
CHAPTER 1

Object-Oriented Design

INTRODUCTION

Distributed computing, virtual reality, multimedia, and other new technologies have increased the complexity of
software design. It is common for software development projects in these areas to involve different development
platforms and programs consisting of more than 100,000 lines of code. With these types of systems, ad hoc
design and development is impractical, if not impossible. The successful delivery of these types of systems relies
on a structured and formalized analysis, design, and implementation process.

The object-oriented methodology has gained popularity because the analysis, design, and implementation
process revolves around a well-defined framework with focus on minimizing risks and maximizing software
maintainability, reliability, and reusability. An object-oriented system undergoes analysis, design, and
implementation through an iterative process that is depicted in Figure 1.1. Even though the iterative process is not
unique to object-oriented methodology, they work well together:

1. Object-Oriented Analysis (OOA): The software requirements are analyzed and a real-world object model
is established. The object model provides an abstract representation of the actual entities to be modeled by
the software application. For example, the object model for a flight control system views the plane's
actuators, sensors, engine, and flight control stick as objects that interact with each other and keep the plane
in flight. In an object-oriented model, the software algorithms such as flight control algorithms become
secondary issues.

2. Object-Oriented Design (OOD): The object model is further refined. In the design phase, the details of the
architecture, and the relationships and interactions between the objects, are specified. The algorithms and
processes are mapped to the applicable objects.

3. Object-Oriented Programming (OOP): Using a programming language that supports OOD, the
completed design is implemented and tested.

This chapter describes and focuses on Object-Oriented Design (OOD). It presents a formal definition for an
object, and identifies the framework for an object model. The chapter also describes how OOD techniques help
localize software changes, encourage reusability, and enhance reliability.

Similar to other design methodologies, graphical presentations are important in OOD for capturing and
conveying information. Since this book relies on Booch-93 notation for the presentation of the designs, this
chapter provides an overview of the Booch notation.

1

Object-Oriented Design Chapter 1

FIGURE 1.1 iterative design process.

1.1 DEFINITION OF AN OBJECT

In object-oriented designs, software requirements are analyzed and mapped to objects instead of processes and
functions. Software can be viewed as a collection of objects that collaborate with each other to perform the tasks
defined by the software requirements. For example, an object-oriented design will translate and map the
following system requirement to a modem object (Figure 1.2):

"The system shall transmit and receive data via an internal modem using a minimum transmission rate of 9,600 baud"

FIGURE 1.2 Modem class.

2

Implementation

Analysis,

Design Implementation Design

Analysts

r Analysis

i

implementation Wsign

Evolve & Refine

In C++, an object is an instance of a class (data structure).

In OOD, an object is an entity that has a:

a. state: attributes
b. behavior: the operations give the object a behavior
c. identity: each instance of the class is unique

Modem
rate, status, settings

transmit*), receive(), and status()

\.

Dashed cloud symbolizes a class

methods, operations, or functions

Class attributes (data)

Class Name

1.2 Object Model

The transmit!) and receive() functions are the operations (methods) on the modem object. The
transmission rate is one of the object's attributes and the minimum transmission rate of 9,600 baud identifies the
lower threshold for this attribute. Figure 1.2 depicts an abstract view of a modem using the Booch-93 notation.

The cloud shape represents an object and highlights the abstraction produced by the design. Attributes such
as the transmission rate and status specify the modem's state and characteristics. On the basis of the values and
settings, the attributes identify the state of the object. For example, mode and status specify the object is idle,
transmitting, receiving, or in a degraded state. The transmit!), receive(), and status() methods operate on the
attributes and alter the state of the object. These functions cause the modem to transition state, such as going from
idle to transmitting.

Other objects use these methods to transmit and receive data via the modem object. These operations
(methods) hide and protect the attribute's name, type, and data architecture from these objects. Since these
operations define the external interface of the modem object, they also protect the data attributes from being
corrupted by other objects. The operations provide a consistent user interface even when their internals change.

