
Part I. Introduction

From Subroutines to Subsystems:
Component-Based Software Development

Paul C. Clements

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA, 15213, USA

pclement@sei.cmu.edu

1. Subroutines and Software Engineering
In the early days of programming, when machines were

hard-wired and every byte of storage was precious, subrou-
tines were invented to conserve memory. Their function was
to allow programmers to execute code segments more than
once, and under different (parameterized) circumstances,
without having to duplicate that code in each physical loca-
tion where it was needed. Software reuse was born. However,
this was a different breed of reuse than we know today: This
was reuse to serve the machine, to conserve mechanical
resources. Reuse to save human resources was yet to come.

Soon, programmers observed that they could insert sub-
routines extracted from their previous programs, or even writ-
ten by other programmers, and take advantage of the
functionality without having to concern themselves with the
details of coding. Generally-useful subroutines were col-
lected into libraries, and soon very few people would ever
again have to worry about how to implement, for example, a
numerically-well-behaved double-precision cosine routine.

This phenomenon represented a powerful and fundamental
paradigm shift in how we regarded software. Invoking a sub-
routine from a library became indistinguishable from writing
any other statement that was built in to the programming lan-
guage being used. Conceptually, this was a great unburden-
ing. We viewed the subroutine as an atomic statement ~ a
component — and could be blissfully unconcerned with its
implementation, its development history, its storage manage-
ment, and so forth.

Over the last few decades, most of what we now think of
as software engineering blossomed into existence as a direct
result of this phenomenon. In 1968, Edsger Dijkstra pointed
out that how a program was structured was as important as
making it produce the correct answer [2]. Teaching the prin-
ciple of separation of concerns, Dijkstra showed that pieces of
programs could be developed independently. Soon after,
David Parnas introduced the concept of information-hiding
[6] as the design discipline by which to divide a system into

parts such that the whole system was easily changed by
replacing any module with one satisfying the same inter-
face. Design methodologists taught us how to craft our
components so that they could live up to their promise. Pro-
hibiting side effects, carefully specifying interfaces that
guard implementation details, providing predictable behav-
ior in the face of incorrect usage, and other design rules all
contributed to components that could be plugged into exist-
ing systems. Object-oriented development was a direct,
rather recent result of this trend.

2. Software engineering for components
Today, much of software engineering is still devoted to

exploring and growing and applying this paradigm. Soft-
ware reuse is about methods and techniques to enhance the
reusability of software, including the management of
repositories of components. Domain engineering is about
finding commonalities among systems to identify compo-
nents that can be applied to many systems, and to identify
program families that are positioned to take fullest advan-
tage of those components. Software architecture studies
ways to structure systems so that they can be built from
reusable components, evolved quickly, and analyzed reli-
ably. Software architecture also concerns itself with the
ways in which components are interconnected, so that we
can move beyond the humble subroutine call as the primary
mechanism for sending data to and initiating the execution
of a component. Mechanisms from the process world, such
as event signalling or time-based invocation, are examples.
Some approaches can "wrap" stand-alone systems in soft-
ware to make them behave as components, or wrap compo-
nents to make them behave as stand-alone systems. The
open systems community is working to produce and adopt
standards so that components of a particular type (e.g.,
operating systems developed by different vendors) can be
seamlessly interchanged. That community is also working
on how to structure systems so they are positioned to take
advantage of open standards (e.g., eschewing non-standard

Originally published in American Programmer, Vol. 8, No. 11, Nov. 1995, Published by Cutter Information Corp.,
Arlington, MA (617) 648-1950, http://www.cutter.com. Reprinted with permission.

operating system features, which would make the system
dependent on a single vendor's product). The emerging
design patterns community is trying to codify solutions to
recurring application problems, a precursor for producing
general components that implement those solutions.

3. CBSD: Buy, Don't Build
This paradigm has now been anointed with the name

"Component-based software development" (CBSD). CBSD
is changing the way large software systems are developed.
CBSD embodies the "buy, don't build" philosophy espoused
by Fred Brooks [1] and others. In the same way that early sub-
routines liberated the programmer from thinking about
details, CBSD shifts the emphasis from programming soft-
ware to composing software systems. Implementation has
given way to integration as the focus. At its foundation is the
assumption that there is sufficient commonality in many large
software systems to justify developing reusable components
to exploit and satisfy that commonality.

4. What's New?
In some ways, there is little new about CBSD; it is just a

re-iteration of de«ades-old ideas coming to fruition. There
are, however, some exciting new aspects.

Increasing component size and complexity. Today,
available off-the-shelf components occupy a wide range of
functionality. They include operating systems, compilers,
network managers, database systems, CASE tools, and
domain-specific varieties such as aircraft navigation algo-
rithms, or banking system transaction handlers. As they grow
in functionality, so does the challenge to make them generally
useful across a broad variety of systems. Math subroutines are
conceptually simple; they produce a result that is an easily-
specified function of their inputs. Even databases, which can
have breathtakingly complex implementations, have concep-
tually simple functionality: data goes in, and data comes out
via any of several well-understood search or composition
strategies. This conceptual simplicity leads to interface sim-
plicity, making such components easy to integrate with exist-
ing software. But what if the component has many interfaces,
with information flowing across each one that cannot be sim-
ply described? What if, for example, the component is an avi-
onics system for a warplane that takes input from a myriad of
sensors and manages the aircraft's flight controls, weapons
systems, and navigation displays? From one point of view,
this software is a stand-alone system; however, from the point
of view of, say, an air battle simulator, the avionics software
for each of the participating aircraft is just a component. The
simulator must stimulate the avionics with simulated sensor
readings, and absorb its flight control and weapons com-
mands in order to represent the behavior of the aircraft in the
overall simulation. Is it possible to make a plug-in component
from such a complex entity? The Department of Defense is
working on standards for just such a purpose, to make sure

that simulators developed completely independently can
intemperate with each other in massive new distributed
simulation programs, in which the individual vehicle simu-
lators are simply plug-in components.

