
Chapter 1

Why Measure?

The papers

Measuring for understanding
Norman Fenton, Shari Lawrence Pfleeger, and Robert L. Glass, "Science and Substance:
A Challenge to Software Engineers," IEEE Software, Vol. 11, No. 4, July 1994, pp. 86-
95. Describes how measurement is key to understanding and evaluating the factors that
affect our products, processes, and resources.

Measuring for experimentation
Victor R. Basili, Richard W. Selby, and David H. Hutchens, "Experimentation in
Software Engineering," IEEE Trans. Software Eng., Vol. SE-12, No. 7, July 1986, pp.
733-743. Presents a framework for analyzing experimentation in software engineering to
help structure the experimental process and provide a means of classifying previous work.

Measuring for project control
Barry W. Boehm, "Software Risk Management: Principles and Practices," IEEE
Software, Vol. 8, No. 1, Jan. 1991, pp. 32-41. Uses four subsets of risk management
techniques to identify risk items and rate a project's current status, ranking risk items by
their risk exposure values.

Measuring for process improvement
Michael K. Daskalantonakis, "Achieving Higher SEI Levels," IEEE Software, Vol. 11,
No. 4, July 1994, pp. 17-24. Describes how to conduct and monitor incremental
assessments when improved SEI capability maturity level is the long-term goal.

Measuring for product improvement
Robert B. Grady, "Successfully Applying Software Metrics," Computer, Vol. 27, No. 9,
Sept. 1994, pp. 18-25. Uses examples from real projects to show that a project's success
depends on using clearly defined measures to aid design and management decisions.



Measuring for prediction
Edward F. Weller, "Using Metrics to Manage Software Projects," Computer, Vol. 27,
No. 9, Sept. 1994, pp. 27-33. Shows how defect data collected over time can be used to
plan projects and schedule delivery, with an overall improvement in software process
maturity.

Case study
George Stark, Robert C. Durst, and C.W. Vowell, "Using Metrics in Management
Decision Making," Computer, Vol. 27, No. 9, Sept. 1994, pp. 42-48. Explains how
metrics defined using the Goal-Question-Metric paradigm and standardized tool kits help
managers at NASA's Mission Operations Directorate to understand better their processes
and products.

Editors' introduction

As with any other profession, the quality of our practitioners and processes is judged by
the quality of our products. And software's ubiquity means that our reputations are
continually on the line. In The Decline and Fall of the American Programmer (Prentice
Hall, 1991), Ed Yourdon tells us that

'Today, the world-class software company knows that it cannot be satisfied with what it's doing.
[...] Software is now a global industry, and a lot of hungry people around the world are aching to
eat your lunch."

To get ahead and stay ahead, a company must deliver products that are better than its
competition's. It must strive to improve the status quo. To produce an excellent product,
the successful software company must make improvements to every step of the software
life cycle. But to do that, each step must be understood. Measurement is critical to
understanding; as Lord Kelvin reminded us, "One does not understand what one cannot
measure."

We begin our book by examining the reasons for measuring software. There are three
major reasons to measure:

• understanding
• predicting
• controlling

As we saw in the foreword, measurement allows us to manipulate symbols in a formal,
mathematical way so that we learn more about what is happening in the real, empirical
world. Metrics help us to identify unusual cases (good and bad) and to describe a typical
or usual situation (that is, to establish a baseline). We can also determine cost, effort, and
duration requirements for various types of products or process activities.

By knowing what is typical, we can begin to predict what is likely to happen later in an
on-going project, or on future projects. For example, given a metrics database of
information about past projects, we can estimate resource requirements on similar



projects that may be proposed. Likewise, we can use information about defects already
discovered to help us predict the likely number of defects still remaining in our code, and
thus the amount of testing required before the product can be delivered. Figure 3
illustrates opportunities for prediction throughout the development process.

Finally, the predictions enable us to control projects. We can estimate the cost, effort,
and schedule required to complete a project, and track the actual values against our
estimates. By examining information about changes to requirements, design, code, and
test cases, we can determine whether the effort and schedule allotments should be
revised. We can use defect and test coverage information to set entry and exit criteria for
testing and quality assurance activities. And we can use information about unusual cases
to determine our testing strategy.

Our measurements offer us control in another sense. Many organizations are
concentrating on improving their software products and processes. Metrics information
can assist by revealing which activities are resulting in demonstrable improvement. That
is, we can use metrics information to help us understand which activities are most
effective at accomplishing our goals. For example, Bob Grady compared the efficiency
of different kinds of testing techniques, as shown in Table 1. (See [Grady 1992] in this
chapter's "To probe further.") His experiment and similar research results confirm that
inspections are one of the cheapest and most effective testing techniques for finding
faults.

Feasibility

Requirements

Design

Coding

Testing & release

Maintenance

Cost/benefit analysis

Effort/schedule/quality prediction

Reuse potential

Size estimates

Size/schedule/quality predictions

Size/schedule/quality predictions

Testing effort predictions

End of testing predictions

Reliability/quality predictions

Effort/schedule/quality prediction

Figure 3. Example predictions needed for software development decision-making
(Fenton and Pfleeger 1996).



Table 1. Comparison of testing efficiency. [Grady 1992]

Testing Type

Regular Use

Black Box

White Box

Reading/Inspections

Efficiency
(Defects found per hour)

.210

.282

.322

1.057

The papers in this first chapter focus on the importance of measurement and the rationale
for instituting a comprehensive measurement program. In "Science and Substance: A
Challenge to Software Engineers," Norman Fenton, Shari Lawrence Pfleeger, and Bob
Glass explain that measurement is critical in evaluating the effectiveness of any proposed
technology. They explain that careful experimentation is needed to determine the effects
of new techniques or tools on the resulting software quality. By presenting guidelines for
evaluating experiments and case studies, they help us not only to improve our own
evaluative work but also to assess the reported work of others.

In our second paper, "Experimentation in Software Engineering," Victor Basili, Rick
Selby, and David Hutchens propose a framework for experimentation in the software
environment. The framework is then used to evaluate several reported experimental
studies. Thus, the first two papers show us that measurement is simply good engineering
practice, and that we cannot be good scientists without it.

Next, we turn to project management to see how measurement can help us to predict and
control a project's outcome. Associated with every project are a number of risks, many
of which relate to allocation of limited resources. In "Software Risk Management:
Principles and Practices," Barry Boehm sets forth a model for managing these risks.
Using his model, a development organization can try to reduce the probability of
exposure to severe risk. Boehm illustrates his approach with examples, showing that
projects using the "concept of risk exposure ... tended to avoid pitfalls and produce good
products."

Project management also involves controlling the software process. Successful software
managers use experiences on previous projects to help improve the next ones. In
"Achieving Higher SEI Levels," Michael Daskalantonakis describes how Motorola
conducts and monitors incremental assessments to help projects reach their long-term
process improvement goals. Whether you use the Software Engineering Institute's
capability maturity levels or some other measure of process quality (such as SPICE,
Bootstrap, or ISO-9001), the techniques described here are useful in providing interim
feedback toward long-term improvement.

Hewlett-Packard is well-known for its successful corporate measurement program based
on H-P's goal of improving product quality. Bob Grady shares his experiences at H-P by
instructing us in "Successfully Applying Software Metrics." Grady suggests particular
courses of action for metrics managers, using real-life examples to support his
arguments. Ed Weller tells us about "Using Metrics to Manage Software Projects" at



Honeywell. Weller's article complements Grady's, showing that metrics collected from
past projects can aid in planning future ones.

The first chapter closes with a case study of the successful introduction of metrics at
NASA's Johnson Space Center. Realizing that NASA software failures could be
catastrophic, the Mission Operations Directorate initiated a measurement program in
May 1990 to "better understand and manage these risks." The article discusses the
reasons for program implementation, how metrics have aided in management decisions,
which tools have been useful, and how the metrics have been used effectively.

To probe further

B. Boehm, Software Engineering Economics, Prentice Hall, Englewood Cliffs, N.J.,
1981. One of the first books to apply measurement to software engineering, it
describes in detail a model for estimating effort and schedule from measurable
project, process, and resource characteristics.

B. Curtis, "Measurement and experimentation in software engineering,"
Proceedings of the IEEE, Vol. 68, No. 9, 1980, pp. 1,144-1,157. This seminal
paper includes the first description of the scales of measurement made in a
software engineering context.

N. Fenton and S. Lawrence Pfleeger, Software Metrics: A Rigorous Approach,
second edition, International Thomson Press, London, 1996. A thorough
overview of software metrics, including measurement theory and descriptions of
many product, process, and resource metrics. Includes new information about
implementing a metrics program and validating software measures.

R. Grady and D. Caswell, Software Metrics: Establishing a Company-Wide
Program, Prentice Hall, Englewood Cliffs, N.J., 1987. A clear and thorough
description of the goals and activities of the Hewlett-Packard corporate
measurement program.

R. Grady, Practical Software Metrics for Project Management and Process
Improvement, Prentice Hall, Englewood Cliffs, N.J., 1992. A well-written guide
to implementing a corporate metrics program, based on Grady's experience at
Hewlett-Packard.

T. Khoshgoftaar and P. Oman (eds.), "Metrics in Software," Computer, Vol. 27,
No. 9, Sept. 1994. A theme issue devoted to industrial applications of software
metrics.

S. Lawrence Pfleeger, "Experimental Design and Analysis in Software
Engineering," Annals of Software Engineering, Vol. 1, No. 1, 1995, pp. 219—
253. The first of the published papers from the UK's DESMET project, it
describes the basic issues in designing and carrying out software engineering
experiments.

S. Lawrence Pfleeger and H. Dieter Rombach (eds.), "Measurement-Based Process
Improvement," IEEE Software, Vol. 11, No. 4, July 1994. A theme issue devoted
to software process improvement driven by measurement and metrics.



F E A T U R E

For 25 years,
software researchers

have proposed
improving software

development and
maintenance with new

practices whose
effectiveness is rarely, if
ever, backed up by hard

evidence. We suggest
several ways to address

the problem, and we
challenge the

community to invest in
being more scientific.

NORMAN FENTON and
SHAR1 LAWRENCE PFLEEGER

City University, London
ROBERT L. GLASS
Computing Trends

SCIENCE AND SUBSTANCE:
A CHALLENGE TO
SOFTWARE ENGINEERS

Software researchers and engi-
neers are always seeking ways to

improve their ability to build software.
This search has resulted in such meth-
ods as

• structured design and programming,
• abstract data types,
• object-oriented design and program

ming,
• CASE tools,
• statistical process control,
• maturity models,
• fourth-generation languages, and
• formal methods,

among others. But in spite of such
"advances," software engineering in
practice continues to be a labor-inten-
sive, intellectually complex, and costly
activity in which good management
and communication seem to count for

much more than technology.
At the same time, the January 1993

issue of the IEEE CS Technical
Committee on Software Engineering
Newsletter reported that since 1976 the
Software Engineering Standards
Committee of the IEEE Computer
Society has developed 19 standards in
the areas of terminology, requirements
documentation, design documentation,
user documentation, testing, verifica-
tion and validation, reviews, and
audits. And if you include all the major
national standards bodies, there are in
fact more than 250 software-engineer-
ing standards.

The existence of these standards
raises some important questions. How
do we know which practices to stan-
dardize? And are the standards not

Reprinted from IEEE Software, Vol. 11, No. 4, July 1994, pp. 86-95.
Copyright © 1994 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.



working or being ignored, since many
development projects generate less-
than-desirable products? The answer
is that much of what we believe about
which approaches are best is based on
anecdotes, gut feelings, expert opin-
ions, and flawed research, not on care-
ful, rigorous software-engineering
experimentation.

In this article, we examine some of
the past and current problems with
software-engineering research and
technology transfer and suggest sever-
al ways to redirect our efforts toward
improving our ability to build and
maintain software.

RESEARCH CLAIMS

Developers who want to improve
their productivity or the quality of
their product are faced with an enor-
mous choice of methods, tools, and
standards. Adopting one or more often
involves considerable time, expense,
and trouble. Rational managers and
their subordinates are prepared to
invest in a new technology if they have
evidence that using it will ultimately
produce benefits. Although a single
evaluation can never cover all possible
situations, it is reasonable to seek some
evidence of a new technology's likely
efficacy when used under certain condi-
tions.

But evidence is rare. Vendors*
quantitative descriptions are often no
more than sweeping claims like

• productivity gains of 250 percent,
• maintenance effort reduced by 80

percent, and
• integration time cut by five sixths.

Similar claims are often made by emi-
nent experts. How can practitioners
distinguish valid claims from invalid?
And how can they determine that a
particular method or technology is
suited to their situation?

One way is to examine claims care-
fully from the viewpoint of scientific
experimentation. As described by Vic
Basili, Rick Selby, and David
Hutchens in their classic paper on

software-engineering experimentation,
there is a scientifically sound way to
design and carry out software-engi-
neering investigations.1 Their paper
gives many examples of good research
practice, plus guidelines for future
experiments, but very few experiments
reported since its publication have fol-
lowed those recommen-
dations.

Admittedly, experi-
mentation in software
engineering is notori-
ously difficult: Not only
is it potentially expen-
sive, but it can be daunt-
ing to try to control vari-
ables and environments.
We applaud those who
have performed an em-
pirical study to confirm
or refute their under-
standing of likely effects,
even as we criticize cer-
tain experiments. Our intent is to sug-
gest improvements to software-engi-
neering research practices, in the hope
that the results of future research will
reflect a more solid scientific founda-
tion. To do that, we compare good
experiments with flawed ones, to illus-
trate the scrutiny required to deter-
mine if a recommended practice lives
up to its claims.

RESEARCH REALITIES

Five questions should be (but rarely
are) asked about any claim arising
from software-engineering research:

• Is it based on empirical evaluation
and data?

• Was the experiment designed cor-
rectly?

• Is it based on a toy or a real situation?
• Were the measurements used

appropriate to the goals of the experiment?
• Was the experiment run for a long

enough time?

Empiricism versus intuition. In many
ways, software-engineering research
got off to a bad start. Early researchers

HOW CAN YOU
TELL IF CLAIMS
ARE VALID?
ASK FIVE
QUESTIONS
THAT ADDRESS
EXPERIMENTAL
TECHNIQUE.

often assumed that if sufficient bril-
liance and analysis were put into con-
ceiving a technique, benefits would
surely follow. As a result, many
research findings published can be
characterized as "analytical advocacy
research." That is, the authors describe
a new concept in considerable detail,

derive its potential
benefits analytically,
and recommend the
concept be transferred
to practice. Time pass-
es, and other re-
searchers derive simi-
lar conclusions from
similar analyses. Even-
tually the consensus
among researchers is
that the concept has
clear benefits. Yet prac-
titioners often seem
unenthused. Research-
ers, satisfied that their

communal analysis is correct, become
frustrated. Heated discussion and fin-
ger-pointing ensues.

Something important is missing
from this picture: rigorous, quantita-
tive experimentation. In the traditional
scientific method used by researchers
in other disciplines, the formulation of
an idea and its related hypothesis is fol-
lowed by evaluative research to investi-
gate if die hypothesis is true or false.
Only when research results confirm
the hypothesis do researchers advocate
broad-based technology transfer.
Moreover, the research tries to quanti-
fy the magnitude, as well as the exis-
tence, of a benefit.

Evaluative research must involve
realistic projects with realistic subjects,
and it must be done with sufficient
rigor to ensure that any benefits identi-
fied are clearly derived from the con-
cept in question. This type of research
is time-consuming and expensive and,
admittedly, difficult to employ in all
software-engineering research. It is not
surprising that little of it is being done.

On the other hand, claims made by
analytical advocacy are insupportable.
Today, practitioners must place their



MEASUREMENT SCALES AND MEANINGFUL ANALYSIS
Measurement is the

process of assigning a num-
ber or descriptor (a mea-
sure) to an entity to charac-
terize a specific attribute of
the entity. By manipulating
these numbers, instead of
the entities themselves, you
make judgments about the
entities. However, you must
use the measures in mathe-
matically correct ways if
your judgments are to make
sense. The type of measure-
ment determines what
analysis is acceptable.

Measurement types. You must
assign measures that pre-
serve your empirical obser-
vations about the attribute
you are interested in. For
example, if the attribute of
the entity person that you
want to measure is height,
then you must assign a num-
ber to each person in a way
that preserves empirical
observations about height. If
person/£ is taller than per-
son B (an empirical observa-
tion), the measurement
M(A) must be greater than

Sometimes there are

many ways to assign num-
bers that preserve all empiri-
cal observations. For exam-
ple, M(A) is greater than
M(B) regardless of whether
M is inches, feet, centi-
meters, or furlongs. Further-
more, the relationship
among entities is preserved
when you convert the
attribute data from one
measure to another, such as
from inches to centimeters.
Such a conversion is called
an admissible transfoimation.

So any two valid mea-
sures, M and M ', of the
same attribute are related in
a very specific way. For
example, if M and M'are
measures of height, there is
always some constant f,
greater than 0, such that M
= cM'. If M is inches and M'
is centimeters, then c is 2.54.

The kind of admissible
transformations determines
the measurement scale type.
Height, for example, is a
ratio scale type because mul-
tiplication is an admissible
transformation. In general,
the more restrictive the
admissible transformations,
the more sophisticated the

scale type and the analyses
that can be done. Table A
defines the most common
scale types, in increasing
order of sophistication.

Usually, an attribute's
scale type is not known a
priori. Instead, you start
with a crude understanding
of an attribute, devise a sim-
ple way to measure it, accu-
mulate data, and see if the
results reflect the empirical
behavior of die attribute.
Then you clarify and reeval-
uate the attribute: Are you
measuring what you really
want to measure? This
analysis helps you refine def-
initions and introduce new
empirical relations, improv-
ing the accuracy of the mea-
surement and, usually,
increasing the sophistication
of the measurement scale.

A goal of* software mea-
surement is to define mea-
sures that are on the most
sophisticated scale possible,
given the constraints of the
real world. However, we still
have only very crude empiri-
cal relations — and hence
crude measurement scales
— for attributes like soft-

ware quality and productivi-
ty. Consider the software-
failure attribute "criticality."
Today we usually measure
this by identifying different
kinds of failures and relating
them with a single binary
relation, "is more critical
than." This kind of empiri-
cal relational system defines
a (relatively unsophisticated)
ordinal scale type.

Meaningful measures.This for-
mal definition of scale type
based on admissible transfor-
mations lets you determine
rigorously what kind of
statements about your mea-
surement are meaningful.
Formally, a statement
involving measurement is
meaningful if its truth or fal-
sity remains unchanged
under any admissible trans-
formation of the measures
involved.

If you say "Fred is twice
as tall as Jane," your state-
ment implies that the mea-
sures are at least on the ratio
scale, because multiplication
is an admissible transforma-
tion. No matter which mea-
sure of height you use, the

faith in the reputation of the advocates
who, although sometimes correct in
the past, may not always be correct in
the future. Consider the initial engi-
neering attempts to allow humans to
fly. Experts carefully studied the flight
of birds, then developed flexible wings
that would mimic it as closely as possi-
ble. This sounded fine in theory but
was disastrous in practice. It was not
until a completely new paradigm, using
rigid wings and Bernoulli's laws, was
conceived and tested that flight
became possible. Empirical testing and
analysis were critical to the discovery
of the new paradigm.

Unfortunately, software methods
and techniques often find their way
into standards even when there is no
reported empirical, quantitative evi-
dence of their benefit. This is true of

even the most sophisticated methods,
developed with mathematical care and
precision. For example, although there
is some limited empirical evidence that
fault-tolerant design for high-integrity
systems (such as those that are safety-
critical) is effective, there appears to be
little or no published empirical work
that supports the claims made on
behalf of formal methods.

The case of formal methods is an
especially interesting and instructive
example of a revolutionary technique
that has gained widespread appeal
without rigorous experimentation.
Formal methods are based on the use
of mathematically precise specification
and design notations. In its purest
form, formal development is based on
refinement and proof of correctness at
each stage in the life cycle. In general,

adopting formal methods requires a
revolutionary change in development
practices. There is no simple migration
path, because the effective use of for-
mal methods requires a radical change
right at the beginning of the tradition-
al life-cycle, when customer require-
ments are captured and recorded.
Thus, the stakes are particularly high.

Yet, when Susan Gerhart, Dan
Craigen, and Ted Ralston performed
an extensive survey of formal methods
use in industrial environments,2 they
concluded

There is no simple answer to the
question: do formal methods pay off?
Our cases provide a wealth of data
but only scratch the surface of infor-
mation available to address these
questions. All cases involve so many
interwoven factors that it is impossi-



truth or falsity of the state-
ment remains consistent.

But if you say, "The tem-
perature in Tokyo today is
twice that in London," your
statement also implies the
ratio scale, but in this case
the ratio scale is not mean-
ingful because air tempera-
ture is measured in Celsius
and Fahrenheit. So, while it
might be 40°C in Tokyo and
20°C in London (making
your statement true), it
would also be 104°F in
Tokyo and 68°F in London
(truth is not preserved).
Thus, scalar multiplication is
an inadmissible transforma-
tion, and this is an inappro-
priate use of measurement.

But suppose you said,
"The difference in tempera-
ture between Tokyo and
London today is twice what
it was yesterday." This state-
ment implies that the dis-
tance between two measures
is meaningful, a condition
that is part of the interval
scale. The statement is
meaningful, because
Fahrenheit and Celsius are
related by the affine trans-
formation F • 9/5C + 32,

which ensures that ratios of
differences (as opposed to
just ratios) are preserved. If
it was 35°C yesterday in
Tokyo and 25°C in London
(a difference of 10) and
today it is 40°C in Tokyo
and 20°C in London (a dif-
ference of 20), the differ-
ence will be preserved when
you transform the tempera-
tures to the Fahrenheit
scale: 95°F in Tokyo and
77°F London (a difference
of l8)andl04°FinTokyo
and 68°F in London (a dif-
ference of 36).

Unfortunately, there are

no such transformations for
the software-failure attribute.
The statement, "Failure x is
twice as critical as failure y" is
not meaningful because we
have only an ordinal scale for
failure criticality.

It is important to remem-
ber that meaningfulness is
not the same as truth.
Although the statement
"Mickey Mouse is 102 years
old" is clearly false, it is nev-
ertheless a meaningful state-
ment involving the age mea-
sure.

The notion of meaning-
fulness lets us determine

what kind of operations we
can perform on different
measures. For example, it is
meaningful to use the mean
to compute the average of a
data set measured on a ratio
scale but not on an ordinal
scale. Medians are meaning-
ful for an ordinal scale but
not for a nominal scale.
These basic observations
have been ignored in many
software-measurement stud-
ies, in which a common mis-
take is to use the mean
(rather than median) as the
measure of average for data
that is only ordinal.

Scale type

Nominal

Ordinal

Intervals

Ratio

Absolute

TABLE A
COMMON SCALE TYPES

Admissible transformations

M'=F(At) where F is any
one-to-one mapping

,\ r~]\M) where /•' is any
monnronic increasing map-
ping that is, M(x)>M(y)
implies A/'(.v)> .W(y)"

\l'=tt.\ /(/#>())

Examples

Classification, for example software
fault types (data, control, other)

Ordering, for example, software failure
by severity (negligible, marginal,
critica 1, cata.strophic)

Calendar time, temperature
(restricted to Fahrenheit and Celsius)

Time interval, length

Counting

ble to allocate payoff from formal
methods versus other factors, such as
quality of people or effects of other
methodologies. Even where data was
collected, it was difficult to interpret
the results across the background of
the organization and the various fac-
tors surrounding the application.

One of the situations investigated
by the Gerhart team was a joint project
between IBM Hursley and the
Programming Research Group at
Oxford University.3 For 12 years, this
project used the Z specification lan-
guage to respecify parts of Customer
Information Control System-ESA
Version 3 Release 1 as it was updated.
The project made a serious attempt to
quantify the benefits of using Z. As a
result, the CICS project is widely
believed to provide the best quantita-

tive evidence to support the efficacy of j
formal methods, an observation con-
firmed by the Gerhart study.

The project would appear to be a
huge success — so successful that IBM
and PRG shared the prestigious
Queen's Award for Technology. The
project participants estimated that
using Z reduced their costs by almost
$5.5 million, a savings of nine percent
overall. In addition, they claimed a 60
percent decrease in product failure
rate. These results led the PGR's
Geraint Jones to assert in his 1992 e-
mail broadcast announcing the
Queen's Award, "The moral of this
tale is that formal methods cannot only
improve quality, but also the timeliness
and cost of producing state-of-the-art
products." However, the quantified
evidence to support these widely publi-

cized claims is missing from the pub-
lished results.

Another study casts doubt on the
claim that formal methods are a uni-
versal solution to poor software quali-
ty. In a recent article, Peter Naur4

reports that the use of formal notations
does not lead inevitably to higher qual-
ity specifications, even when used by
the most mathematically sophisticated
minds. In his experiment, the use of a
formal notation often led to more, not
fewer, defects.

These studies suggest that the ben-
efits of formal methods are not self-
evident and argue for experiments. Yet
there seems to be a widespread con-
sensus that formal methods should be
used on projects in which the software
is safety-critical. For example, John
McDermid5 asserts that "these mathe-



F E A T U R E

matical approaches provide us with the
best available approach to the develop-
ment of high-integrity safety-critical
systems." In addition, the interim UK
defense standard for such systems,
DefStd 00-55, makes the use of formal
methods mandatory.6

The assumption seems to be that no
expense should be spared to improve
confidence in the relia-
bility of critical systems.
Unfortunately, no real
project has unlimited
funds. Even safety-criti-
cal projects must use the
most cost-effective way
to ensure reliability.
Rather than abandon
formal methods, we
suggest their use be
embedded in the con-
text of an experiment so
that their effect on soft-
ware quality and relia-
bility can be studied and
assessed. At present, there is no hard
evidence to show that

• formal methods have been used
cost-effectively on a realistic, safety-
critical development;

• using formal methods delivers
reliability more cost-effectively than,
say, traditional structured methods
with enhanced testing; and

• developers and users can be
trained in sufficient numbers to use
formal methods properly.