An object provides an abstract representation of a real entity that is being modeled and mimicks the real
entity's behavior. The definition of an object has been formalized in OOD as an "entity that has a state, behavior,
and an identity" [Booch 1994]:

1. State: The values of the attributes identify the state of the object. Figure 1.3 depicts the possible states of a
modem object using Booch-93 notation. On the basis of the communication mode and status, the modem
object may be in idle, setup, transmit, receive, error, or termination states. An event or an operation may
cause an object to transition to another state. For example, an incoming phone call will change the state of
modem from idle to receive. The transition diagram identifies the known states for an object. At any point
within its life span, an object must remain in a known and stable state.

2. Behavior: Operations such as transmit() give the modem object a behavior. During file transmission, the
modem would need to dial the phone number, establish communication with the remote system, transmit
data, verify that the transmission has been successful, and then terminate communication. Some of the
operations cause changes in the states of the object and the object then displays a different behavior.

3. Identity: A system may contain several different modem objects. Even though each modem object has the
same attributes and operations, each object has its own unique state. On the basis of the state, each object
exhibits its own behavior. For example, one modem may be transmitting a file and the other receiving a fax.

In C++, an object does not exist at the source file level. An object comes into existence when the software is
executed and the memory space for it is reserved and initialized. At the source file level, only the architecture for
the object can be defined and is referred to as a class definition. A class is a type definition (for example, a struct
definition) and it logically groups data in a set, and functions become the operations on the set (Figure 1.4). The
class definition identifies the types, names, and layout of the data members. This information defines the size and
content of memory space used by an object. In addition, it identifies the member functions that are allowed to
operate on the data members. An object is an instance of a class. For example, a modem object would be an
instance of the modem class. Any reference to an object is implicitly considered as an instance of a class.

1.2 OBJECT MODEL

An object model consists of a collection of objects that interact with each other and represent the design being
modeled. For instance, a computer and its peripherals are illustrated as classes in Figure 1.5. Through
coordinated interaction, these classes represent a computer.

Figure 1.5 has loosely coupled the objects and does not depict the relationship and interaction between the
objects. In representing a system, an object model must not only identify the objects but must also identify states,
relationships, and interactions between the objects. The relationships and interactions specify how the objects use
each other's services and how they communicate. The object model must reflect and address both static and
dynamic information. For instance, a computer object may use a printer object to print a document. The
relationship between the computer and the printer becomes a "use-a" relationship. Booch-93 notation provides
graphical symbols that represent common relationships such as "ftas-a," "is-«," and "use-a" between objects in a
class diagram:

3

Object-Oriented Design Chapter 1

FIGURE 1,3 Modem state transition diagram.

1. Composition: When a class uses another class as its data member, the classes form a "hm-a" relationship.
In Figure 1.6, a computer contains a floppy disk. The floppy disk is perceived as a subsystem of the
computer, and the relationship characterized as the computer "ha$-a" floppy disk.

2. User: When a class uses another class in the implementation of its member functions or for the function
interfaces, it is using the services of the other class. For instance, the computer class may provide a print()
function. The body of the print() function would "«se-an printer object for printing a document. In Figure
1.6, the monitor and printer classes are not components of a computer, but are used by a computer to
display and print information, respectively.

3. Inheritance: A class may inherit the properties and attributes of another class, which forms a parent-child
relationship. The child class becomes a subtype of the parent class. The child class is-a more specialized form
of its parent class. For example, & floppy disk inherits the data members and member functions of the disk
class, and adds features that are specific to a floppy disL Thus, the floppy disk "i$-a" subtype of a disk class.

Figure 1.6 illustrates a representation of the object model for a personal computer (PC). Figure 1.6
highlights the hierarchical architecture formed by the objects and their relationships, such as the memory and port
classes. For example, a computer has multiple ports. The serial and parallel ports are different types of ports
("is-<T relationship). These relationships are described in greater detail in the subsequent sections.

The framework of an object model is partitioned into the following components and the design of an object-
oriented system must reflect and encompass them:

4

Idle

Bvoch-93 Nolatio*;

Start

State

Q& O£t$¥ity

event IconditionJ/acitori

^Stop

Initialize Modem Stream^ Setup

Terminate

Transmit])

Termination

Receive()

Receiving

Receive(}

ErrorOn Error

On Error

Transmitting

1 Transmit)

1.2 Object Model

FIGURE 1.4 Class and object.