Coordination among components. Classically, com-
ponents are plugged into a skeletal software infrastructure
that invokes each component appropriately and handles
communication and coordination among components.
Recently, however, the coordination infrastructure itself is
being acknowledged as a component that is potentially
available in pre-packaged form. David Garlan and Mary
Shaw have laid the groundwork for studying these infra-
structures in their work that catalogues architectural styles
[3]. An architectural style is determined by a set of compo-
nent types (such as a data repository or a component that
computes a mathematical function), a topological layout of
these components indicating their interrelationships, and a
set of interaction mechanisms (e.g., subroutine call, event-
subscriber blackboard) that determine how they coordinate.
The Common Object Request Broker Architecture
(CORBA) is an embodiment of one such style, complete
with software that implements the coordination infrastruc-
ture, and standards that define what components can be
plugged into it.

Nontechnical issues. Organizations are discovering that
more than technical issues must be solved in order to make
a CBSD approach work. While the right architecture
(roughly speaking, a system structure and allocation of
functionality to components) is critical, there are also orga-
nizational, process, and economic and marketing issues
that must be addressed before CBSD is a viable approach.
Personnel issues include deciding on the best training, and
shifting the expertise in the work force from implementa-
tion to integration and domain knowledge. For organiza-
tions building reusable components for sale, customer
interaction is quite different than when building one-at-a-
time customized systems. It is to the organization's advan-
tage if the component that the customer needs is most like
the component the organization has on the shelf. This sug-
gests a different style of negotiation. Also, customers can
form user groups to collectively drive the organization to
evolve their components in a particular direction, and the
organization must be able to deal effectively with and be
responsive to such groups. The organization must structure
itself to efficiently produce the reusable components, while
still being able to offer variations to important customers.
And the organization must stay productive while it is first
developing the reusable components. Finally, there are a
host of legal issues that are beyond the scope of this paper
and beyond the imagination (let alone the expertise) of the
author.

5. Buying or Selling?
Different organizations may view CBSD from different

viewpoints. A single organization might be a component sup-
plier, a component consumer, or both. The combination case
arises when an organization consumes components in order
to produce a product that is but a component in some larger
system.

Suppose an organization is producing a product line,
which is a family of related systems positioned to take advan-
tage of a market niche via reusable production assets. In this
case, one part of the organization might be producing compo-
nents that are generic (generally useful) across all members of
the product line; the organization may be buying some of the
components from outside vendors. Other parts of the organi-
zation integrate the components into different products,
adapting them if necessary to meet the needs of specific cus-
tomers. From a component vendor's point of view, product
line development is often a viable approach to CBSD because
it amortizes the cost of the components (whether purchased or
developed internally) across more than one system.

6. Structuring a System to Accept
Components

From a consumer's perspective, CBSD requires a planned
and disciplined approach to the architecture of the system
being built. Purchasing components at random will result in a
collection of mis-matched parts that will have no hope of
working in unison. Even a carefully-considered set of compo-
nents may be unlikely to successfully operate with each other,
as David Garlan has pointed out in his paper on architectural
mis-match [4. The reason is that designers of software com-
ponents make assumptions that are often subtle and undocu-
mented about the ways in which the components will interact
with other components, or the expectations about services or
behaviors of those other components. These assumptions are
embodied in the designs. Specific and precise interface spec-
ifications can attack this problem, but are hard to produce for
complicated components. Still harder is achieving consensus
on an interface that applies across an entire set of components
built by different suppliers.

An architectural approach to building systems that are
positioned to take advantage of the CBSD approach is the lay-
ered system. Software components are divided into groups
(layers) based on the separation of concerns principle. Some
components that are conceptually "close" to the underlying
computing platform (i.e., would have to be replaced if the
computer were switched) form the lowest layer. However,
these components are required to be independent of the par-
ticular application. Conversely, components that are applica-
tion-sensitive (i.e., would have to be switched if the details of
the application requirements changed) constitute another
layer. These components are not allowed to be sensitive to the
underlying computing or communications platform. Other
components occupy different layers depending on whether

they are more closely tied to the computing infrastructure
or the details of the application. The unifying principle of
the layered approach is that a component at a particular
layer is allowed to make use only of components at the
same or next lower layer. Thus, components at each layer
are insulated from change when components at distant lay-
ers are replaced or modified.

Figure 1 is an example of a layered scheme proposed by
Patricia Oberndorf, an open systems expert at the Software
Engineering Institute. In this scheme, computer-specific
software components compose the lowest layer and are
independent of the application domain. Above that lie com-
ponents that would be generally useful across most appli-
cation domains. Above that are components belonging to
domains related to the application being built. Above that
are components specific to the domain at hand, and finally
special-purpose components for the system being built.

For example, suppose the system being built is the avi-
onics software for the F-22 fighter aircraft. The domain is
avionics software. Related domains are real-time systems,
embedded systems, and human-in-the-loop systems. Fig-
ure 1 shows components that might reside at each layer in
the diagram.

Layered architecture Example components:

drivers for aircraft-specific displays

ballistic equations for free-fall bombs

process scheduler,
avigation algorithms,
user interface management

database management system

all domains

\

operating system, compilers,
network management system-

Figure 1. A domain-sensitive layered software
architecture

The triangle reflects the relative abundance or scarcity of
components at each level. A system developer should not
expect to find many components that exist that are specific
to the system under construction. It will be easier to find
and choose from components that are less domain-specific.
For mid-level components, adopting data format and data
interchange standards may aid in the search for compo-
nents that can interoperate with each other.

Domain analysis techniques such as Feature-Oriented
Domain Analysis (FODA) [5] can be of assistance in iden-

tifying the domain of the system, identifying related domains,
and understanding the commonality and variation among pro-
grams in the domain of interest.

7. The Payoff and the Pitfalls
The potential advantages to successful CBSD are compel-

ling. They include

• Reduced development time. It takes a lot less time to buy
a component than it does to design it, code it, test it,debug
it, and document it -- assuming that the search for a
suitable component does not consume inordinate time.

• Increased reliability of systems. An off-the-shelf
component will have been used in many other systems, and
should therefore have had more bugs shaken out of it ~
unless you happen to be an early customer, or the supplier
of the component has low quality standards.

• Increased flexibility. Positioning a system to
accommodate off-the-shelf components means that the
system has been built to be immune from the details of the
implementation of those components. This in turn means
that any component satisfying the requirements will do the
job, so there are more components from which to choose,
which means that competitive market forces should drive
the price down — unless your system occupies a market too
small to attract the attention of competing suppliers, or
there has been no consensus reached on a common
interface for those components.

