners.

A test of F's validity can be performed by considering the nature of F p at a point P
inside an arbitrary shaped region R as R shrinks in size uniformly and vanishes. Let us
first consider the case where P belongs to the medial axis of R. Here, 6(p) = as(p) = Sf(p).
Since F p is computed over a const ant-value disk of radius crs(p), F p = 0. Now consider,
a point P off the medial axis of R. Then, S(p) < <75(p) < #'(p). However, as R continues
to shrink, the area of the region L' ( = area of region L) in Fig. 2 approaches 0. Since the
net force at P is that due to L' (see the proof of Property 2),

lim F p = 0. (5)

Thus, the influence on the F field caused by an image region vanishes as the area of the
region vanishes, as is to be expected.

3.5 Estimation of Scale Parameters

Recall that image regions are in general recursively embedded, each standing in contrast
with its surround and characterized by its own gray level homogeneity. An image point
is associated with multiple regions, and therefore with multiple degrees of homogeneity
and contrast scales. Since in the proposed transform an increasing value of ag corresponds
to increasingly nonuniform regions, ag comprises one index into the structural hierarchy.
Further, since each region has its own shape and size, and the spatial scale parameter
at a point depends on its location with respect to region boundary, each image point is
also associated with a number of spatial scales (a8 values). Therefore, each image point
is associated with a number of (crs,crg) pairs, corresponding to the different regions that it
belongs to. In real images, a point is contained in only a small number of regions, and is
therefore characterized by a small number of scale pairs. F makes explicit at each image
location regions corresponding to all scales present at that location. A particular selection
of regions across the image corresponds to a specific cutset of the segmentation hierarchy.

The signatures of a region in the F field, as described in the previous subsection, are
obtained assuming that F at each point is computed using the appropriate pair of (crs,crg)
values. We will now explain how these unknown scales can be estimated to yield the
multiscale image structure. For estimation of these values, we will treat as and crg as
variables and identify their values that correspond to image regions. Suppose that for all
images of interest, (crs)min < as < (<Js)max and (<7<,)min < 0g < (^)max- That is, the
ranges of sizes and contrasts to be encountered in images have known bounds. If no specific
information is available for images to be processed, the image size and the maximum gray
level can be used as (<7s)max

 an<l (^)max, respectively, while (<7s)min = (<Jg)min = 1 can be
used as the minimum size and contrast a region could have. Suppose the transform is used
to compute the force at each point for (crs)min < &s < (^)max, and (crg)min < ag < (<75)max.
Suppose that at a. point P, the pair of values (<rsl,cryi) and (<JS2,crg2) correspond to two
regions Rl and R2 at two adjacent scales which contain P, with R2 containing (>) Rl ,
and <jg2 > crgl. That is, there is no other region R3 such that Rl < R3 < R2. By our
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definition of scale given in Sec. 1, Rl and R2 represent two adjacent natural scales occuring
in the image at P. Let V^ and V2 denote, respectively, the values of F corresponding to
(asUagi) and (crs2,^2)- As the value of the variable as is increased from crsl, the image
area responsible for a nonzero value of F at P (area L in Fig. 2) will increase, resulting in
an increase in the magnitude of F. Now from Property 2, as the value of as at a point P
increases beyond (J6.(p), the shape of L changes gradually and p moves along the subregion
boundary, resulting in a gradual change in r s p A similar gradual change in F will also be
associated with an increase in ag. Thus, F will slowly deviate from V i as (as,ag) values
increase. However, for a sufficiently large value of crs, i.e., as > tf'(p), the value of F will
begin to depend on multiple disconnected components of Rl which are subregions of R2.
Since the direction r s p is in general different for subregions Rl and R2, V i and V2 are
in general different. Similarly, for ag\ « og << ag2, the subregions of R2 will make
significant contribution to F value at P. Consequently, F will change with {as^ag). As
(crSi<jg) approach (<rS2, (Jg2), F will assume the relatively stable value of V2. Therefore, in
the crs<r5-space, the locations where F is stable will be scattered, associated with structures
at different pairs of scale values. Somewhere between each pair of nearby locations of stable
points in the cr^-space corresponding to Rl and R2, F will make a sharper transition from
the value V i to V2. By traversing the o-s<r5-space, computing F using all as, ag values at all
image points, and identifying those parts in, the crsag-space where F is locally stable (has
locally minimal variation), we can determine all the scales associated with P. The scale
values at all image points can be estimated jointly, because together the values comprise
the signatures of regions as explained in the previous subsection. Such scale estimation is
robust for two reasons. First, at each point only qualitative changes in F are detected.
Second, the qualitative changes at different points are analyzed jointly to detect the spatial
signatures of a region. This further suppresses any noise in F which is already low because
of the large neighborhoods used in the computation of F.

The point pattern in cr^-space defined by the locations of the actual scale values cor-
responding to any image point is unique for the point and the image, and represents the
a priori unknown multiscale structure determined by the algorithm at the point. This
structure is restricted for common images because an image point does not have multiple
contrasts associated with the same spatial scale although it may be contained in multiple
regions of the same contrast. Therefore, it would suffice to perform a linear sweep of the
(Tscrg-space in the ag direction, while identifying all (if any) as values which yield locally
stable F for each crg.

3.6 Region Detection

For each region in the image, occuring at any scale, the automatic scale estimation
process computes at each pixel in and around the region a as — ag pair of values which
correspond to the region's shape (crs) and contrast (crg). When the F field is computed
using these crs — crg values, the field contains the signatures of the region. The detection of
regions would thus require partitioning of the F field such that each cell has the signatures
of a region.

A simple approach to "finding candidate regions is to locate contours of force divergence.
This is easy and the result robust since the directional discontinuity across such contours is
known to be ir. All characteristics comprising the region's signature may then be matched
jointly with the local F-field around the candidate regions to test the region hypothesis.
The details of such hypothesis formation and testing are outside the scope of this paper.
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3.7 Segmentation Hierarchy

The properties of the transform and the capability of automatic estimation of the scale
parameters discussed in the previous subsections allow the construction of a hierarchical
representation of segmentation. The computed scale values for nearby pixels are mutually
compatible in that for all points within a region, as values are continuous and ag values
are constant.

The regions of a single gray level form the smallest regions. These may be defined as
the leaf nodes of the hierarchy. Homogeneous regions having larger sizes or gray level
variations are used to define higher levels. For example, the hierarchy may be based on
spatial containment relationship; thus, the regions containing a particular leaf region are
arranged in increasing order of size to define the path from the leaf node to the root.
Nearby pixels merge into increasingly large regions as the path to the root is traversed.
The subtree below any node in the hierarchy is unrelated to any other disjoint subtree,
i.e., the structure, path lengths and as-ag values associated with the nodes are unrelated
across the subtrees. They reflect the a priori unknown spatial structure within an image.
In this sense, the hierarchy define a recursive partition of the image into arbitrarily shaped
regions, analogous to the irregular pyramid representation of [24]. Specific algorithms to
compute the scale parameters and to obtain different hierarchical representations are not
within the scope of this paper; these will be reported in subsequent publications.

4 Performance Analysis

Let us first review the overall performance of the transform with respect to the desired
characteristics (A-D) listed in Section 2.2. Characteristics A, invariance to local edge
geometry and topology, serves as a key motivation for proposing the transform, and is
central to its design. The discussion in Sec. 3 makes it clear how this characteristic is
possessed by F. For example, the capability of multiscale segmentation holds even if more
than two regions share a border point since the properties of the transform leading to
region signatures are not affected by shape and adjacency characteristics of the regions.
With regard to desired characteristic B, the scale parameter ag provides a mechanism to
accomplish contrast scaling. As ag increases, adjacent regions may merge. This is because
the attraction of a point in one region from another point across region boundary may
increase sufficiently so that the directional discontinuity in F responsible for the edge may
vanish. Thus changing ag achieves the same result as contrast based split-and-merge of
regions [15, 19], and therefore, the desired contrast scaling. Analogously, for any given
crg, scale parameter as helps achieve geometric scaling (desired characteristic C). Larger crs
values at a point correspond to more global structures having a given contrast ag, which
results in the capability to detect different spatial scales. The desired characteristic D is of
course met since scales can be automatically estimated as explained in Sec. 3.5.