There is also the problem of choos-
ing among competing formal methods,
which we assume are not equally effec-
tive in a given situation. By thinking
about a more scientific context before
using formal methods, a project can try
them and contribute to the larger body
of software-engineering understanding.

There are some techniques that
have become standards or standard
practice after careful, empirical analy-
sis. A good example is the use of
inspections to uncover defects in code.
Table 1 compares the efficiency of dif-
ferent kinds of testing techniques, as
reported by Bob Grady.7 This and sim-
ilar research experiments confirm one

of the few consensus views to emerge
in empirical studies: Inspections are the
cheapest and most effective testing
techniques for finding faults.

Even here, it is important to keep
the objective of the experiment in
mind. The table shows overall testing
efficiency, but does not report efficien-
cy with respect to particular kinds of

faults. Nevertheless,
analyzing empirical data
in the context of a rigor-
ous investigation provides
a sounder basis for
changing practice than
anecdote or intuition.

CURRICULA
FOR THE MOST
PART DO NOT
COVER HOW
TO ESTABLISH
AND EVALUATE
THE DESIGN OF
EXPERIMENTS.

Experimental design.
The experimental de-
sign must be correct for
the hypothesis being
tested. Some of the best
publicized studies have
subsequently been chal-
lenged on the basis of

inappropriate experimental design. For
example, an experiment by Ben
Shneiderman and his colleagues
showed that flowcharts did not help
programmers comprehend documenta-
tion any better than pseudocode.8 As a
result, flowcharts were shunned in the
software-engineering community and
textbooks almost invariably use
pseudocode instead of flowcharts to
describe specific algorithms.

However, some years later David
Scanlan demonstrated that structured
flowcharts are preferable to pseudo-
code for program documentation.9

Scanlan compared flowcharts and
pseudocode with respect to the relative
time needed to understand the algo-
rithm and the relative time needed to
make (accurate) changes to the algo-
rithm. In both dimensions, flowcharts
were clearly superior to pseudocode.
Although some of Scanlan*s criticisms
of Shneiderman's study are controver-
sial, he appears to have exposed a num-
ber of experimental flaws that explain
the radically different conclusions
about the two types of documentation.
In particular, Scanlan demonstrated

that Shneiderman overlooked several
key variables in his experimental
design.

Similar flaws in experimental design
have misled the community about the
benefits of structured programming.
Harlan Mills* claims are typical:10

When a program was claimed to be
90 percent done with solid top-down
structured programming, it would
take only 10 percent more effort to
complete it (instead of possibly anoth-
er 90 percent1.).

But Iris Vessey and Ron Weber exam-
ined in detail the published empirical
evidence to support the use of struc-
tured programming. They concluded
that the evidence was "equivocal" and
argued that the problems surrounding
experimentation on structured pro-
gramming are "a manifestation of poor
theory, poor hypothesis, and poor
methodology."11

The classic experiment by Gerald
Weinberg on meeting goals shows that
if you don't choose the attributes for
determining success carefully, it is easy
to maximize any single one as a success
criterion.12 Weinberg and Schulman
gave each of six teams a different pro-
gramming goal, and each team opti-
mized its performance (and "succeed-
ed") with respect to its goal — but per-
formed poorly in terms of the other
five goals. You can expect similar
results if you run experiments out of
context, because you will be narrowly
defining "success" according to only
one attribute.

These examples show that it is criti-
cal to examine experimental design
carefully. Many software engineers are
not familiar with how to establish or
evaluate a proper design. This is due in
no small part to the almost total
absence of topics like experimental
design, statistical analysis, and mea-
surement principles in most computer-
science and software-engineering cur-
ricula. The guidelines presented by
Basili and his colleagues are a good first
step, but the paper does not present
important material in enough detail.
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To address this problem, the British
Department of Trade and Industry is
now funding two projects in the UK:
SMARTIE is producing guidelines
about how to evaluate the effectiveness
of standards and methods, and
DESMET is preparing handbooks for
software researchers and engineers on
experimental design and statistical
analysis.13

Toy versus real Because of the cost of
designing and running large-scale
studies, exploratory research in soft-
ware engineering is all too often con-
ducted on artificial problems in artifi-
cial situations. Practitioners refer to
these as toy projects in toy situations.
The number of research studies using
experienced practitioners (instead of
students or novice programmers) on
realistic projects is minuscule.

This is particularly noticeable in
studies of programmers, a field in
which evaluative and experimental
research is the norm. At its major con-
ference, Empirical Studies of
Programmers, the community's leaders
continue to recommend that
researchers study real
projects and real pro-
grammers, yet many of
the findings reported at
the conference contin-
ue to involve small, stu-
dent projects. Because
of cost and time con-
straints, even this com-
munity refrains from
doing large-scale, real-
istic studies.

To be sure, evalua-
tive research in the
small is better than no
evaluative research at all. And a small
project may be appropriate for an ini-
tial foray into testing an idea or even a
research design. For example, Vessey
conducted an interesting experiment
using students and small projects that
indicates object orientation is not the
natural approach to systems analysis
and design that its advocates claim it to
be.14 The results are not conclusive,

TABLE 1
COMPARISON OF TESTING EFFICIENCY

Efficiency (defects found per hour)

especially for experienced practitioners
on real software projects, but it does
indicate directions for further investi-
gation. Similarly, Naur's experiment4

was small but exposed a weakness in a
popularly held belief about formal
notations.

In another small but valuable
study, Elliot Soloway, Jeffrey Bonar,
and Kate Ehrlich examined which
looping constructs novice program-
mers found most natural.15 Popular
assumptions about structured pro-
gramming are reflected in the fact
that many languages supply a while-
do loop (exit at the top) and a re-
peat-until loop (exit at the bottom).
But the Soloway study revealed
that the most natural looping struc-
ture was neither of these, but a loop
that allows an exit in the middle,

a technique disallowed
in structured program-
ming. This result im-
plies that language
designers, who follow-
ed common wisdom in
not supplying such a
loop, may inavertently
make programming tasks
more difficult than they
need to be.

How do the results
from toy studies scale up
to larger, more realistic
situations? Although

some studies have addressed this
question (as we describe later in dis-
cussing Cleanroom), little research
has been done to answer that ques-
tion. The best that can be said is that,
just as software-development-in-the-
small differs from software-develop-
ment-in-the-large, research-in-the-
small may differ from research-in-
the-large. There is something about

EXPERIMENTS
MAYBE
DESIGNED
PROPERLY BUT
MEASURE OR
ANALYZE THE
WRONG DATA.

the nature of software tasks and the
required communication among team
members that prevents our under-
standing of small-scale work from
yielding an understanding of large-
scale work.

Obviously, there is no easy solu-
tion to this problem. It is not possible
for a lone researcher, operating on a
relatively small budget, to conduct
the kind of research needed. Credible
studies require the cooperation and
financial backing of major research
institutions and software-develop-
ment organizations. To date, such
support has been rare.

Appropriate measures. Sometimes an
experiment is designed properly but it
measures and analyzes insufficient data
or the wrong data.

Measuring the right attribute? T h e most
common example is success criteria.
For example, a study to demonstrate
the effectiveness of using abstract
data types used program size, mea-
sured in lines of code, as a measure of
product quality.16 Often purely sub-
jective measures are used in the
absence of objective measures. This is
sometimes unavoidable; for example,
in measuring user satisfaction.
However, the conclusions you can
draw from subjective data are very limit-
ed. For example, Virginia Gibson and
James Senn17 show that maintainers*
subjective perceptions of which sys-
tems are most easily maintained differ
wildly from objective data that mea-
sured maintainability.

Another measure that is commonly
misleading is reliability. One of the
most effective ways to demonstrate a
method's efficacy is to show that it
leads to more reliable software. How-
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Figure 1. The relationship between faults and failures, which shows that focusing
on faults instead of failures can be fatal. Studies that compare testing methods by
using faults may be inappropriate and misleading.

ever, measuring reliability involves
tracking operational failures over time,
and it is not always practical to wait
until software is completed to evaluate
its reliability. The most common "sub-
stitute" measure is the number of faults
or defects discovered during develop-
ment and testing, a number that can be
very misleading.

At IBM, Ed Adams examined data
from nine large software products, each
with many thousands of years of logged
use worldwide.18 Figure 1 shows the
relationship he discovered between
detected faults and their manifestation
as failures. For example, 33 percent of
all faults led to a mean-time-to-failure
greater than 5,000 years. In practical
terms, such faults will almost never
manifest as failures. Conversely, about
two percent of faults led to an MTTF
of less than 50 years. These faults are
important to find, because a significant
number of users will eventually be
affected by the failures they cause.

It follows that finding and removing
large numbers of faults may not neces-
sarily improve reliability. The crucial
task is to find the important two per-
cent of faults. Thus, a focus on faults
instead of failures can be fatal, unless a
technique can identify the faults that
have a short MTTF or greatly affect
system behavior. Many studies have
compared the effectiveness of different
testing methods, but if the comparison
is done in terms of general faults dis-
covered, they may be inappropriate and
misleading.

What scale? In addition to measuring
the correct attribute, researchers must
take care to evaluate and manipulate
the measurements in a way that is
appropriate to the design and the kind
of data collected, as the box on pp. 88-
89 briefly explains.

Data falls into one of five scales:
nominal, ordinal, interval, ratio, and
absolute. Each scale reflects the data's
properties and can be manipulated
only in certain ways. For example,
nominal data includes labels or classi-
fications, such as when you classify
requirements as data requirements,
interface requirements, and so on.
Nominal data can be analyzed statisti-
cally in terms of frequency and mode,
but not in terms of mean or median.
In other words, only nonparametric
statistical tests are valid on nominal
data. The software-engineering litera-
ture is rife with experiments in which
means and standard deviations are
applied to nominal data, but their
results are meaningless in the sense of
formal measurement theory.

Likewise, there is an embarrassingly
large set of literature in which inappro-
priate statistical techniques are applied.
For example, a researcher might com-
pare correlation coefficients across dis-
parate sets of data instead of using the
more appropriate analysis of variance.
One of the most talked-about measures
in software engineering is the Software
Engineering Institute's process-maturi-
ty level. This five-point ordinal scale is
only a valid measure of an organiza-

tion's process maturity if it can be
demonstrated that, in general, organi-
zations at level n + 1 normally produce
better software than organizations at
level n. This relationship has not yet
been demonstrated, although the SEI
has told us that relevant studies are
underway.

Long-term view. Sometimes research
is designed and measured properly but
just isn't carried on long enough. Short-
term results masquerade as long-term
effects. For example, speakers at the
annual NASA Goddard Software
Engineering Conference often report on
an experiment at the Software
Engineering Laboratory to investigate
the benefits of using Ada instead of
Fortran. The researchers examined a set
of new Ada projects and found that the
productivity and quality of the resulting
Ada programs fell short of equivalent
programs written in Fortran. However,
the SEL did not stop there and report
that Ada was a failure. It continued to
develop programs in Ada, until each
team had experience with at least three
major Ada developments. These later
results indicated that there were indeed
significant benefits of Ada over Fortran.

The SEL concluded that the learning
curve for Ada is long, and that the first
set of projects represented program-
mers' efforts to code Fortran-like pro-
grams in Ada. By the third development,
die programmers were taking advantage
of Ada characteristics not available in
Fortran, and these characteristics had
measurable benefits. Thus, the long-
term view led to conclusions very differ-
ent from the short-term view.

The CASE Research Corp. found
something similar when it considered the
empirical evidence supporting the use of
CASE tools.19 They found that, contrary
to the revolutionary improvements ven-
dors invariably claimed, productivity
normally decreased in the first year of
CASE use, followed by modest improve-
ment. Again, the short- and long-term
assessments yielded opposite conclu-
sions. However, the study found that the
eventual improvement was rarely more
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than 10 percent and might be explained
by factors other than the use of CASE
(or may even fall within the margin of
error). Moreover, compared with acqui-
sition and upgrade costs, such modest
improvements may indicate that CASE
is not even cost-effective.

Researchers must take a long-term
view of practices that promise to have
a profound effect on development and
maintenance, especially since the resis-
tance of personnel to new techniques
and the problems inherent in making
radical changes quickly can mislead
those who take only a short-term view.

RECENT EXAMPLES

Although most software-engineer-
ing research does not meet the
requirements we outline here, some
interesting examples do.

Clewiroom. Perhaps the single most
complete research study involves Clean-
room.20 Studies at the SEL, done in
conjunction with the University of
Maryland at College Park and Com-
puter Sciences Corp., examined the
Cleanroom error-detection and test-
ing methodology using

• student subjects on small projects,
• NASA staff members on small real

projects, and
• experienced industry practitioners

on a sizable real project.
The findings used data collected both
prestudy and within each context. For
example, baseline data from projects
not using the Cleanroom approach
showed an error rate of six per thou-
sand lines of code and productivity of
24 lines of code per day. The study of
NASA staff using Cleanroom showed
4.5 errors per thousand LOC and pro-
ductivity of 40 LOC per day, and the
industry practitioners1 Cleanroom
project showed 3.2 errors per thou-
sand LOC and productivity of 26
LOC per day. (Note how reliability
improved significantly as Cleanroom
was scaled up to a large program, but
productivity did not.)

This study meets nearly all the cri-
teria for good software-engineering
research:

• It involved empirical evaluation
and data.

• Its design was reasonable, given
that the projects were "real."

• It involved both toy and real situa-
tions.

• The measurements were appropri-
ate to the goals.

• The experiment was conducted
over a period of time sufficient to encom-
pass the effects of change in practice.

Object-oriented design. The SEL is
also involved in a more mixed example
of software-engineering research. In
this case, it is gathering data over sev-
eral years on eight major software
projects using the object-oriented
approach to building software. The
series of studies is not finished, and the
scaled-up study is not due for comple-
tion until 1996, but
researchers are already
reporting that the ap-
proaches studied repre-
sent "the most impor-
tant methodology studies
bytheSELtodate."2»

So far, researchers
have reported that the
amount of reuse rises
dramatically when OO
techniques are used,
from 20 to 30 percent to
80 percent, and OO programs are about
three-quarters the length (in lines of
code) of comparable traditional solutions.
On the other hand, OO projects have
reported performance problems
(although it is unclear how much of these
problems are the result of OO), and OO
appears to require significant domain
analysis and project tailoring.

Unfortunately, the projects under study
are also using Ada, and the studies have
not separated the effects of OO from those
of Ada. And because many of the benefits
appear to be the result of increased
reuse, it is not clear what gains are due
to Ada, OO, or reuse.

So these studies meet many of, but

THERE ARE
FAR TOO FEW
EXAMPLES OF
MODERATELY
EFFECTIVE
RESEARCH.

not all, the goals for good research
because

• They involve empirical evaluation
and data.

• Use questionable experimental
design.

• Involve real situations.
• Use measurements appropriate to

the experimental goals.
• Are being run over an appropriate

period of time.

4GLs. More typical of research
approaches in the last decade are the
studies of the benefits of fourth-gener-
ation languages. Several interesting
studies published in the late 1980s
compare Cobol and various 4GLs for
implementing relatively simple busi-
ness systems applications.2224 The
findings of these studies are fascinat-
ing but hardly definitive. Some report
productivity improving with the use
of 4GLs by a factor of 4 to 5, while oth-

ers describe only 29 to 39
percent differences. In
some cases, object-code
performance degraded by
a factor of 15 to 174 for
4GLs, while other 4GLs
produced code that was
six times as fast!

It is apparent from
the studies that mea-
sured effects are highly
dependent on the 4GL
studied, the project's

application, and the people doing the
job (for example, end users versus
software specialists).

Examining the 4GL studies with
the same criteria for good research in
mind, we can make the following state-
ments:

• The studies were based on empiri-
cal evidence and data.

• The experimental designs were
reasonable.

• The projects were not toys, but
neither were they sizable.

• The measurements were appropri-
ate to the study goals.

• The experiments were not done
over an extended period of time.

13



(Interestingly, two of the studies involved
die same author, implying that the author
may have made a second attempt at
research in the topic area.)

Thus, recent examples of evaluative
research paint a mixed picture. There
are examples of effective research, but
they are for too few in number. There
are examples of moderately good
research, and we can learn interesting
things from them; however, follow-up,
long-term, significant project studies
are needed. And there are many exam-
ples of research that does no evalua-
tion whatsoever. Given this spectrum,
one thing is clear: there is considerable
room for improvement.

We continue to look for new tech-
nologies to improve our ability

to build and maintain software. But
there is very little empirical evidence to

confirm that technological fixes, such as
introducing specific methods, tools and
techniques, can radically improve the
way we develop software systems. Even
when improvements can be made by
using specific methods, there is an
urgent need to quantify the benefits and
costs involved, and to compare these
with competing technologies. At pre-
sent, little quantitative data is available
to help software managers make
informed decisions about which
method to use when change is needed.

The difficulty in performing the
well-designed, quantitative assessments
necessary to evaluate technologies in an
objective manner is small compared
with the massive resistance to change.
Until there is widespread demand and
expectation for objective measurement-
based evaluation, software managers
and standards bodies will continue to
place their trust in unsubstantiated

advertising claims, misleading or
incomplete research reports, and anec-
dotal evidence.

Thus, we challenge the software-
engineering community to take three
major steps toward producing more
rigorous and meaningful analyses of
current and proposed practices:

• For the software manager. Insist on
quantitative data and well-designed
experimental research to substantiate any
claims made for new or changed prac-
tices. And be willing to participate in
such experiments to further your knowl-
edge in particular and the software-engi-
neering community's in general.

• For the software developer or main-
tainer. Be flexible and willing to partici-
pate in experiments involving existing
or new techniques or methods. Try to
be objective in providing data to
researchers, and help them identify
behaviors, attitudes, or practices that

ACKNOWLEDGMENTS
Norman Fenton is supported in part by the SMARTTE and PDCS2 projects. We thank Chris Kemerer, Bev Littlewood, Peter Mellor,

and Stella Page for their contributions to this article. The final version was considerably improved as a result of the comments of several
anonymous referees.

REFERENCES
1. V.R. BasOi, R.W. Selby, and DM. Hutchens, "Experimentation in Software Engineering,"IEEE Tram. Software Engjunt 1986, pp. 758-773.
2. S. Gerhart, D. Craigen, and A. Ralston, "Observation on Industrial Practice Using Formal Methods," Proc. Int'l Conf. Software Eng., IEEE CS Press, Los

Alamitos, Calif., 1993, pp. 24-33.
3. L Hcnwim and S. King, "DCS Projea Report: EJcperierices a ^
4. P. Naur, "UndersondingTuring's Universal Machine Personal Style in Program Description," Computer J., No. 4,1993, pp. 351-371.
5.JAMdDem»d,"Safety^ticalSo^ 1,1993,pp.2-3.
eJnmTmDtfhvtStmykrdOO-SSiTheProcwrmmtcfSafk^
7. R.B. Grty,PnxtMSc/hm Maria fir Pnfa Prentice-Hall, Englewood OirB, NJ., 1992.
8. B. Shnekfcrman « al., "Experimental Investigations of me Utility of Detailed Flowcharts in Programming," Comm. ACMJvme 1977, pp. 373-381.
9. D A Scanlan, "Structured Flowcharts Outperform Pseudocode: An Experimental Caparison," JEffiSqfawnr, Sept 1989, pp. 28-36.
10. H. Mills, "Structured Programming: Retrospect and Prospect," IEEE Software, Nov. 1986, pp. 58-66.
11.1. Vessey and R. Weber, "Research on Structured Programming: An Empiricist's Evaluation," IEEE Trans. Software Eng. July 1984, pp. 397-407.
12. G. Wcinberg and E. Schulman, "Goals and Performance in Computer Programming," Human Factors, No. 1, 1974, pp. 70-77.
13. W.-E. Mohamed, C.J. Sadler, and D. Law, "Experimentation in Software Engineering: A New Framework/ Proc. Software Quality Management '93, Elsevier

Science, Essex, U.K. and Computational Mechanics Publications, Southampton, U.K., 1993.
14.1. Vessey and S. Conger, "Requirements Specification: Learning Object, Process, and Data Methodologies," Comm. ACM, May 1994.
15. E. SoiowayJ. Bonar, and K. Ehrlich, "Cognitive Strategies and Looping Constructs: An Empirical Survey," Cornm. ACM, Nov. 1983, pp. 853-860.
16. J. Mitchell, J.E. Urban, and R. McDonald, "The Effect of Abstract Data Types on Program Development," Computer, Aug. 1987, pp. 85-88.
17. V.R. Gibson and J.A. Senn, "System Structure and Software Maintenance Performance," Comm. ACM, Mar. 1989, pp. 347-358.
18. E. Adams, "Optimizing Preventive Service of Software Products," 1BMJ. Research and Development, No. 1, 1984, pp. 2-14.
19. CASE Research Group, The Second Annual Report on CASE, Bellevue, Wash., 1990.
20. A. Kouchakdjian and V.R. Basili, "Evaluation of the Cleanroom Methodology in the SEL," Proc. Software Eng. Workshop, NASA Goddard, Greenbelt, MD.,

1989.
21. M. Stark, "Impacts of Object-Oriented Technologies: Seven Years of Software Engineering,"/ Systems and Software, Nov. 1993.
22. S.K. Misra and PJ. Jalics, "Third-Generation versus Fourth-Generation Software Development," IEEE Software, July 1988, pp. 8-14.
23. V. Matos and PJ. Jalics, "An Experimental Analysis of the Performance of Fourth-Generation Tools on PCs," Comm. ACM, Nov. 1989.
24. J. Verner and G. Tate, "Estimating Size and Effort in Fourth-Generation Development," IEEE Software, July 198&, pp. 15-22.

14



might affect the aspects of the project
being studied.

• For the software researcher:
Employ evaluative research as a neces-
sary component in exploring new
ideas. Learn about rigorous experi-
mentation, and design your projects
accordingly. Try to quantify as much
as possible, and identify the degree to
which you have control over each of
the variables you are studying.

By taking these steps, the entire com-
munity should benefit Finding willing
industrial partners for research should
be made easier, as the potential benefit

to all participants is dear. The European
Community has recognized the urgent
need for quantitative evaluation per-
formed by industry-research partner-
ships. A new program called the Euro-
pean Systems and Software Initiative has
been defined and funded (initial funding
is $50 million) to support projects that
aim to evaluate specific software meth-
ods or tools. Eventually, with programs
such as these, the practice of software
engineering will benefit from better
approaches resulting from scientific
investigation and demonstrated
improvement. •
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Abstract—Experimentation in software engineering supports the ad-
vancement of the field through an iterative learning process. In this
paper we present a framework for analyzing most of the experimental
work performed in software engineering over the past several years.
We describe a variety of experiments in the framework and discuss
their contribution to the software engineering discipline. Some useful
recommendations for the application of the experimental process in
software engineering are included.

Index Terms—Controlled experiment, data collection and analysis,
empirical study, experimental design, software metrics, software tech-
nology measurement and evaluation.

I. INTRODUCTION

AS any area matures, there is the need to understand
its components and their relationships. An experi-

mental process provides a basis for the needed advance-
ment in knowledge and understanding. Since software en-
gineering is in its adolescence, it is certainly a candidate
for the experimental method of analysis. Experimentation
is performed in order to help us better evaluate, predict,
understand, control, and improve the software develop-
ment process and product.

Experimentation in software engineering, as with any
other experimental procedure, involves an iteration of a
hypothesize and test process. Models of the software pro-
cess or product are built, hypotheses about these models
are tested, and the information learned is used to refine
the old hypotheses or develop new ones. In an area like
software engineering, this approach takes on special im-
portance because we greatly need to improve our knowl-
edge of how software is developed, the effect of various
technologies, and what areas most need improvement.
There is a great deal to be learned and intuition is not
always the best teacher.

In this paper we lay out a framework for analyzing most
of the experimental work that has been performed in soft-
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ware engineering over the past several years. We then dis-
cuss a variety of these experiments, their results, and the
impact they have had on our knowledge of the software
engineering discipline.

II. OBJECTIVES

There are three overall goals for this work. The first
objective is to describe a framework for experimentation
in software engineering. The framework for experimen-
tation is intended to help structure the experimental pro-
cess and to provide a classification scheme for under-
standing and evaluating experimental studies. The second
objective is to classify and discuss a variety of experi-
ments from the literature according to the framework. The
description of several software engineering studies is in-
tended to provide an overview of the knowledge resulting
from experimental work, a summary of current research
directions, and a basis for learning from past experience
with experimentation. The third objective is to identify
problem areas and lessons learned in experimentation in
software engineering. The presentation of problem areas
and lessons learned is intended to focus attention on gen-
eral trends in the field and to provide the experimenter
with useful recommendations for performing future stud-
ies. The following three sections address these goals.

III. EXPERIMENTATION FRAMEWORK

The framework of experimentation, summarized in Fig.
1, consists of four categories corresponding to phases of
the experimentation process: 1) definition, 2) planning, 3)
operation, and 4) interpretation. The following sections
discuss each of these four phases.