Obviously, the road to CBSD success features a few deep
potholes. Consider the questions that a consumer must face
when building a system from off-the-shelf components:

• If the primary supplier goes out of business or stops
making the component, will others step in to fill the gap?

• What happens if the vendor stops supporting the current
version of the component, and the new versions are
incompatible with the old?

• If the system demands high reliability or high availability,
how can the consumer be sure that the component will
allow the satisfaction of those requirements?

These and other concerns make CBSD a trap for the naive
developer. It requires careful preparation and planning to
achieve success. Interface standards, open architectures, mar-
ket analysis, personnel issues, and organizational concerns all
must be addressed. However, the benefits of CBSD are real
and are being demonstrated on real projects of significant
size. CBSD may be the most important paradigm shift in soft-
ware development in decades - or at least since the invention
of the subroutine.

8. References
[1] Brooks, F. P. Jr., "No Silver Bullet: Essence and Accidents of

Software Engineerig," Computer, vol. 20, no. 4, pp. 10-19,
April 1987.

[2] Dijkstra, E. W.; "The structure of the 'T.H.E.'

multiprogramming system," CACM, vol. 11, no. 5, pp. 453-
457, May 1968.

[3] Garlan, D., and Shaw, M.; "An introduction to software
architecture," in Advances in Software Engineering and
Knowledge Engineering, vol. I, World Scientific Publishing
Company, 1993.

[4] Garlan, D., R. Allen, and J. Ockerbloom; "Architectural
Mismatch (Why its hard to build systems out of existing
parts)", Proceedings, International Conference on Software
Engineering, Seattle, April 1995.

[5] K. Kang, S. Cohen, J. Hess, R. Novak, and S. Peterson;
Feature-Oriented Domain Analysis Feasibility Study:
Interim Report; technical report CMU/SEI-90-TR-21 ESD-
90-TR-222, August 1990.

[6] Parnas, D.; "On the criteria for decomposing systems into
modules " CACM, vol. 15, no. 12, pp. 1053-1058, December
1972.

Engineering of Component-Based Systems

Alan W. Brown & Kurt C. Wallnau

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA, 15213, USA
{awb, kcw}@sei.cmu.edu

Abstract

Many organizations are moving toward greater use of
commercial off-the-shelf (COTS) components in the
development of application systems. The development of
component-based systems introduces fundamental changes
in the way systems are acquired, integrated, deployed and
evolved. In this paper we present a reference model for the
assembly of component-based systems that can be used as
the basis for defining a systematic approach to the
development of such systems. This reference model is
described, and used to explore a number of fundamental
development issues.

1. Introduction
For more than a decade good software development prac-

tice has been based on a "divide and conquer" approach to
software design and implementation. Whether they are
called "modules", "packages", "units", or "computer soft-
ware configuration items", the approach has been to decom-
pose a software system into manageable components based
on maximizing cohesion within a component and minimiz-
ing coupling among components [13].

However, recently there has been a renaissance in the
component-based approach to software development
spurred on by two recent advances;

• the object-oriented development approach which is based
on the development of an application system through the
extension of existing libraries of self-contained operating
units;

• the economic reality that large-scale software
development must take greater advantage of existing
commercial software, reducing the amount of new code
that is required for each application system.

Both of these advances, object-oriented development and
greater use of commercial off-the-shelf (COTS) software,
raise the profile of software components as the basic build-
ing blocks of a software system. The development and main-
tenance of component-based systems, however, introduces

fundamental changes in the way systems are acquired, inte-
grated, deployed and evolved. Rather than the classic water-
fall approach to software development, systems are designed
by examining existing components to see how they meet the
system requirements. This is followed by an iterative pro-
cess of refining the requirements to match the existing com-
ponents, and deciding how those components can best be
integrated to provide the necessary functionality. Finally, the
system is engineered by assembling the selected compo-
nents using locally-developed code.

While many organizations are attempting to understand
and take advantage of component-based software develop-
ment, they lack a basic conceptual framework in which they
can describe and discuss their needs, understand different
methods and tools, and express issues and concerns. Without
this conceptual framework confusion and misunderstand-
ings often occur among engineers and managers, and deci-
sions made cannot easily be rationalized or understood. A
number of existing papers (e.g., [11][24]) describe various
problems associated with the use of component-based sys-
tems, but without presenting a conceptual framework for
organizing and categorizing the issues that must be
addressed. Such a conceptual framework is a foundation on
which further analyses and investigations can take place.

In this paper we present a reference model that can be
used as the basis for defining a systematic approach to the
development of component-based systems. The model is
deliberately simple in its form in order to enable its use as a
communication vehicle within and among different organi-
zations. Despite the fact that the model concentrates prima-
rily on technical aspects of the component assembly process
and does not address many business and economic issues,
we are finding that the model is invaluable as a means of
describing and communicating between managers and engi-
neers, for relating and focusing formerly disparate work, and
as the basis for planning future tasks.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the scope of component-based systems as
they form the domain of our work in general, and this paper

0-8186-7718-X/96 $5.00 © 1996 IEEE

in particular. Section 3 describes the stages of the reference
model in detail. Section 4 focuses on the transitions between
states in the reference model and uses this to explore a num-
ber of fundamental issues with respect to the development of
component-based systems. Section 5 summarizes the paper,
and points to future work that is required to expand the model
and its application.

2. Component-based Software Development
While all (real) systems are composed of components, in

our usage component-based systems are comprised of multi-
ple software components that:

• are ready "off-the-shelf," whether from a commercial
source (COTS) or re-used from another system;

• have significant aggregate functionality and complexity;

• are self-contained and possibly execute independently;

• will be used "as is" rather than modified;

• must be integrated with other components to achieve
required system functionality.

Examples of component-based systems can be drawn from
many domains, including: computer-aided software engi-
neering (CASE), design engineering (CADE) and manufac-
turing engineering (CAME); office automation; workflow
management; command and control, and many others.

From a component-based perspective the process of sys-
tem design involves the selection of components, together
with an analysis of which components can be acquired from
external sources (e.g., COTS) and which ones must be devel-
oped from scratch. In contrast to the development of other
kinds of systems where system integration is often the tail-
end of an implementation effort, in component-based systems
determining how to integrate components is often the primary
task performed by designers. As a result, component integra-
tion needs are vital to the component selection process, and a
major consideration in the decision to acquire or build the
components.