In the rest of this section, we will divide the performance of the transform into two types.
The first type is concerned with the capabilities to detect off-axis signatures of a region,
specifically those represented by Properties 2, 3, 7 and 8. The second type consists of region
signatures related to the medial axis, represented by Properties 5 and 6. Properties 1 and
4 do not directly contribute to the region signatures. Sections 4.1 and 4.2 examine the
type 1 and type 2 performance, respectively. In discussing each type of performance, we
consider two types of deviations from the model of piecewise constancy that was often used
in deriving the transform's properties. These deviations better characterize real images as
stated earlier. We investigate the effect these deviations have on the particular aspects
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of the region signatures, i.e. on the different properties. We then examine the impact
of different choices of the function F, i.e., the functions ds and dg, on the transform's
performance. No detailed proofs are given for these claims as doing so will require the use
of specific models of the deviations and further analysis which are beyond the scope of this
paper. Results of further, experimental evaluation of the performance can be found in [2].

4.1 Off-Axis Signatures

In this section, we examine the first type of performance of the transform, namely, the
impact on inward attraction, divergence, smoothness and closure properties.

4.1.1 Deviation from Piecewise Constancy

In the discussion so far, we have assumed that the regions have a constant gray level. We
will now explain how the segmentation performance of the transform extends to regions
having other types of smooth variations. If the region does not have a constant intensity
then the force at a point P in the region will include additional components due to differ-
ential rates of change of intensities in different directions away from P (unlike the case for
Property 1). For the simple case of an intensity ramp, the changes in intensity around P are
antisymmetric. Since force depends on the absolute intensity difference, P still experiences
equal and opposite forces from radially symmteric locations within the region resulting in
zero net force from these locations.

Regions in real images often contain shading which is more complex spatial variation of
intensity than represented by the ramp considered above, e.g., given by a polynomial in
image coordinates x and y. Consider a point P within such a region R and another point
Q in R within a neighborhood of radius crs(p) centered at P. Then, f/^(A/(p,q)) will vary
for different points Q, unlike was the case for const ant-value regions. This variation will
in general be nonlinear, partly due to the nonlinear variation in A/(p,q). Now consider
another point T within the neighborhood but not within R. If the range of A/(p, q) values
is sufficiently small compared to A/(p, t) for all choices of Q and T, then many of the prop-
erties of the transform may still hold. The proofs of Properties 2, 3, 7 and 8 given earlier
suggest that the boundaries of the regions may still be detected as before. Accordingly, at
a region boundary, there will still be directional discontinuities because of the large gray
level discontinuity; and in the process of finding the scale parameter values for the region,
stable response of F will be found for the same values of crs and og as if the region were
homogeneous. Any directional discontinuities found at locations other than the region bor-
der, due to nonlinear variation in gray level, will not persist if crg is varied. Since the gray
levels vary smoothly within the region, Property 7 suggests that F will still be continuous
within the region although it will exhibit differences in F values from the piecewise con-
stant case. Therefore, regions with shading but in contrast with the surround should still
have signatures similar to those for the piecewise constant case. Verification of the above
extrapolation of the properties and the exact restatement of these and other properties for
the general case would require exact models of within-region intensity variation, and will
be omitted here.

4.1.2 Intensity Noise

We will now consider sensitivity to noise in intensity values. First, suppose that the regions
have constant values but contain independently distributed, zero-mean, additive noise hav-
ing a distribution which is symmetric with respect to the mean. Consider a point P and any
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other point Q within a neighborhood of radius <J5(p) around P. Then, dg(AI(p, q)) will have
the same mean as for the case when the noise is absent. Since dg(AI(p,q)) is a symmetric
function of A/(p,q)) , the expected value of F(p,q) will remain unchanged compared to
the case without noise. Therefore, the expected value of F p due to all points q in the image
is the same with or without noise. Now suppose that the regions exhibit ramp-like intensity
variation which is contaminated by independent, zero-mean, additive noise. Again, because
of gray level antisymmetry about P, and the symmetry of dg(AI) with respect to A/, the
region boundary will remain unchanged assuming the region contrast with the surround is
high compared to within region variation.

For shaded regions, the noise effects will be anisotropic because the region intensities are
asymmetric. For a given point P, consider two other points Q and T within a neighborhood
of radius cr5(p) around P. Q is within the region R but T is across R's border. If the
range of AI( p, q) values is sufficiently small compared to the range of A/(p, t) values, then
resulting F will have limited differences relative to the noiseless case. That is, boundaries
of regions with shading but in contrast with the surround will still coincide with direction
discontinuities in F and will therefore still be detected. However, as for noiseless shaded
regions, exact analysis is necessary to obtain the true characterization of the region signature
and its dependence on noise which we will again omit in this paper.

4.1.3 Choices of F

While defining the transform (Sec. 3), we stated that ^s(rpq,<Ts(p)) should be a nonin-
creasing function of the magnitude of rp q , and dg(AI, (Jg(p)) should be a nonincreasing and
symmetric function of A/. A variety of such functions could be used including pulse (box-
car), Gaussian, exponential, and linear functions. For example, we may use a Gaussian for
ds as well as dg, having standard deviations of ksas and &5<Tg, resepectively, where ks and
kg are normalization constants. The choice of Gaussian for ds and dg results in optimal
localization properties in both spatial and transform domains, in addition to others such
as separability in computation. Then, the transform at image location p is given by

Fp

Ijrpqll2 A/2(p,q)

= / e *.WP))2 e 2(kSCTg(p))2rpqdq (6)

The properties of the transform given in Sec. 3 hold for any choices of such functions.
Although the exact values of the force vectors and the computational speeds depend on
specific choices of the functions, the region signatures and segmentation hierarchy remain
unchanged. We have verified empirically that this in fact is the case for the four choices of
box-car, Gaussian, exponential and linear functions [2].

4.2 Axial Signatures

This section discusses the impact of the two kinds of deviations from piecewise constancy
and the choices of F on the medial axis related signatures. There are two ways in which
the transform yields multiscale description of region shape. First, of course, is through the
detection of region boundaries which may be used to estimate the medial axis following its
definition, or using existing algorithms [6, 31]. The reliability of the region axis detected by
this method directly depends on the corresponding reliability of detected region boundaries
which we have discussed above. The second, more direct way in which the transform
extracts multiscale region shape information is by making explicit the location of the medial
axis in the field signatures of the region. We will now consider the performance of this
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method of medial axis detection with respect to shading and noise. As stated in Property
5, for constant-value regions the F = 0 curve within the region where F directions converge
represents the medial axis. Now in the vicinity of locations where F = 0, the magnitude of
F will change at a rate determined by how fast the neighborhood of radius us begins to have
significant intersection with an adjacent region, and thus on the the local region shape. The
steeper the F variation, the more accurate will be the detection of the F = 0 locations, and
therefore, the medial axis. However, if the intensity value within the region is not constant,
then the disk of radius <rs(p) centered at a point on the medial axis will not in general have
isotropic intensity distribution about the point. The force at the point will not be 0, and
the points where F = 0 may be off the medial axis. Therefore, when shading is present, the
detection of medial axis is less reliable than the detection of region borders. With regard
to noise, there will be no expected change in results for noisy piecewise constant regions for
reasons analogous to those given for off-axis signatures. However, in shaded regions, noise
will further increase the medial axis deviation beyond that already present due to shading
alone. This is because the function dg in the integral defining the transform is in general
nonlinear, and therefore, in the presence of shading, uniform noise distribution around the
point will cause unequal deviations in the F value in different directions, which will lead to
deviation in the location of the F = 0 curve. Finally, let us consider the effect of different
choices of F. For the piecewise constant case, changes in F will not cause any deviation in
the mdeial axis because of symmetry. However, when shading is present different choices of
the nonlinear function dg will in general result in different distributions of force magnitudes
and hence deviation in the F = 0 curve.