A. Experiment Definition

The first phase of the experimental process is the study
definition phase. The study definition phase contains six
parts: 1) motivation, 2) object, 3) purpose, 4) perspec-
tive, 5) domain, and 6) scope. Most study definitions con-
tain each of the six parts; an example definition appears
in Fig. 2.

There can be several motivations, objects, purposes, or
perspectives in an experimental study. For example, the
motivation of a study may be to understand, assess, or
improve the effect of a certain technology. The "object
of study" is the primary entity examined in a study. A
study may examine the final software product, a devel-
opment process (e.g., inspection process, change pro-
cess), a model (e.g., software reliability model), etc. The

Reprinted from IEEE Trans. Software Eng., Vol. SE-12, No. 7, July 1986, pp. 733-743.
Copyright © 1994 by The Institute of Electrical and Electronics Engineers, Inc. AH rights reserved.
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I. Definition
Motivation
Understand
Assess
Manage
Engineer
Learn
Improve
Validate
Assure

Object
Product
Process
Model
Metric
Theory

Purpose
Characterise
Evaluate
Predict
Motivate

Perspective
Developer
Modifier
Maintainer
Project manager
Corporate manager
Customer
User
Researcher

II. Planning
Design

Experimental designs
Incomplete block
Completely randomised
Randomized block
Fractional factorial

Multivariate analysis
Correlation
Factor analysis
Regression

Statistical models
Non-parametric
Sampling

Criteria
Direct reflections of cost/quality

Cost
Errors
Changes
Reliability
Correctness

Indirect reflections of cost/quality
Data coupling
Information visibility
Programmer comprehension
Execution coverage
Site
Complexity

III. Operation
Preparation

Pilot study
Execution

Data collection
Data validation

Domain
Programmer
Program/project

Scope
Single project
Multi-project
Replicated project
Blocked subject-project

Measurement
Metric definition

Goal-question-metric
Factor-criteria-metric

Metric validation
Data collection

Automatability
Form design and test

Objective vs. subjective
Level of measurement

Nominal/classificatory
Ordinal/ranking
Interval
Ratio

Analysis
Quantitative vs. qualitative
Preliminary data analysis

Plots and histograms
Model assumptions

Primary data analysis
Model application

IV. Interpretation
Interpretation context

Statistical framework
Study purpose
Field of research

Extrapolation
Sample representativeness

Impact
Visibility
Replication
Application

Fig. I. Summary of the framework of experimentation.

Definition element
Motivation
Purpose
Object
Perspective
Domain: programmer
Domain: program
Scope

example
To improve the unit testing process,
characterise and evaluate
the processes of functional and structural testing
from the perspective of the developer
as they are applied by experienced programmers
to nnit-sise software
in a blocked subject-project study.

Fig. 2. Study definition example.

purpose of a study may be to characterize the change in a
system over time, to evaluate the effectiveness of testing
processes, to predict system development cost by using a
cost model, to motivate1 the validity of a theory by ana-
lyzing empirical evidence, etc. In experimental studies
that examine "software quality," the interpretation usu-
ally includes correctness if it is from the perspective of a
developer or reliability if it is from the perspective of a
customer. Studies that examine metrics for a given project
type from the perspective of the project manager may in-
terest certain project managers, while corporate managers
may only be interested if the metrics apply across several
project types.

1 For clarification, the usage of the word "motivate*' as a study purpose
is distinct from the study "motivation/1

#Teame per
project

one

more than
one

#Projeet«

one more than one

Single project

Replicated
project

Multi-project
variation

Blocked
•abjecHproject

Fig. 3. Experimental scopes.

Two important domains that are considered in experi-
mental studies of software are 1) the individual program-
mers or programming teams (the *'teams'*) and 2) the
programs or projects (the "projects"). "Teams" are
(possibly single-person) groups that work separately, and
"projects" are separate programs or problems on which
teams work. Teams may be characterized by experience,
size, organization, etc., and projects may be character-
ized by size, complexity, application, etc. A general clas-
sification of the scopes of experimental studies can be ob-
tained by examining the sizes of these two domains
considered (see Fig. 3). Blocked subject-project studies
examine one or more objects across a set of teams and a
set of projects. Replicated project studies examine ob-
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ject(s) across a set of teams and a single project, while
multiproject variation studies examine object(s) across a
single team and a set of projects. Single project studies
examine object(s) on a single team and a single project.
As the representativeness of the samples examined and
the scope of examination increase, the wider-reaching a
study's conclusions become.

B. Experiment Planning

The second phase of the experimental process is the
study planning phase. The following sections discuss as-
pects of the experiment planning phase: 1) design, 2) cri-
teria, and 3) measurement.

The design of an experiment couples the study scope
with analytical methods and indicates the domain samples
to be examined. Fractional factorial or randomized block
designs usually apply in blocked subject-project studies,
while completely randomized or incomplete block designs
usually apply in multiproject and replicated project stud-
ies [33], [41]. Multivariate analysis methods, including
correlation, factor analysis, and regression [75], [80],
[89], generally may be used across all experimental
scopes. Statistical models may be formulated and custom-
ized as appropriate [89]. Nonparametric methods should
be planned when only limited data may be available or
distributional assumptions may not be met [100]. Sam-
pling techniques [40] may be used to select representative
programmers and programs/projects to examine.

Different motivations, objects, purposes, perspectives,
domains, and scopes require the examination of different
criteria. Criteria that tend to be direct reflections of cost/
quality include cost [114], [108], [86], [5], [28], errors/
changes [49], [24], [112], [2], [81], [13], reliability [42],
[64], [56], [69], [70], [76], [77], [95], and correctness
[51], [61], [68]. Criteria that tend to be indirect reflec-
tions of cost/quality include data coupling [62], [48],
[104], [78], information visibility [85], [83], [55], pro-
grammer understanding [99], [103], [109], [113], exe-
cution coverage [105], [15], [18], and size/complexity
[11], [59], [71].

The concrete manifestations of the cost/quality aspects
examined in the experiment are captured through mea-
surement. Paradigms assist in the metric definition pro-
cess: the goal-question-metric paradigm [17], [25], [19],
[93] and the factor-criteria-metric paradigm [39], [72].
Once appropriate metrics have been defined, they may be
validated to show that they capture what is intended [7],
[21], [45], [50], [108], [116]. The data collection process
includes developing automated collection schemes [16]
and designing and testing data collection forms [25], [27].
The required data may include both objective and subjec-
tive data and different levels of measurement: nominal (or
classificatory), ordinal (or ranking), interval, or ratio
[100].

C. Experiment Operation

The third phase of the experimental process is the study
operation phase. The operation of the experiment consists

of 1) preparation, 2) execution, and 3) analysis. Before
conducting the actual experiment, preparation may in-
clude a pilot study to confirm the experimental scenario,
help organize experimental factors (e.g., subject exper-
tise), or inoculate the subjects [45], [44], [63], [18],
[113], [73]. Experimenters collect and validate the de-
fined data during the execution of the study [21], [112].
The analysis of the data may include a combination of
quantitative and qualitative methods [30]. The prelimi-
nary screening of the data, probably using plots and his-
tograms, usually precedes the formal data analysis. The
process of analyzing the data requires the investigation of
any underlying assumptions (e.g., distributional) before
the application of the statistical models and tests.

D. Experiment Interpretation

The fourth phase of the experimental process is the
study interpretation phase. The interpretation of the ex-
periment consists of 1) interpretation context, 2) extrap-
olation, and 3) impact. The results of the data analysis
from a study are interpreted in a broadening series of con-
texts. These contexts of interpretation are the statistical
framework in which the result is derived, the purpose of
the particular study, and the knowledge in the field of re-
search [16]. The representativeness of the sampling ana-
lyzed in a study qualifies the extrapolation of the results
to other environments [17]. Several follow-up activities
contribute to the impact of a study: presenting/publishing
the results for feedback, replicating the experiment [33],
[41], and actually applying the results by modifying
methods for software development, maintenance, man-
agement, and research.

IV. CLASSIFICATION OF ANALYSES

Several investigators have published studies in the four
general scopes of examination: blocked subject-project,
replicated project, multiproject variation, or single proj-
ect. The following sections cite studies from each of these
categories. Note that surveys on experimentation meth-
odology in empirical studies include [35], [96], [74], [98],
Each of the sections first discusses one experiment in
moderate depth, using italicized keywords from the
framework for experimentation, and then chronologically
presents an overview of several others in the category. In
any survey of this type it is almost certain that some de-
serving work has been accidentally omitted. For this, we
apologize in advance.

A, Blocked Subject-Project Studies

With a motivation to improve and better understand unit
testing, Basili and Selby [18] conducted a study whose
purpose was to characterize and evaluate the processes
(i.e., objects) of code reading, functional testing, and
structural testing from the perspective of the developer.
The testing processes were examined in a blocked sub-
ject-project scope, where 74 student through professional
programmers (from the programmer domain) tested four
unit-size programs (from the program domain) in a rep-
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Heated fractional factorial design. Objective measurement
of the testing processes was in several criteria areas: fault
detection effectiveness, fault detection cost, and classes
of faults detected. Experiment preparation included a pi-
lot study [63], execution incorporated both manual and
automated monitoring of testing activity, and analysis
used analysis of variance methods [33], [90]. The major
results (in the interpretation context of the study purpose)
included: 1) with the professionals, code reading detected
more software faults and had a higher fault detection rate
than did the other methods; 2) with the professionals,
functional testing detected more faults than did structural
testing, but they were not different in fault detection rate;
3) with the students, the three techniques were not differ-
ent in performance, except that structural testing detected
fewer faults than did the others in one study phase; and
4) overall, code reading detected more interface faults and
functional testing detected more control faults than did the
other methods. A major result (in the interpretation con-
text of the field of research) was that the study suggested
that nonexecution based fault detection, as in code read-
ing, is at least as effective as on-line methods. The par-
ticular programmers and programs sampled qualify the
extrapolation of the results. The impact of the study was
an advancement in the understanding of effective software
testing methods.

In order to understand program debugging, Gould and
Drongowski [58] evaluated several related factors, in-
cluding effect of debugging aids, effect of fault type, and
effect of particular program debugged from the perspec-
tive of the developer and maintained Thirty experienced
programmers independently debugged one of four one-
page programs that contained a single fault from one of
three classes. The major results of these studies were: 1)
debugging is much faster if the programmer has had pre-
vious experience with the program, 2) assignment bugs
were harder to find than other kinds, and 3) debugging
aids did not seem to help programmers debug faster. Con-
sistent results were obtained when the study was con-
ducted on ten additional experienced programmers [57].
These results and the identification of possible "princi-
ples" of debugging contributed to the understanding of
debugging methodology.

In order to improve experimentation methodology and
its application, Weissman [113] evaluated programmers'
ability to understand and modify a program from the per-
spective of the developer and modifier. Various measures
of programmer understanding were calculated, in a series
of factorial design experiments, on groups of 16-48 uni-
versity students performing tasks on two small programs.
The study emphasized the need for well-structured and
well-documented programs and provided valuable testi-
mony on and worked toward a suitable experimentation
methodology.

In order to assess the impact of language features on
the programming process, Gannon and Horning [54] char-
acterized the relationship of language features to software
reliability from the perspective of the developer. Based

on an analysis of the deficiencies in a programming lan-
guage, nine different features were modified to produce a
new version. Fifty-one advanced students were divided
into two groups and asked to complete implementations
of two small but sophisticated programs (75-200 line) in
the original language and its modified version. The rede-
signed features in the two languages were contrasted in
program fault frequency, type, and persistence. The ex-
periment identified several language-design decisions that
significantly affected reliability, which contributed to the
understanding of language design for reliable software.

In order to understand the unit testing process better,
Hetzel [60] evaluated a reading technique and functional
and "selective9* testing (a composite approach) from the
perspective of the developer. Thirty-nine university stu-
dents applied the techniques to three unit-size programs
in a Latin square design. Functional and "selective" test-
ing were equally effective and both superior to the reading
technique, which contributed to our understanding of test-
ing methodology.

In order to improve and better understand the mainte-
nance process, Curtis et al. [44] conducted two experi-
ments to evaluate factors that influence two aspects of
software maintenance, program understanding, and mod-
ification, from the perspective of the developer and main-
tainer. Thirty-six junior through advanced professional
programmers in each experiment examined three classes
of small (36-57 source line) programs in a factorial de-
sign. The factors examined include control flow complex-
ity, variable name mnemonicity, type of modification, de-
gree of commenting, and the relationship of programmer
performance to various complexity metrics. In [45] they
continued the investigation of how software characteris-
tics relate to psychological complexity and presented a
third experiment to evaluate the ability of 54 professional
programmers to detect program bugs in three programs in
a factorial design. The series of experiments suggested
that software science [59] and cyclomatic complexity [71]
measures were related to the difficulty experienced by
programmers in locating errors in code.

In order to improve and better understand program de-
bugging, Weiser [110] evaluated the theory that "pro-
grammers use 'slicing* (stripping away a program's state-
ments that do not influence a given variable at a given
statement) when debugging" from the perspective of the
developer, maintainer, and researcher. Twenty-one uni-
versity graduate students and programming staff de-
bugged a fault in three unit-size (75-150 source line) pro-
grams in a nonparametric design. The study results
supported the slicing theory, that is, programmers during
debugging routinely partitioned programs into a coherent,
discontiguous piece (or slice). The results advanced the
understanding of software debugging methodology.

In order to improve design techniques, Ramsey, At-
wood, and Van Doren [87] evaluated flowcharts and pro-
gram design languages (PDL) from the perspective of the
developer. Twenty-two graduate students designed two
small (approximately 1000 source line) projects, one using
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flowcharts and the other using PDL. Overall, the results
suggested that design performance and designer-pro-
grammer communication were better for projects using
PDL.

In order to validate a theory of programming knowl-
edge, Soloway and Ehrlich [102] conducted two studies,
using 139 novices and 41 professional programmers, to
evaluate programmer behavior from the perspective of the
researcher. The theory was that programming knowledge
contained programming plans (generic program fragments
representing common sequences of actions) and rules of
programming discourse (conventions used in composing
plans into programs). The results supported the existence
and use of such plans and rules by both novice and ad-
vanced programmers.

Other blocked subject-project studies include [82],
[115], and [111].

B. Replicated Project Studies

With a motivation to assess and better understand team
software development methodologies, Basili and Reiter
[16] conducted a study whose purpose was to characterize
and evaluate the development processes (i.e., objects) of
a 1) disciplined-methodology team approach, 2) ad hoc
team approach, and 3) ad hoc individual approach from
the perspective of the developer and project manager. The
development processes were examined in a replicated
project scope, in which advanced university students
comprising seven three-person teams, six three-person
teams, and six individuals (from the programmer domain)
used the approaches, respectively. They separately de-
veloped a small (600-2200 line) compiler (from the pro-
gram domain) in a nonparametric design. Objective mea-
surement of the development approaches was in several
criteria areas: number of changes, number of program
runs, program data usage, program data coupling/bind-
ing, static program size/complexity metrics, language
usage, and modularity. Experiment preparation included
presentation of relevant material [68], [8], [34], execution
included automated monitoring of on-line development
activity and analysis used nonparametric comparison
methods. The major results (in the interpretation context
of the study purpose) included: 1) the methodological dis-
cipline was a key influence on the general efficiency of
the software development process; 2) the disciplined team
methodology significantly reduced the costs of software
development as reflected in program runs and changes;
and 3) the examination of the effect of the development
approaches was accomplished by the use of quantitative,
objective, unobtrusive, and automatable process and
product metrics. A major result (in the interpretation con-
text of the field of research) was that the study supported
the belief that incorporating discipline in software devel-
opment reflects positively on both the development pro-
cess and final product. The particular programmers and
program sampled qualify the extrapolation of the results.
The impact of the study was an advancement in the un-

derstanding of software development methodologies and
their evaluation.

In order to improve the design and implementation pro-
cesses, Parnas [84] evaluated system modularity from the
perspective of the developer. Twenty university under-
graduates each developed one of four different types of
implementations for one of five different small modules.
Then each of the modules were combined with others to
form several versions of the whole system. The results
were that minor effort was required in assembling the sys-
tems and that major system changes were confined to
small, well-defined subsystems. The results supported the
ideas on formal specifications and modularity discussed
in [83] and [85], and advanced the understanding of de-
sign methodology.

In order to assess the impact of static typing of pro-
gramming languages in the development process, Gannon
[53] evaluated the use of a statically typed language (hav-
ing integers and strings) and a "typeless" language (e.g.,
arbitrary subscripting of memory) from the perspective of
the developer. Thirty-eight students programmed a small
(48-297 source line) problem in both languages, with half
doing it in each order. The two languages were compared
in the resulting program faults, the number of runs con-
taining faults, and the relation of subject experience to
fault proneness. The major result was that the use of a
statically typed language can increase programming reli-
ability, which improved our understanding of the design
and use of programming languages.

In order to improve program composition, comprehen-
sion, debugging, and modification, Shneiderman [99]
evaluated the use of detailed flowcharts in these tasks from
the perspective of the developer, maintainer, modifier, and
researcher. Groups of 53-70 novice through intermediate
subjects, in a series of five experiments, performed var-
ious tasks using small programs. No significant differ-
ences were found between groups that used and those that
did not use flowcharts, questioning the merit of using de-
tailed flowcharts.

In order to improve and better understand the unit test-
ing process, Myers [79] evaluated the techniques of three-
person walk-throughs, functional testing, and a control
group from the perspective of the developer. Fifty-nine
junior through advanced professional programmers ap-
plied the techniques to test a small (100 source line) but
nontrivial program. The techniques were not different in
the number of faults they detected, all pairings of tech-
niques were superior to single techniques, and code re-
views were less cost-effective than the others. These re-
sults improved our understanding of the selection of
appropriate software testing techniques.

In order to validate a particular metric family, Basili
and Hutchens [11] evaluated the ability of a proposed
metric family to explain differences in system develop-
ment methodologies and system changes from the per-
spective of the developer, project manager, and re-
searcher. The metrics were applied to 19 versions of a
small (600-2200) compiler, which were developed by
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teams of advanced university students using three differ-
ent development approaches (see the first study [16] de-
scribed in this section). The major results included: 1) the
metrics were able to differentiate among projects devel-
oped with different development methodologies; and 2)
the differences among individuals had a large effect on the
relationships between the metrics and aspects of system
development. These results provided insights into the for-
mulation and appropriate use of software metrics.

In order to improve the understanding of why software
errors occur, Soloway etal. [65], [101] characterized pro-
grammer misconceptions, cognitive strategies, and their
manifestations as bugs in programs from the perspective
of the developer and researcher. Two hundred and four
novice programmers separately attempted implementa-
tions of an elementary program. The results supported the
programmers' intended use of "programming plans"
[103] and revealed that most people preferred a read-pro-
cess strategy over a process-read strategy. The results ad-
vanced the understanding of how individuals write pro-
grams, why they sometimes make errors, and what
programming language constructs should be available.

In order to understand the effect of coding conventions
on program comprehensibility, Miara et al. [73] con-
ducted a study to evaluate the relationship between inden-
tation levels and program comprehension from the per-
spective of the developer. Eighty-six novice through
professional subjects answered questions about one of
seven program variations with different level and type of
indentation. The major result was that an indentation level
of two or four spaces was preferred over zero or six
spaces.

In order to improve software development approaches,
Boehm, Gray, and Seewaldt [29] characterized and eval-
uated the prototyping and specifying development ap-
proaches from the perspective of the developer, project
manager, and user. Seven two- and three-person teams,
consisting of university graduate students, developed ver-
sions of the same application software system (2000-4000
line); four teams used a requirement/design specifying
approach and three teams used a prototyping approach.
The systems developed by prototyping were smaller, re-
quired less development effort, and were easier to use.
The systems developed by specifying had more coherent
designs, more complete functionality, and software that
was easier to integrate. These results contributed to the
understanding of the merits and appropriateness of soft-
ware development approaches.

In order to validate the theoretical model for N-version
programming [3], [66], Knight and Leveson [67] con-
ducted a study to evaluate the effectiveness of N-version
programming for reliability from the perspective of the
customer and user. /V-version programming uses a high-
level driver to connect several separately designed ver-
sions of the same system, the systems "vote" on the cor-
rect solution, and the solution provided by the majority of
the systems is output. Twenty-seven graduate students
were asked to independently design an 800 source line

system. The factors examined included individual system
reliability, total N-version system reliability, and classes
of faults that occurred in systems simultaneously. The
major result was that the assumption of independence of
the faults in the programs was not justified, and therefore,
the reliability of the combined "voting" system was not
as high as given by the model.

In order to improve and better understand software de-
velopment approaches, Selby, Basili, and Baker [94]
characterized and evaluated the Cleanroom development
approach [46], [47], in which software is developed with-
out execution (i.e., completely off-line), from the per-
spective of the developer, project manager, and customer.
Fifteen three-person teams of advanced university stu-
dents separately developed a small system (800-2300
source line); ten teams used Cleanroom and five teams
used a traditional development approach in a nonpara-
metric design. The major results included: 1) most devel-
opers using the Cleanroom approach were able to build
systems without program execution; and 2) the Clean-
room teams' products met system requirements more
completely and succeeded on more operational test cases
than did those developed with a traditional approach. The
results suggested the feasibility of complete off-line de-
velopment, as in Cleanroom, and advanced the under-
standing of software development methodology.

Other replicated project studies include [37], [4], and
[63].

C. Multiproject Variation Studies

With a motivation to improve the understanding of re-
source usage during software development, Bailey and
Basili [5] conducted a study whose purpose was to predict
development cost by using a particular model (i.e., ob-
ject) and to evaluate it from the perspective of the project
manager, corporate manager, and researcher. The partic-
ular model generation method was examined in a multi-
project scope, with baseline data from 18 large (2500-
100 000 source line) software projects in the NASA
S.E.L. [27], [26], [38], [91] production environment
(from the program domain), in which teams contained
from two to ten programmers (from the programmer do-
main). The study design incorporated multivariate meth-
ods to parameterize the model. Objective and subjective
measurement of the projects was based on 21 criteria2 in
three areas: methodology, complexity, and personnel ex-
perience. Study preparation included preliminary work
[52], execution included an established set of data collec-
tion forms [27], and analysis used forward multivariate
regression methods. The major results (in the interpreta-
tion context of the study purpose) included 1) the esti-
mation of software development resource usage improved
by considering a set of both baseline and customization
factors; 2) the application in the NASA environment of

2 Twenty-one factors were selected after examining a total of 82 factors
that possibly contributed to project resource expenditure, including 36 from
1108} and 16 from [28].
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the proposed model generation method, which considers
both types of factors, produced a resource usage estimate
for a future project within one standard deviation of the
actual; and 3) the confirmation of the NASA S.E.L. for-
mula that the cost per line of reusing code is 20 percent
of that of developing new code. A major result (in the
interpretation context of the field of research) was that the
study highlighted the difference of each software devel-
opment environment, which improved the selection and
use of resource estimation models. The particular pro-
gramming environment and projects sampled qualify the
extrapolation of the results. The impact of the study was
an advancement in the understanding of estimating soft-
ware development resource expenditure.

In order to assess, manage, and improve multiproject
environments, several researchers [28], [20], [108], [10],
[36], [21], [62], [112], [97], [107] have characterized,
evaluated, and/or predicted the effect of several factors
from the perspective of the developer, modifier, project
manager, and corporate manager. All the studies exam-
ined moderate to large projects from production environ-
ments. The relationships investigated were among various
factors, including structured programming, personnel
background, development process and product con-
straints, project complexity, human and computer re-
source consumption, error-prone software identification,
error/change distributions, data coupling/binding, project
duration, staff size, degree of management control, and
productivity. These studies have provided increased proj-
ect visibility, greater understanding of classes of factors
sensitive to project performance, awareness of the need
for project measurement, and efforts for standardization
of definitions. Analysis has begun on incorporating proj-
ect variation information into a management tool [9], [14].

In order to improve and better understand the software
maintenance process, Vessey and Weber [106] conducted
an experiment to evaluate the relationship between the rate
of maintenance repair and various product and process
metrics from the perspective of the developer, user, and
the project manager. A total of 447 small (up to 600 state-
ments) commercial and clerical Cobol programs from one
Australian organization and two U.S. organizations were
analyzed. The product and process metrics included pro-
gram complexity, programming style, programmer qual-
ity, and number of system releases. The major results
were: 1) in the Australian organization, program com-
plexity and programming style significantly affected the
maintenance repair rate; and 2) in the U.S. organizations,
the number of times a system was released significantly
affected the maintenance repair rate.

In order to improve the software maintenance process,
Adams [1] evaluated operational faults from the perspec-
tive of the user, customer, project manager, and corporate
manager. The fault history for nine large production prod-
ucts (e.g., operating system releases or their major com-
ponents) were empirically modeled. He developed an ap-
proach for estimating whether and under what circum-
stances preventively hx'mg faults in operational software

in the field was appropriate. Preventively fixing faults
consisted of installing fixes to faults that had yet to be
discovered by particular users, but had been discovered
by the vendor or other users. The major result was that
for the typical user, corrective service was a reasonable
way of dealing with most faults after the code had been
in use for a fairly long period of time, while preventively
fixing high-rate faults was advantageous during the time
immediately following initial release.

In order to assess the effectiveness of the testing pro-
cess, Bowen [31] evaluated estimations of the number of
residual faults in a system from the perspective of the cus-
tomer, developer, and project manager. The study was
based on fault data collected from three large (2000-6000
module) systems developed in the Hughes-Fullerton en-
vironment. The study partitioned the faults based on se-
verity and analyzed the differences in estimates of re-
maining faults according to stage of testing. Insights were
gained into relationships between fault detection rates and
residual faults.