The importance of the integration process has been illus-
trated in a number of application domains. For example, in
the CASE domain the study of component integration is
well-established (e.g., see [3][2]). In this domain a number
of conceptual models of the integration issues have been
developed, and mechanisms specifically targeted at CASE
tool integration have been produced. From this work it has
been found that an understanding of the component inte-
gration process is vital to enable:

• component vendors to develop components that can
more easily be integrated with others;

• component integrators to develop efficient engineering
techniques that produce coherent systems with
acceptable functional and afunctional properties;

• system acquirers to evaluate alternative system
engineering solutions for their suitability within a given
context;

• system users to understand the implications of requested
changes and enhancements to operational component-
based systems.

The key to the reference model that follows is a recogni-
tion of the central role played by integration in the engi-
neering of component-based systems, and the help this
recognition provides in understanding many of the chal-
lenges being faced in making component-based system
development both efficient and effective.

3. A Reference Model for Component-Based
Systems

As suggested in the previous section, the engineering of
component-based systems can be considered to be prima-
rily an assembly and integration process. This suggests a
reference model for describing the engineering practices
involved in assembling component-based systems, as
depicted in Figure 1..

adaptation to
qualification to remove
discover architectural
interface /*~*\ mismatch f N

composition into
a selected
architectural
style" f~

evolution to
update
components

off-the-shelf
components

qualified
components

adapted
components

assembled
components

updated
components

Figure 1. A Reference Model For Architectural Assembly of Components

8

The vertical partitions depicted in Figure 1. describe the
central artifact of component-based systems—the compo-
nents—in various states. Briefly stated, these partitions are as
follows:

• Off-the-shelf components have hidden interfaces (using a
definition of interface that encompasses all potential
interactions among components, not just an application
programming interface[18]).

• Qualified components have discovered interfaces so that
possible sources of conflict and overlap have been
identified. This is (by the definition of interface) a partial
discovery: only those interfaces important to effective
component assembly and evolution are identified.

• Adapted components have been amended to address
potential sources of conflict. The figure implies a kind of
component "wrapping," but other approaches are possible
(e.g., the use of mediators and translators).

• Assembled components have been integrated into an
architectural infrastructure. This infrastructure will
support component assembly and coordination, and
differentiates architectural assembly from ad hoc "glue."

• Updated components have been replaced by newer
versions, or by different components with similar behavior
and interfaces. Often this requires wrappers to be re-
written, and for well-defined component interfaces to
reduce the extensive testing needed to ensure operation of
unchanged components is not adversely effected.

Having briefly described the main panels of Figure 1, we
now discuss each panel in more detail.

3.1 Off-the-shelf Components
Components come from a variety of sources, some devel-

oped in-house (perhaps used in a previous project), others
specifically purchased from a commercial vendor (typically
packages such as database management systems and network
monitors). This variety of sources is both a major strength of
the component-based approach, and a major challenge, since
the components have varied pedigree, many unknown
attributes, and are of varied quality.

Selection and evaluation of components are the key activi-
ties that take place early in the life cycle of a component-
based system. Typically, once the broad functional require-
ments for a system are known, an organization makes an
inventory of known local and external components that may
provide elements of that functionality. How the organization
proceeds from this point in evaluating the available compo-
nents depends upon the individual organization.

Many organizations have relatively mature evaluation
techniques for selecting from among a group of peer prod-
ucts, and this is reflected in the literature. For example, a
number of papers describe general product evaluation criteria
(e.g., [10]), while others describe specialized techniques
which take into account the particular needs of specific appli-

cation domains (e.g., CASE tools [9] or testing tools [19]).
These evaluation approaches typically involve a combina-
tion of paper-based studies of the components, discussion
with other users of those components, and hands-on bench-
marking and prototyping. The complexity of component
selection has already been recognized in software engi-
neering literature—a decision framework that supports
multi-variable component selection analysis has been
developed in order to address some of this complexity [11].

A recent trend in some organizations is toward a "prod-
uct-line" approach to software development based on a
reusable set of components that appear in a range of soft-
ware products [15]. This approach is based on the premise
that similar products (e.g., most radar systems) have a sim-
ilar software architecture, and a majority of the required
functionality is the same from one product to the next. The
common functionality can be provided by the same set of
components, simplifying the development and mainte-
nance life-cycle.

3.2 Qualified Components
Typically, a component is described in terms of an inter-

face that provides access to component functionality. In
many cases this interface is the main source of information
about a component: the user manual is often simply a step-
by-step guide to the operations available at this interface.
However, in a much broader interpretation the interface to
a component includes far more than the functionality it pro-
vides. To make use of a component one must also under-
stand aspects of the components performance, reliability,
usability, and so on.

As a result, for most components there are many
unknowns. While much information about a component
and its operation can be found through hands-on evalua-
tion, a number of gaps will remain. For example, in real-
time safety-critical domains certification of software sys-
tems relies on gaining information about mean time
between failures, performing timing analysis using tech-
niques such as rate monotonic analysis, and bounding
resource usage by ensuring that livelocks and deadlocks
cannot occur. In assembling systems from components
information on each component is required to complete the
analyses. This information includes failure rates, perfor-
mance models, and detailed software design data. Such
information is rarely provided with COTS components, and
is frequently missing from in-house component libraries.

There is little established work on how to carry out qual-
ification of software components. In fact, there is little
agreement on which attributes of a component are critical
to its use in a component-based system. Perhaps the most
useful recent work that begins to address this issue is the
work on describing quality attributes of software systems.
For example, Bass et al. [1] have developed a software
architecture analysis method (SAAM) that distinguishes

between intrinsic and extrinsic properties of a component,
and investigates the influences of those properties on a soft-
ware architecture. However, much further work remains in
this area.

Qualification of a component can also extend to a qualifi-
cation of the development process used to create and maintain
a component. Again, this is most obvious in safety-critical
applications (for example, ensuring algorithms have been val-
idated, and that rigorous code inspections have taken place).
However, the concept is extending beyond the safety-critical
domain. For example, many organizations now insist that
contractors are ISO 9000 certified [20], or that they have
reached a certain level on the SEI's Capability Maturity
Model (CMM) [12]. This ensures that the software compo-
nents they produce have been developed using well-defined
practices and procedures.