5 Summary

We have introduced a transform for integrated detection of image edges and regions at
all natural scales, and thus for general purpose low-level image segmentation. Our objective
here is to present the transform and its capabilities; details and different applications are
left to future work. The transform computes a force vector at each image point, such
that the spatial distribution of vectors makes explicit region edges and medial axes at
all scales. The points within and on the boundary of a region are attracted towards its
interior, thus causing a directional discontinuity across the boundary. The medial axes
also exhibit similar discontinuities in the force direction. An important property of the
transform is that the transform space is the same as image space, unlike for example the
Fourier transform. The resulting multiscale representation is directly useful for analysis
by humans, e.g., image browsing, manipulation and retrieval. The use of scale parameters
and the detection of structure from qualitative characteristics of -field makes the use of the
transform robust and free of critical thresholds. We have presented the properties of the
transform. Experimental results, not reported here, show that the segmentations provided
by the transform have few errors even for images with large noise, intricate geometric
structure, and shading. The transform could be used in a variety of applications where
determination of perceptually salient image structure is critical or advantageous, such as
image compression, motion analysis, texture analysis and perceptual grouping. We plan to
report on some of these applications in the future. We have not given algorithms for using
the transform to automatically estimate the scales and identify region signatures. These
will also be reported later along with the applications. Since no assumptions specific to the
sensing modality are made in defining the transform, it could be applied to other types of
data such as range images and synthetics aperture radar images. It will be interesting to
compare the transform with force based clustering algorithms [16] which we plan to do.
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Abstract

Pattern Recognition methodology has influenced many areas of computer vision research.
This chapter addresses one of the most direct and long-lived applications of classification
to image analysis, namely the use of unsupervised classification (cluster analysis) for image
segmentation. The use of clustering for image segmentation dates back to the late 1960s and
many of the techniques developed then are still in popular use today. This chapter outlines
the segmentation and clustering problems and their close relationship, and surveys the use of
clustering for segmentation in a variety of different domains (e.g., intensity images, textured
images, multispectral images, and range images).

1: Introduction

An image segmentation is a fundamental component in many high-level computer vision
applications, and is typically viewed as an unsupervised classification task [1]. The segment-
ation of the image(s) presented to an image analysis system is critically dependent on the
scene to be sensed, the imaging geometry, configuration, and sensor used to transduce the
scene into a digital image, and ultimately the desired output (goal) of the system. Image seg-
mentation procedures are often labeled as edge-based or region-based, referring in each case
to a dominant computational philosophy of identifying homogeneous regions or contours of
local inhomogeneity, respectively. An important region-based technique is split-and—merge
segmentation [10]. Some attempts [18, 19] have also been made to merge the results of
edge-based and region-based methods to improve segmentation results.

Clustering is a generic label for a variety of procedures designed to find "natural" groupings
in unlabeled data presented as a set of patterns, each a list of features. Clustering is often
referred to as unsupervised classification to reinforce the notion that the goal is to discover
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Figure 1. Cluster structures. Clusters can be compact or elongated, well-separated
or poorly separated from other clusters.
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Figure 2. A "dot" cluster.

structure (classes or categories) in a multivariate data, set without an explicit model for each
pattern class, an oracle to supply correct or true classifications for representative samples,
or an external procedure to validate the groupings produced by the clustering algorithm.
Clustering is a difficult problem because "natural groupings'' in multidimensional data can
have very different properties, as illustrated in Figure 1. Another example of clustering
(addressed by Slier and Rosenfeld [3]) is the detection and delineation of regions containing
a high density of patterns compared to their background; Figure 2 shows such an image.

The applicability of clustering methodology to the image segmentation problem was re-
cognized over three decades ago, and the paradigms underlying the initial pioneering efforts
are still in use today. A recurring theme is to define feature vectors at every image location
(pixel) composed of both functions of image intensity and functions of the pixel location
itself. This basic idea has been successfully used for intensity images (with or without tex-
ture), range (depth) images and multispectral images. Figure 3 depicts the scheme. Contrary
to many applications of pattern recognition, the output of a clustering-based segmenter is
easily visualized as a labeling of the input image with (for example) different colors or gray
scale shades representing different label values.

The goals of this chapter are as follows:
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Figure 3. Feature representation for clustering. Image measurements and positions
are transformed to features. Clusters in feature space correspond, to image segments.

1. review image segmentation and the major paradigms used to obtain segmentations,
2. survey clustering methodology including its placement in the taxonomy of pattern re-

cognition techniques.
3. motivate the application of clustering to segmentation in general,
4. recognize the work of those who pioneered this technique, and
•5. describe selected applications of clustering to specific image segmentation domains over

the last thirty years.

We make no effort to be exhaustive in this survey, but strive to mention those approaches
that laid the foundation for the work of others or achieved significant milestones in the
application of cluster analysis to image segmentation.

2: Segmentation: Definition, Intuition, and Major Paradigms

An image segmentation is typically denned as an exhaustive partitioning of an input
image into regions, each of which is considered to be homogeneous with respect to some
image property of interest (e.g., intensity, color, or texture) [11]. If

I = { X i j , i = l . . . N r J = l . . . N c ]

is the input image with Nr rows and Nc columns and measurement value Xij at pixel (i,j),

then the segmentation can be expressed as S — {,S'i,. . . 5 ^ } , with the Zth segment

Si = { ( i i l J i i ) , - - - ( i i N t J i N , ) }

consisting of a. connected subset of the pixel coordinates. No two segments share any pixel
locations (Si H Sj = 0 V/ / j), and the union of all segments covers the entire image
( u f = l ) s ' ; = { i . . . y v r } x { i . . . A r

c } ) .



68

Jain and Dubes [12], after Fu and Mui [21], identify three techniques for producing seg-
mentations from input imagery: region-based, edge-based, or cluster-based. Intuitively, we
ran describe region-based approaches as those which identify maximal homogeneous regions
through the computation of image properties defined over candidate regions, edge-based ap-
proaches as those which employ local properties to locate points of discontinuity belonging
to the edges between regions, and clustering-based approaches as those which identify com-
pact and well-separated regions in a (typically multidimensional) feature space and segment
the images based on both these regions and on image connectivity. The boundary between
clustering-based and region-based techniques is not always clear since "compact and well-
separated clusters" in the feature space could be part of a criterion for homogeneity employed
in a region-based approach. However, since the focus of this chapter is cluster analysis and
its applications we would consider any segmentation algorithm which employs a typical clus-
tering algorithm as a. major component in its pixel labeling scheme as clustering-based.

Consider the use of simple gray level thresholding to segment a high-contrast intensity
image. Figure 4(a) shows a grayscale image of a textbook's bar code scanned on a flatbed
scanner. Part (b) shows the results of a simple thresholding operation designed to separate the
dark and light regions in the bar code area. Binarization steps like this are often performed in
character recognition systems. Thresholding in effect 'clusters' the image pixels into groups
based on the one-dimensional intensity measurement [2, 4]). A postprocessing step separates
the classes into connected regions. While simple gray level thresholding is adequate in some
carefully controlled image acquisition environments and much research has been devoted
lo appropriate methods for thresholding [22, 23], complex images require more elaborate
segmentation techniques. For example, Oh lander [20] used multidimensional histograms for
segmentation.

Segmentation, like many other vision tasks, is defined by its ultimate use, and the diversity
of image types and noise sources has made image segmentation a fertile research area. This
diversity has also established segmentation as a difficult research area since in many cases
techniques learned in one application domain do not transfer with ease (or at all) to an-
other domain. The evaluation of a segmented image is a topic that has not been addressed
with regularity by researchers. To the extent that segmentation performance is subjectively
measured, a methodological gap exists and should be addressed [23]. The nature and quality
of the input imagery, as well as expectations on the characteristics of the output regions,
dictate the set of valid segmentation strategies that should be attempted and perhaps even
the details of their design and implementation.

A critical issue associated with segmentation is the image representation. This reduces
to the problem of defining the feature set, its dimensionality, and its type and scale. In the
segmentation techniques surveyed in this chapter, the image measurement can be intensity,
range, or features derived from intensity or range (e.g., texture energy at a specified scale
and orientation, or an estimated normal to a surface), its dimensionality ranges from one
to twenty-eight, its type can be discrete or continuous, and its scale can be ordinal or ratio
(For a discussion of data type and scale in the context of clustering methodology, see Jain
and Dubes [12]). Many segmenters use measurements which are both spectral {e.g., the
niultispectral scanner used in remote sensing) and spatial (based on the pixel's location in
the image plane). The measurement at each pixel will be viewed henceforth as a point in
a. multidimensional space (a. feature space), where the nature of the space is described when
needed. Figure 3 shows a three-dimensional feature space (.x'i,.T2,#3) corresponding to an
image measurement.
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(c)

Figure 4. Binarization via thresholding, (a): Original grayscale image, (b): Gray-
level histogram, (c): Results of thresholding.

3: Clustering Procedures: Context and Taxonomy

The essential elements of a clustering problem are a feature space X (typically multidi-
mensional), samples (patterns) X = {xi , . . .x n } from that space, presumed cluster structure
in the samples, and the absence of accessible class information for the samples. A cluster-
ing procedure is expected to (i) identify the number of clusters K present in the available
samples, and (ii) obtain a label set L = {h,.. .ln}(li € { 1 . . .K}, V«) for the samples. These
two tasks may be performed simultaneously or sequentially; in some techniques K is specified
to the algorithm by the user.