D. Single Project Studies

With a motivation to improve software development
methodology, Basiii and Turner [22] conducted a study
whose purpose was to characterize the process (i.e., ob-
ject) of iterative enhancement in conjunction with a top-
down, stepwise refinement development approach from
the perspective of the developer. The development pro-
cess was examined in a single project scope, where the
authors, two experienced individuals (from the program-
mer domain), built a 17 000 line compiler (from the pro-
gram domain). The study design incorporated descriptive
methods to capture system evolution. Objective measure-
ment of the system was in several criteria areas: size,
modularity, local/global data usage, and data binding/
coupling [62], [104]. Study preparation included lan-
guage design [23], execution incorporated static analysis
of system snapshots, and analysis used descriptive statis-
tics. The results (in the interpretation context of the sta-
tistical framework) included: 1) the percentage of global
variables decreased over time while the percentage of ac-
tual versus possible data couplings across modules in-
creased, suggesting the usage of global data became more
appropriate over time; and 2) the number of procedures
and functions rose over time while the number of state-
ments per procedure or function decreased, suggesting in-
creased modularity. The major result of the study (in the
interpretation context of the study purpose) was that the
iterative enhancement technique encouraged the devel-
opment of a software product that had several generally
desirable aspects of system structure. A major result (in
the interpretation context of the field of research) was that
the study demonstrated the feasibility of iterative en-
hancement. The particular programming team and project
examined qualify the extrapolation of the results. The im-
pact of the study was an advancement in the understand-
ing of software development approaches.

In order to improve, better understand, and manage the
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software development process, Baker [6] evaluated the ef-
fect of applying chief programming teams and structured
programming in system development from the perspective
of the user, developer, project manager, and corporate
manager. The large (83 000 line) system, known as "The
New York Times Project," was developed by a team of
professionals organized as a chief programmer team, using
structured code, top-down design, walk-throughs, and
program libraries. Several benefits were identified, in-
cluding reduced development time and cost, reduced time
in system integration, and reduced fault detection in ac-
ceptance testing and field use. The results of the study
demonstrated the feasibility of the chief programmer team
concept and the accompanying methodologies in a pro-
duction environment.

In order to improve their development environments,
several researchers [49], [24], [2], [81], [13] have each
conducted single project studies to characterize the errors
and changes made during a development project. They
examined the development of a moderate to large soft-
ware project, done by a multiperson team, in a production
environment. They analyzed the frequency and distribu-
tion of errors during development and their relationship
with several factors, including module size, software
complexity, developer experience, method of detection
and isolation, effort for isolation and correction, phase of
entrance into the system and observance, reuse of existing
design and code, and role of the requirements document.
Such analyses have produced fault categorization schemes
and have been useful in understanding and improving a
development environment.

In order to better understand and improve the use of the
Ada9 language, Basili et al. [55], [12] examined a ground-
support system written in Ada to characterize the use of
Ada packages from the perspective of the developer. Four
professional programmers developed a project of 10 000
source lines of code. Factors such as how package use
affected the ease of system modification and how to mea-
sure module change resistance were identified, as well as
how these observations related to aspects of development
and training. The major results were 1) several measures
of Ada programs were developed, and 2) there was an
indication that a lot of training will be necessary if we are
to expect the facilities of Ada to be properly used.

In order to assess and improve software testing meth-
odology, Basili and Ramsey [15], [88] characterized and
evaluated the relationship between system acceptance tests
and operational usage from the perspective of the devel-
oper, project manager, customer, and researcher. The ex-
ecution coverage of functionally generated acceptance test
cases and a sample of operational usage cases was moni-
tored for a medium-size (10 000 line) software system de-
veloped in a production environment. The results calcu-
lated that 64 percent of the program statements were
executed during system operation and that the acceptance
test cases corresponded reasonably well to the operational

•Ada is a registered trademark of the U.S. Department of Defense (Ada
Joint Program Office).

usage. The results gave insights into the relationships
among structural coverage, fault detection, system test-
ing, and system usage.

V. PROBLEM AREAS IN EXPERIMENTATION

The following sections identify several problem areas
of experimentation in software engineering. These areas
may serve as guidelines in the performance of future stud-
ies. After mentioning some overall observations, consid-
erations in each of the areas of experiment definition,
planning, operation, and interpretation are discussed.

A. Experimentation Overall

There appears to be no * Universal model" or '*silver
bullet" in software engineering. There are an enormous
number of factors that differ across environments, in terms
of desired cost/quality goals, methodology, experience,
problem domain, constraints, etc. [108], [20], [5], [10],
[28]. This results in every software development/main-
tenance environment being different. Another area of wide
variation is the many-to-one (e.g., 10:1) differential in
human performance [11], [43], [18]. The particular indi-
viduals examined in an empirical study can make an enor-
mous difference. Among other considerations, these vari-
ations suggest that metrics need to be validated for a
particular environment and a particular person to show
that they capture what is intended [11], [21]. Thus, ex-
perimental studies should consider the potentially vast dif-
ferences among environments and among people.

B. Experiment Definition

In the definition of the purpose for the experiment, the
formulation of intuitive problems into precisely stated
goals is a nontrivial task [17], [25]. Defining the purpose
of a study often requires the articulation of what is meant
by * Software quality." The many interpretations and per-
ceptions of quality [32], [39], [72] highlight the need for
considering whose perspective of quality is being exam-
ined. Thus, a precise specification of the problem to be
investigated is a major step toward its solution.

C. Experiment Planning

Experimental planning should have a horizon beyond a
first experiment. Controlled studies may be used to focus
on the effect of certain factors, while their results may be
confirmed in replications [92], [99], [102], [113], [58],
[57], [45], [44], [18] and/or larger case studies [5], [16].
When designing studies, consider that a combination of
factors may be effective as a "critical mass," even though
the particular factors may be ineffective when treated in
isolation [16], [107]. Note that formal designs and the
resulting statistical robustness are desirable, but we should
not be driven exclusively by the achievement of statistical
significance. Common sense must be maintained, which
allows us, for example, to experiment just to help develop
and refine hypotheses [13], [112]. Thus, the experimental
planning process should include a series of experiments
for exploration, verification, and application.
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D. Experiment Operation

The collection of the required data constitutes the pri-
mary result of the study operation phase. The data must
be carefully defined, validated, and communicated to en-
sure their consistent interpretation by all persons associ-
ated with the experiment: subjects under observation, ex-
perimenters, and literature audience [21]. There have been
papers in the literature that do not define their data well
enough to enable a comparison of results across many
projects and environments. We have often contacted ex-
perimenters and discovered that different entities were
being measured in different studies. Thus, the experimen-
ter should be cautious about the definition, validation, and
communication of data, since they play a fundamental role
in the experimental process.

E. Experiment Interpretation

The appropriate presentation of results from experi-
ments contributes to their correct interpretation. Experi-
mental results need to be qualified by the particular sam-
ples (e.g., programmers, programs) analyzed [17]. The
extrapolation of results from a particular sample must
consider the representativeness of the sample to other en-
vironments [40], [114], [108], [86], [5], [28]. The visi-
bility of the experimental results in professional forums
and the open literature provides valuable feedback and
constructive criticism. Thus, the presentation of experi-
mental results should include appropriate qualification and
adequate exposure to support their proper interpretation.

VI. CONCLUSION

Experimentation in software engineering supports the
advancement of the field through an iterative learning pro-
cess. The experimental process has begun to be applied
in a multiplicity of environments to study a variety of
software technology areas. From the studies presented, it
is clear that experimentation has proven effective in pro-
viding insights and furthering our domain of knowledge
about the software process and product. In fact, there is
a learning process in the experimentation approach itself,
as has been shown in this paper.

We have described a framework for experimentation to
provide a structure for presenting previous studies. We
also recommend the framework as a mechanism to facil-
itate the definition, planning, operation, and interpreta-
tion of past and future studies. The problem areas dis-
cussed are meant to provide some useful recommendations
for the application of the experimental process in software
engineering. The experimental framework cannot be used
in a vacuum; the framework and the lessons learned com-
plement one another and should be used in a synergistic
fashion.
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^Identifying and

dealing with risks

early in development

lessens long-term

costs and helps

prevent software

disasters.

It is easy to begin

managing risks in

your environment.

Software Risk
Management:
Principles and
Practices
BARRY W.BOEHM,

Defense Advanced Research Projects Agency

ike many fields in
their early stages, the software field has
had its share of project disasters: the soft-
ware equivalents of the Beauvais Cathe-
dral, the HMS Titanic, and the "Gallop-
ing Gertie" Tacoma Narrows Bridge.
The frequency of these software-project
disasters is a serious concern: A recent
survey of 600 firms indicated that 35 per-
cent of them had at least one runaway
software project.1

Most postmortems of these software-
project disasters have indicated that their
problems would have been avoided or
strongly reduced if there had been an ex-
plicit early concern with identifying and
resolving their high-risk elements. Fre-
quently, these projects were swept along
by a tide of optimistic enthusiasm during
their early phases that caused them to
miss some clear signals of high-risk issues
that proved to be their downfall later.

Enthusiasm for new software capabil-
ities is a good thing. But it must be tem-
pered with a concern for early identifica-
tion and resolution of a project's high-risk
elements so people can get these resolved
early and then focus their enthusiasm and
energy on the positive aspects of their
product.

Current approaches to the software
process make it too easy for projects to
make high-risk commitments that they
will later regret-

• The sequential, document-driven
waterfoU process model tempts people to
overpromise software capabilities in con-
tractually binding requirements specifi-
cations before they understand their risk
implications.

• The code-driven, evolutionary de-
velopment process model tempts people to
say, "Here are some neat ideas I'd like to
put into this system. I'll code them up, and

Reprinted from IEEE Software, Vol. 8, No. 1, Jan. 1991, pp. 32-41.
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if they don't fit other people's ideas, we'll
just evolve things until they work." This
sort of approach usually works fine in
some well-supported minidomains like
spreadsheet applications but, in more
complex application domains, it most
often creates or neglects unsalvageable
high-risk elements and leads the project
down the path to disaster.

At TRW and elsewhere, I have had the
good fortune to observe many project
managers at work firsthand and to try to
understand and apply the factors that dis-
tinguished the more successful project
managers from the less successful ones.
Some successfully used a waterfall ap-
proach, others successfully used an evolu-
tionary development approach, and still
others successfully orchestrated complex
mixtures of these and other approaches in-
volving prototyping, simulation, com-
mercial software, executable specifica-
tions, tiger teams, design competitions,
subcontracting, and various lands of cost-
benefit analyses.

One pattern that emerged very
strongly was that the successful project
managers were good risk managers. Al-
though they generally didn't use such
terms as "risk identification," "risk assess-
ment," "risk-management planning," or
"risk monitoring," they were using a gen-
eral concept of risk exposure (potential
loss times die probability of loss) to guide
their priorities and actions. And their pro-
jects tended to avoid pitfalls and produce
good products.

The emerging discipline of software
risk management is an attempt to formal-
ize these risk-oriented correlates of success
into a readily applicable set of principles
and practices. Its objectives are to identify,
address, and eliminate risk items before
they become either threats to successful
software operation or major sources of
software rework.

BASIC CONCEPTS

Webster's dictionary defines "risk" as
"the possibility of loss or injury." This def-
inition can be translated into the funda-
mental concept of risk management risk
exposure, sometimes also called "risk im-

pact" or "risk factor." Risk exposure is de-
fined by the relationship

RE«P(UO)*L(UO)
where RE is the risk exposure, P(UO) is
the probability of an unsatisfactory out-
come and L(UO) is the loss to the parties
affected if the outcome is unsatisfactory.
To relate this definition to software pro-
jects, we need a definition of "unsatisfac-
tory outcome."

Given that projects involve several
classes of participants (customer, devel-
oper, user, and maintainer), each with dif-
ferent but highly important satisfaction
criteria, it is clear that "unsatisfactory out-
come" is multidimensional:

• For customers and developers,
budget overruns and schedule slips are
unsatisfactory.

• For users, products with the wrong
functionality, user-interface shortfalls,
performance shortfalls, or reliability

shortfalls are unsatisfactory.
• For maintainers, poor-quality soft-

ware is unsatisfactory.
These components of an unsatisfac-

tory outcome provide a top-level checklist
for identifying and assessing risk items.

A fundamental risk-analysis paradigm
is the decision tree. Figure 1 illustrates a
potentially risky situation involving the
software controlling a satellite experi-
ment The software has been under devel-
opment by the experiment team, which
understands the experiment well but is in-
experienced in and somewhat casual about
software development As a result, the sat-
ellite-platform manager has obtained an
estimate that there is a probability P(UO)
of 0.4 that the experimenters' software will
have a critical error: one that will wipe out
the entire experiment and cause an associ-
ated loss L(UO) of the total $20 million
investment in the experiment

Risk

exposure

Combined risk
exposure

P(UO) = 0.36 I (U0) = $0.5 million

-o
US20.5 million

•o

U $0.5 million

-o

-O

I = $20 million

-o

$0.18 million

$0.82 million > $1.3 million

$0.30 million

$0

$2 million V $2 million

NoCE

US0

-o
SO

J

FIGURE 1 . DECISION TREE FOR WHETHER TO PERFORM INDEPENDENT VALIDATION AND VERIFICATION TO EUMIN ATE

CRmCAL ERRORS IN A SATELLrTE€XPERIMENT PROGRAM. LflJO) S THE LOSS ASSOCIATED WTTH AN UNSATISFAC-

TORY OUTCOME. P(UO) S THE PROBABILrTY OF THE UNSATISFACTORY OUTCOME, AND CE IS A CRmCAL ERROR
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FIGURE 2 . SOFTWARE R6K MANAGEMENT STEPS.

The satellite-platform manager identi-
fies two major options for reducing die
risk of losing the experiment

• Convincing and helping the experi-
ment team to apply better development
methods. This incurs no additional cost
and, from previous experience, the man-
ager estimates that this will reduce the
error probability P(UO) to 0.1.

• Hiring a contractor to indepen-
dently verify and validate the software.
This costs an additional $500,000; based
on the results of similar IV&V efforts* the
manager estimates that this will reduce the
error probability P(UO) to 0.04.

The decision tree in Figure 1 then
shows, for each of the two major decision
options, the possible outcomes in terms of
the critical error existing or being found
and eliminated, their probabilities, the
losses associated with each outcome, the
risk exposure associated with each out-
come, and the total risk exposure (or ex-
pected loss) associated with each decision
option. In this case, the total risk exposure
associated with die experiment-team op-
tion is only $2 million. For the IV&V option,
the total risk exposure is only $1.3 million, so
it represents the more attractive option.

Besides providing individual solutions
for risk-management situations, the deci-
sion tree also provides a framework for
analyzing the sensitivity of preferred solu-
tions to the risk-exposure parameters.
Thus, for example, the experiment-team
option would be preferred if the loss due to
a critical error were less than Si 3 million,
if the experiment team could reduce its
critical-error probability to less than
0.065, if the IV&V team cost more than
$1.2 million, if the IV&V team could not
reduce the probability of critical error to
less than 0.075, or if there were various
partial combinations of these possibilities.

This sort of sensitivity analysis helps
deal with many situations in which proba-
bilities and losses cannot be estimated well
enough to perform a precise analysis. The
risk-exposure framework also supports
some even more approximate but still very
useful approaches, like range estimation
and scale-of-10 estimation.

RISKMANAGMENT

As Figure 2 shows, the practice of risk
management involves two primary steps
each with three subsidiary steps.

The first primary step, risk assessment,
involves risk identification, risk analysis,
and risk prioritizarion:

• Risk identification produces lists of
the project-specific risk items likely to
compromise a project's success. Typical
risk-identification techniques include
checklists, examination of decision driv-
ers, comparison with experience (assump-
tion analysis), and decomposition.

• Risk analysis assesses the loss proba-
bility and loss magnitude for each identi-
fied risk item, and it assesses compound
risks in risk-item interactions. Typical
techniques include performance models,
cost models, network analysis, statistical
decision analysis, and quality-factor (like
reliability, availability, and security) analy-
sis.

• Risk prioritization produces a
ranked ordering of the risk items identi-
fied and analyzed. Typical techniques in-
clude risk-exposure analysis, risk-reduc-
tion leverage analysis (particularly
involving cost-benefit analysis), and Del-
phi or group-consensus techniques.

The second primary step, risk control,
involves risk-management planning, risk
resolution, and risk monitoring:

• Risk-management planning helps
prepare you to address each risk item (for
example, via information buying, risk
avoidance, risk transfer, or risk reduction),
including the coordination of the individ-
ual risk-item plans with each other and
with the overall project plan. Typical tech-
niques include checklists of risk-resolu-
tion techniques, cost-benefit analysis, and
standard risk-management plan outlines,
forms, and elements.

• Risk resolution produces a situation
in which the risk items are eliminated or
otherwise resolved (for example, risk
avoidance via relaxation of requirements).
Typical techniques include prototypes,
simulations, benchmarks, mission analy-
ses, key-personnel agreements, design-to-
cost approaches, and incremental devel-
opment.

• Risk monitoring involves tracking
the project's progress toward resolving its
risk items and taking corrective action
where appropriate. Typical techniques in-
clude milestone tracking and a top-10
risk-item list that is highlighted at each
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weekly, monthly, or milestone project re-
view and followed up appropriately with
reassessment of the risk item or corrective
action.

In addition, risk management provides
an improved way to address and organize
the life cycle. Risk-driven approaches, like
the spiral model of the software process,2

avoid many of the difficulties encountered
with previous process models like the wa-
terfall model and the evolutionary devel-
opment model. Such risk-driven ap-
proaches also show how and where to
incorporate new software technologies
like rapid prototyping, fourth-generation
languages, and commercial software prod-
ucts into the life cycle.

SIX STEPS

Figure 2 summarized the major steps
and techniques involved in software risk
management This overview article covers

four significant subsets of risk-manage-
ment techniques: risk-identification
checklists, risk prioritization, risk-man-
agement planning, and risk monitoring.
Other techniques have been covered else-
where.3*4

Rbk-kiefiHfkotioncheddists/Iable 1 shows
a top-level risk-identification checklist
with the top 10 primary sources of risk on
software projects, based on a survey of sev-
eral experienced project managers. Man-
agers and system engineers can use the
checklist on projects to help identify and
resolve the most serious risk items on the
project It also provides a corresponding
set of risk-management techniques that
have been most successful to date in avoid-
ing or resolving the source of risk.

If you focus on item 2 of the top-10 list
in Table 1 (unrealistic schedules and bud-
gets), you can then move on to an example
of a next-level checklist: the risk-probabil-

ity table in Table 2 for assessing the prob-
ability that a project will overrun its bud-
get. Table 2 is one of several such check-
lists in an excellent US Air Force
handbook5 on software risk abatement.

Using the checklist, you can rate a
project's status for the individual attributes
associated with its requirements, person-
nel, reusable software, tools, and support
environment (in Table 2, the environ-
ment's availability or the risk that the envi-
ronment will not be available when
needed). These ratings will support a
probability-range estimation of whether
the project has a relatively low (0.0 to 0.3),
medium (0.4 to 0.6), or high (0.7 to 1.0)
probability of overrunning its budget

Most of the critical risk items in the
checklist have to do with shortfalls in do-
main understanding and in properly scop-
ing the job to be done — areas that are
generally underemphasized in computer-
science literature and education. Recent

TABLE 1 .
TOP 10 SOFTWARE RISK ITEMS.

Risk Hem Risk-management technique

Personnel shortfalls

Unrealistic schedules
and budgets

Developing the wrong
functions and properties

Developing the wrong
user interface

Gold-plating

Continuing stream
of requirements changes

Shortfalls in externally
furnished components

Shortfalls in externally
performed tasks

Real-time performance
shortfalls

Straining computer-science
capabilities

Staffing with top talent, job matching, team building, key personnel agreements, cross training.

Detailed multisource cost and schedule estimation, design to cost, incremental development,
software reuse, requirements scrubbing.

Organization analysis, mission analysis, operations-concept formulation, user surveys and user
participation, prototyping, early users' manuals, off-nominal performance analysis,
quality-factor analysis.

Prototyping, scenarios, task analysis, user participation.

Requirements scrubbing, prototyping, cost-benefit analysis, designing to cost.

High change threshold, information hiding, incremental development (deferring changes
to later increments).

Benchmarking, inspections, reference checking, compatibility analysis.

Reference checking, preaward audits, award-fee contracts, competitive design or prototyping,
team-building.

Simulation, benchmarking, modeling, prototyping, instrumentation, tuning.

Technical analysis, cost-benefit analysis, prototyping, reference checking.
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TABLE 2 .
QUANTIFICATION OF PROBABILITY AND IMPACT FOR COST FAILURE.

Cost drivers

Requirements
Size

Resource constraints

Application

Technology

Requirements stability

Personnel
Availability

Mix

Experience
Management environment

Reusable software
Availability
Modifications
Language

Rights

Certification

Tools and environment
Facilities
Availability

Rights

Configuration management

Probability
Improbable (0.0-0.3)

Small, noncomplex, or easily
decomposed

Little or no hardware-imposed
constraints

Nonreal-time, little system
interdependency

Mature, existent, in-house
experience

Little or no change to
established baseline

In place, little turnover
expected

Good mix of software
disciplines

High experience ratio
Strong personnel
management approach

Compatible with need dates
Little or no change
Compatible with system and
maintenance requirements

Compatible with maintenance
and competition requirements

Verified performance,
application compatible

Little or no modification
hi place, meets need dates

Compatible with maintenance
and development plans

Fully controlled

Impact

Sufficient financial resources

Probable (0.4-0.6)

Medium to moderate
complexity; decomposable

Some hardware-imposed
constraints

Embedded, some system
interdependences

Existent, some in-house
experience

Some change in baseline
expected

Available, some turnover
expected

Some disciplines
inappropriately represented

Average experience ratio
Good personnel

management approach

Delivery dates in question
Some change
Partial compatibility with

requirements
Partial compatibility with

maintenance, some competition
Some application-compatible

test data available

Some modifications, existent
Some compatibility with need

dates
Partial compatibility with

maintenance and
development plans

Some controls

Some shortage of financial
resources, possible overrun

Frequent(0.M.0)

Large, highly complex, or not
decomposable

Significant hardware-imposed
constraints

Real-time, embedded, strong
interdependency

New or new application, little
experience

Rapidly changing,
or no baseline

Not available, high turnover
expected

Some disciplines
not represented

Low experience ratio
Weak personnel

management approach

Incompatible with need dates
Extensive changes
Incompatible with system or

maintenance requirements
Incompatible with maintenance

concept, noncompetitive
Unverified, little test data

available

Major modifications, nonexistent
Nonexistent, does not meet

need dates
Incompatible with maintenance

and development plans

No controls

Significant financial shortages,
budget overrun Likely

initiatives, like the Software Engineering
Institute's masters curriculum in software
engineering, are providing better cover-
age in these areas. The SEI is also initiat-
ing a major new program in software risk
management.

Risk analyse ml priorrtization. After using

all the various risk-identification check-
lists, plus the other risk-identification
techniques in decision-driver analysis, as-
sumption analysis, and decomposition,
one very real risk is that the project will
identity so many risk items that the project
could spend years just investigating them.
This is where risk prioritization and its

associated risk-analysis activities become
essential.

The most effective technique for risk
prioritization involves the risk-exposure
quantity described earlier. It lets you rank
the risk items identified and determine
which are most important to address.

One difficulty with the risk-exposure
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TABLE 3 .
RISK EXPOSURE FACTORS FOR SATELLITE EXPERIMENT SOFTWARE.

[— . . . .
Unsatisfactory
outcome

A. Software error kills experiment

! B. Software error loses key data

C. Fault-tolerant features cause unacceptable performance

D. Monitoring software reports unsafe condition as safe

E. Monitoring software reports safe condition as unsafe

F. Hardware delay causes schedule overrun

G. Data-reduction software errors cause extra work

H. Poor user interface causes inefficient operation

I. Processor memory insufficient

J. Database-management software loses derived data

Probability of
unsatisfactory outcome

3-5

3-5

4-8

5

5

6

8

6

1

2

Loss caused by
unsatisfactory outcome

10

8

7

9

3

4

1

5

7

2

Risk exposure

30-50

24-40

28-56

45

15

24

8

30

7

4

quantity, as with most other decision-anal-
ysis quantities, is the problem of making
accurate input estimates of the probability
and loss associated with an unsatisfactory
outcome. Checklists like that in Table 2
provide some help in assessing the proba-
bility of occurrence of a given risk item,
but it is clear from Table 2 that its proba-
bility ranges do not support precise prob-
ability estimation.

Full risk-analysis efforts involving pro-
totyping, benchmarking, and simulation
generally provide better probability and
loss estimates, but they may be more ex-
pensive and time-consuming than the sit-
uation warrants. Other techniques, like
betting analogies and group-consensus
techniques, can improve risk-probability
estimation, but for risk prioritization you
can often take a simpler course: assessing
die risk probabilities and losses on a rela-
tive scale of 0 to 10.

Table 3 and Figure 3 illustrate this risk-
priori tization process by using some po-
tential risk items from the satellite-experi-
ment project as examples. Table 3
summarizes several unsatisfactory out-
comes with their corresponding ratings
for P(UO), L(UO), and their resulting
risk-exposure estimates. Figure 3 plots
each unsatisfactory outcome with respect
to a set of constant risk-exposure contours.