3.3 Adapted Components
The variety of sources for components leads to a number

of problems. These arise because stand-alone components are
being used to construct a system where the components must
cooperate. The result is a number of conflicts with respect to
concerns such as:

• sharing resources such as memory, swap space, and
printers;

• carrying out common activities such as data management,
screen management, and version control;

• environment set-up using environment variables,
temporary files, and common naming policies.

These conflicts are symptoms of a more pervasive problem
in engineering component-based systems: architectural mis-
match of components [7]. That is, the wide variety of conflict-
ing operating assumptions made by each component. (This
issue is examined in much more detail in the next section.)

As a consequence of these conflicts, components must be
adapted based on a common notion of component "citizen-
ship" (i.e., based on rules that ensure conflicts among compo-
nents are minimized). This usually involves some form of
component wrapping — locally developed code that provides
an encapsulation of the component to mask unwanted and
incompatible behavior. Different forms of wrapping exist
based on how much access is provided to the internal struc-
ture of a component. The approaches can be classified as
white box, where access to source code allows a component
to be significantly re-written to operate with other compo-
nents, grey box, where source code of a component is not
modified but the component provides its own extension lan-
guage or application programming interface (API), and black
box, where only a binary executable form of the component
is available and there is no extension language or API [23].

Wrapping is not the only approach to overcoming compo-
nent incompatibilities. Another approach is through the use
of mediators. Informally, we can view a mediator as an active

agent that coordinates between different interpretations of
the same system property. For example, a mediator may
translate between different data formats, establish common
events, or define common administrative policies (e.g., for
security and access control).

3.4 Assembled Components
The assembled components are integrated through some

well-defined infrastructure. This infrastructure provides the
binding that forms a system from the disparate compo-
nents.

It is useful to consider at least three different levels at
which the infrastructure must operate:

• At the highest abstract level the infrastructure embodies
a coordination model that defines how the different
components will interact to carry out the required end-
user functionality. It is the role of the infrastructure to
allow this coordination model to be readily described,
validated, and enacted.

• At a lower level the infrastructure provides services that
will be used by the components to interact and to carry
out common tasks. The interface to these services must
be complete and consistent.

• At the most practical level the infrastructure is itself a
software component that implements the necessary
coordination services required. It must be well-written
so that it is easily understood, perform effectively, and
be readily updated to new modes of component
interaction.

There is a long history of developing infrastructure capa-
bilities based on three classes of technology: operating sys-
tems, database management systems, and messaging
systems. Each has their particular strengths and weak-
nesses. Currently, most active research is taking place with
the use of messaging systems as infrastructure providers,
particularly using object request brokers (ORBs) conform-
ing to the Common Object Request Broker Architecture
(CORBA). While use of ORBs is immature, initial reports
cite a number of advantages to their use in building compo-
nent-based systems [25] [17].

3.5 Updated Components

As with any system, a component-based system must
evolve over time to fix errors and to add new functionality.
Here again, component-based systems bring their own
strengths and weaknesses.

On the surface a component-based approach brings
advantages in terms of its ease of evolution: components
are the unit of change. Hence, to repair an error an updated
component is swapped for its defective equivalent treating
components as plug-replaceable units. Similarly, when
additional functionality is required it is embodied in a new
component which is added to the system.

10

However, this is too simplistic a view of component
upgrade. Replacement of one component with another is
often a time-consuming and arduous task since the new com-
ponent must be thoroughly tested in isolation and in combi-
nation with the rest of the system. Wrappers must typically be
re-written, and side effects from changes must be found and
assessed.

Compounding this upgrade problem is that component
producers frequently upgrade their components based on
error reports, perceived market needs, and product aesthetics.
New component releases require a decision from the compo-
nent-based system developer on whether or not to include the
new component in the system. To answer" yes" implies fac-
ing an unknown amount of re-writing of wrapper code and
system testing. To answer "no" implies relying on older ver-
sions of components that may be behind the current state-of-
the-art and may not be adequately supported by the compo-
nent supplier.

As an illustration of the impact of component upgrades
consider a system consisting of 12 COTS components, each
of which is released as a new version every 6 months. To keep
up with the latest version of each component requires on aver-
age a system upgrade every two weeks. If new releases are not
installed, analysis of which component versions are compati-
ble become more and more difficult, leading to a system
administrator's nightmare.

In safety-critical systems the problems of system upgrades
are even more acute. Not only is the testing and analysis of
new components a critical yet time-consuming endeavor, it is
usually unacceptable to have long periods of time in which
the system is unavailable. In such cases complex techniques
for dependable upgrade of highly-available systems must be
employed (e.g., using approaches such as the Simplex archi-
tecture [21]).

3.6 Summary
In this section a reference model for the engineering of

component-based systems has been described. The model
highlights the component assembly process and the various
activities that must take place in building a component-based
system.

In the next section we make use of the reference model as
a framework for describing a number of issues that distin-
guish the engineering of component-based systems from tra-
ditional development approaches.

4. Component Integration Issues
Using the concepts of the reference model presented in

Section 2, we describe what we believe are four key issues
that must be addressed in the engineering of component-
based systems. We begin with a discussion of system life-
cycle issues peculiar to component-based systems, then focus
more narrowly on the technical issues that arise as a conse-

quence of transitioning between key states (panels) of the
architectural assembly reference model depicted in Figure
1.

4.1 Understanding the Component-Based Systems
Life-cycle

The traditional software engineering life-cycle is not
applicable when engineering systems from components.
The typical waterfall phases of requirements, design,
implementation, test, and maintenance clearly still apply.
However, due to extensive use of existing components, the
activities involved in each phase and the relationships
among phases are often significantly changed from current
approaches.

We can characterize the component-based approach as
essentially one of negotiating a set of engineering trade-
offs for the integration of a set of existing components to
satisfy a particular set of requirements. The key to the engi-
neering of component-based systems is to understand what
trade-offs are being made, to record the rationale used in
making trade-off decisions, and to evaluate how those
trade-offs affect the resultant product in practice. This pro-
vides the necessary basis for improving the system as
requirements or operating conditions evolve over time.

Here we consider 2 key engineering trade-offs involved
in assembling and evolving component-based systems.

System requirements vs. available components
The initial stages of developing a component-based sys-

tem involve the selection of components that are likely to
satisfy the main system requirements. However, most orga-
nizations restrict selection of components to a small num-
ber in recognition that the organization can be more
efficient if it does not manage too diverse a set of compo-
nents. Thus, scanning the complete marketplace for every
possible component that may be of interest is typically not
carried out: an organization uses those components with
which it is familiar.