The combinatorics of the clustering problem make simple enumerative schemes impractical
for all reasonably-sized problems. The number S(n, K) of distinct clusterings of n objects
into K clusters is a Stirling number of the second kind [12]:

For example, while 34,105 distinct partitions often objects into four clusters exist, there are
11,259,666,000 partitions of nineteen objects into four clusters. If the number of clusters is
unknown but can be bounded above by (say) Kmax, the number of possible partitionings is
L^,

^R-max^maar ^ ( j ^ jjQ, Moreover, in order to select the best clustering a criterion would need to

(a) ^ _ ___ (b)
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be evaluated for each of the large numbers of candidates. Clearly, this approach is infeasible
(along with variants which prune the space of reasonable candidate partitions), and in practice
we sacrifice optimality of the partitions for computational efficiency.

The literature of clustering is vast and resides in many disciplines; likewise, the diversity
of clustering techniques makes establishment of a comprehensive taxonomy of these tech-
niques difficult. The accepted major dichotomy among clustering methods is the distinction
between part-itional and hierarchical approaches. In essence, a hierarchical clustering pro-
cedure produces a nested sequence of partitionings covering the spectrum between the trivial
partition of n patterns into n singleton clusters and the trivial partition of n patterns into
a. single /^-element cluster. Such hierarchical clusterings are often depicted graphically by a.
dendrogram which can be "cut"1 at a desired level of proximity, yielding a clustering or a par-
tition. In contrast, a partitional clustering is a single partition of the input pattern set into
clusters. Examples of partitional clustering techniques are the well-known ISODATA [14] and
CLUSTER [12] algorithms which use a squared-error criterion, and Zahn's graph-theoretic
clustering procedure [49] which identifies disjoint clusters by breaking inconsistent edges in
a minimum spanning tree of the pattern matrix.

The absence of labeled training data and the need for production of a set of labels for
the input patterns establishes a close correspondence between the general clustering problem
and the task of image segmentation. It is not surprising, then, that clustering has been
repeatedly applied to image segmentation problems of many types, often with success. There
is a rich body of literature on the segmentation problem, and clustering-based approaches
have always been a. popular choice for researchers. The keys to successful application of
clustering to image segmentation are the specification of the feature space X, establishment
of an appropriate dissimilarity measure d(xt-,Xj) for pairs of patterns in that space, and the
choice of an appropriate algorithm for clustering this type of data.

The difficult issue of evaluation of segmentation results his received some attention over
the years. The parallel issue in cluster analysis is cluster validity; while all clustering al-
gorithms will produce a clustering of an input pattern set (and in general those clusterings
will differ), how should the quality of a clustering be measured? Cluster validity has been
extensively studied and offers some lessons to those interested in validating segmentations.
A related issue that is not as germane to segmentation as validity is cluster tendency: does
an input pattern set indeed contain cluster structure? The source of images in a segment-
ation application is typically contrived to avoid circumstances where only one segment (or
homogeneous region) is present, and image structure (e.g., image plane connectivity) makes
the assignment of each pattern to its own cluster unreasonable.

Not. all clustering problems contain compact and well-separated clusters. Yet hyperel-
lipsoidal clusters are assumed to be present by many clustering techniques. A variety of
methods for "cleaning" the input, pattern set have been proposed over the years. Jolion
and Rosenfeld [6] proposed to associate with each input pattern a weight that depends on
the empirical density observed in that pattern's vicinity. Cluster statistics computed during
clustering use these empirical weights and were demonstrated to reduce the bias caused by
the inappropriate linkage of 'background noise' patterns into clusters.

Although clustering methodology is a mature field with many well-understood and powerful
techniques to offer prospective users, research into new clustering techniques continues. For
example, Mao and Jain [48] recently developed a self-organizing network for data clustering,
and applied it to both traditional data sets from the statistical literature, and the examples
from the texture segmentation problem (described below). The expectation maximization



71

(EM.) technique [17, 55] for resolving mixture models yields a clustering algorithm which can
be applied to image segmentation.

3.1: Squared Error Clustering

Squared-error clustering procedures are partitional clustering methods which attempt to
minimize a squared-error objective function over the space of possible partitioning of the
pattern set. The squared error for a clustering of 7?, patterns into A' clusters is

^i-EEllxP-m.ll2,
j=ii=i

where x;- is the ith pattern belonging to cluster j and

is the mean vector of cluster j (formed from the iij patterns assigned to it). The goal of
squared error clustering algorithms is to find the partition which (for a given A") minimizes
E'fr. Intuitively, we can minimize Ef^ (which is sometimes called the within-cluster variation)
by obtaining compact and well-separated clusters.

Many squared-error algorithms proceed iteratively, beginning with an initial clustering
chosen randomly or 'sensibly", with a goal of decreasing the squared error at each iteration.
The initial partition affects the final clustering, and simple minimization procedures can
become trapped in local minima of the squared-error objective, function; a standard technique
for overcoming this problem is to run the clustering program several times with different
initial conditions on each run, and save that clustering which yields the minimum value
of E'f{. Additional heuristics allow the ability to adjust the number of clusters during the
algorithm's operation; these adjustments typically split clusters with large variance and merge
clusters which have close mean vectors. The behavior of the splitting and merging heuristics
is controlled by user-settable thresholds.

Even with special treatment to avoid local minima, convergence of a squared-error par-
titional clustering algorithm does not necessarily yield a configuration with the globally
minimal E\. Convergence criteria used in many clustering programs include a maximum
number of relabeling iterations, a lack of significant decreases in E2

K, and a minimal number
of label changes during an iteration.

We now present an outline of the CLUSTER algorithm, based on the description of Jain
and Dubes [12]. This algorithm has been used successfully in many image segmentation
problems. The objective of CLUSTER is to minimize E^. In its most popular version it
has a single user-specified parameter: Kma.xi the maximum number of clusters to consider.
CLUSTER will produce a sequence of clusterings containing 2, 3 , . . .K m a x clusters. During
an initialization phase, a candidate set of Kmax ~ 1 clusterings is created as follows. Cluster
centers for the 2-cluster solution are chosen to be the centroid of the pattern set and the
pattern farthest from that centroid. The clustering itself is obtained by minimum distance
classification with respect to these two centers. The pattern farthest from its cluster center is
chosen as the third cluster center. This process repeats until there are Kmax distinct cluster
centers.
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The main portion of CLUSTER contains two phases which are repeated in sequence until a
pass through both phases does not decrease E\. The first phase is a classical A'-means pass
which adjusts cluster memberships in each clustering to decrease Ef^-; this A'-means pass
is repeated until no class labels change or a maximum number of iterations is performed.
The second phase of the algorithm is a forcing pass which merges clusters in pairs to see
if a better clustering can be achieved. After the A'-means and forcing passes complete, the
squared error of the clustering is compared with its previous value, and the process repeats
if the squared error decreased. When CLUSTER completes, a number of summary statistics
are produced to aid in the (difficult) task of choosing the appropriate number of clusters.

3.2: Clustering Applications in Image Analysis

While the focus of this chapter is on the use of clustering techniques for the task of
image segmentation, clustering has seen widespread use for other problems in image analysis.
Perceptual grouping tasks (usually motivated by Gestalt principles and often viewed as an
intermediate-level visual module) often make use of either traditional or ad hoc clustering
procedures. Rosenfeld and Lee [8] proposed a heuristic for deriving connectivity graphs
from line drawings. Scher et al. [7] developed a clustering procedure to group small collinear
line segments into larger segments. The analysis of clot patterns (and the identification
and representation of clusters of dots in digital imagery) was addressed by Velasco and
Rosenfeld [9] and Ahuja and Tuceryan [50]; this latter work included an explicit comparison
of specialized rules with classical clustering algorithms applied to the same dot patterns.

4: Image Segmentation Via Clustering

How has clustering been applied to image segmentation? In the remainder of this chapter,
we will survey, compare, and contrast the variety of segmentation contexts in which clustering
has been applied.