Three key points emerge from Table 3
and Figure 3:

• Projects often focus on factors hav-
ing either a high P(UO) or a high L(UO),
but these may not be the key factors with a
high risk-exposure combination. One of
the highest P(UO)s comes from item G

(data-reduction errors), but the fact that
these errors are recoverable and not mis-
sion-critical leads to a low loss factor and a
resulting low RE of 7. Similarly, item I
(insufficient memory) has a high potential
loss, but its low probability leads to a low
RE of 7. On the other hand, a relatively

low-profile item like item H (user-inter-
face shortfalls) becomes a relatively high-
priority risk item because its combination
of moderately high probability and loss
factors yield a RE of 30.

• The RE quantities also provide a
basis for prioritizing verification and vali-

RGURE 3. RISK-EXPOSURE FACTORS AND CONTOURS FOR THE SATELJLfTEEXPERIMENT SOFTWARE. RE B THE RISK

EXPOSURE, P[UO) THE PROBABUTY OF A N UNSATBFACTORY OUTCOME. AND L(UO) THE LOSS ASSOCIATED WITH

THAT UNSATISFACTORY OUTCOME. THE GRAPH FONTS MAP THE fTEMS FROM TABLE 3 WHOSE RISK EXPOSURE

ARE BEING ASSESSED.
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dation and related test activities by giving
each error class a significance weight Fre-
quently, all errors are treated with equal
weight, putting too much testing effort
into finding relatively trivial errors.

• There is often a good deal of uncer-
tainty in estimating the probability or loss
associated with an unsatisfactory outcome.
(The assessments are frequently subjective
and are often the product of surveying sev-
eral domain experts.) The amount of un-
certainty is itself a major source of risk,
which needs to be reduced as early as pos-
sible. The primary example in Table 3 and
Figure 3 is the uncertainty in item C about
whether the fault-tolerance features are
going to cause an unacceptable degrada-
tion in real-time performance. If P(UO) is
rated at 4, this item has only a moderate
RE of 28, but if P(UO) is 8, the RE has a
top-priority rating of 56.

One of the best ways to reduce this
source of risk is to buy information about
the actual situation. For the issue of fault

tolerance versus performance, a good way
to buy information is to invest in a proto-
type, to better understand the perfor-
mance effects of the various fault-toler-
ance features.

Risk-tnonogemetit planning. O n c e you d e -

termine a project's major risk items and
their relative priorities, you need to estab-
lish a set of risk-control functions to bring
the risk items under control. The first step
in this process is to develop a set of risk-
management plans that lay out the activi-
ties necessary to bring the risk items under
control.

One aid in doing this is the top-10
checklist in Figure 3 that identifies the
most successful risk-management tech-
niques for the most common risk items. As
an example, item 9 (real-time perfor-
mance shortfalls) in Table 1 covers the un-
certainty in performance effect of the
fault-tolerance features. The correspond-
ing risk-management techniques include

simulation, benchmarking, modeling,
prototyping, instrumentation, and tuning.
Assume, for example, that a prototype of
representative safety features is the most
cost-effective way to determine and re-
duce their effects on system performance.

The next step in risk-management
planning is to develop risk-management
plans for each risk item. Figure 4 shows
the plan for prototyping the fault-toler-
ance features and determining their effects
on performance. The plan is organized
around a standard format for software
plans, oriented around answering the
standard questions of why, what, when,
who, where, how, and how much. This
plan organization lets the plans be concise
(fitting on one page), action-oriented, easy
to understand, and easy to monitor.

The final step in risk-management
planning is to integrate the risk-manage-
ment plans for each risk item with each
other and with the overall project plan.
Each of the other high-priority or uncer-
tain risk items will have a risk-manage-
ment plan; it may turn out, for example,
that the fault-tolerance features pro-
totyped for this risk item could also be
useful as part of the strategy to reduce the
uncertainty in items A and B (software er-
rors killing the experiment and losing ex-
periment-critical data). Also, for the over-
all project plan, the need for a 10-week
prototype-development and -exercise pe-
riod must be factored into the overall
schedule, to keep the overall schedule re-
alistic.

Risk resolution and monitoring. O n c e you

have established a good set of risk-man-
agement plans, the risk-resolution process
consists of implementing whatever proto-
types, simulations, benchmarks, surveys,
or other risk-reduction techniques are
called for in the plans. Risk monitoring
ensures that this is a closed-loop process
by tracking risk-reduction progress and
applying whatever corrective action is
necessary to keep the risk-resolution pro-
cess on track.

Risk management provides managers
with a very effective technique for keeping
on top of projects under their control:
Project top-10 risk-item tracking. This tech-
nique concentrates management atten-
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tion on the high-risk, high-leverage, criti-
cal success factors rather than swamping
management reviews with lots of low-pri-
ority detail. As a manager, I have found
that this type of risk-item-oriented review
saves a lot of time, reduces management
surprises, and gets you focused on the
high-leverage issues where you can make a
difference as a manager.

Top-10 risk-item tracking involves the
following steps:

• Ranking the project's most signifi-
cant risk items.

• Establishing a regular schedule for
higher management reviews of the
project's progress. The review should be
chaired by the equivalent of the project
manager's boss. For large projects (more
than 20 people), the reviews should be
held monthly. In the project itself, the
project manager would review them more
frequently.

• Beginning each project-review
meeting with a summary of progress on

the top 10 risk items. (The number could
be seven or 12 without loss of intent.) The
summary should include each risk item's
current top-10 ranking, its rank at the pre-
vious review, how often it has been on the
top-10 list, and a summary of progress in
resolving the risk item since the previous
review.

• Focusing the project-review meet-
ing on dealing with any problems in re-
solving the risk items.

Table 4 shows how a top-10 list could
have worked for the satellite-experiment
project, as of month 3 of the project. The
project's top risk item in month 3 is a crit-
ical starring problem. Highlighting it in
the monthly review meeting would stimu-
late a discussion by the project team and
the boss of the staffing options: Make the
unavailable key person available, reshuffle
project personnel, or look for new people
within or outside the organization. This
should result in an assignment of action
items to follow through on the options

chosen, including possible actions by the
project manager's boss.

The number 2 risk item in Table 4,
target hardware delivery delays, is also one
for which the project manager's boss may
be able to expedite a solution—by cutting
through corporate-procurement red tape,
for example, or by escalating vendor-delay
issues with the vendor's higher manage-
ment.

As Table 4 shows, some risk items are
moving down in priority or going off the
list, while others are escalating or coming
onto the list. The ones moving down the
list—like the design-verification and -val-
idation staffing, fault-tolerance pro-
totyping, and user-interface prototyping
— still need to be monitored but fre-
quently do not need special management
action. The ones moving up or onto the
list — like the data-bus design changes
and the testbed-interface definitions —
are generally the ones needing higher
management attention to help get them

TABLE 4 .
PROJECT T O P - 1 0 RISK ITEM LIST FOR SATELLITE EXPERIMENT SOFTWARE.

Risk Hem

Replacing sensor-control software
developer

Target hardware delivery delays

Sensor data formats undefined

Staffing of design V&V team

Software fault-tolerance may
compromise performance

Accommodate changes in data bus
design

Test-bed interface definitions

User interface uncertainties

TBDs in experiment operational
concept

Uncertainties in reusable monitoring
software

Monthly rankina
This

l

2

3

4

5

6

7

8

—

—

Last

4

5

3

2

1

_ .

8

6

7

9

No. of months

2

2

3

3

3

1

3

3

3

3

Risk-resolution progress

Top replacement candidate unavailable

Procurement procedural delays

Action items to software, sensor teams; due next
month

Key reviewers committed; need fault-tolerance
reviewer

Fault-tolerance prototype successful

Meeting scheduled with data-bus designers

Some delays in action items; review meeting scheduled

User interface prototype successful

TBDs resolved

Required design changes small, successfully made
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FIGURE 5. FRAMEWORK FOR UFE-CYCLE RISK MANAGEMENT.

resolved quickly.
As this example shows, the top-10 risk-

item list is a very effective way to focus
higher management attention onto the
project's critical success factors. It also uses
management's time very efficiently, unlike
typical monthly reviews, which spend
most of their time on things the higher
manager can't do anything about Also, if
the higher manager surfaces an additional
concern, it is easy to add it to the top-10
risk item list to be highlighted in future
reviews.

IMPLEMENTING RISK MANAGEMENT

Implementing risk management in-
volves inserting the risk-management
principles and practices into your existing
life-cycle management practices. Full im-
plementation of risk management in-
volves the use of risk-driven software-pro-
cess models like the spiral model, where
risk considerations determine the overall
sequence of life-cycle activities, the use of
prototypes and other risk-resolution tech-
niques, and the degree of detail of plans
and specifications. However, the best im-
plementation strategy is an incremental
one, which lets an organization's culture
adjust gradually to risk-oriented manage-

ment practices and risk-driven process
models.

A good way to begin is to establish a
top-IO risk-item tracking process. It is easy
and inexpensive to implement, provides
early improvements, and begins establish-
ing a familiarity with the other risk-man-
agement principles and practices. Another
good way to gain familiarity is via books
like my recent tutorial on risk manage-
ment,3 which contains the Air Force risk-
abatement pamphlet5 and other useful ar-
ticles, and Robert Charette's recent good
book on risk management4

An effective next step is to identify an
appropriate initial project in which to im-
plement a top-level life-cycle risk-man-
agement plan. Once the organization has
accumulated some risk-management ex-
perience on this initial project, successive
steps can deepen the sophistication of the
risk-management techniques and broaden
their application to wider classes of proj-
ects.

Figure 5 provides a scheme for imple-
menting a top-level life-cycle risk-man-
agement plan. It is presented in the context
of a contractual software acquisition, but you
can tailor it to the needs of an internal devel-
opment organization as well.

You can organize the life-cycle risk-

management plan as an elaboration of the
"why, what, when, who, where, how, how
much" framework of Figure 4. While this
plan is primarily the customer's responsi-
bility, it is very useful to involve the devel-
oper community in its preparation as well.

Such a plan addresses not only the de-
velopment risks that have been the prime
topic of this article but also operations and
maintenance risks. These include such
items as staffing and training of mainte-
nance personnel, discontinuities in the
switch from the old to the new system,
undefined responsibilities for operations
and maintenance facilities and functions,
and insufficient budget for planned life-
cycle improvements or for corrective,
adaptive, and perfective maintenance.

Figure 5 also shows the importance of
proposed developer risk-management
plans in competitive source evaluation and
selection. Emphasizing the realism and ef-
fectiveness of a bidder's risk-management
plan increases the probability that the
customer will select a bidder that clearly
understands the project's critical success
factors and that has established a develop-
ment approach that satisfactorily ad-
dresses them. (If the developer is a non-
competitive internal organization, it is
equally important for the internal
customer to require and review a devel-
oper risk-management plan.)

The most important thing for a project
to do is to get focused on its critical

success factors.
For various reasons, including the in-

fluence of previous document-driven
management guidelines, projects get fo-
cused on activities that are not critical for
their success. These frequently include
writing boilerplate documents, exploring
intriguing but peripheral technical issues,
playing politics, and trying to sell the "ul-
timate" system.

In the process, critical success factors
get neglected, the project fails, and no-
body wins.

The key contribution of software risk
management is to create this focus on crit-
ical success factors — and to provide the
techniques that let the project deal with
them. The risk-assessment and risk-con-
trol techniques presented here provide the
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foundation layer of capabilities needed to
implement the risk-oriented approach.

However, risk management is not a
cookbook approach. To handle all the
complex people-oriented and technology-
driven success factors in projects, a great
measure of human judgement is required.

Good people, with good skills and
good judgment, are what make projects
work. Risk management can provide you
with some of the skills, an emphasis on
getting good people, and a good concep-
tual framework for sharpening your
judgement. I hope you can find these use-
ful on your next project. •

REFERENCES
1. J. Rothfeder, "It's Late, Costly, and Incompe-

tent — But Try Firing a Computer System,"
Business Hrdt.Nov. 7, 1988, pp. 164-165.

2. B.W.Boehm, "A Spiral Model of Software
Development and Enhancement," Computer,
May 1988, pp. 61-72.

3. B. W. Boehm, Software Risk Management, CS
Press, Los AJamitos, Calif., 1989.

4. R.N. Charette, Software Engineering Risk Anal-
ysis and Management, McGraw-Hill, New
York, 1989.

5. "Software Risk Abatement," AFSC/AJFLC
pamphlet 800-45. US Air Force Systems Com-
mand, Andrews AFB.Md., 1988.'

36



Achieving
Higher
SEI Levels
MICHAEL K. DASKALANTONAKIS, Motorola

• Two years or more
can pass between formal SEI
assessments. An organization

seeking to monitor its progress

to a higher SEI level needs a

method for internally conducting

incremental assessments. The

author provides one that has

proven successful

at Motorola.

M any organi-
zations have turned to the Software
Engineering Institute's Capability
Maturity Model to improve their soft-
ware-engineering processes by setting
goals to achieve higher SEI levels. This
has created the need for an instrument
and a process that can be used to evalu-
ate an organization's current status rela-
tive to these goals.1-3 At Motorola, we
have developed a method for assessing
progress to higher SEI levels that lets
engineers and managers evaluate an
organization's current status relative to
the CMM and identify weak areas for
immediate attention and improve-
ment.4 This method serves as an effec-
tive means to ensure continuous
process improvement as well as grass-
roots participation and support in

achieving higher maturity levels.
This progress-assessment process is

not intended as a replacement for any
formal assessment instruments devel-
oped by the SEI, but rather as an inter-
nal tool to help organizations prepare
for a formal SEI assessment. Although
I provide examples in terms of CMM
version 1.1, both the self-evaluation
instrument and the progress-assess-
ment process are generic enough for
use with any (similar) later version of
the SEI CMM by updating the work-
sheets and charts used.

We began using the SEI Progress-
Assessment method within Motorola's
Cellular Infrastructure Group — an
organization of more than 1,000 soft-
ware engineers working on several pro-
jects and products for die cellular corn-

Reprinted from IEEE Software, Vol. 11, No. 4, July 1994, pp. 17-24.
Copyright © 1994 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.
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Score

Poor
(0)

Weak
(2)

Fair
(4)

Marginally
qualified

(6)

Qualified
(8)

Outstanding
(10)

Key activity evaluation dimensions

Approach

• No management recognition of need
• N o organizational ability
• No organizational commitment
• Practice not evident

• Management has begun to recognize the need
• Support items for the practice start to be created
• A few parts of organization are able to
implement the practice

• Wide but not complete commitment by
management
• Road map for practice implementation defined
• Several supporting items for the practice in place

• Some management commitment; some
management becomes proactive
• Practice implementation well under way across
parts of the organization
• Supporting items in place

• Total management commitment
• Majority of management is proactive
• Practice established as an integral part of the
process
• Supporting items encourage and facilitate the
use of the practice

• Management provides zealous leadership and
commitment
• Organizational excellence in the practice
recognized even outside the company

Deployment

• No part of the organization uses the practice
• No part of the organization shows interest

• Fragmented use
• Inconsistent use
• Deployed in some parts of the organization
• Limited monitoring/verification of use

• Less fragmented use
• Some consistency in use
• Deployed in some major parts of the
organization
• Monitoring/verification of use for several
parts of the organization

• Deployed in some parts of the organization
• Mostly consistent use across many parts of
the organization
• Monitoring/verification of use for many parts
of the organization

• Deployed in almost all parts of the
organization
• Consistent use across almost all parts of the
organization
• Monitoring/verification of use for almost all
parts of the organization

• Pervasive and consistent deployment across
all parts of the organization
• Consistent use over time across all parts of
the organization
• Monitoring/verification for all parts of the
organization

Results

•Ineffective

• Spotty results
• Inconsistent results
• Some evidence of effectiveness for some parts
of the organization

• Consistent and positive results for several parts
of the organization
• Inconsistent results for other parts of the
organization

• Positive measurable results in most parts of
the organization
• Consistently positive results over time across
many parts of the organization

• Positive measurable results in almost all parts
of the organization
• Consistently positive results over time across
almost all parts of the organization

• Requirements exceeded
• Consistently world-class results
• Counsel sought by others

Figure 1. Guidelines to rate CMM key activities in CMM version LI or any later SEI CMM version. They were developed
by modifying the Quality System Review scoring matrix guidelines to ensure that they address the spirit and themes considered
in the CMM. All three evaluation dimensions included in this scoring matrix are equally weighted. You determine the score
for a key activity by examining all three evaluation dimensions and their scoring guidelines simultaneously. An odd-numbered
score is possible if some of but not all, the criteria for the next higher level have been met.

municarions business — in the second
quarter of 1992. A year later, our orga-
nization was found to have achieved
SEI level 2, the next higher SEI maturi-
ty level. This was primarily the result of
strong senior-management support,
backed by allocation of at least 10 per-
cent of the progress-assessment partici-
pants' efforts within a given quarter,
and engineer/manager actions taken to
implement the process-improvement
action plans. These action plans were
generated and driven through the
assessment method described here.

At Motorola, we found the prog-
ress-assessment method offers several
benefits. It empowers engineers and
managers working within a product
group to conduct a self-evaluation rela-

tive to an SEI level and create their own
list of findings and action plans. This
ensures grass-roots involvement in the
process and institutionalization of
improvement. The process facilitates
communication among those involved
in this assessment and ensures that
important information regarding
processes and tools used within the
product group is disseminated at the
assessment meeting and at subsequent
meetings. The process educates engi-
neers and managers — the practitioners
— regarding the key process areas and
practices listed in the CMM. This
increases their understanding of topics
in which they may not have been
involved in the past, such as software
configuration management or software

subcontractor management. This also
increases the capability of the practi-
tioners in terms of the software-engi-
neering process, methods, tools, and
technology. Finally, the progress-assess-
ment process continuously prepares an
organization for the next formal SEI
assessment.

Some critics of the assessment in-
strument within Motorola's CIG have
said that it focuses primarily on the key
activities listed in the CMM without
adequately covering other key practices
(also called themes) such as the commit-
ment and ability to perform. Respond-
ing to input from the CIG's Process
Management Working Group, I decid-
ed to formally score and track only the
key activities, while ensuring that the
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scoring guidelines used for determining
the key activities* scores account for the
additional practices listed in the GMM.
For example, to achieve a rating of
Marginally Qualified, the key-activity
scoring guidelines in Figure 1 require
that an organization show the existence
of management commitment, have sup-
porting items in place, and monitor and
verify use. Also, the progress-assess-
ment process specification requires that
findings regarding these additional
practices and their associated actions be
identified and used as part of an SEI
Progress Assessment. This ensures the
necessary coverage of these practices.

ASSESSMENT INSTRUMENT

Each SEI level has several associated
key process areas. The progress-assess-
ment instrument lets you determine the
scores associated with the SEI level
your organization is trying to achieve.
Each key process area contains several
key activities. We created scoring
guidelines for measuring how well an
organization implements a specific key
activity, basing them on several com-
mon GMM themes identified by Mark
PaulkJ

• Commitment to perform
• Ability to perform
• Activities performed
• Monitoring implementation
• Verifying implementation
I then expanded and grouped these

themes under three primary evaluation
dimensions and developed criteria for
evaluating them:

• Approach. Criteria here are the
organization's commitment to and
management's support for the practice,
as well as the organization's ability to
implement the practice.

• Deployment The breadth and con-
sistency of practice implementation
across project areas are the key criteria
here.

• Results. Criteria here are the
breadth and consistency of positive re-
sults over time and across project areas.

Scoring, I used the evaluation dimen-
sions and criteria to create guidelines
for determining an integer score of 0-
10 for each key activity, as Figure 1

shows. Although the guidelines are
generic, the assessor can easily use them
to determine the score of each specific
key activity. This is simpler than having

SEI level 2-CMM v l . l Organization: ORGJAME
KPA: Software project tracking and oversight

List of key activities
1. A documented software-development plan is used for

TracKing software activities ana communicating status.
2. The project's software development plan is revised
according to a documented procedure.

3. Senior management reviews and approves all
commitments and commitment changes made to
individuals and groups external to the organization.

4. Approved changes to software commitments or
commitments affecting software activities are explicitly

commumcoieo TO me STOTT ana managers OT me
software-engineering group and software-related groups.
5. The project's software size is tracked and corrective
actions are taken.

6. The project's software costs ore tracked and corrective
actions are taken.

7. The project's critical target computer resources are
tracked and corrective actions are taken.

8. The project's software schedule is tracked and
corrective actions are taken.

9. Software-engineering technical activities are tracked
and corrective actions are taken.

10. The software technical, cost, resource, and schedule
risks are tracked throughout the life of the project.
1 1 . Actual measured data and replannig data for the
project-tracking activities are recorded for use by
software-engineering staff and managers.

12. Software-engineering staff and managers conduct
regular reviews to track technical progress, plans,
performance, and issues against the development plan.

1 O C.M...I MMMMUV »<. mJ«l»» »UM M*#MMtttlt#km*ittr Mnil
\o, rormoi reviews, to address me occompiisnmenis ana
results of project software engineering, are conducted at
selected project milestones and ot the beginning and
completion of selected stages.

0

X

X

1 2

X

3

X

X

X

4

X

5

D

6

X

X

X

X
I

i

ate: 15/07/94
Average score: 4

7 8

X

X

9 10

Figure 2. A sample scoring worksheet. It can be used to summarize the score
determined for the key activities of a given key process area, such as software proj-
ect tracking and oversight, included in the SEI model. These scores are determined
using the key-activity scoring guidelines shown in Figure 1.
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Organization: ORGJAME Date: 15 July 1994
Current status of key process areas of the SEICMM VI .1

10 10

Figure 3. Summarized progress report regarding SEI key process areas. Bars on the left correspond to the assessment results
obtained the previous quarter. Bars on the right respond to the current quarterns results.

a lengthy list of guidelines, such as one
per key activity, which makes the scor-
ing task more complex. The sample
worksheet shown in Figure 2 is used to
summarize the score obtained by using
these guidelines. When applied at the
project level, you translate the guideline
"parts of the organization," as "subpro-
jects" or "subsystems." When applied at
the product-line, division, or group
level, "parts of the organization" trans-
lates to "projects" or "project areas."
Users of this scoring-guidelines matrix
must ensure that they use the terms
"commitment," "ability," "monitoring,"
and "verification" as described in the
SEI model when determining a key
activity's score.

To calculate the score for a specific
key-process area, enter the score for
each of its key activities in the work-
sheet shown in Figure 2. Average the
individual key-activity scores to find the
overall score for that key process area.
Within Motorola, a score of 7 or higher
for each key-process area at an SEI level
/ (1< / < 5) indicates the organization
will likely be assessed at SEI level / by a
formal SEI assessment, assuming the
organization has already been assessed
as being at SEI level / - I . All the evalua-
tion dimensions in Figure Vs scoring
matrix carry equal weight when deter-
mining the score for a given key activi-

ty. Determine the key activity's score by
examining all three evaluation dimen-
sions and their scoring guidelines simul-
taneously.

Although each evaluation-dimension
level represents a two-point increment,
the score for a key activity can be an
odd number if some of, but not all, the
criteria for the next higher level are sat-
isfied. For example, if some of the
dimensions for a key process area are
rated at the Fair level (4), while others
are rated at the Marginally Qualified
level (6), a score of 5 would be appro-
priate.

The average of the key process area
scores for a given SEI level indicates
how well the key process areas and
activities corresponding to that level
have been implemented within an orga-
nization. The key activities correspond-
ing to each key process area in the
CMM3 are those listed in the sample
worksheet. If multiple items are associ-
ated with an activity in the CMM, just
consider them part of the package that
describes the key activity when deter-
mining its score.

Low scores identify key activities and
key process areas that need immediate
attention to raise the organization's
software-process capability. A low key-
activity, key-process-area, or SEI-level
score indicates a problem area that

needs immediate attention and im-
provement. The next section provides
an example of how the problem areas
are highlighted within those Motorola
business units that already use this
method.

DATA PRESENTATION

The organization's current status, as
determined using the scoring guidelines
shown in Figure 1, are summarized
using bar charts and/or Kiviat plots.
The bar chart in Figure 3 summarizes
the overall status of the key-process-
area implementation. Note that a
progress assessment and the presenta-
tion of the results may be done for a
specific SEI level only, instead of all SEI
CMM levels at the same time. Typically
this is the next higher SEI level the
organization is trying to achieve.

You can use Kiviat charts to summa-
rize the status of a key-process-area
implementation for a specific SEI level.
Figure 4 is an example of an organiza-
tion's progress in implementing CMM
level 2. Each axis starting at the center
of the circle corresponds to a key-
process area at that level. This chart
indicates the progress achieved during
the chosen interval — in this case the
last quarter — in advancing from level 1
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to level 2. The chart also indicates the
key process areas at level 2 for which
additional focus is necessary, as well as
those for which the improvement
efforts have already paid off.

The same applies to higher CMM
levels. Suppose management is not sat-
isfied with the progress made on
Software Project Tracking and
Oversight and wants to obtain addition-
al information about the key activities
that must be immediately addressed.

Information on implementation sta-
tus is presented in a bar chart like the
one shown in Figure 5. The lower bars
on this chart clearly indicate the key
activities of the Software Project
Tracking and Oversight key process
areas that need immediate improve-
ment. These activities include revisions
to the development plan, senior man-
agement review of external commit-
ments, communication of approved
commitment changes, software-cost
tracking, tracking software-engineering

Organization: ORG NAME Dote: 15 July 1994
Current status of implementing SEI CMM V1.1

Level 2 key process areas

Requirements
management

assurance

Subcontractor
management

rrofect tracking
and oversight

> Current quarter
Previous quarter

Figure 4. Summarized progress report far SEI level 2 key process areas.