As a result of initial component selection, the typical
"80/20" rule often applies — 80% of the system function-
ality can be provided relatively easily with the selected
components, while the remaining 20% can only be pro-
vided with much more difficulty. At this point the system
engineers may consider what changes to the system
requirements may make the use of selected components
more effective. Once identified, these can be discussed with
the users of the system to understand the priority of these
requirements, and make decisions concerning which
requirements can be amended.1

1. In fact, recently proposed changes in U.S. DoD policy state that
where greater use of COTS components is possible, the system
requirements should be changed to facilitate this.

l i

In component-based system development, system design-
ers must address a number of important buy versus build deci-
sions with respect to many parts of the system. Such decisions
are faced in all application domains, but are particularly
important in safety-critical systems where reliability, avail-
ability, and predictability are essential. Often the majority of
the system is developed in-house to ensure the organization
has complete understanding and control of the system opera-
tion and evolution. In spite of any savings that may accrue,
using commercial components in such situations is frequently
considered too high a risk.

System architecture vs. component interfaces
The architecture of a system defines the basic components

of the system and their connections [8]. Many alternatives
exist in designing the architecture of a system, each with its
own strengths and weaknesses in terms of how that architec-
ture provides the key attributes of the system. A primary task
of a system engineer is to evaluate the architectural alterna-
tives by prioritizing system attributes based on perceived end-
user needs. Components must then be assembled to provide
those attributes.

Such an approach raises a number of challenges. First, it is
unclear what are the attributes of a system that most contrib-
ute to a system's efficiency and effectiveness, and how such
attributes can practically be assessed. Second, the relation-
ships among afunctional attributes (e.g., performance,
dependability, usability, maintainability, etc.) is poorly under-
stood. While practical experience has identified a number of
trade-offs between afunctional attributes of a system (e.g.,
between performance and maintainability), analytical tech-
niques for examining these trade-offs are still lacking.
Finally, it has been found in practice that there are character-
istics of a component interface that facilitate some kinds of
system architecture while precluding others [16]. For exam-
ple, the granularity of access to component data often influ-
ences the rate at which data synchronization among
components can practically occur. Further work is required to
more fully understand how component interfaces influence
the component assembly process.

While attempts have taken place to address these chal-
lenges by classifying system architectures in terms of their
key attributes, currently system engineers primarily base their
system architectures on past experience in building similar
systems. Particular models of system behavior are reused
from one system to another, modifying the architecture to
meet the particular characteristics of the specific components
being used.

4.2 Interface Discovery and Analysis
Obviously, a pre-condition for successful integration of

components is that their interfaces are known. Borrowing a
phrase from the hardware domain (always a risky proposition
in the software domain), component integrators need to dis-
cover the function and form of software components—the

services provided, and the means by which consumers
access these services, respectively.

Different degrees of sophistication can be found in tech-
niques used to discover the form and function of software
components. At one extreme a few key functions may be of
such high priority as to obviate the need for exhaustive
component analysis. The discovery process in these cases
can be as simple as browsing vender literature, examining
programmer documentation, etc. At the other extreme
component classes (e.g., database, geographic information
system, network management, spreadsheet) can be mod-
eled in terms of features. Then, particular components can
be described via functional profiles against these compo-
nent-domain models, much like Consumer Reports might
describe different brands of televisions or food processors.
This more robust discovery approach has been adopted by
COTS-focused efforts that espouse a product-line approach
to component-based systems [4].

However, even a complete understanding of component
functionality and the interfaces to this functionality is
insufficient for anything but trivial system integration prob-
lems. In fact, the complete interface of a component
includes more than just the mechanisms that a component
uses to make its functionality available to clients: it
includes all of the assumptions made by a component about
integration-time and run-time uses of the component. For
example, each of the following might be considered part of
a component interface:

• application programming interface (API);

• required development and integration tools;

• secondary storage requirements (run-time), processor
requirements (performance) and network requirements
(capacity);

• required software services (operating system, or from
other components);

• security assumptions (access control, user roles,
authentication);

• embedded design assumptions, such as the use of
specific polling techniques;

• exception detection and processing.

This list—which is by no means exhaustive—illustrates
that implementation decisions normally thought to be "hid-
den" by abstract interfaces play a crucial role in determin-
ing whether, and how easily, components can be integrated.
Further, these assumptions are not easily detected from
vendor literature or functional interface specifications.

To this list we can also add an additional class of com-
ponent properties sometimes referred to as "quality
attributes" [10]. Assumptions about the run-time environ-
ment may impinge upon quality attributes such as reliabil-
ity; for example, a component may not be designed for

12

continuous operation, or operation in environments that may
experience varying degrees of degraded performance.

The essential problem we are describing is that our current
interface specification techniques do not adequately address
all of the properties exhibited by components that will deter-
mine, ultimately, the integrability of the component. Nor do
we yet know all of the different kinds of assumptions that
components can make that may result in architectural mis-
match. Thus, we are hampered from discovering the interface
of a component because we are not always sure what we need
to look for. Worse, we do not have well-defined notations or
theories for describing and measuring all interface properties,
especially those relating to quality attributes. All of this is
compounded, of course, when we are confronted with com-
ponents that are "black boxes" as is the case with COTS com-
ponents: we are groping in the dark to discover the features of
a component that lies on the other side of a locked door.

4.3 Removal of Architectural Mismatches
Assuming that we can discover the complete interface of a

component, the next step is to repair any mismatches that
have been detected among components2. Given the difficulty
of discovering complete interfaces, however, this would seem
to be a glib prescription.

At this juncture the role of software architecture can be
asserted. Software architecture deals with high-level design
patterns, often expressed as components, connectors and
coordination [8]. Components3 refer to units of functionality,
connectors with the integration of components, and coordina-
tion as the manner in which components interact at run-time.
One role of software architecture (in component-based sys-
tems) is to restrict the classes of potential mismatches that
might arise among component interfaces, and thus offer use-
ful constraints for the interface discovery process. For exam-
ple, by prescribing a specific coordination model, a software
architecture in effect identifies and prioritizes the key run-
time interfaces a component must exhibit either natively or
via adaptation.