4.1: Intensity Image Segmentation

Scha.cnter, Davis, and Rosenfeld [5] applied a local feature clustering approach to seg-
mentation of gray-scale images. This paper emphasized the appropriate selection of features
at each pixel rather than the clustering methodology, and proposed the use of image plane
coordinates (spatial information) as additional features to be employed in clustering-based
segmentation. For example, this paper succinctly shows that intensity should not be sup-
plemented by simple edge features when constructing a feature space for clustering-based
segmentation, since the edge features display little global variation. The goal of clustering
was to obtain a sequence of hyperellipsoidal clusters starting with cluster centers positioned
at maximum density locations in the pattern space, and growing clusters about these centers
until a \2 test for goodness of fit was violated. A variety of features were discussed and
applied to both grayscale and color imagery.

Silverman and Cooper [27] employed an agglomerative clustering algorithm to the problem
of unsupervised learning of clusters of coefficient vectors for two image models that corres-
pond to image segments. The first image model is a polynomial form for the observed image
measurements; the assumption here is that the image is a collection of several adjoining graph
surfaces which are sampled on the raster grid to produce the observed image. The algorithm
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proceeds by obtaining vectors of coefficients of least-squares fits to the data in M disjoint
image windows. An agglomerative clustering algorithm merges (a,t each step) the two clusters
which yield a. minimum global between-cluster Mahalanobis distance. The same framework
was applied to segmentation of textured images, but for such images the polynomial model
was inappropriate and a parameterized Markov Random Field model was assumed instead.

VVLI and Leahy [32] applied the principles of network flow to unsupervised classification
and produced a novel hierarchical algorithm for clustering. In essence, the technique views
the un labeled patterns as nodes in a graph, where the weight of an edge (i.e., its capacity) is
a. measure of similarity between the corresponding nodes. Clusters are identified by removing
edges from the graph to produce connected disjoint subgraphs. In image segmentation, pixels
which are 4-neighbors or 8-neighbors in the image plane, share edges in the constructed
adjacency graph, and the weight of a graph edge is based on the strength of a hypothesized
image edge between the pixels involved (this strength is calculated using simple derivative
masks). Hence, this segmenter works by finding closed contours in the image and is best
labeled edge-based rather than region-based.

Vinod el al. [33] developed two neural networks which in combination can be used to
perform pattern clustering. A two-layer network operates on a multidimensional histogram
of the data to identify 'prototypes' which are used to classify the input patterns into clusters.
These prototypes are fed to the classification network, another two-layer network operating
on the histogram of the input data, but trained to have differing weights from the proto-
type selection network. In both networks, the histogram of the image is used to weight
the. contributions of patterns neighboring the pattern under consideration to the location of
prototypes or the ultimate classification; as such, it is likely to be more robust compared to
techniques which assume an underlying parametric density function for the pattern classes.
This architecture was tested on gray-scale and color segmentation problems.

Zhang and Modestino [34] address the cluster validation problem in the context of im-
age segmentation. The correct number of clusters (image segments) is decided using an
information-theoretic criterion originally developed for the selection of the proper order and
parameters of an autoregressive model for time-series data. This criterion is computed from
a. maximum likelihood estimate of the model parameters, which in this case were obtained
from "homogeneous" regions produced by a A'-means clustering of the input data. The
proper number of clusters is chosen by iterating K from 1 to a predefined maximum Kma.x
and selecting that A' which minimizes the criterion. This technique was applied to the seg-
mentation of images assumed to contain regions well approximated by Gaussian random
fields. More recently, Zhang et al. [60] applied the expectation maximization algorithm to
I he segmentation of images described by several different models.

Joiioii ct al. [35] extracted clusters sequentially from the input pattern set by identifying
hyperellipsoidal regions (bounded by loci of constant Mahalanobis distance) which contain
a. specified fraction of the unclassified points in the set. The extracted regions are compared
against the best-fitting multivariate Gaussian density through a Kolmogorov-Smirnov test,
and the fit quality is used as a figure of merit for selecting the 'best' region at each iteration.
The process continues until a stopping criterion is satisfied. This procedure was applied to
the problems of threshold selection for multithreshold segmentation of intensity imagery and
segmentation of range imagery.
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4.2: Range Image Segmentation

Clustering techniques have been successfully used for the segmentation of range images,
which are a. popular source of input data for three-dimensional object recognition sys-
tems [13]. Range sensors typically return raster images with the measured value at each
pixel being the coordinates of a 3D location in space. Depending on the sensor's configur-
ation, these 3D positions can be understood as the locations where rays emerging from the
image plane locations in either a parallel bundle or a perspective cone intersect the objects
in front of the sensor.

The local feature clustering concept is particularly attractive for range image segmentation
since (unlike intensity measurements) the measurements at each pixel have the same units
(length); this would make ad hoc transformations or normalizations of the image features
unnecessary if their goal is to impose equal scaling on those features. However, range image
segmenters often add additional measurements to the feature space, removing this advantage.

1 loffman and Jain [38] described a range image segmentation procedure employing squared-
orror clustering in a six-dimensional feature space as a source of an "initial" segmentation
which is refined (typically by merging segments) into the output segmentation. The proced-
ure was enhanced by Flynn and Jain [41] and used in a recent systematic comparison of
range image segmenters [42]; as such, it is probably one of the longest-lived range segmenters
which has performed well on a large variety of range images.

This segmenter works as follows. At each pixel (i,j) in the input range image, the corres-
ponding 3D measurement is denoted (x{j, ijij, Zij), where typically X{j is a linear function of j
(the column number) and yt-} is a linear function of /' (the row number). A k x k neighborhood
of (/'../) is used to estimate the 3D surface normal nz/- = (nfj, nfy, n]-) at (i<j), typically by
linding the least-squares planar fit to the 3D points in the neighborhood. The feature vector
for the pixel at (/, j) is the six-dimensional measurement (xjn yx..n z\-r nfv ??fy, 7?./7), and a can-
didate segmentation is found by clustering these feature vectors. For practical reasons, not
(•very pixel's feature vector is used in the clustering procedure; typically 1000 feature vectors
are chosen by structured or random subsampling (Jain and Hoffman concluded that there
was little reason to prefer one sampling technique over the other). Recent work by Judd
(/ al. [45] demonstrates that a combination of algorithmic enhancements to the. clustering
algorithm and distribution of the computations over a network of workstations can allow an
entire 512 x 512 image to be clustered in a few minutes.

The issue of interpattern proximity in this six-dimensional feature space deserves some
comments. As noted above, the feature space used here is 'mixed' in that three of the
Features are ratio-scaled continuous measurements (.x\.y, z), while the remaining features are
ordinal-scaled continuous features measured on the unit sphere (n3\ ny, n~). The position and
orientation features are not directly comparable, and a pragmatic approach was used to make
the computation of proximity between patterns more appropriate. Each of the six features
was normalized to zero mean and unit standard deviation before the clustering procedure
was executed, and the Euclidean distance measure was used. This set of choices works well
in practice.

The CLUSTER algorithm was used to obtain segment labels for each pixel. Hoffman
and Jain also experimented with other clustering techniques (e.g., complete-link, single-link,
graph-theoretic, and other squared-error algorithms) and found CLUSTER to provide the
best, combination of performance and accuracy. An additional advantage of CLUSTER is that
it produces a sequence of output clusterings (i.e., a 2-cluster solution up through a Kmax-
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cluster solution where Kmax is specified by the user and is typically 20 or so); each clustering
in (his sequence yields a clustering statistic which combines between-cluster separation and
within-cllister scatter. That clustering which optimizes this statistic is chosen as the best
clustering.

Each pixel in the range image is assigned the segment label of the nearest cluster center.
This minimum distance classification step is not guaranteed to produce segments which are
connected in the image plane; therefore, a connected components labeling algorithm allocates
new labels for disjoint regions that were placed in the same cluster. Subsequent operations
include surface type tests, merging of adjacent patches using a test for the presence of crease
or jump edges between adjacent segments, and surface parameter estimation

Figure 5 shows this processing applied to a range image. Part (a) of the figure shows
the input range image; part (b) shows the distribution of surface normals. In part (c), the
initial segmentation returned by CLUSTER and modified to guarantee connected segments
is shown. Part (d) shows the final segmentation produced by merging a.djacent patches which
do not have a significant crease edge between them. The final clusters reasonably represent
distinct surfaces present in this complex object.

4.3: Texture Image Segmentation

The analysis of textured images has been of interest to researchers for several years.
Tuceryan and Jain [46] provide a comprehensive survey of texture definitions, models, and
analysis techniques. Texture segmentation techniques have been developed using a variety
of texture models and image operations. In this section, we survey some clustering-based
approaches to the segmentation of texture images.