Organization: ORGJAME Date: 15 July 1994
Current status of key activities in the SEI CMM V1.1

Key process area of "Software project tracking and oversight11

10 10

Figure 5. Status of key activities for the Software Project Tracking and Oversight key process area.
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technical-activities, project-progress
reviews, formal project reviews, and post-
mortems. Addressing these items will
lead to better performance against the
target of reaching higher SEI process-
capability levels.

PARTICIPANTS

To be effective, the
assessment instrument
must be championed and
used by members of the
organization conducting
a progress assessment:

• Organization man-
agement. This role is
generally taken by senior
management. They are
primarily responsible for understanding
what is involved in an SEI progress
assessment, indicating their support for
the whole process, committing
resources to implement the action plan
created, and following up to ensure
completion.

• Progress-assessment champion. This
role is critical. A single individual is
responsible for championing the whole
process (for the specific time period
that it is done), ensuring organization
management's support, identifying who
within the organization should partici-
pate, taking care of administrative
items, and championing the action-plan
implementation. The champion should
be in a technically competent middle-
management position that is well-
respected within the organization. This
role requires a lot of work, and the
champion can be involved in progress
assessment only for his or her particu-
lar organization.

• Progress-assessment facilitator. This
person is responsible primarily for
ensuring that the progress assessment
runs smoothly, providing consulting
support when necessary. The progress
assessment includes not just assessment
meetings but also action-plan creation
and implementation as a result of these
meetings. The necessary background
for the facilitator includes experience in

THIS PROCESS
SPEEDS
IMPROVEMENT
BY PROVIDING
A WAY TO
MEASURE AND
TRACK IT.

conducting assessments and audits of
software organizations. The facilitator
may be involved in several progress
assessments for different organizations
at the same time. The progress-assess-
ment facilitator and progress-assessment

champion must cooper-
ate closely. The facilita-
tor must be more famil-
iar with the instruments
involved and the SEI
model used, and have
overall experience in
evaluating organizations,
such as using Motorola's
Quality System Review5

or other audit mecha-
nisms.

• Progress-assessment
participants. The assess-

ment participants are primarily techni-
cal and middle-management software
people involved in day-to-day software
development and maintenance activi-
ties. They are not necessarily limited
to software developers, testers, and
managers; they can also be people
working in product management,
marketing, or other positions that are
part of the overall organization. They
participate in the entire progress
assessment, including meetings and
action-plan implementation.

• Organization-improvement cham-
pion. This person initiates the
progress-assessment process during
the preparation stage. If no organiza-
tion-improvement champion exists,
one must be identified who will initi-
ate this process. Typically, he or she is
also the progress-assessment champi-
on, at least initially, when the progress
assessment is introduced to an organi-
zation. Once the progress assessment
is established, the progress-assessment
champion may be changed every quar-
ter to ensure wider participation.

PROCESS

The progress-assessment process
provides an ordered series of activities
that guide the participants in the use of

the progress-assessment instrument.
The process consists of four stages:
preparation, assessment meeting, action
plan and commitment, and follow-up.

Preparation. Activities at this stage
focus on obtaining management buy-in,
if it is not already obtained, and prepar-
ing to conduct an effective SEI progress
assessment.

1. The organization-improvement
champion meets with organization
management to present the benefits of
introducing SEI progress assessments
and recommends their use.

2. The organization-improvement
champion identifies a progress-assess-
ment champion.

3. The progress-assessment champi-
on identifies a progress-assessment
facilitator.

4. The progress-assessment champi-
on and the progress-assessment facilita-
tor determine the scope of the SEI
progress assessment.

5. The progress-assessment champi-
on and organization management select
the progress-assessment participants
from the projects and groups included
in the scope of the SEI progress assess-
ment.

Assessment meeting. During this stage,
participants agree on a scoring for the
key process areas and activities and a list
of strengths and weaknesses in these
areas.

1. The progress-assessment champi-
on conducts an overview session for the
assessment meeting participants.

2. The assessment-meeting partici-
pants prepare for the assessment meet-
ing, record their scores and findings in
the worksheets, and forward them to
the progress-assessment facilitator.

3. The progress-assessment facilita-
tor uses a spreadsheet (or other tool) to
summarize assessment-meeting-partici-
pant scores before the meeting.

4. The progress-assessment facilita-
tor identifies a recorder for the assess-
ment meeting.

5. The progress-assessment facilita-
tor moderates the assessment meeting.
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6. The recorder creates a draft list of
scores and findings.

7. The progress-assessment champi-
on moderates a review of this list.

8. The recorder updates and pub-
lishes the list.

9. The progress-assessment champi-
on moderates a meeting with organiza-
tion management and the progress-
assessment participants where the
scores and findings are presented.

Plan and commitment At this stage the
participants create the action plan,
obtain commitments, and staff the plan
according to the results of the assess-
ment meeting.

1. The progress-assessment champi-
on splits the progress-assessment par-
ticipants into one team per key-process
area. These teams generate draft action
plans.

2. Each team meets with any exist-
ing organization key-process-area
champions to ensure coordination and
continuity of the action plans.

3. The draft action plans are
reviewed and appropriately updated by
the progress-assessment participants.

4. The progress-assessment champi-
on ensures that the action plans are
tracked using a project-management
tool.

5. The progress-assessment champi-
on moderates a meeting with organiza-
tion management and progress-assess-
ment participants, during which the
action plans are presented and input is
requested.

6. The action plans are updated on
the basis of input by organization man-
agement.

7. Commitment templates for all
action items are created and filled-in by
the teams.

8. The progress-assessment champi-
on ensures that individual meetings are
scheduled with department managers
to obtain their commitments.

9. Representatives of the teams par-
ticipate in the meetings with depart-
ment managers, finalize the commit-
ment templates, and update their action
plans appropriately.

Follow-up. During this final stage,
participants ensure that the action plan
is actually implemented and that suffi-
cient progress is made, which is then
reported to management.

1. Regular status meetings are con-
ducted by each key-process-area team.

2. The progress-assessment champi-
on conducts regular status meetings
with the progress-assessment partici-
pants and provides status reports to
organization management.

3. The organization-improvement
champion identifies a new progress-
assessment champion for next quarter's
SEI progress assessment.

We have found that this process
accelerates improvement by providing
a way to measure it (the scoring guide-
lines) and track it (the presentation
charts). This follows Motorola's
approach to software measurement,
which states: "Measurement is not the
goal. The goal is improvement through
measurement, analysis, and feedback."6

The created action plans are shared
with management, and requests for the
necessary resources are made so that
the actions can be implemented. This
happens on a continuous basis, not just
once every two years,
which is the typical inter-
val for formal SEI or
other assessments. In fact,
any actions necessary as a
result of a formal SEI
assessment or a Quality
System Review may be
folded into the already
existing action plans
developed through the use
of SEI Progress
Assessments.

This process also provides a driver
for continuous process improvement,
in line with the spirit of Motorola's
Quality System Review and other
process- and quality-improvement
initiatives.

LESSONS LEARNED

Management buy-in is essential to a

successful implementation of the
progress-assessment instrument and
process. We introduced both at CIG's
monthly Software Process Improve-
ment meeting, explaining what the
assessment instrument is and proposing
its use to assess current status relative
to SEI level 2 and to drive organiza-
tional improvement. Motorola CIG's
management adopted this proposal and
asked that each product group conduct
their own self-assessment using this
instrument, then create action plans for
improvement. Regular action-plan sta-
tus meetings were also requested and
conducted by management to track
improvement achieved over time. In
the months that followed, we learned
several important lessons about imple-
menting this progress-assessment
method.

• Determine before conducting a
progress assessment what its scope is.
Also, determine what management
level will be considered as "senior" for
progress-assessment purposes (director
and above, for example). You need this
information so that participants can
obtain a common understanding of
how the SEI CMM description applies

to their organization.
It also ensures con-
sistency in the use of
the scoring guide-
lines in Figure 1.

• Ensure that suf-
ficient coverage is
achieved across soft-
ware-development
and -maintenance
functions and groups
involved. Do this by
carefully selecting

the participants in the progress assess-
ment of a given quarter. A group of five
to six people should be sufficient.
However, a larger group of about 20
may be used if you need to increase
buy-in within the organization and
ensure that the action-plan implemen-
tation will be staffed properly. A mix of
experienced people who have partici-
pated in past SEI Progress Assessments
and inexperienced people is recom-

MANAGEMENT
BUY-IN IS
ESSENTIAL FOR
SUCCESSFUL
PROGRESS
ASSESSMENTS.
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mended. In the case of a larger group,
special attention is required by the
progress-assessment facilitator to
ensure that the meetings are sufficiently
under control.

• To ensure proper coverage of the
SEI CMM, use the following guideline:
All SEI CMM sections for a given key
process area, not just the "Activities
Performed," should be considered
when using the scoring guidelines to
determine a score, and when the list of
findings and the action plan are created.
For example, items under "Ability to
Perform" that are not evident in the
organization should be listed in the list
of findings and subsequently addressed
through the action plan created.

• The progress-assessment facilita-
tor should use the following method to
reach consensus on the score for a key
activity and speed up the meeting:
Determine what the average suggested
score by the participants is, then move
higher or lower based on comments by
the participants. Do this by first obtain-
ing the individual participant scores
prior to the progress-assessment meet-

ing, then use a spreadsheet to deter-
mine the mean, standard deviation, and
so forth, in advance.

• Ensure that the entire progress
assessment focuses more on identifying
the organization's strengths and weak-
nesses (the findings) and the implemen-
tation of the action plan created and
less on what a given key activity's score
should be.

I n addition to Motorola's Cellular
Infrastructure Group, several

Motorola business units have adopted
the use of SEI Progress Assessments,
including product groups within the
Satellite Communications Group,
Semiconductor Products Sector, the
Land Mobile Products Sector, and the
Automotive and Industrial Electronics
Group. Thus far, these groups' experi-
ences with SEI Progress Assessments
support the lessons learned within the
CIG.

After using the progress-assessment
process for several quarters, we were
able to formally document it, which

implies that it reflects a practically
implemented sequence of steps rather
than a list of steps that would be nice to
do but have not been implemented yet.

Having already achieved SEI level 2
in the second quarter of 1993, work is
already in progress for achieving SEI
level 3 within the CIG, with the SEI
Progress Assessment process continu-
ing to be the key driver. Benefits simi-
lar to those reported by Raymond
Dion7 are anticipated as a result of
achieving higher SEI process-maturity
levels.

The instrument and process used for
implementing the SEI Progress Assess-
ment method can also be used in con-
junction with additional models of soft-
ware capability, quality, customer satis-
faction, software measurements,8 and so
on, such as the Quality System Review
to assess progress relative to "higher
levels" in that model. I encourage you
to use the SEI Progress Assessment
method within your own organization
and to share your results with other
software practitioners in professional
conferences and publications. +
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Successfully Applying
Software Metrics
Robert B. Grady, Hewlett-Packard

What do you need to
measure and analyze to

make your project
a success? These

examples from many
projects and HP

divisions may help you
chart your course.

T he word success is very powerful. It creates strong, but widely varied, im-
ages that may range from the final seconds of an athletic contest to a grad-
uation ceremony to the loss of 10 pounds. Success makes us feel good; it's

cause for celebration.
All these examples of success are marked by a measurable end point, whether ex-

ternally or self-created. Most of us who create software approach projects with some
similar idea of success. Our feelings from project start to end are often strongly in-
fluenced by whether we spent any early time describing this success and how we
might measure progress.

Software metrics measure specific attributes of a software product or a software-
development process. In other words, they are measures of success. It's convenient
to group the ways that we apply metrics to measure success into the four areas shown
in Figure 1. This article contains four major sections highlighting examples of these
areas.

Figure 1 also shows two arrows that represent conflicting pressures for data. For
example, on one of the first software projects I managed, the finance department
wanted me to use their system to track project costs, arguing that this would help me.
I shortly learned that their system didn't give me the kind of information I needed to
be successful. The reports weren't timely or accurate, and they didn't usefully mea-
sure progress. This was one of my first experiences with the opposing desires for in-
formation that can arise between a project manager and the division's management
team. They wanted summary data across many diverse functions: I wanted data that
would help me track day-to-day progress.

I soon realized that projects stand the best chance of success when the goals driv-
ing the use of different measures can be stated and mutually pursued. This article's
examples are all from real projects, and they were chosen to show both viewpoints
illustrated by the arrows in Figure 1. The examples also show how the possibly con-

Reprinted from Computer, Vol. 27, No. 9, Sept. 1994, pp. 18-25.
Copyright © 1987 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.
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flicting goals of a project team and of an
organization can effectively complement
each other. Finally, they are examples
of things that you can measure to be
more successful.

Project estimation
and progress
monitoring

Today there are dozens of software-
estimation tools. Figure 1 suggests that
such tools can be quite useful to project
managers. These tools are now very so-
phisticated because they account for
many possible project variables. Unfor-
tunately, most of us are not much better
at guessing the right values for these vari-
ables than we are at guessing total pro-
ject schedules.

The basis for estimates. Most estimat-
ing tools are based on limited measure-
ments. For example, the first three
columns of Table 1 show measurements
for my early 25,000-engineering-hour pro-
ject, with and without nonengineering ac-
tivities. (I finally tracked these measure-
ments without using our normal account-
ing system.) Some of the data is useful for
future estimates. For example, the per-
centages for supervision and administra-
tive support would be reasonably accu-
rate for other projects, particularly since
they can be controlled. Even the time
spent in different activities doesn't differ
much from the averages for 132 more-
recent Hewlett-Packard projects, although
my team didn't collect the data in exactly
the way that HP currently does.

Should you collect data like this for
your projects? Since estimation models
are based on such data, informally col-
lecting it will help you track the validity of
your inputs into any model. This data can
give you useful insights into the accuracy
of your estimates. The earlier you find dif-
ferences, the more likely it is that man-
agement might accept schedule changes.

The bottom line. Higher level man-
agers are usually not interested in as
much detail as Table 1 presents. They
want the bottom line: Is the project on
schedule? Figure 2 shows how one HP
lab tracked this across many projects.1*2

Two ideas went into this graph. First, a
schedule slip is the amount of time that a
project schedule is moved to a later date.
Second, average project progress for a

Major uses of software metrics

Increasing usefulness
to engineers and
project managers

; • Project estimation and progress monitoring.

Evaluation of work products.

Process improvement through failure analysis.

Experimental validation of best practices.

Increasing usefulness
to process groups

and higher management

Figure 1. Major uses of software metrics and the conflicting pressures for data.

Table 1. Task breakdowns for a 25,000-engineering-hour software project over
2.5 calendar-years.

Tracked
Times

Investigation
External/Internal
Reference Specs

Coding
Debugging
Integration
Quality Assurance
Manuals
Supervision
Support

Project
%

20

2
19
19
11
8
7
9
5

Eng.
Only %

26 }

2
23 1
24 1
14
11

Categories
Currently
Tracked

Reqs./Specs.
" Design

Implement

Test

f

Approx.
Project

%

19
16

32

33

HP
Average

18
19

34

29

Not included

4/84 7/84 10/84 1/85 4/85 7/85 10/85 1/86 4/86 7/86 10/86 1/87 4/87 7/87
Calendar months

Figure 2. Development project progress for all software projects in one HP division.
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Figure 3. Plot of thousands off noncomment source statements (KNCSS) against
time for project summarized in Table 1 (© 1987 Prentice-Hall, used with
permission).

time period is defined as one minus the
ratio of the sum of all project slips divided
by the sum of project elapsed times.

For example, suppose you have a small
lab with three projects. In a one-month
period, the first project's manager be-
lieves that it is on schedule (its schedule
doesn't change). Its slip is zero. The sec-
ond project had a bad month. Its slip is
one. The third project's manager expects
the project will slip one week, for a slip
of about one-quarter. The sum of the
slips is 1.2S. The sum of elapsed times is
3. Average project progress is therefore
1-(1.25/3) = 0.58.

The graph uses a moving average to
smooth month-to-month swings. The lab
first started plotting the graph around
October 1985. They had enough histori-
cal data to show that they had only aver-
aged about a half month of progress for
every elapsed month. After monitoring
the graph for a few months, the project
teams gradually focused on more accu-
rate schedules, and they improved their
accuracy to an enviable point.1*2

Successful usage. The examples shown
in Table 1 and Figure 2 were both suc-
cesses. They show two things that you will
see repeated in other examples:

•Lab management wanted limited,
high-level summary data.

• Project-management data provided
both confidence-building tracking in-
formation and a basis for better fu-
ture estimates.

A major reason for success in both
cases was that their end points — their

goals — were measurable. Figure 2
graphically shows that the way the divi-
sion estimated schedules hadn't changed
for at least 1.5 years before they defined
a way to measure progress. In the other
example, Table 1, the data influenced
dozens of my decisions. They included
resource balancing, intermediate and fi-
nal schedule commitments, test sched-
ules, and technical writing schedules. Fur-
thermore, I could confidently show and
explain progress on a very large project in
ways that few high-level HP managers
had seen before.

Monitoring progress against estimates.
There are two time-proven ways to track
progress on a software project. The first is
to track completed functionality (the fea-
tures or aspects of the software product).

Tracking functionality. Despite often-
expressed concerns about the usefulness
of counting lines of code, I have found
tracking code size against time to be very
useful for managing projects. Figure 3 is a
plot of thousands of noncomment source
statements (KNCSS) against time for the
project summarized in Table I.3

KNCSS represents completed function-
ality here. It is reasonable to use during the
coding and testing phases, particularly if
you track coded NCSS separately from
tested NCSS (not shown in Figure 3). I up-
dated this graph every week to make sure
the project was on track. I also tracked the
status of modules designed for this project.
This provided a link to our original esti-
mates by exposing design areas signifi-
cantly different from earlier plans.

More recently, HP has measured

FURPS criteria (functionality, usability,
reliability, performance, and supportabil-
ity) to complement simpler size-tracking
metrics. (Grady2 describes FURPS more
completely.)

Finally, function points, another popu-
lar functionality measure, are computed
from a combination of inputs, outputs, file
communications, and other factors. They
can be computed independently of source
code, so some people find their added dif-
ficulty of use offset by this earlier avail-
ability. (Capers Jones' Applied Software
Measurement, McGraw-Hill, New York,
1991, is a useful function-point reference.)

Found-and~fixed defects. Tracking func-
tionality doesn't attract high-level man-
agement attention like the trends of
found-and-fixed defects. This second
method is very useful in monitoring
progress in later development phases.
These trends are also among the most im-
portant aids you have in deciding when to
release a product successfully. Methods
for analyzing such trends vary. Variations
include simple trend plotting, sophisti-
cated customer-environment modeling,
and accurate recording of testing or test-
creation times.

Using defect trends to make larger sys-
tem-release decisions gives valuable con-
fidence to higher level managers. They
feel more comfortable when major release
decisions are backed by data and graphs.
Figure 4 shows the system test defects for
a project involving over 30 engineers. It
shows this project's status about one
month before completion. The team de-
rived the goal from past project experi-
ences. One release criteria was for the de-
fects/1 ,000-test-hours rate to drop and stay
below the goal line for at least two weeks
before release. The alternative projections
were simple hand-drawn extrapolations
using several of the past weeks' slopes.
The team updated the graph every week.
The weekly test hours were much fewer
than 1,000, so the weekly ratios may give
an impression that there were more de-
fects than there really were.

HP has learned that the critical down-
ward trend that Figure 4 displays is neces-
sary to avoid costly postrelease crises. This
project's downward slope continued, and
the project released successfully. An op-
posite example was an HP software sys-
tem released despite an absence of a clear
downward defect trend. The result was a
multimillion-dollar update shortly after
release and a product with a bad quality
reputation. This kind of mistake can cause

47



300-

o-^-r

Defects/1.000 test hours
Goal
Alternative projections

T 1 1 1 1 i i i 1 1 1 r

0208 0222 0308 0322 0405 0419 0503 0517 0531 0614 0628 0712 0726 0809

Week
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Total decisions

Figure 5. Trend analysis of number of
source updates for system-level testing
versus the number of decision state-
ments per subroutine.

an entire product line's downfall. A recent
article describes how one company
learned this lesson the hard way.4

Plotting defect trends is one method
where both project and high-level man-
agement have similar interests. While ex-
act completion points may vary based on
differing project goals, better decisions
are possible when trends are visible.
Those decisions will help to ensure proj-
ect success.

Evaluation of
work products

A work product is an intermediate or fi-
nal output that describes the design, oper-
ation, manufacture, or test of some por-
tion of a deliverable or salable product. It
is not the final product. All software de-
velopment finally results in a work product
of code. While this section's brief exam-
ples center on code, the idea of extracting
useful metrics from virtually any work
product is the point to remember.

Because code can be analyzed auto-
matically, it has been a convenient re-
search vehicle for sophisticated statistical
analysis. Unfortunately, this emphasis has
created a strong bias in perceptions of
metric applications. Many managers be-
lieve that useful metrics require time-
consuming techniques outside of their
normal decision-making processes. Even
recently, one metrics expert told me that the
minimum number of code metrics a project
manager should monitor is around 20.

Cyclomatic complexity. Fortunately,
HP has had good results when measur-
ing just one code metric: cyclomatic com-
p/exity, which is based on a program's de-
cision count. (The decision count includes

all programmatic conditional statements,
so if a high-level-language statement con-
tains multiple conditions, each condition
is counted once.) One HP division espe-
cially saw this when they combined the
metric with a visual image that graphi-
cally showed large complexity.5 Graphs,
and their source code cross references,
help engineers understand problem lo-
cations and may provide insights for fix-
ing them. The graphs excite managers be-
cause their availability encourages
engineers to produce more maintainable
software. This doesn't mean that the
tool's numeric values are ignored: Com-
plexity metrics give managers and engi-
neers simple numerical figures of merit.

When considering engineering tool
value, high-level managers want to know
whether using such a tool yields better
end products in less time. Project man-
agers may have to look at other data like
that shown in Figure 5 to build a strong
case for tools.6 This study concerned a
project of 830,000 lines of executable For-
tran code.

Those doing the study plotted the rela-
tionship between program-decision counts
and the number of updates reflected by
their source code control system. Seventy-
five percent of the updates fell within the
dashed lines. For their system, the number
of updates was proportional to the num-
ber of decision statements. From their
analysis, they drew a trend line. By know-
ing the cost and schedule effects of mod-
ules with more than three updates, they
concluded that 14 was the maximum deci-
sion count to allow in a program. (Tom
McCabe originally suggested 10, based on
testing difficulty.7)

You can do a similar analysis or you
can accept these and similarly docu-
mented results and assume they apply
equally well to your project. Then esti-

mate how using complexity tools can
make your project more effective. Mea-
sure normal defect rates and both the en-
gineering time and the calendar time to
do fixes. Estimate how long it would take
to run complexity tools. Finally, calculate
your savings when you reduce complex-
ity before your people start finding the
defects in test. Grady2 provides an eco-
nomic justification for the purchase of
complexity tools like these.

But the metrics expert who set a mini-
mum of 20 code metrics was not totally
wrong. Because cyclomatic complexity is
a measure of control complexity, it is
more valuable for control-oriented ap-
plications than for data-oriented ones. It
works for both, but the characteristics of
data-oriented applications suggest that
you must consider other dimensions as
well. Unfortunately, reported data-
oriented results haven't been as thor-
oughly tested as those I've mentioned.

Design complexity. A promising met-
ric for data-oriented complexity is fanout
squared. The fanout of a module is the
number of calls from that module. At
least three studies have concluded that
fanout squared is one component of a de-
sign metric that correlates well to proba-
bility of defects.2-8'9 More importantly,
fanout squared can be determined before
code is created. Figure 6 on the next page
shows the top-level structure chart of the
most defect-prone module in a system.
This module was the source of 50 percent
of the system test defects, even though it
had only 8 percent of the code. Its fanout
squared was also the largest among the
system's 13 top-level modules. In fact,
postrelease defect densities were highly
correlated to the fanout squared of the
system's modules.

The figure shows a large number of
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Figure 6. Structure chart showing fanout/fanout squared for each module. Diagram is simplified to show a complete set of
connections for the main module only. Calls to system or standard utility routines are not shown or counted.

connections between main and the 15
other modules. The library modules don't
call other modules, so no fanout is given
for them. Note the fanout for prompts
forjnfo. With a fanout of 38 (and a fanout
squared of 1,444), you can imagine its
structure chart's complexity. Such large
fanouts suggest that there is a missing de-
sign layer. Structure charts combine with
fanout squared to give the same type of re-
sults as cyclomatic complexity and graph-
ical views of control flow, only earlier.

Based on limited past experimental re-
sults, design complexity metrics may not
be justified yet during design. However, if
information like fanout squared were read-
ily available as a byproduct of normal pro-
ject tools, progress toward understanding
design complexity would be faster. Mean-
while, measuring code complexity is desir-
able from both project and higher man-
agement viewpoints. Also, measuring
design complexity in designs provides an
important research opportunity.

More on successful usage. Cyclomatic
complexity and fanout squared are just
two types of work-product analysis. Au-
tomation recently introduced by the
CASE (computer-aided software engi-
neering) boom continues to expand en-
gineers* comprehension of their work.

You can take advantage of complexity
data to help your project in several ways.
Like the Figure 5 example suggests, you
can enforce a standard by computing
complexity for all modules and not ac-
cepting any above some value. Another
approach is to limit the number of mod-
ules above a given complexity level.
Then make sure those modules are in-
spected and tested carefully. Another
way is to require more documentation
for such modules. Whichever way works
best for you, it is certain that complexity
information will help both you and your
engineers to be more successful by pro-
viding information for better, more
timely decisions.

