
CHAPTER 1

Introduction

Understanding natural phenomena is one of the biggest challenges for the research
community. Nature consists of a set of interacting processes that are responsible
for ensuring the balance of its constituents and proper functioning of the system
as a whole. A simple example is the balancing of carbon dioxide and oxygen in
the atmosphere through the twin processes of photosynthesis and respiration. While
photosynthesis absorbs carbon dioxide and emits oxygen, respiration does just the
reverse. In a similar fashion, most of the natural processes are bound to each other
by a set of cause-effect relationships, which are often cyclic in structure. Some of
the prominent examples include the food cycle in the animal kingdom, the process of
reproduction and growth, the heating of earth due to sun rays and rain, and so on.
The food cycle defines a hierarchy among the animals whereby the animals at lower
levels are eaten by those higher up in the hierarchy; and finally, when an animal of
higher class dies, its decomposed body serves as food for the lower classes. Thus,
the apparently simple case of distinct food habits of the animals serves to keep the
balance in the ecosystem—which cannot be understood adequately unless all the pro-
cesses in the cycle are considered in an integrated manner. Similar is the case for the
growth and reproduction processes—both of these are responsible for sustenance of
life in the universe. Also, when the earth gets heated with sun rays, water evaporates,
creating clouds, which in turn cause rain to cycle the evaporated water back to the
earth.

In general, a set of apparently simple processes constitute a physical system
that poses a mystery when considered as a whole. The most important observa-
tion is that it is the interactions among such simple processes that make the whole
system exhibit behavior that is too complex to be conceived of only by consider-
ing each of the processes in isolation. Further, a single process may be governed
by simple rules having limited capability, thus maintaining the homogeneity of the
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overall structure in terms of composition and degree of complexity of constituent
processes of the system. However, the interactions among these simple and homo-
geneous processes contribute to the complexity and the associated system response.
To establish the point further, the glaring example of the neural system of the ani-
mal world can be considered. Each neuron cell is simple and limited by its capac-
ity. But their interactions make the system exhibit complex behavior that is in no
way comparable to the capabilities of individual neurons. A similar analogy may
also be extended to the illustrations considered earlier. Each of the processes of
photosynthesis and respiration can be abstracted as a simple process capable of
performing two primitive operations—absorbing a gas and emitting another. The
interaction between the two processes maintains the balance in the atmosphere.
If each animal is considered as a distinct process with "food habit" as the primi-
tive operation, the food cycle gets modeled by another homogeneous system. Thus,
nature can be viewed as the collection of all such interacting homogeneous struc-
tures.

In the background of the above scenario, the study of homogeneous struc-
tures has long drawn the attention of researchers. Such a structure consists of a
set of cells, each one capable of performing only a set of primitive operations.
Depending on the interconnection pattern among the cells and the initial content,
the structure evolves through a sequence of states. The study of the homogeneous
structure of cellular automata (CA) started with J. von Neumann [1]. In his lec-
tures on self-reproduction, von Neumann constructed a model different from a kine-
matic model—the cellular model of self-reproduction. Each cell in the structure is
complex in nature with considerable processing power. The next important mile-
stone in the history of the development of the homogeneous structure of cellular
automata is due to Wolfram [2]. He suggested simplification of the cell structure
with local interconnections. The CA structure he proposed consists of cells, each
having only two states with uniform three-neighborhood interconnections. The func-
tion determining the state transitions of each cell is referred to as the next-state
function. Simplifications introduced by Wolfram made the CA with a linear next-
state function amenable for polynomial algebraic analysis similar to that of lin-
ear feedback shift register (LFSR) [3]. However, the technique cannot be used to
analyze CA with nonuniform interconnection structures. Later, Das et al. [4] pro-
posed a versatile matrix algebraic tool for analysis of the state-transition behavior
of CA with a linear next-state function. It can handle the CA with nonuniform
interconnections also. This in turn motivated researchers to undertake further in-
depth studies of CA behavior and look for innovative applications of this linear
machine.

The VLSI era has ushered a new phase of activities into the research of linear
machines, and especially the local-neighborhood CA structures. The VLSI design
community always prefer to have simple, regular, modular, and cascadable struc-
ture with local interconnections. With the advancement of semiconductor technol-
ogy, circuit delay due to interconnections on the silicon floor has become a major
concern. Further, in the next-generation submicron technology, interconnections will
behave more like a device on the silicon floor (rather than just a simple signal
path between the functional modules), thereby contributing a lion's share to the cir-
cuit delay. For example, a 12 mm metal line in 0.5 technology, as noted in [5],
has twice the delay of logic gates. This situation invariably forces the designers
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to have local interconnections as far as possible, for reliable high-speed operations
of the circuit. The simple, regular, modular, and cascadable structure of CA with
local interconnections are ideally suited for VLSI implementation. The class of lin-
ear circuits built around LFSRs can be found to have the following inherent dis-
advantages: (i) irregularity of the interconnection structure, (ii) longer delay, and
(iii) lack of modularity and cascadability. So, in this submicron era an alterna-
tive structure to LFSR is often sought by the VLSI design community. From the
study of its state-transition behavior, it can be observed that CA does provide a
cost-effective alternative to the existing linear structures like LFSR. Another advan-
tage of CA over LFSR stems from its wide variety of state-transition behaviors.
The state-transition diagram of an LFSR consists of a set of cycles. By contrast,
apart from the cyclic state transitions, one can also have the tree-like state-transition
behavior in a CA. Further, a new class of machines can also be constructed by
inverting the linear next-state function—that is, employing XNOR logic for some
(or all) of the cells. The associated change in the state-transition behavior can be
analyzed by considering the corresponding linear machine. CA employing only XOR
logic as the next-state function are referred to as linear CA, whereas CA employing
both XOR/XNOR logic are referred to as additive CA. In the above context, the
next section introduces the major CA applications undertaken by researchers in this
field.