Nguyen and Cohen [31] addressed the texture image segmentation problem by modeling
the image as a hierarchy of two Markov Random Fields, obtaining some simple statistics from
the image texture in each block to form a feature vector, and clustering these blocks using
a fuzzy A'-means clustering method. The clustering procedure here is modified to jointly
estimate the number of clusters as well as the fuzzy membership of each feature vector to the
various clusters.

Jain and Farrokhnia [43] developed a system for segmenting texture images. The system
uses (labor filters to obtain a set of 23 orientation- and scale-selective features characterizing
the texture in the neighborhood of each pixel. To avoid the "curse of dimensionality" problem
associated with a. large number of features per pattern, the set of features (ordered by sample
variance) which collectively capture a prespecified fraction of the total variance of the original
28 features is used as a, reduced feature set. A saturating nonlinear transformation is applied
independently to each of the retained feature images, and the feature images are filtered with a
uniform kernel. These filtered feature images are then subsampled uniformly to select 1000 or
lower feature vectors, which are then clustered with the CLUSTER program described above.
An index statistic proposed by Dubes [44] is used to select the best clustering. Minimum
distance classification is used to label each of the original image pixels. This technique
was tested on several texture mosaics including the natural Brodatz textures and synthetic
images. Figure 6(a) shows an input texture mosaic consisting of four of the popular Brodatz
textures [16]. Part (b) shows the segmentation produced when the Gabor filter features are
augmented to contain spatial information (pixel coordinates). This Gabor filter technique
has proven very powerful and has been extended to the automatic segmentation of text in
documents [40] and segmentation of objects in complex background [39].
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(c) (d)

Figure 5. Range image segmentation using clustering, (a): Input range image, (b):
Surface normals for selected image pixels, (c): Initial segmentation (19 cluster solu-
tion) returned by CLUSTER using 1000 six-dimensional samples from the image as
a pattern set. (d): Final segmentation (8 segments) produced by postprocessing.

Mao and Jain [56] combined multiresolution analysis and autoregressive image models
in a texture classification and segmentation system. The autoregressive image model is
rotation-invariant and admits a simple parameter estimation procedure. Model parameters
are computed at multiple image resolutions (constructed using low-pass filtering and sub-
sampling). The performance of this system as a classifier (i.e., identifying input textures
as belonging to one of several predefined classes characterized by model parameters) was
impressive. The system was modified for use as a texture segmenter. Instead of subsampling
the image, multiple parameter estimation windows of different sizes were designed and used,
and a squared-error clustering algorithm was used to generate segmentations. A careful eval-
uation of the ability of features to discriminate between clusters, the assignment of feature
weights, and the evaluation of clustering output are notable features of this work.

(a) (b)
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Figure 6. Texture image segmentation results, (a): Four-class texture mosaic, (b):
Four-cluster solution produced by CLUSTER with pixel coordinates included in the
feature set.

4.4: Color/Multispectral Image Segmentation

Haralick and Kelly [26] proposed two clustering procedures for images (including multis-
pectral images). The spatial clustering procedure sequentially builds an image partition
starting with a single cluster; at each iteration, a new cluster is defined as a connected subset
of pixels with the same measurement value(s), and grown to connected pixels with similar
measurement value(s). A measurement space clustering procedure iteratively forms connec-
ted regions of the measurement space using a probabilistic measure of proximity between
subsets in that space. The latter procedure was tested on an aerial image of an urban scene
with three measurements per pixel.

Amadasun and King [25] constructed a segmentation system for multispectral imagery
employing agglomerative clustering. Image neighborhoods which are uniform according to
a mean-value criterion are extracted, summarized by their mean vectors, and fed to an ag-
glomerative clustering procedure to identify different segments. The agglomerative procedure
is close to a single-link algorithm, merging the classes of the two closest patterns until the
number of output classes equals the (prespecified) number of desired segments. The final im-
age segmentation is obtained from a minimum-distance classification of each (multispectral)
pixel with respect to the obtained clusters.

Coleman and Andrews [28] applied a if-means clustering procedure to multispectral image
segmentation. Their presentation is rich with the essential and practical details of applying
pattern recognition methodology to the image segmentation problem (e.g., the necessity of an
eigenvector rotation to obtain decorrelated features, the use of the Bhattacharyya distance
measure for feature selection). A variety of features were used in order to classify images
with varying amounts of texture; these features included the responses of the Sobel operator
to local intensity as well as nearly uniform regions of varying sizes obtained from a nonlinear
image filter. The A'-means procedure was executed on a subset of the output features
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obtained by eigenvector rotation and selection, and output clusterings consisting of two
to sixteen clusters were produced (beginning with two clusters, a new cluster is formed at
each iteration by identifying the most outlying pattern and using it as the new cluster center).
A final image segmentation is obtained using minimum distance classification with the set of
obtained feature vectors.

Gowda [30] applied the ISODATA [14] clustering algorithm to the segmentation of multis-
pectral images (LANDSAT frames). A notable feature of this method was the use of several
transformations to take the original four-dimensional measurement at each pixel into the HSV
(hue, saturation, value) color basis, and from there into a pseudo RGB (red, green, blue)
basis. The 3D patterns in the RGB space are condensed into a 2D array which summarizes
patterns within a small distance of one another by their mean vectors. This set of mean
vectors is then clustered using a multistage variant of the popular ISODATA algorithm, and
the output segmentation is obtained by a minimum distance classification of the input pixels
with respect to the derived cluster centers. This approach to image segmentation uses very
little memory clue to the condensing procedure.

Bryant [47] developed a customized clustering algorithm for the segmentation of LAND-
SAT image data. This work is notable for its clear description of a system and its underlying
algorithms, and for its comprehensive survey and critique of clustering-based multispectral
image segmentation techniques circa 1979. Bryant's system has two major phases. In the
first phase, simple gradient thresholding is used to identify 'fields' (small uniform regions) in
the input data. Samples from these fields are used to form both the subset of data fed to the
clustering algorithm and that algorithm's initial set of candidate cluster centers. The clus-
tering algorithm itself works by performing minimum-distance classification with rejection of
pixels which are too far from any cluster center. Image-plane cleaning operations (designed
to label pixels containing a mixture of class information) are also applied to improve the res-
ults. The number of clusters can be automatically adjusted by internally judging the quality
of the current set of cluster centers. This approach was tested on several LANDSAT scenes.

Fukuda [29] developed two clustering procedures for segmentation and applied them to
color images. The first procedure segments the image by recursively subdividing the image
into blocks until each block has a small dispersion about its sample mean in the measure-
ment, space, and then grouping blocks with similar mean vectors into connected segments.
The second procedure performs one subdivision step (without recursion), obtains a sequence
of clusterings by varying a dispersion threshold used as a merging criterion, selects that
threshold which yielded the maximum number of clusters, summarizes each cluster by a
cluster center, and merges those cluster centers to yield fewer than a prespecified number.
In each algorithm, the final image segmentation is employed by a minimum-distance classi-
fication of each pixel with respect to the set of output cluster centers.

Uchiyama and Arbib [37] applied competitive learning techniques to the color image seg-
mentation problem. The authors demonstrate an equivalence between clustering and vector
quantization, and 'units' which represent cluster centers are sequentially generated. After
each generation, the units compete for randomly chosen members of the input pattern set,
and the winning unit (which is closest to the pattern) has its weight vector (i.e., the location
of the cluster center) updated toward the pattern. Units are created where the local density
of patterns is large as evidenced by a large number of 'wins' by a specific unit. In apply-
ing this technique to color image segmentation, the authors motivate the use of a feature
transformation to improve the segmentation results.

Clustering can be used as a preprocessing stage to identify pattern classes for subsequent
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Figure 7. Multispectral Medical Image Segmentation,
input image, (b): 9-cluster segmentation.

(a): A single channel of the

supervised classification. Taxt and Lundervold [53, 54] employed a partitional clustering
algorithm and a manual labeling technique to identify material classes (e.g., cerebrospinal
fluid, white matter, striated muscle, tumor) in registered images of a human head imaged
a.t five different magnetic resonance imaging channels (yielding a five-dimensional feature
vector at each pixel). A number of clusterings •were obtained and combined with domain
knowledge (human expertise) to identify the different classes. Decision rules for supervised
classification were based on these obtained classes. Figure 7(a) shows one channel of an
input multispectral image; part (b) shows the 9-cluster result.