The topic of component adaptation has received even less
attention than interface discovery. The consensus seems to be
that this process is inherently ad hoc, low-level and very
messy. Various euphemisms for adaptation such as "glue" and
"chewing gum" are revealing in themselves. A euphemism
with more sanitary connotations is "wrapper." Nevertheless,
considering the important role that component adaptation
code will play in large-scale component-based systems—
especially those with safety or security requirements—it
seems necessary to gain a firmer grasp of this topic.

2. Many of the latent "bugs" in component-based systems arise
because of undetected, and hence un-repaired, architectural mis-
match.
3. The component-based definition of this term is more restrictive
than its use in software architecture literature.

A first step along this road is to classify the different
adaptation techniques that are possible, and to understand
when their uses are required. For example, glue and wrap-
per are evocative of different component adaptation
approaches. Wrappers suggest that a component is adapted
by encasing it within a virtual component that presents an
alternative, translated interface; glue suggests a somewhat
less contained approach, with code oozed between compo-
nents, for example a collection of shell scripts and filters.

More generally, integration involves a relationship
between entities[22]. Adaptation can occur at one or all
endpoints of a relationship, or on the relationship itself, for
example through the introduction of an intermediary com-
ponent (a.k.a. "mediator"). The software architecture may
provide mechanisms to facilitate component adaptation;
alternatively, adaptation mechanisms may lie outside of the
scope of the architecture. Examples of both have appeared
in practice.

4.4 Architecture Selection & System Composition
The selection of a particular architectural style, or the

invention of a custom style, is perhaps the most important
design decision of all. The functionality of a component-
based system will be found in the components; the quality
attributes (e.g., security, maintainability) will be found in
the architecture. Beyond this, the architecture will drive the
integration effort: as discussed in the previous section,
architecture defines the integration-time and run-time con-
texts into which components must be adapted.

For example, in developing a command and control sys-
tem from COTS components it may be possible to select
from a number of architectural styles:

• database, in which centralized control of all operation
data is the key to all information sharing among
components in the system;

• blackboard, in which data sharing among components is
opportunistic involving reduced levels of system
overhead;

• message bus, in which components have separate data
stores coordinated through messages announcing
changes among components.

Each architectural style has its own strengths and weak-
nesses in terms of overall system qualities, and requires dif-
ferent considerations in the selection of components.

Despite the importance of this early design decision, our
understanding of architectural styles, the combination of
different styles, and the use of one or more styles to achieve
targeted quality attributes, is still very immature. Moreover,
little work has been focused directly upon the question of
which architectural styles are best-suited to component-
based systems. To be sure, canonical architectural styles
have emerged from application domains that exhibit com-
ponent-based properties, e.g., integrated computer-aided

13

software engineering (CASE) [3]. Nevertheless, the CASE
experience has been a mixed success at best; in any event, dif-
ferent application domains have different needs and hence
will require different architectural approaches than found in
CASE.

To illustrate the still-unsettled nature of our understanding
of architectures for component-based systems, consider the
fundamental dichotomy between function-oriented and struc-
ture-oriented architectural approaches. The function-oriented
approach is by far the predominant approach to component-
based systems. It defines components to match available off-
the-shelf components, and defines interfaces in terms of com-
ponent functionality. Greater abstraction is sometimes
obtained by generalizing component-specific interfaces, thus
encapsulating some technology and vendor dependencies. A
good illustration of a function-oriented approach has been
defined in the command and control domain [14]. Function-
oriented architectures are good for describing system func-
tionality and for integrating specific functionality but are
weak for addressing the run-time properties of a design, e.g.,
throughput, latency and reliability.

The structure-oriented approach has emerged as the study
of software architecture has intensified. Rather than defining
component interfaces in terms of functionality, structural
styles define interfaces in terms of the role a component plays
in a coordination model—a model that describes how the
components interact. A simple illustration of a structural style
is UNIX pipes and filters; more sophisticated illustrations
include structural models for flight simulators [5], the Sim-
plex architecture for evolvable dependable real-time systems
[21], and prototype architectures for distributed workflow
management [6] and distributed manufacturing design engi-
neering [25]. The structural approach yields architectures that
support analysis of dynamic system properties, but are not
optimized to support access to component-specific function-
ality.

Which of these approaches should be adopted? What about
approaches that merge some aspects of both—a structural
approach to describe how components interoperate, with
functional extensions as common infrastructure facilities?
Such a hybrid is found in an emerging, standard high-level
architecture for interoperable simulations [5]. Whatever
approach is taken will have a profound effect on the integra-
bility of a component-based system. In addition, better design
heuristics are needed to select among these (and many other)
architectural trade-offs.

4.5 Predictable Component Update
Systems in operational use must periodically be updated.

Typically, this involves developing an updated system, per-
forming extensive testing, and then switching over to the new
system in the field. A number of potential problems arise in
doing this:

• identifying and bounding the changes that are required
to the system;

• testing the system sufficiently to ensure that the updates
do not have undesirable consequences on the rest of the
system;

• ensuring that the old system can be put back on-line
should the behavior of the new system be unacceptable,

In mission-critical application domains (e.g., avionics or
health care patient monitoring) the consequences of poorly
planned and implemented system upgrades are sufficient
that often systems are not upgraded. This occurs despite the
availability of improved algorithms, techniques, and tech-
nology that could improve the system's overall effective-
ness.

Engineering systems from components further compli-
cates the upgrade problems, since many of the components
are maintained by third party organizations. As a result,
changes to those components are often not well-understood
by system integrators and end-users, and often not docu-
mented in sufficient detail. This leaves system integrators
with the challenge of evolving component-based systems
in a predictable, dependable way in the face of incomplete
information about the components to be upgraded.

A number of approaches have been taken to try to
address these problems. One of the most interesting
involves the design of a layer of software that supports reli-
able and safe upgrade of on-line systems [21]. This layer of
software, known as the Simplex Architecture, is based on
three key ideas: components as replaceable system units,
controlled replacement transactions, and a real-time pub-
lish and subscription facility. The Simplex Architecture
also supports the use of analytic redundancy through a
fault-tolerant protocol known as the Simple Leadership
Protocol (SLP). In addition to supporting system evolution,
model-based voting used by SLP allows the tolerance of
combined hardware and software failures.