Process
improvement
through failure
analysis

I believe this third area from Figure 1
is the most promising for improving de-
velopment processes. Failure analysis,
and finding and removing major defect
sources, offers the best short-term po-
tential for guiding improvements.

Project defect patterns. There are sev-
eral valuable approaches. One simple ap-
proach for project managers is to monitor
the number of defects found during sys-
tem test, code inspections, or design in-
spections. This data can be sorted by
module, and special actions can be taken
as soon as potential problem areas ap-
pear. For example, Figure 7 shows both
prerelease system-test defects and defects
for a product during the first six months
after its release.3

Unfortunately, the project manager in
this case didn't do anything different un-
til after collection of postrelease data.
The project manager then focused team
effort on thorough inspections and better
testing of the three most defect-prone
modules. (While these modules were
only 24 percent of the code, they ac-
counted for 76 percent of the defects.) As
a result, the team succeeded in greatly re-
ducing the product's incoming defect rate
by focusing on those three modules.

Software process defect patterns. An-
other type of failure analysis examines
defect patterns related to development
processes. This analysis affects enough
people to generally require lab-level
management sponsorship. Many HP di-
visions today start this analysis by cate-
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Figure 7. Analysis by code module for prerelease system-test
defects and for those occurring during the first six months
after the product's release (© 1987, Prentice-Hall, used with
permission).

Figure 8. Top eight causes of defects for four Scientific In-
struments Division projects at Hewlett-Packard.

gorizing their defects according to a
three-level HP model used since 1987.
The three levels are origin, type, and
mode. Grady2 describes several signifi-
cant improvements achieved in divisions
using this model. Figure 8 shows recent
data for two levels of the model for yet
another HP division (Scientific Instru-
ments Division). The shading represents
defect origin information, and the pie
wedges are defect types. The data reflects
the eight most frequently recorded
causes of defects for four projects.

The division performed three post-pro-
ject reviews to brainstorm potential so-
lutions to their top four defect types. Sev-
eral initiatives were launched. The first
of these that yielded data for a full project
life cycle recently concluded. The project
team had decided to focus on user-inter-
face defects. They had over 20 percent of
that defect type on their previous project
(even though the division-wide average
was lower). They brainstormed the Fig-
ure 9 fishbone diagram and decided to
create guidelines for user-interface de-

signs that addressed many of the fish-
bone-diagram branches.

Their results were impressive. They re-
duced the percentage of user-interface
defects in test for their new year-long
project to roughly 5 percent. Even though
the project produced 34 percent more
code, they spent 27 percent less time in
test. Of course, other improvement ef-
forts also contributed to their success.
But the clear user-interface defect re-
duction showed them that their new
guidelines and the attention they paid to

Guidelines not
followed

Lack of feedback Lack of guidelines

No

Ho time
asthetics

Don't read
them

\

Prototype
not enough

Users not
focused on
new product

Corner cases,
particular —
problems

Int. customers
decide based on
functionality

No central location
No process
to provide

early feedback

Too many
combinations
of features

Too many
details—

Decided based on
— incomplete

customer base

Too busy to
" do them

Some product
parts don't
resemble others

Some panels
not used as much

Tests don't model
user environment
adequately

No good model

» User
interface

Result of changes

Resource limits

Different
perspectives Oops (forgotten)

Figure 9. Fishbone diagram showing the causes of user-interface defects.
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their interfaces were major com* ibutors.
The examples you've seen in Figures 7,

8, and 9 show how a small investment in
failure analysis can reap practical short-
term gains. Ironically, the main limiter to
failure-analysis success is that many man-
agers still believe they can quickly reduce
total effort or schedules by 50 percent or
more. As a result, they won't invest in
more modest process improvements.
This prevents them from gaining 50 per-
cent improvements through a series of
smaller gains. Because it takes time to get
any improvement adopted organization-
wide, these managers will continue to be
disappointed.

Experimental
validation of
best practices

This software metric use has been the
most successful of the four listed in Fig-
ure 1. People have validated the success of
important engineering practices (for ex-
ample, prototyping,10 reducing coupling,
increasing cohesion,9 limiting complexity,6

inspections and testing techniques,11 and
reliability models12). This validation
should lead to quicker, widespread ac-
ceptance of these "best" practices.

Of the four Figure 1 metric uses, pro-
ject managers are least motivated to val-
idate best practices because normal pro-
ject demands have higher priority. On the
other hand, these metrics have probably
brought project managers the greatest
benefits. The first example here is what
high-level managers want to see. One HP
division measured the data in Table 2 for
different test and inspection techniques.
The average efficiency of code reading/
code inspections was 4.4 times better
than other test techniques yield.2-13 This
data helps project managers to plan in-
spections for their projects and to con-
vince their engineers of the merits of in-

Table 2. Comparison of testing
efficiencies.*

Testing Type

Regular use
Black box
White box
Reading/
Inspections

Efficiency
(Defects

found/hour)

0.210
0.282
0.322
1.057

•Defect-tracking system lumped code reading and
inspections into one category. About 80 percent of
the defects so logged were from inspections.

spections by showing the benefits.
However, experience has shown that it

takes many years to widely apply even
proven best practices. It often takes local
proof to convince engineers to change
their practices. For example, Henry and
Kafura first showed the fanout squared
metric discussed earlier to be useful over
10 years ago (as a part of their informa-
tion-flow metric).8 Even then, they
pointed out how such an early design met-
ric would be useful during design inspec-
tions. Unfortunately, most software-
developing organizations don't have stan-
dard design practices yet. Also, people
haven't been convinced that it's worth the
effort to do high-level design with the de-
tail necessary to compute such measures.

Project managers might find Figure
10's graph useful for their projects. It
shows all the fanout squared values for
an HP product. If you had this informa-
tion early in your project, you could focus
inspections and evaluations on the high-
value modules. Like cyclomatic com-
plexity, fanout squared appears to have
several very desirable properties:

• It is easy to compute.
• Graphical views (like Figure 6) do

Figure 10. Fanout
squared for a 250-
module product,
sorted by ascend-
ing fanout
squared (which is
more than 100 for
only 10 percent of
the modules).

Fanout2 =100

Modules

reflect high complexity.
• The metric exposes a small percent-

age of a system's modules as poten-
tial problems.

Although this may be a significant fu-
ture metric, it illustrates a dilemma. How
much time can project managers or orga-
nizations spend proving such practices?
As positive evidence grows and competi-
tive pressures for higher quality grow, the
motivation to apply promising new prac-
tices also increases. Not all validations of
beneficial practices are as easy to measure
as inspections. However, this is the road to
progress. My advice to project managers is
to invest some of your team's effort on im-
provements, but track and validate the
benefits. My advice to high-level managers
is to reserve some funds and encourage-
ment to support such validations.

H ow do you apply software met-
rics to be successful? Review the
four major uses of metrics, study-

ing the project-level and management-
level examples from successful projects.
These examples lead to three recommen-
dations for project managers:

• Define your measures of success
early in your project and track your
progress toward them.

• Use defect data trends to help you
decide when to release a product.

• Measure complexity to help you op-
timize design decisions and create a
more maintainable product.

Don't forget that other aspects con-
tribute to successful metrics usage and
project management beyond this article's
examples. They include linking metrics
to project goals, measuring product-
related metrics, and ensuring reasonable
collection and interpretation of data.

Consider two more recommendations
for strategic purposes:

• Categorize defects to identify prod-
uct and process weaknesses. Use this
data to focus process-improvement
decisions on high-return fixes.

• Collect data that quantifies the suc-
cess of best practices.

This is all useful advice, but what do
you need to measure to be successful! It is
difficult to reduce this answer to a small
set of measures for high-level managers.
Chapter IS of Grady2 discusses nine
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useful management graphs. Finally, I suggest that project man-
agers collect the following data:

• engineering effort by activity,
• size data (for example, noncomment source statements or

function points),
• defects counted and classified in multiple ways,
• relevant product metrics (for example, selected measur-

able FURPS),
• complexity, and
• testing code coverage (an automated way of measuring

which code has been tested).2

Understand how each of these relates to your success, and per-
form timely analyses to optimize your future. •
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Using Metrics to Manage
Software Projects
Edward F. Weller

Bull HN Information Systems*

F ive years ago, Bull's Enterprise Servers Operation in Phoenix, Arizona, used
a software process that, although understandable, was unpredictable in terms
of product quality and delivery schedule. The process generated products

with unsatisfactory quality levels and required significant extra effort to avoid major
schedule slips.

All but the smallest software projects require metrics for effective project man-
agement. Hence, as part of a program designed to improve the quality, productivity,
and predictability of software development projects, the Phoenix operation launched
a series of improvements in 1989. One improvement based software project man-
agement on additional software measures. Another introduced an inspection pro-
gram,1 since inspection data was essential to project management improvements.
Project sizes varied from several thousand lines of code (KLOC) to more than 300
KLOC.

The improvement projects enhanced quality and productivity. In essence, Bull
T 1 QftQ *R I I ' A ' n o w **as a P r o c e s s t n a t *s rePeatable and manageable, and that delivers higher qual-
111 l i i o y , D u l l S A r l Z O n a i t y proc |ucts at lower cost. In this article, I describe the metrics we selected and im-

facilltV icUincllGCl a plemented, illustrating with examples drawn from several development projects.

project management
program that required Project management levels

additional Software There are three levels of project management capability based on software-
- metrics visibility. (These three levels shouldn't be equated with the five levels in the

and Software Engineering Institute's Capability Maturity Model.) Describing them will
Todav the put the Bull examples in perspective and show how we enhanced our process through

* ' ' gathering, analyzing, and using data to manage current projects and plan future ones.gathering, analyzing, and using data to manage current projects and plan future ones.

company enjoys
• « First level. In the simplest terms, software development can be modeled as shown
improvements in m Figure 1. Effort, in terms of people and computer resources, is put into a process

QlialltV DrodllCtivitV l ^ a t y*e^s a Pr°duct. AH too often, unfortunately, the process can only be described

C O S t * * Since writing this article, the author has joined Motorola.

Reprinted from Computer, Vol. 27, No. 9, Sept. 1994, pp. 27-33.
Copyright © 1987 by The Institute of Electrical and Electronics Engineers, Inc. AH rights reserved.
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Effort—-** ? —•Product

Figure 1. Software development level 1:
no control of the development process.
Some amount of effort goes into the
process, and a product of indetermi-
nant size and quality is developed early
or (usually) late, compared to the plan.

Figure 2. Defect discovery profile for
lower development levels. The number
of defects in the product exceeds the
ability of limited resources to discover
and fix defects. Once the defect num-
ber has been reduced sufficiently, the
discovery rate declines toward zero.
Predicting when the knee will occur is
the challenge.

by the question mark in Figure 1. Project
managers and development staff do not
plan the activities or collect the metrics
that would allow them to control their
project.

Second level. The process depicted in
Figure 1 rarely works for an organization
developing operating-system software or
large applications. There is usually some
form of control in the process. We col-
lected test defect data in integration and
system test for many years for several
large system releases, and we developed
profiles for defect removal that allowed
us to predict the number of weeks re-
maining before test-cycle completion.
The profile was typically flat for many
weeks (or months, for larger system re-
leases in the 100- to 300-KLOC range)
until we reached a "knee" in the profile
where the defect discovery rate dropped
toward zero (see Figure 2).

Several factors limit the defect discov-
ery rate:

• Defects have a higher probability of
being "blocking defects," which pre-
vent other test execution early in the

Effort »• ? Code - ^ Test •Product

Figure 3. Software
development at
level 2: measure-
ment of the code
and test phases
begins.

Figure 4. Software
development level
3: control of the
entire develop-
ment process.
You measure the
requirements and
design process to
provide feedfor-
ward to the rest of the development as well as feedback to future planning activities.

j
1 I x—

Planned w
effort"*"
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Require-
ments and

design

- < - Feedback j
• • • Feedforward i

1
Code

i

Test

A A
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integration- and system-test cycle.
• The defect discovery rate exceeds the

development staffs capacity to ana-
lyze and fix problems, as test pro-
gresses and more test scenarios can
be run in parallel.

Although this process gave us a fairly
predictable delivery date once the knee
was reached, we could not predict when
the knee would occur. There were still
too many variables (as represented by the
first two boxes in Figure 3). There was no
instrumentation on the requirements or
design stages (the "?" in Figure 3).

Our attempts to count or measure the
size of the coding effort were, in a sense,
counterproductive. The focus of the de-
velopment effort was on coding because
code completed and into test was a count-
able, measurable element. This led to a
syndrome we called WISCY for "Why
isn't Sam coding yet?" We didn't know
how to measure requirements analysis or
design output, other than by document
size.

We also didn't know how to estimate
the number of defects entering into test.
Hence, there was no way to tell how
many weeks we would spend on the flat
part of the defect-removal profile. Pre-
dicting delivery dates for large product
releases with 200 to 300 KLOC of new
and changed source code was difficult, at
best.

A list of measures is available in the
second-level model (Figure 3):

• effort in person-months,
• computer resources used,

• the product size when shipped, and
• the number of defects found in the

integration and system tests.

Although these measures are "available,"
we found them difficult to use in project
planning — there was little correlation
among the data, and the data was not
available at the right time (for instance,
code size wasn't known until the work
was completed). Project managers
needed a way to predict and measure
what they were planning.

Third level. The key element of the ini-
tiative was to be able to predict develop-
ment effort and duration. We chose two
measures to add to those we were already
using: (1) size estimates and (2) defect re-
moval for the entire development cycle.

Because the inspection program had
been in place since early 1990. we knew
we would have significant amounts of
data on defect removal. Size estimating
was more difficult because we had to
move from an effort-based estimating
system (sometimes biased by available
resources) to one based on quantitative
measures that were unfamiliar to most
of the staff. The size measures were nec-
essary to derive expected numbers of
defects, which then could be used to pre-
dict test schedules with greater accuracy.
This data also provided feedback to
the planning organization for future
projects.

To meet the needs of the model shown
in Figure 4, we needed the following mea-
sures (italics designate changes from the
prior list):
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• effort in person-months,
• computer resources used,
• estimated product size at each devel-

opment stage,
• product size after codings
• product size after each test stage,
• number of defects found in all devel-

opment stages from inspections (in
this article, inspection defects refer
to major defects), unit test, integra-
tion test, and system test, and

• estimated completion date for each
phase.

The sidebar "Data collection sheet"
shows a sample form used to compile
data.

Project planning
Once the project team develops the

first size estimate, the project manager
begins to use the data — as well as his-
torical data from our metrics database —
for effort and schedule estimating. Sev-
eral examples from actual projects illus-
trate these points.

Using defect data to plan test activi-
ties. We use the inspection and test defect
databases as the primary defect-estima-
tion source. The inspection data provides
defect detection rates for design and code
by product identifier (PID). Our test
database can be searched by the same

PID, so a defect depletion curve2 for the
project can be constructed by summariz-
ing all the project's PIDs. (Several inter-
esting examples in Humphrey2 provided
a template for constructing a simple
spreadsheet application that we used to
plan and track defect injection and re-
moval rates.) Figure 5 shows such a curve
for one project. The size and defect den-
sity estimates were based on experience
from a prior project. The project man-
ager estimated the unit and integration
test effort from the defect estimates and
the known cost to find and fix defects in
test. The estimates and actual amounts
are compared in the "Project tracking
and analysis" section below.

Data collection sheet
This "Data collection sheet," developed by Kathy Grif-

fith, Software Engineering Process Group project man-
ager at Bull, compiles effort, size, defect, and completion
data. Although the sheet is somewhat busy, only six data

elements are estimated or collected at each develop-
ment-cycle phase. The cells with XX in them indicate data
collected at the end of high-level design; the cells with YY
are derived from the XX data.

DATA COLLECTION SHEET

Project Name

Build I
Product or Feature Group Identifier(s)
(PIDs, IDs, etc.) j —
Date of Initial Estimates |

N&C Original KLOCEst

N&C Revised KLOC Est

N&C KLOC Actuals

Effort-Estimate (PM)

Effort- Revised (PM)

Effort-Actual (PM)

# Defects - Estimate

# Defects - Actual

Est Phase End Dates

GS = Generalship
HLD = High-Level Design
LLD = Low-Level Design

REQ HLD

XX

LLD

•MM • ! —

XX

XX

YY

YY

XX

CODE LEV1 LEV2 LEV3 LEV4

- .- .

GS TOTALm
E
_

LEV1 = Unit, or Level 1, Test
LEV2 = Integration, or Level 2, Test
LEV3 = System, or Level 3, Test
LEV4 * Beta, or Level 4, Test

N&C = New and Changed
PID = Product IDentifier
PM sa Person Months
REQ = Requirements Analysis

55



i
T3

r 
of

-
N

ui
900n
800-
700-
600-
500-
400-
300-
200-
100 T

/^V—\/ T V
// \j/ \

^ , , , ,—
11 l& l& 1* 1
I I | l | l 8 |
cr

o Estimate
-o Actual

s,—I

te
st

tio
n

te
gr

a

Development phase

—i

te
st

te
rn

S.
CO

**TJ-i.i_

—1

sh
ip

e
ta

;

m

sh
ip

»r
al

:

£

Figure 5. Esti-
mated versus
actual defect
depletion curves.

Multiple data views. The data in Figure
6 helped the project manager analyze re-
sults from the integration test. The proj-
ect team had little experience with the
type of product to be developed, so a
large number of defects were predicted.
The team also decided to spend more ef-
fort on the unit test. After the unit test,
the results seemed within plan, as shown
in Figure 6a. During the integration test,
some concern was raised that the num-
ber of defects found was too high. Once
the data was normalized against the proj-
ect size and compared to projections for
the number of defects expected by the
development team, the level of concern
was lowered.

However, this project had a serious re-
quirement error that was discovered in

the later stages of the system test; this
demonstrated why it's important to look
at more than the total number of defects
or the defect density, even when the num-
ber of defects is below expectations. A
closer look at the early development
stages shows that very few requirements
or high-level design defects were found in
the inspections. The low-level design in-
spections also found fewer defects than
expected. What the project members
missed in the data analysis during the unit
and integration tests was the large num-
ber of design errors being detected (see
Figure 6b). This example demonstrates
the value of independent data collection
and analysis as soon as it is available.

An objective analysis, or at least an
analysis that looked at the project from a

different viewpoint, might have spotted
the anomaly. Unit test data accuracy
might have been questioned as follows:

• Are some of the errors caused by
high-level design defects?

• Why weren't any design defects
found in the integration test?

When the data was charted with the de-
fect source added, the design-defect data
discovery rate in the unit test was obvi-
ous. The inaccuracy of the integration test
data also became apparent. A closer look
at the project revealed the source of the
defect data had not been collected.

We also questioned members of the
design inspection teams: we found that
key people were not available for the
high-level design inspection. As a result,
we changed the entry criteria for low-
level design to delay the inspection for
two to three weeks, if necessary, to let a
key system architect participate in the in-
spection. Part of the change required a
risk analysis of the potential for scrub-
bing the low-level design work started be-
fore the inspection.

Using test cost. On one large project,
the measured cost in the integration test
was much higher than expected. Even
though you know the cost of defects in
test is high, an accurate cost tally can sur-
prise you. If you haven't gathered the data
for a project, the following example may
convince you that the effort is worthwhile.

On this large project, it took

Phases
• Coding
DLLD
• HLD
• R/A

O

Development phase Development phase

(a) (b)

Figure 6. Projected versus actual number of defects found per thousand lines of code from inspections and test (a), and addi-
tional information when the defect source is included (b).
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• 80 hours to find and fix the typical de-
fect,

• 3.5 person-months to rebuild the
product and rerun the test suite, and

• 8-10 calendar days to complete the
retest cycle.

Three months' effort represents the fixed
cost of test for this product area.

This analysis reemphasizes the need to
spend more time and effort on inspect-
ing design and code work products. How
many additional hours should be spent
inspecting the work products (design,
code, and so forth) versus the months of
effort expended in test?

Sanity check. Size estimates and soft-
ware development attribute ratings are
used as input to the Cocomo (Construc-
tive Cost Model) estimating model.3 (Joe
Wiechec of Bull's Release Management
group developed a Cocomo spreadsheet
application based on Boehm3 for sched-
ule and effort sanity checks.) The accu-
racy of the effort estimate produced by
Cocomo depends on accurate size esti-
mate and software development attribute
ratings (analyst capability, programmer
capability, and so forth).

We compare the assumed defect rates
and cost to remove these defects with the
Cocomo output as a sanity check for the
estimating process. Since project man-
agers often assign attribute ratings opti-
mistically, the defect data based on proj-
ect and product history provides a
crosscheck with the cost for unit and in-
tegration test derived from the Cocomo
estimate. Reasonable agreement be-
tween Cocomo test-effort estimates and
estimates derived from defect density and
cost to find and fix per-defect figures con-
firm that attribute ratings have been rea-
sonably revised. This sanity check works
only for the attribute ratings, since both
the Cocomo effort estimates and test cost
estimates depend on the size estimate.

Project tracking
The keys to good project tracking are

defining measurable and countable enti-
ties and having a repeatable process for
gathering and counting. During the de-
sign phase, the metrics available to the
project manager are

• effort spent in person-months,
• design-document pages, and
• defects found via work product re-

Table 1. Defect density inferences.

Defect Density Observation Inferences

Lower than expected

Higher than expected

Size estimate is high (good).
Inspection defect detection is low (bad).
Work product quality is high (good).
Insufficient level of detail in work product (bad).

Size estimate is low (bad).
Work product quality is poor (bad).
Inspection defect detection is high (good).
Too much detail in work product (good or bad).

view, inspection, or use in subsequent
development stages.

Interpreting effort variance. When
effort expenditures are below plan, the
project will typically be behind schedule
because the work simply isn't getting
done. An alternative explanation might
be that the design has been completed,
but without the detail level necessary to
progress to the next development phase.
This merely sets the stage for disaster
later.

We use inspection defect data from de-
sign inspection to guard against such dam-
aging situations. If the density falls below
a lower limit of 0.1 to 0.2 defects per page
versus an expected 0.5 to 1.0 defects per
page, the possibility increases that the
document is incomplete. When defect de-
tection rates are below 0.5 defects per
page, the preparation and inspection rates
are examined to verify that sufficient time
was spent in document inspection. We
also calculate the inspection defect den-
sity using the number of major defects
and the estimated KLOC for the project.
If the defect density is lower than ex-
pected, either the KLOC estimate is high
or the detail level in the work product is
insufficient (see Table 1).

When trying to determine which of the
eight possible outcomes reflect the proj-
ect status, project managers must draw
on their experience and their team and
product knowledge. 1 believe the project
manager's ability to evaluate the team's
inspection effectiveness will be better
than the team's ability to estimate the
code size. In particular, a 2-to-l increase
in detection effectiveness is far less likely
than a 2-to-l error in size estimating.

When effort expenditures are above
the plan and work product deliverables

are on or behind schedule, the size esti-
mate was clearly lower than it should
have been. This also implies later stages
will require more effort than was
planned.

In both cases, we found that the pro-
cess instrumentation provided by inspec-
tions was very useful in validating suc-
cessful design completion. The familiar
"90 percent done" statements have dis-
appeared. Inspections are a visible, mea-
surable gate that must be passed.

Project tracking and analysis. Inspec-
tion defect data adds several dimensions
to the project manager's ability to evalu-
ate project progress. Glass4 and Graham5

claim that defects will always be a part of
the initial development effort. (Glass says
design defects are the result of the cogni-
tive/creative design process, and Graham
says errors are "inevitable, not sinful, and
unintentional") Humphrey presents data
indicating that injection rates of 100 to
200 defects per KLOC of delivered code
are not unusual.6 Although we have seen
a 7-to-l difference in defect injection
rates between projects, the variance is
much less for similar projects.

For the same team doing similar work,
the defect injection rate is nearly the
same. The project analyzed in Figure 5
involved a second-generation product
developed by many of the people who
worked on the first-generation product.
At the end of the low-level design phase,
Steve Magee, the project manager, no-
ticed a significant difference in the esti-
mated and actual defect-depletion
counts for low-level design defects. The
estimate was derived from the earlier
project, which featured many similar
characteristics. There was a significant
increase in the actual defect data. We
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Table 2, Measures and possible inferences during requirements and design phases.

Measure Value Inference

Effort Above plan Project is larger than planned, if not ahead of
schedule; or project is more complex than
planned, if on schedule.

Below plan Project is smaller than estimated, if on schedule;
or project is behind schedule; or design detail is
insufficient, if on or ahead of schedule.

Defects Above plan Size of project is larger than planned; or quality
Detected is suspect; or inspection detection effectiveness

is better than expected.

Below plan Inspections are not working as well as expected;
or design lacks sufficient content; or size of
project is smaller than planned; or quality is
better than expected.

Size Above plan Marketing changes or project complexity are
growing — more resource or time will be
needed to complete later stages.

Below plan Project is smaller than estimated; or
something has been forgotten.

The percentage of design defects de-
tected in code inspection on the first proj-
ect was higher than we thought.

We were also concerned by the num-
ber of defects, which exceeded the total
we had estimated even after accounting
for the earlier detection. It seemed more
likely that the size estimate was low
rather than that there was a significant
increase in defect detection effective-
ness. In fact, the size estimate was about
50 percent low at the beginning of low-
level design. The project manager ad-
justed his size estimates and conse-
quently was better able to predict unit
test defects when code inspections were
in progress, and time for both unit and
integration test.