Solberg [62] applied the A'-means algorithm to segmentation of LANDSAT imagery. Initial
cluster centers were chosen interactively by a trained operator, and correspond to land-
use classes such as urban areas, soil (vegetation-free) areas, forest, grassland, and water.
Figure 8(a) shows the input image rendered as grayscale; part (b) shows the result of the
clustering procedure.

4.5: Multiple Motion Segmentation

Cluster analysis has also been applied to the problem of resolving multiple motions in
image sequences. The intuitive model used in current work is that the observed image
is composed of layers, each with an associated motion, and the segmentation problem is
expected to resolve the layers. Jepson and Black [59] used the expectation maximization
algorithm [17] to resolve a mixture density model for the motion parameters. Here, the
mixture models the presence of several different motion classes. Sawhney et al. [57] adopt a
similar approach. Wang and Adelson [58] used a K-means clustering procedure to segment
different affine motion classes observed in image sequences. Dubuisson and Jain [61] fused
motion segmentation, color segmentation based on a split-and-merge paradigm and edge
information from the Canny edge detector to extract the contours of moving objects. Figure 9

(a) (b)
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(a)

Figure 8. LANDSAT image segmentation
IMAGE/Sattelitbild). (b): Clustered scene.

(b)

(a): Original image (©ESA/EUR-

shows the segmentation obtained in a single frame of a motion sequence using this technique.

5: Summary

In this chapter, the application of clustering methodology to image segmentation prob-
lems has been motivated and surveyed. The historical record shows that clustering is a
powerful tool for obtaining classifications of image pixels. Key issues in the design of any
clustering-based segmenter are the choice of pixel measurements (features) and dimension-
ality of the feature vector (i.e., should the feature vector contain intensities, pixel positions,
model parameters, filter outputs, etc?), a measure of similarity which is appropriate for the
selected features and the application domain, the identification of a clustering algorithm (e.g.,
squared-error, mode-seeking, graph-theoretic, etc.), the development of strategies for feature
and data reduction (to avoid the "curse of dimensionality" and the computational burden
of classifying large numbers of patterns), and the identification of necessary pre- and post-
processing techniques (e.g., image smoothing and minimum distance classification). The use
of clustering for segmentation dates back to the 1960s and new variations continue to emerge
in the literature. Challenges to the successful use of clustering include the high computational
complexity of many clustering algorithms and their incorporation of strong assumptions (of-
ten multivariate Gaussian) about the multidimensional shape of clusters to be obtained. The
ability of new clustering procedures to handle concepts and semantics in classification (in ad-
dition to numerical measurements) will be important for certain applications [52, 51]; we see
opportunities here for the adoption of ideas arising in the machine learning literature. With
its rich history, our reasonable understanding of the properties and limitations of clustering
methodology, and the prospect of increasingly powerful computer systems to use in image
analysis systems, we see potential for continued contributions to this fruitful research area.
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Figure 9. Segmentation of a vehicle's contour from fused motion, color, and edge
information.
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Abstract

In 1969, at a workshop organized by Azriel Rosenfeld, a paper was
presented dealing with boundary encoding and processing. In the
intervening years, many advances and extensions of the techniques
presented then have been made. This paper reviews some of these
developments, with particular emphasis on various generalizations of
the chain coding scheme.

1: Introduction

The processing of two-dimensional shape is a topic of abiding interest to those
concerned with image processing, computer vision, and pattern recognition. A two-
dimensional shape, familiarly often referred to as a "blob," is fully defined by its
bounding contour. This allows us to convert a problem dealing with the shape of a
region into a more tractable one-dimensional one dealing with a closed contour. Why
do we want to process a blob? There are a variety of reasons. We may want to ana-
lyze it, that is, determine its area, its perimeter, its maximum diameter, whether or not
it is convex, the location of its centroid, whether or not it has one or more axes of
symmetry, etc. Or we may want to establish the degree of similarity it has with
another blob, either with or without regard to size or orientation. Finally we may want
to classify it on the basis of one or more of its shape characteristics.

In 1970 the author published a paper in a book co-edited by Bernice Lipkin and
Azriel Rosenfeld under the title of Boundary Encoding and Processing [1]. The
paper addressed the problem of describing a blob's boundary lines, noted the distinc-
tions among the geometric boundary, "black" or interior boundary, and "white" or
exterior boundary, and pointed out how sets of directed contours can be used to
describe graytone blobs. The chain-coding technique was demonstrated in the context
of multi-level graytone blobs and extended to the direct quantization and encoding of
boundary contours, whether open or closed. A variety of processing and manipulation
algorithms for chain-encoded curves (or boundary contours) were described, and the
now well-known three properties of a digital straight line were postulated. It appears
fitting that today, 26 years later, as we honor Professor Rosenfeld's many years of
contributions to the field of image processing and its allied sciences, the author should
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re-visit the subject of boundary encoding and describe what has happened in the inter-
val, where we have progressed, and where difficult problems still challenge us.

2: A Blob and Its Boundary

Outer Boundary
imetric Boundary
Inner Boundary

When we speak of a blob, we think of a closed, homogeneous region, simply- or
multiply-connected, which models some physical entity, e.g., an area feature on a map
(state, county, lake), a blood cell viewed through a microscope, or a defect in an oth-
erwise clear sheet of glass. If the blob corresponds to something in the physical world,
it must be digitized before it can be processed by computer. With shape as our only
concern, we have the choice of either digitizing an image of the blob and then extract-
ing the boundary from the resulting pixel array, or digitizing the boundary directly.
Depending on which approach we follow, somewhat different problem situations are
encountered.

2.1: Extracting a contour from a digitized blob

If we first digitize the blob and then look for its boundary, we find that there are at
least three different ways of defining the boundary. We can use the contour that
literally bounds the connected set of pixels forming the blob, and obtain what in Fig. 1
is marked as the geometric boundary (also sometimes referred to as the crack bound-
ary [2]). Or we can connect the centers of
bounding pixels - either those inside the
blob or those outside, obtaining, as shown
in Fig. 1, the interior boundary in the
former case and the exterior boundary in
the latter. As was proved in [1], the inte-
rior boundary will always be shorter than
the geometric boundary, and the exterior
boundary will be shorter if the geometric
boundary consists of 10 or more distinct
straight-line segments. All three are func-
tions of the digitization process, as well as
of any smoothing and thresholding that
was applied, and none can be said a priori
to be a more faithful rendition of the
original analog contour than another.

During the last few years some researchers have introduced additional ways of
describing a digital blob's contour. One interesting variant is the so-called mid-crack
scheme [3, 4], which uses straight-line segments of length 1 or V2/2 (times the size of
a pixel edge) to connect the mid-points of bounding edges. It leads to a bounding con-
tour that more closely "hugs" the geometric boundary but involves more segments
than either the interior or exterior boundaries, as illustrated in Fig. 2. Whether or not
it has advantages over the more straight-forward interior or exterior boundaries,
which use segments of length 1 and V2 has not been established. Also, as we shall
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Fig. 1. The 3 boundaries of a digital blob.
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Mid-Crack Boundary Geometric (or Crack) Boundary

show later, since precision is solely a function of the underlying quantization lattice,
but processing performance is a function of the number of segments, it may be
preferable to look for boundary representations that use the fewest possible segments.

2.2: Direct digitization of a contour

The alternate way to obtain the digital representation of a blob's bounding contour
is to trace it in the analog domain and digitize it directly. For a multiply-connected
blob, we would trace the exterior
boundary in the clockwise sense, and any
"holes" in a clockwise sense, thus assur-
ing that the interior will always be to the
right. The process of digitization is one of
description, and description implies
quantization [5]. Quantization is defined
in term of form, the size of the quanta,
and the approximant used to represent
the quanta. Many tradeoffs are possible
among these, and the choices made can
affect the performance of the processing
to be carried out on the resulting digital
data.

The most common way of representing
a boundary contour is to set up a
Cartesian coordinate system and describe F i g ' 2 ' T h e mid-crack boundary-
the contour in terms of a series of (x, y)-
coordinates. The points used to describe the contour will necessarily be nodes of an
implied uniform square lattice whose spacing corresponds to a unit change in the
least-significant bit position of the x and y coordinates. In general, this built-in
precision limitation will be much finer than what can be justified on the basis of the
data's underlying physical precision limitations, suggesting the use of a
correspondingly larger lattice spacing. This is illustrated in Fig. 3, where the lattice
spacings Ax and Ay correspond to the smallest significant change in coordinates. Here
the form of the quantization is the uniform square lattice, the size is the lattice
spacing, and the approximant is yet to be specified. A node becomes a curve point (a
selected node for the digital approximation) when the curve crosses a lattice line
within half a lattice spacing of the node [6].