1.1 CELLULAR AUTOMATA APPLICATIONS

J. von Neumann [1] framed CA as a cellular space with self-reproducing configu-
rations involving 5-neighborhood cells, each having 29 states. Subsequently, theory
and applications of CA have evolved in diverse areas such as pattern recognition,
modeling biological and physical systems, parallel computation, and so forth.

Study of the regular structure of CA has drawn considerable attention in recent
years. Statistical mechanics of local-neighborhood, one-dimensional CA was first
reported by Wolfram in his classic paper [2], Martin et al. [6] characterized one-
dimensional CA using polynomial algebraic formulation. Recently, a more versatile
tool based on matrix algebra has been proposed by Das et al. [4, 7] to characterize
additive CA behavior.

In the last two decades a wide variety of applications has been proposed. Major
applications can be categorized under the following broad headings:

1. Simulation of physical systems—A few notable applications include modeling
of growth processes [8, 9], reaction-diffusion systems [10, 11], hydrodynam-
ics [12], and soliton-like behavior [13].

2. Biological modeling involving models for self-reproduction [14, 15, 16], bio-
logical structures and processes [17, 18, 19], DNA sequences [20].

3. Image processing [21, 22, 23].
4. Language recognition [24, 25, 26].
5. Computations such as sorting [27], generation of primes [28].
6. Simulation machines [29, 30].
7. Computer architectures [31, 32].
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8. BIST (Built-In-Self-Test) structure for pseudorandom, pseudoexhaustive, and
deterministic pattern generation [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43] and
signature analysis [44, 38, 45, 46].

9. Synthesis of easily testable finite-state machine (FSM) [47, 48, 49, 50].
10. Error correcting codes [51, 52, 53].
11. Pseudoassociative memory [54, 55].
12. General and perfect hashing function generator [56].
13. Board-level fault diagnosis [57].
14. Mod-/? multiplier [58, 59].
15. Block and stream cipher cryptography [60].
16. Fractals and chaos [61, 62, 63, 64, 65].

1.2 OVERVIEW OF THE BOOK

This section provides an overview of the book's remaining chapters.
Chapter 2 provides a comprehensive survey of different phases of develop-

ments of cellular automata theory and its applications. The discussions have been
centered around four major phases: initial phase of development, CA models for
different applications, new phase of activities, and finally, the consolidation in the
VLSI era.

Two-states-per-cell, local-neighborhood additive CA are the focus of this book.
On the basis of the properties of state-transition graphs, additive CA can be broadly
classified into two classes—group CA and nongroup CA. While in the state-transition
graph of a group CA all states belong to some disjoint set of cycles, the nongroup CA
are characterized by the presence of some nonreachable states in the state-transition
graph. Chapter 3 presents a detailed analysis of the cyclic behavior of group CA,
The nongroup CA are discussed in Chapter 4. Apart from characterizing the cyclic
behavior, this chapter also analyzes the tree-structured transition behavior of acyclic
states of nongroup CA. The theoretical foundation established in Chapters 3 and 4 are
then explored in subsequent chapters to build up a few end-applications of general
interest. Chapter 5 establishes CA as a universal pattern generator. Different types
of patterns—pseudorandom, pseudoexhaustive, and deterministic can be generated
efficiently with CA. Generation of each of these types of patterns have been discussed
in detail. While establishing CA as a universal pattern generator, specific emphasis has
been directed for on-chip generation of various test patterns for testing a VLSI chip.
Design of efficient error correcting codes is another interesting application area. The
CA-based design of bit and byte error correcting codes is presented in Chapter 6. The
regular, modular, and cascadable structure of CA with local interconnection offers
some definite advantages (over the other available schemes) for the design of the
decoders. Data encryption is another important area in which CA have been applied
successfully to achieve a low-cost solution of the security problem. Chapter 7 deals
with the CA-based data encryption technique. Both stream cipher and block cipher
cryptography are addressed. A special class of nongroup CA can also be utilized
to generate efficient hashing functions. This application is discussed in Chapter 8.
The issues related to both the general and perfect hashing are presented. The CA-
based hashing method performs at par with the existing hashing techniques as far as
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the collision probability is concerned; however, the scheme is much faster than other
hashing techniques. One of the most important issues in today's VLSI circuit design is
the synthesis for testability. Testable synthesis of both sequential and combinational
logic, with CA as the underlying test machine, is elaborated in Chapter 9. All of
these applications utilize CA with cells arranged linearly in one dimension. This is
extended in Chapter 10 to analyze the behavior of two-dimensional cellular automata
as well as its applications in designing a low-cost pseudoassociative memory.