Using defect data helped the project
manager determine that design defects
were being discovered earlier and proj-
ect size was larger than expected. Hence,
more coding effort and unit and integra-
tion test time would be needed.

Figure 7 shows the actual data as this
project entered system test. Comparing
the data in Figures 5 and 7 indicates a
shift in defect detection to earlier stages
in the development cycle; hence, the proj-
ect team is working more effectively.

also had some numbers from the first
project that suggested inspection effec-
tiveness (defects found by inspection di-
vided by the total number of defects in
the work product) was in the 75 percent
range for this team.

Again, we were able to use our inspec-
tion data to infer several theories that ex-
plained the differences. The defect shift
from code to low-level design could be
attributed to finding defects in the low-

level design inspections on the second
project, rather than during code inspec-
tions in the first project. A closer look at
the first project defect descriptions from
code inspections revealed that a third of
the defects were missing functionality
that could be traced to the low-level de-
sign, even though many defects had been
incorrectly tagged as coding errors.
Reevaluating the detailed defect de-
scriptions brought out an important fact:

Figure 7. Actual
defect density data
for the project de-
picted in Figure 5.

D efect data can be used as a key el-
ement to improve project plan-
ning. Once a size estimate is

available, historical data can be used to
estimate the number of defects expected
in a project, the development phase
where defects will be found, and the cost
to remove the defects.

Once the defect-depletion curve for
the project is developed, variances from
the predictions provide indicators that
project managers can examine for po-
tential trouble spots. Table 2 summarizes
these measures, their value (above or be-
low plan), and the possible troubles indi-
cated. These measures and those listed
in Table 1 answer many of the questions
in the design box in Figure 3.

One difficulty project managers must
overcome is the unwillingness of the de-
velopment staff to provide defect data.
Grady7 mentions the concept of public
versus private data, particularly regarding
inspection-data usage. Unless the project
team is comfortable with making this
data available to the project manager, it
is difficult to gather and analyze the data
in time for effective use.

I believe that continuing education on
the pervasiveness of defects, and recog-
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nition that defects are a normal occur-
rence in software development, is a crit-
ical first step in using defect data more
effectively to measure development
progress and product quality. Only
through collecting and using defect data
can we better understand the nature and
cause of defects and ultimately improve
product quality. •
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Using Metrics in
Management
Decision Making
George Stark and Robert C. Durst, Mitre Corporation

C.W. Vowell, NASA Johnson Space Center

The metrics effort
within NASA's Mission
Operations Directorate
has helped managers
and engineers make

decisions about project
readiness by removing
the inherent optimism

of "engineering
judgment."

O ver the years, NASA spacecraft and ground systems have become increas-
ingly dependent on software to meet mission objectives. Figure 1 shows
the growth in software size for several representative systems over time. The

on-board software of unmanned spacecraft has grown from around 500 source lines
of code (LOC) in Mariner 9 to an estimated 35,000 LOC for the Cassini spacecraft
scheduled for launch in 1997. Software supporting on-board manned systems has
grown from 16,500 LOC for the Apollo Saturn V to more than 500,000 LOC for the
shuttle, and 900,000 LOC is projected for the space station data-management system.
The ground systems used to train the astronauts and to monitor and control the
spacecraft contain an average of more than one million LOC. Software supporting the
mission control center has quadrupled in size over the last 10 years to more than 3 mil-
lion executable LOC. For each of these systems, the amount of software has become
the dominant factor contributing to increased system complexity. To better under-
stand and manage any risks that might result from this increase in complexity, the Mis-
sion Operations Directorate (MOD) initiated a software metrics program in May of
1990.

The key requirement behind the development and implementation of the metrics
initiative was to monitor a project's progress unobtrusively. To meet this requirement,
the following four environmental criteria were established as essential to the defini-
tion of the metrics set. First, the metrics had to be relevant to the MOD development
and maintenance environment. That is, they had to be relevant to large, real-time sys-
tems that involve multiple organizations and that are coded in multiple languages. Sec-
ond, collection and analysis of the metrics had to be cost-effective. Third, multiple met-
rics were required during each reporting period to cross check the indications from
any single metric and to provide a complete picture of project status. Fourth, the
metrics needed to have a strong basis in industry or government practice for estab-
lishing "rule-of-thumb" thresholds for use by project managers.
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Figure 1. Software size for NASA projects has grown over time.

After defining the environmental cri-
teria, we engaged in a three-step process
to implement the software metrics initia-
tive: definition, documentation, and ed-
ucation. For the definition step, we ap-
plied Basili's goal/question/metric
paradigm1 and the four environmental
criteria to define metrics for software de-
velopment and maintenance. The Basili
technique involves establishing one or

more organizational goals, posing ques-
tions that address the organization's
progress toward meeting those goals, and
defining measurements that can be col-
lected to answer the questions. For ex-
ample, we defined an organizational goal
to minimize the effort and schedule used
during software maintenance. We posed
two questions to address this goal: Where
are the resources going? How maintain-

able is the system?
To answer these questions and still

meet the four environmental criteria, we
identified the following metrics: software
staffing, service request (SR) scheduling,
Ada instantiations, and fault type distri-
bution. The software staffing and SR
scheduling metrics provide insight into
the total resources being applied to the
project, while the Ada instantiations and
fault type distribution metrics provide in-
sight into the nature of the maintenance
workload. (Ada instantiations provide in-
sight into whether generics require repair
or merely adaptation, and fault type dis-
tribution indicates what types of bugs are
being identified and corrected.) To an-
swer the maintainability question, we se-
lected computer resource utilization,
software size, fault density, software
volatility, and design complexity. Work-
ing definitions of these and other metrics
are included in the sidebar.

To document the metrics, we devel-
oped handbooks containing precise def-
initions and implementation details for
project managers and engineers23 and
pulled together a set of stand-alone tools
to aid in metrics analysis. Data was col-
lected for six projects over two years to

Mission Operations Directorate software metrics descriptions

Ada instantiations — The size and number of generic
subprograms developed and the number of times they are
used within a project.

Break/fix ratio — Number of DRs resulting from a dis-
crepancy report (DR) fix or a service request (SR) change
divided by the total number of closed DRs + SRs over the
same time period.

Computer resource utilization (CRU) — The percent-
age of CPU, memory, network, and disk utilization.

Design complexity — The number of modules with a
complexity greater than an established threshold.

Development progress — The number of modules
successfully completed from subsystem functional design
through unit test.

Discrepancy report (DR) or service request (SR) open
duration — The time lag from problem report or service
request initiation to closure. A discrepancy report is a
change made to software to correct a defect. A service
request is a change made to software to add or enhance a
capability.

DR/SR closure — Actual DR or SR receipts and clo-
sures by (sub)system by month.

Fault density — The open and total defect density (DRs
normalized by software size) over time.

Fault type distribution — Percentage of defects closed
with a software fix by type of fault (for example, logic, error
handling, standards, interface).

Maintenance staff utilization — Engineering months
per SR and per DR written by (sub)system.

Requirements stability — The trend of the total number
of requirements to be implemented for the project over
time.

Software reliability — The probability that the software
"works" for a specified time under specified conditions.

Software size — The number of lines of code in the
system that must be tested and maintained.

Software staffing — The number of software engineer-
ing and first-line management personnel directly involved
with the software.

Software volatility — Percentage of modules changed
per release.

SR scheduling — The length of time it takes to close an
SR that requires a software change and the amount of
engineering effort spent on SR closures.

Test case completion — The percentage of test cases
successfully completed.

Test focus — The percentage of problem reports closed
with a software fix.
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Figure 2. An earned-value chart for a MOD project helped keep cost and schedule
on track.

test the process and to provide material
for subsequent training. Finally, an edu-
cation program was developed to ensure
a common understanding of the metrics
and their application. All MOD devel-
opment and contractor personnel are
trained using data from previous projects.

The following sections describe four
specific decisions that were made using
metrics data collected on MOD projects.
We also provide a description of the met-
ric toolkit and present some of our ob-
servations regarding metric data analysis
and its real-world use.

Deciding to replan
a project

The problem: How can I tell if my pro-
ject is on schedule and within budget?
MOD uses earned value to help answer
this question. Earned value is a technique
that combines the development progress
metric, the staffing metric, and the ex-
pected cost of the project. A number of
clearly identifiable development progress
milestones are established, and a per-
centage of the cost and the expected
number of staff-hours per calendar time
to complete the task is allocated to each
milestone. (Cost is tracked by staff-hours
to protect contractor rate confidential-
ity.) The staff-hours value is "credited"
only when the milestone is 100 percent
complete. The total earned value equals
the new milestones completed plus the
prior completed milestones. Each month
the earned value is reviewed. When
enough data points are available, a lin-
ear extrapolation of the project schedule
and cost is calculated. Management then

takes corrective action if there is a defi-
nite negative trend to the data.

Figure 2 shows an example earned-
value graph by month for a project. This
project began in April without earned-
value measurement. Its scheduled com-
pletion date was October of the following
year. In August, the project was base-
lined with earned value. The project was
13,200 hours behind schedule and 11,000
hours over budget (negative numbers in-
dicate over budget or behind schedule).
Because this was the first earned-value
project in MOD, a decision to rebaseline
was not made immediately. Instead, we
gathered further metrics data and con-
ducted supporting interviews with the
project team.

By December, it was clear that action
was required: The project was 20,000
hours behind schedule and over budget
by almost 1,000 hours. (A reallocation
of staffing resources in August ac-
counted for the progress toward meeting
budget, but the schedule continued to
slip.) The dashed line in Figure 2 is a fore-
cast based on the equation y - mx + b,
where y is the hours earned and x is the
month (that is, April = 1, May = 2
December = 9). The values for the slope
(m) and the intercept (b) were calculated
to be m = -2,197 and b = 40. Note that
the slope is in units of staff-hours per
month. Thus, assuming that there are
2,000 staff-hours in a staff-year, this slope
indicates that the project schedule is slip-
ping at a rate of more than one staff-year
each month.

A review of the two most problematic
subsystems showed some "requirements
creep" and some staffing problems. The
managers decided to review the require-
ments and replan the project. The review

and replan took one month; no original
requirements were scrubbed. The new
plan mitigated the requirements creep by
incorporating the use of common soft-
ware and commercial products available
on the newly procured target platform.
The new plan moved a small number of
staff from maintenance to development
and extended the original delivery date
by two months. In October of the second
year, a minor correction was made to the
plan. As shown in the graph, this new
plan delivered the system with the re-
quired functionality under budget (by
9,827 hours) and on schedule (1,500
hours ahead). Metrics collection made
the problems visible, and the subsequent
analysis drove these corrective decisions.
A rough estimate of the cost avoidance
from these decisions is calculated as (pre-
dicted schedule slip - actual schedule
slip) x staff (or 9 months ~ 2 months) x
110 staff = 770 staff months.

Deciding to
maintain or
redesign software

The problem: How hard will it be for
another organization to maintain this
software? One approach to this question
is to find relationships between the mea-
surable characteristics of programs and
the difficulty of maintenance tasks. Re-
searchers have developed measures of
software complexity that can be used to
understand the structure of a software
module. More than 100 complexity mea-
surements have been proposed in the lit-
erature, but McCabe's cyclomatic com-
plexity metric4 is studied and used most
often. McCabe defines the complexity of
a program on the basis of its structure,
using the number and arrangement of de-
cision statements within the code. Mc-
Cabe complexity is calculated as the
number of decisions in the code plus one.
Myers extended the metric to include
predicates (for example, AND and OR)
and decision-making statements in the
calculation.5 Because predicates do in-
deed create additional independent paths
through a module, this metric is more
comprehensive than its forerunner and is
used within MOD.

Some researchers have expressed
doubts about the validity of complexity
measurement. These doubts have re-
volved around predictive models using
the metrics and around the experimental
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designs used in some validation studies.
Some practitioners, however, have found
complexity measurement useful in plan-
ning for and assessing software develop-
ment risks, in allocating resources during
testing, and in managing maintenance ef-
forts. Complexity measurement is imple-
mentable as part of a project's coding
standard, since inexpensive tools are
available to compute the values and re-
port exceptions to the standard. The Soft-
ware Engineering Laboratory at NASA's
Goddard Space Flight Center has suc-
cessfully used complexity measurement
on a number of projects. The Safety Re-
liability and Quality Assurance organi-
zation at Johnson Space Center (JSC) has
also applied the concepts successfully.

Within MOD. 16 systems currently in
maintenance were analyzed. Seven of
these systems were coded in C, four in
Ada, and five in Fortran. For a given sys-
tem, each software procedure was ana-
lyzed, and a cumulative distribution func-
tion was generated. There were typically
several hundred to several thousand pro-
cedures in a system. Figure 3 shows the
cumulative distribution functions of the
extended McCabe complexity measure
for 16 systems. (Note that the figure is a
logarithmic scale on the jc-axis.)

The figure indicates that 50 percent of
system A functions had a complexity of
less than or equal to 10, and 90 percent
were less than or equal to 80. Based on
published rules of thumb (for example,
procedures should have McCabe com-
plexity of less than 10) and the noticeable
gap between the A and B systems and the
other 14 systems, managers at JSC con-
sidered these two systems risk areas.
They conducted a further investigation
of these systems to determine the number
of problem reports written since release,
the number of users, and maintenance
staff size. Management decided to retire
system A and to find another approach to
implement its function. An evaluation of
commercial off-the-shelf products turned
up a candidate that met more than 80 per-
cent of system A functionality. This prod-
uct has since been implemented and is
now used by a majority of the users. Man-
agement decided to accept the risk on
system B, since it was relatively error free
and was developed, maintained, and used
by a single organization. This result has
allowed management to reallocate sys-
tem A maintenance staff and thus con-
centrate additional effort in other areas.

For the systems in Figure 3, there was
no statistical difference between Ian-
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Figure 3. Cumulative distributions of the McCabe complexity measure revealed
systems A and B as risk areas.
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Figure 4. A McCabe complexity decision chart showing categories of complexity.

guages in terms of complexity. That is,
the C systems studied were no more com-
plex than the Ada or the Fortran systems.
Thus, management used this graph to de-
fine categories of complexity. Figure 4 is
a decision chart for use on new projects.
Systems with distributions in the upper
left-hand section of the chart are consid-
ered to have straightforward logic, sys-
tems that fall in the middle area are con-
sidered "standard complexity," and
systems that fall to the right side of the
chart are considered to be too logically

complex; When systems cross the bound-
ary from standard to logically complex,
the programming team is encouraged to
review those modules. The logically com-
plex systems are candidates for further
review and possible reengineering. We
are currently evaluating other techniques
of complexity measurement (for exam-
ple, Munson's relative complexity mea-
sure), but at this stage of the metrics pro-
gram the extended McCabe metric is
helping MOD managers make more in-
formed decisions.
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Deciding when to
integrate subsystems

The problem: How can I tell when my
subsystems are ready to be integrated?
We use the defect density metric to quan-
tify the relative stability of a software sub-
system and to identify any testing bottle-
necks or possible overtesting by
examining the fault density of the sub-
system over time. There are three com-
ponents to this metric: Total Density (7),
Open Density (O), and Test Hours (//).
The term density implies normalization
by LOC. In practice,

r = Total number of software defects
charged to a subsystem/KLOC,

O = Number of currently open subsys-
tem software defects/KLOC, and

H = Active test hours per subsys-
tem/KLOC.

The metric is then tracked as a plot of
7* and O versus H. A graph of T versus H
indicates testing adequacy and code qual-
ity. Many problems are discovered early
in the subsystem's testing phase, with in-
creasingly fewer problems found as test-
ing proceeds. Thus, the ideal graph be-
gins with a near infinite slope and, as
testing and debugging continues, ap-
proaches a zero slope. If the slope doesn't
begin to approach zero, a low-quality
subsystem or inefficient testing is indi-
cated and should be investigated. The
plot of O versus H indicates the problem-
report closure rate. Again, more prob-
lems should be backlogged at the begin-

Figure 5. An ideal
profile from sub-
system defect-
density testing.

ning of test; then, as debuggers begin to
correct the problems, the slope should
become negative, indicating that the de-
buggers are working off their backlog. If
the slope of the O-versus-// curve re-
mains positive, it means the testers are
finding faults faster than the debuggers
can resolve them; the remedy is to halt
testing until a new release can be deliv-
ered and the backlog of faults is reduced.
An ideal defect density plot is shown in
Figure 5.

Rules of thumb for this metric depend
on the development environment and the
organizational processes. The MOD rule
of thumb is that total discrepancy reports
(DRs) should be in the 5-per-KLOC
range, with values between 3 and 10 con-
sidered normal. The test hours should be
in the 2-per-KLOC range, with values be-
tween 1 and 10 considered normal. In
general, the shape of the curves indicates
the relative subsystem stability within a
project. That is, by comparing the curves,
one can determine if the subsystems are
ready for integration. Total defects per
KLOC should flatten out over time, and
open defects per KLOC should decrease
and approach zero. Too few defects or
too few test hours may indicate poor test
coverage or unusually high code quality,
while too many of either may indicate
poor code quality.

Data for the defect density metric is
plotted as both total defects and open de-
fects per KLOC versus test hours per
KLOC by subsystem. On this project, we
reviewed subsystems with increasing
numbers of open defects, low test hours
per KLOC, or no flattening of total de-

fects, because any of these conditions in-
dicate a risk to successful deployment of
the system.

Figures 6 and 7 plot defect density for
two contrasting subsystems. Figure 6
matches the expected curves of Figure 5,
indicating that subsystem £ is mature and
ready for integration. Comparison of
subsystem H in Figure 7 with the ex-
pected profile shows differences that can
be interpreted as risk signals indicating
that the developers are having difficulty
— that is, the total defect density is in-
creasing, the open density is not decreas-
ing, and very few test hours per KLOC
have been expended. (The straight drop
in defects/KLOC occurred when more
code was added to the subsystem during
test, as indicated by the software size met-
ric.) Further, comparison with the other
subsystems (for example, subsystem E
from Figure 6) shows unequal testing and
debugging of this subsystem. It is not
ready for integration.

Based on this curve. MOD managers
decided to allocate an additional 10 days
of stand-alone testing for subsystem H.
This decision lengthened the overall de-
livery schedule by three days, but without
this additional testing, the integration pro-
cess and the system-level testing would
likely have been more difficult and time
consuming. Note that analysis of this kind
is not objective, nor is it completely quan-
titative. No universal thresholds or algo-
rithms for subsystem acceptance are de-
fined. However, we believe that the
quantitative data provides support for
higher quality subjective decision making.

Deciding whether
a test schedule is
reasonable

The problem: How can I tell if a test
schedule makes sense? One way is to use
historical data from previous projects as
a reference. One can even account for
"lessons learned" from previous projects
in the analysis. The following example is
from a project that immediately followed
one that experienced significant code
growth. In planning the follow-on pro-
ject, the developers recalled that they
had underestimated code size and there-
fore underestimated their test time re-
quirements. The contractor responded
by assuming similar code growth as be-
fore and increasing the planned number
of test hours/KLOC. Unfortunately, this
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Figure 6. A subsystem defect-density profile that indicates
there are no problems.

Figure 7. A subsystem defect-density profile indicating that
corrective action is required.

was a major expense item and affected
the product availability date. MOD
wanted to take a different approach: con-
trol code growth and determine the test
schedule.

The initial contractor schedules were
available approximately one year before
the start of testing. We performed a "san-
ity check" on the schedule and estimated
a lower bound for the test schedule by
factoring out the assumed code growth.
(We divided the number of test hours re-
quested by the code growth factor expe-
rienced on the previous project — LOC
delivered/LOC planned.) We then esti-
mated the months in test using the previ-
ous project's test-hour delivery rate (that
is, test hours/calendar months). This
yielded an estimate of 2.4 calendar
months rather than the initial request of
6 months. Next, we estimated an upper
bound for the test schedule by estimat-
ing the time required to deliver the full
number of test hours based on the previ-
ous project's delivery rate. This resulted
in an estimate of 7 months.

Management believed they could con-
trol requirements growth and other fac-
tors contributing to code growth so that
the system would not experience the
same growth as the previous delivery. To
be conservative, they allowed for a
growth factor of two, resulting in a 5-
month test schedule. This reduced the
contractor's schedule by one month, for
an estimated savings of $200,000. Man-
agement reinforced the use of metrics by
using metrics to closely monitor actuals
versus plans on a monthly basis. By using
the metrics as early indicators of changes
in the project's status, management was
able to hold code growth to a factor of
1.67. As a result, the project completed
testing in slightly over 4 months, saving
an estimated $300,000.

Metrics toolkit
Two characteristics that facilitated mak-

ing the decisions described in the previ-
ous section were the ease of analysis and
the consistency in the data collection. To
ensure that these characteristics were pre-
sent in the metrics program, we defined a
standard suite of tools for use by analysts
and project personnel. The toolkit sup-
ports analysis of the metrics to answer the
questions and meet the goals that origi-
nally generated the metric set. Recall that
answering a single question can require
analysis of many metrics. Thus, it is im-
portant for the toolkit to collect and inte-
grate data from multiple metrics. In our
environment, the toolkit required a data
repository element (for example, a
database or spreadsheet), a cost/resource
estimation tool, a size/complexity collec-
tion tool, and a reliability estimation tool.

The data repository element is based
on a spreadsheet running on a desktop
computer. The spreadsheet lets managers
track planned and actual measurements.
It also performs simple linear regression
on individual metrics and provides graph-
ical displays of the metrics data.

Additional cost and schedule informa-
tion is provided by JSCs CostModeler6

(an upgrade of JSCs CostModl). This tool
helps a manager estimate the effort, cost,
and schedule required to develop and
maintain computer systems. CostModeler
does not directly implement any specific
cost estimation algorithm but instead lets
users tailor appropriate models for their
needs. It includes implementations of the
JSC KISS (Keep it simple, stupid) model
and four variations of Boehm's Cocomo
(constructive cost model).

Another tool in the kit is Set Labora-
tories' UX-Metric, a commercial off-the-
shelf code analysis tool that helps engi-

neers evaluate software complexity.7 The
tool supports several measures of com-
plexity, including extended cyclomatic
complexity, lines of code, span of vari-
able reference, depth of nesting, number
of interfaces, and Halstead software sci-
ence measures.

Finally, we use the Statistical Model-
ing and Estimation of Reliability Func-
tions for Software (SMERFS) tool for
software reliability assessments. This tool
is a public domain program available
from the Naval Surface Warfare Center
in Dahlgren, Virginia.8 It implements 10
time-domain software reliability models,
including those recommended by the
American Institute of Aeronautics and
Astronautics.9 This tool allows analysts
to forecast test durations, predict field
failure rates based on test data, and track
operational failure rates.

Although this toolkit is neither com-
pletely automated nor integrated in the
sense that a user has a single entry point,
all the components can share data. MOD
project managers have found it useful for
the metrics collection and analysis de-
scribed above. The toolkit costs less than
$1,000 and took less than a month to in-
tegrate and begin using.

Metrics, models, and
decision making

Occasionally, we need to be reminded
of the real meaning and use of metrics in
our environment. The goal is to create a
dialogue between managers and devel-
opers or between customers and suppli-
ers. In general, the predictions made
from the data have no element of statis-
tical confidence. They are first and fore-
most design tools used to compare plans
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to actual results, to identify overly com-
plicated parts, and to serve as input to the
system's risk management.

The metrics and the models that use
them need not be exact to be useful. Ex-
act models are often so cumbersome and
intractable that they are worthless to
managers making decisions. Excellent
and useful results are regularly obtained
from simple models like those described
above. Sometimes, however, such mod-
els give results that don't make sense in
the environment. For example, in our
original software reliability estimates we
used a model that assumed that the
number of lines of code in test was sta-
ble. The predictions from this model
were not matching the observed failure
rates in the project. Upon investigation
we found that the size of the system un-
der test was increasing incrementally.
We changed to a model that accommo-
dated software growth during test. The
new model more closely matched the
observed data, and the predictions from
the model were useful for management
decision making.

The point is that when the results from
a model are not reasonable, these results
are telling us something and need to be
carefully examined: Either we've made a
mistake in the mathematics, or the as-
sumptions that define the model are bad.
Sometimes an incorrect assumption is
hard to notice. The model must be
worked backward, manipulating the as-
sumptions to give the best results, or a
new approach must be taken.

Thus, metrics analysis begins with in-
sight into the workings of the software
development or maintenance processes.
It continues with calculations from the
conceptual models that reflect that in-
sight. It results in answers to the original
questions — answers that may affect de-
cisions and change processes. Those por-
tions of the metrics task that are compu-
tationally intensive, such as model
execution, are best left to support tools
such as those described in the toolkit.
Some portions of the metrics task are
best done by people. These are the por-
tions that involve insight into the internal
workings of the organization's processes.
The insights gained by performing a
Pareto analysis or debugging a model
can result in improvements to the sub-
ject process as well as the model of that
process. Thus, there is value to the orga-
nization in performing some of the met-
rics task "by hand." Remember, system
integrity cannot be achieved without

sound engineering applied to established
software development and maintenance
tasks.

The amount of code in NASA sys-
tems has continued to grow over
the past 30 years. This growth

brings with it the increased risk of system
failure caused by software. Thus, manag-
ing the risks inherent in software devel-
opment and maintenance is becoming a
highly visible and important field. The
metrics effort within MOD has helped
the managers and engineers better un-
derstand their processes and products.
The toolkit helps ensure consistent data
collection across projects and increases
the number and types of analysis options
available to project personnel. The deci-
sions made on the basis of metrics analy-
sis have helped project engineers make
decisions about project and mission
readiness by removing the inherent opti-
mism of "engineering judgment." •
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