If the lattice spacing is chosen as indicated, no useful (i.e., "no significant") infor-
mation about the curve exists between two adjacent nodes. It follows that to obtain
the digital representation of the contour, we should join successive nodes with only
the most primitive approximant, namely, a short straight-line segment. This then yields
the digital approximation or chain representation of a curve, where for each selected
curve point the next in sequence is one of the eight lattice points surrounding it, con-
nected with a segment of length 1 or V2 (times the lattice spacing) [6, 7].
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Fig. 3. Quantization of a contour

It has long been known that if a contour is to be approximated by a sequence of
straight-line segments, the segments should be short where the curvature is great, and
should be correspondingly longer where the curvature is slight. This suggests that we
represent a contour by means of line segments of varying length, selected so as to
keep some error measure within a
specified bound. The error measure
could be the maximum distance between
the curve and the approximating line
segment, the average distance, the
mean-square distance, or the in-between
area. The result will be a polygonal
approximation of the contour. As long
as we insist that wherever a line
segment crosses one of the lattice lines,
the distance from the curve to the near-
est node be no greater than half a lattice
spacing, we shall retain the full
precision set by the lattice.

In Fig. 4 we show a point A on a
square lattice, surrounded by concentric "rings" of nodes. The nodes in the inner-most
ring are labeled counterclockwise from 0 to 7; those in the next ring, from 8 to 23,
etc. Each ring contains 8n nodes, where n is the ring number. The sum of all nodes
for rings 1 through n is equal to 4n(n+l). Clearly, if we can identify a longer seg-
ment, i.e., one that would connect point A to a node of ring n > 1, while satisfying the
half lattice-spacing precision requirement, then our approximation will consist of
fewer segments. For n = 7, we have the basic chain-code, and for rings of all values
from 1 to N, where N is such that the
contour lies entirely within this ring,
we have unrestricted polynomial
approximation.

A contour-approximation scheme
that provides for many line segments
that rarely occur will tend to be ineffi-
cient to encode. This suggests that we
curtail the number of permissible line
segments. In the familiar chain-coding
scheme, only the nodes in ring 1 of
Fig. 4 are permissible "next" nodes.
Contour representation based on this
scheme has been widely used for more
than 30 years; it is simple, efficient,
compact, and facilitates the design of
simple processing and manipulation Fig. 4. T h e n o d e r ings su r round ing a cu r ren t node.
algorithms [1, 7]. A detailed analysis
of the performance of chain codes can be found in [8]
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2.3 The generalized chain representation.

In the late 1970s the generalized chain coding scheme was introduced [9,10]. It
allows the building of a contour's digital approximation by using nodes from ring 1
plus those from one or more additional concentric rings. Generalized codes have been
explored based on the use of rings 1-2, 1-2-3, 1-2-3-4, and larger. And, of course,
we can use a ring set in which we skip some intermediate rings, such as ring sets 1-3
and 1-2-5, which contain 32 and 64 nodes, respectively. Note that ring 1 must always
be included lest the precision be compromised. Digitization of a contour using the
generalized chain concept is analogous to that used for the basic 8-direction chain [7],
The procedure always attempts first to use the largest possible line segments
(beginning with the largest allowed ring) and then steps down to smaller rings
(ultimately to ring 1) if necessary to satisfy the precision requirement [10].

For purposes of numerical encoding, the segments in a ring set are normally
assigned sequential numbers, in a counterclockwise spiraling manner. If a ring is
skipped, the number are reassigned as needed, e.g., from 0 to 31 for ring set 1-3.

The generalized coding scheme provides an expanded "vocabulary" of line segments
for representing a contour, thereby offering the possibility of a smoother representa-
tion as well as of fewer approximating segments. Generally, algorithms for analyzing
or manipulating such contour representations process them one segment at a time.
With the use of appropriate table-lookup
schemes, as long as the ring size is kept to a
modest value (e.g., 5 or 7), the complexity of
processing a segment is virtually independent
of the segment's length. Hence the processing
time will be proportionately reduced, the
fewer the number of segments needed to rep-
resent a particular contour [11].

2.4: Use of curved segments as approximants

In general, if the lattice spacing is properly
selected to preserve the significant detail of a
contour, the likelihood of using segments
from a particular ring decreases rapidly with
increasing ring number. Thus if is desired fur-

52,3

Fig. 5. The set of 7 approximants associated
with a node in ring 4.

ther to reduce the number of segments used in a particular approximation, we must
relax the requirement that the approximants be straight-line segments. Thus for rings
of size 4 or larger, we shall allow, in addition to the straight-line segment, 3 circular
arcs of progressively increasing curvature to either side of the straight segment, as
illustrated in Fig. 5. This greatly increases the number of available approximants (to 7
x 32 = 224 for ring 4, for example), while simultaneously increasing the probability
that such approximants will, in fact, find use [12]. Although there is no gain in preci-
sion (as long as we use the same lattice spacing), this generalized "polycurve" repre-
sentation can yield faster processing and smoother displays.
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The effects of the various generalizations on the chain code are illustrated in Fig. 6.
The reduction in the number of approximating segments as well as the increasing
smoothness are clearly evident, as we go from the basic 8-direction chain representa-
tion to the ring 1-3 generalized chain and the ring 1-4 polycurve representation. The
number of segments required to represent this particular blob was found to be 87 in
(b), 48 in (c), 42 in (d), and 27 in (e).

(a) (b) (c) (d) (e)
Fig, 6. (a) A given blob with the overlaid digitizing lattice, (b) Representation using ring 1 only (basic
chain code), (c) using rings 1 and 2, (d) using rings 1 and 3, and (e) using a 1-4 ring polycurve.

2.5 Open curves

The techniques described for directly representing the boundary of a blob apply
equally when the contour is not closed. However, if we want to apply the techniques
to general line drawings, we must allow for junctions. One approach is to represent
each segment separately, and then make provision for specifying the starting-point
coordinates of each segment, say, by embedding special control codes in each chain-
code string [7]. An elegant alternative is provided by the primitives chain code intro-
duced by O'Gorman, which directly retains branching and junction topology informa-
tion [13].

3: Hierarchical Representations

Paralleling the development of techniques for serially processing contours in full
description, have been efforts at parallel processing and processing at different levels
of resolution. The main motivation for considering parallel processing is the obvious
one of reduced processing time. Parallel processing has long been considered for
image arrays, but its application to curves (open or closed) and general line drawings
had not been given much attention until fairly recently, mainly because of the
inherently serial nature of many curve representation schemes.

An effective framework for parallel processing of contours is provided by resorting
to multi-resolution extensions of the chain coding scheme [14]. Lattices of different
resolution are used, with the finest level corresponding to the precision limit, and the
coarsest to a single cell. Developments of this approach have led to the RULI chain
code [15] and the chain pyramid [16]. Hierarchical multi-resolution approaches addi-
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tionally are of interest for transmitting line-drawing information, as such schemes
allow useful tradeoffs between resolution and transmission time, an important current
research topic.

4: Shape Characterization

During the 27 years since the paper on boundary encoding and processing appeared,
enormous progress has been made in characterizing and analyzing two-dimensional
shape. We can define a quantitative measure for shape in terms of the bending energy
needed to deform an elastic ring into the desired shape. The more intricate the shape
and desired non-circularity, the greater the required bending energy. For an open
curve, we follow the same concept but apply it to a straight elastic rod. Note that two
curves may have the same energy measure but still be of widely different shape [17].

Of particular interest regarding shape are so-called critical points, such as sharp
slope discontinuities (i.e., "corners"), points of inflection, points of maximum curva-
ture, junctions, and curve endings, with the latter two occurring, of course, only in the
case of open curves. Critical points are particularly attractive in shape matching appli-
cations, as they are invariant to scale and rotation, and, at least with respect to the
corners, tend to be relatively robust [18-20].

5: Conclusion

A brief overview has been provided of some selected advances in boundary
representation made during the past 25 years. The total effort in this area has been
vast, and any attempt to provide a comprehensive review would have been far beyond
the scope of this paper. All that was possible was to highlight some of the key
developments relating to chain codes, in particular, their generalization to straight and
curved segments of varying length, as well as to some variations of these, including
those based on the use of hierarchical approaches.
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