A number of demonstrations of this approach have been
built. In one of these based on a triplicated computer fault
tolerant group utilizing SLP, it was shown that safe on-line
upgrade of application software, operating systems, and
hardware components are all feasible using this approach.
While many issues remain to be addressed with this
approach (e.g., scaleability issues when applied to large
systems), it provides an very useful illustration of how
dependable evolution of component-based systems may be
possible in the future.

5. Summary and Conclusions
The trend towards greater reliance on off-the-shelf com-

ponents for even the most complex software systems is
increasingly clear. Numerous large system acquisitions in
the US DoD and Government agencies in very demanding
application domains—air traffic control, real-time simula-

14

tors, and command and control to name just a few—are push-
ing the limits of our ability to develop systems with
predictable properties.

Unfortunately, engineering practices have not been keep-
ing pace with the changing nature of system building. Our
ability to describe the key properties of software components
to enable their rapid and error-free integration is inadequate;
our techniques for discovering the interfaces of previously-
developed, possibly COTS components is significantly ham-
pered; and our understanding of architectural patterns best
suited for component-based systems, and the techniques best
suited for adapting components to these patterns is still quite
immature.

However, much work is in progress to try to address these
challenges. Interface discovery techniques are being devel-
oped by extracting experiences from system integrators;
understanding of software architectures is maturing; and sys-
tem evolution techniques are emerging which allow safe on-
line upgrade of component-based systems.

In this paper we have explored the challenges to engineer-
ing of component-based systems by presenting a reference
model of the key activities in the constructive phases of com-
ponent-based systems development (assembly and re-assem-
bly/evolution). Although we briefly touched on other aspects
of component-based systems, such as requirements acquisi-
tion processes sensitive to off-the-shelf component reuse, our
focus has been on the technical aspects of integrating compo-
nent-based systems. The reference model we presented,
while not complete or detailed, provides a good foundation
for discussing key component integration issues and for relat-
ing different trends in software engineering (notably, soft-
ware architecture and component-based systems).

Acknowledgments
We are grateful to David Carney and Ed Morris for their

valuable comments on earlier drafts of this paper.

The SEI is sponsored by the U.S. Department of Defense.

6. References
[1] Abowd, G., Bass, L., Kazman, R., Webb, M., "SAAM: A

Method for Analyzing the Properties of Software
Architecture," in proceedings of the 16th International
Conference on Software Engineering, Sorrento, Italy, pp. 81-
90, May 1994.

[2] Brown, A.W. and Penedo, M.H., "An Annotated Bibliography
of Software Engineering Environment Integration", ACM
Software Engineering Notes V17 #3, pp47-55, July 1992.

[3] Brown, A.W., Carney, D.J., Morris, E.J., Smith, D.B.,
Zarella,PF., Principles of CASE Tool Integration, Oxford
University Press, 1994.

[4] Comprehensive Approach to Reusable Defense Software
(CARDS) Home Page, http://www.cards.com

[5] Defense Modeling and Simulation Organization, High-Level
Architecture, http://www.dmso.mil/project/hla

[6] Earl, A., Long, F , and Wallnau, K., "Towards a distributed,
mediated architecture for workflow management," To appear in
proceedings of NSF Workshop on Workflow Management:

State of the Art and Beyond, Athens, GA, May 8-10, 1996.
[7] Garlan, D., Allen, R., Ockerbloom, J., 'Architecture

Mismatch: Why Reuse is so Hard", IEEE Software VI2, #6,
pp 17-26, November 1995.

[8] Garlan, D. and Shaw, M., "An Introduction to Software
Architecture," in Advances in Software Engineering and
Knowledge Engineering, vol. I, World Scientific Publishing
Company, 1993

[9] IEEE Recommended Practice on the Selection and
Evaluation of CASE Tools, P1209, 1994.

[10] Information Technology — Software Product Evaluation —
Quality Characteristics and Guidelines for their Use,
International Standards Organisation (ISO), ISO/IEC
9126:1991, 1991.

[11] Kontio, J., "A case study in applying a systematic method
for COTS selection" proceedings of the 18th International
Conference on Software Engineering (ICSE), pp. 201-209,
March 1996.

[12] Paulk, M.C., Curtis, B., & Chrissis, M.B. Capability
Maturity Model for Software. Technical Report CMU/SEI-
91-TR-24, ADA240603, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, August 1991.

[13] Parnas, D.L., "On the criteria to be used in decomposing
systems into modules," Communications of the ACM, Vol.
15, No. 2, pp. 1053-1058,1972.

[14] PRISM Generic Command Center Architecture,
http://www.cards.com/PRISM/prism_gcca.html

[15] MBSE Home Page, http://www.sei.cmu.edu/technology/
mbse/mbse.html

[16] Nejmeh, B., Characteristics of Integrable Tools. Technical
Report INTEG_S/W_TOOLS-89036-N Version 1.0,
Software Productivity Consortium, May 1989.

[17] Orfali, R., Harkey D., and Edwards, J., "The Essential
Distributed Objects Survival Guide", John Wiley and Sons,
Inc., 1996.

[18] Parnas, D.L., "Information distribution aspects of design
methodology," in proceedings of IFIP conference, 1971,
North Holland Publishing Co.

[19] Poston R.M., and Sexton M.P., "Evaluating and Selecting
Testing Tools", IEEE Software,V9, #3, pp33-42, May 1992.

[20] Schumauch C.H., ISO 9000 for Software Developers,
ASQC Quality Press, 1994.

[21] Sha, L., Rajkumar, R., and Gagliardi, M., A Software
Architecture for Dependable and Evolvable Industrial
Computing Systems, Technical Report CMU/SEI-95-TR-
005, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, July 1995.

[22] Thomas, I. and Nejmeh. B., "Definitions of Tool Integration
for Environments" IEEE Software, Vol 9, No.3, pp. 29-35,
March 1992.

[23] Valetto, G. and Kaiser, G.E., "Enveloping Sophisticated
Tools into Computer-Aided Software Engineering
Environments", Proceedings of 7th IEEE International
Workshop on CASE, July 1995.

[24] Vidger, M.R., Gentleman, W.M., and Dean, J., "COTS
Software Integration: State-of-the-art", Technical Report,
National Research Council Canada, January 1996. http://
wwwsel.iit.nrc.ca/abstracts/NRC39198.abs

[25] Wallnau, K., and Wallace, E., "A Robust Evaluation of the
Object Management Architecture: A Focused Case Study in
Legacy Systems Migration" submitted to OOPLSA'96.

15