1. Modularity: The internal architectures and designs of the classes must be decoupled from each other. A
modular architecture decouples the designs of the classes and results in formation of libraries and
independent software modules.

2. Encapsulation: The internal architecture and data representation of a class must be kept hidden from other
classes. The methods provided by a class specify the design interface for a class, and other objects operate
on an instance of the class via these operations.

3. Abstraction: The methods must hide the processes and algorithms associated with the functions of a class.
For example, the transmit() function of the modem abstracts the data transmission process from its clients.

4. Design Hierarchy: The classes in the design form hierarchical relationships. As depicted in Figure 1.6, the
floppy and hard disk classes inherit the properties and attributes of the disk class. The design of the disk
classes is hierarchical. This is a crucial criterion in object-oriented designs and will be discussed in greater
detail in subsequent sections.

5. Typing: Identifies a programming language type conversion and characteristics. For instance, a strong
typing means that conversions between different data types in expressions require explicit conversions.

6. Concurrency: In distributed architectures, objects can be distributed across multiple processors. Since
they are no longer controlled by a single process (program), their operations, states, and interactions must
be controlled and coordinated in order to avoid resource contention and processing deadlocks.

7. Persistence: In distributed architectures or database applications, as a process terminates, the state of
critical objects associated with the terminated process must be stored in a database or in a file. This provides
persistence, and objects from other processes can reactivate and interact with each other without loss of
information.

5

Class diagram is based on Wassermann-Pircher-Muller notation.

Class

member functionO

data member
Type

member functionO
data member

Type

Object

Type

data member

Data Memory Space

•Mill
Type

Object-Oriented Design Chapter 1

FIGURE 1.5 PC class diagram,

A true object-oriented design supports modularity, encapsulation, abstraction, and design hierarchy
elements [Booch 1994]. If a design lacks any of these four characteristics, it is not considered an object-oriented
design. For instance, a design that is based on modularity, encapsulation, and abstraction is considered an object-
based design rather than an object-oriented design because it does not utilize a design hierarchy.

Concurrency, persistence, and typing are optional components of OOD. Concurrency and persistence
usually apply to applications whose objects are distributed across different systems and platforms (distributed
architecture). Typing is controlled by the programming language.

1.2.1 Modularity

During a complete software product life cycle, a product will undergo modifications and enhancements. A
modular design makes product maintenance and modification easier since changes can be localized to specific
modules. Modular design promotes software reuse across projects and cuts the cost of developing software. Use
of common libraries also simplifies integration and evolution of software packages by centralizing functionality.
Decoupling the class design improves the maintainability of the software. Modularity is achieved by minimizing
coupling (interdependence between objects), and increasing cohesion (functional correlation between data and
process).

6

Booch-93 NotatUm:

A — _ g Classes A & B arc associated (Association)

Mouse
Processor

Modem

Memory

ComputerKeyboard

Port

Disk

Hard Disk Floppy Disk

Parallel PortSerial Port

1.2 Object Model

FIGURE 1,6 PC class diagram.

A modular design is created by logically partitioning a system into a group of objects and constraining
these objects to interact through well-defined interfaces. In Figure 1.6, a computer system is partitioned into a set
of classes by viewing its tangible components and peripherals as classes. The task of storing and retrieving
information to/from a floppy disk is mapped to the floppy disk class, while the graphical displaying of
information is allocated to the monitor class. The logical partitioning of classes has created a modular view of the
computer.

1,2.2 Encapsulation

In object-oriented design (OOD)» the class encapsulates its internal architecture and data representation from
other classes. In Figure 1.6, the floppy disk class stores and retrieves information to a floppy disk and the monitor
class displays information on the screen. Each class hides its internal operations and only the methods provided
can be used to operate on an object (refer back to Figure 1.2). This approach makes the computer class design
independent of monitor and floppy disk designs. For example, changes to 3:5" floppy are localized to a single
point and the computer remains unchanged. Furthermore, as long as the interfaces between the computer and
these classes remain unchanged, changes to the internal architecture and operations are localized to the modified
class.

In addition to maintainability, encapsulation enhances the reliability of the design. The likelihood of data
corruption and of the object being placed into an unpredictable state is minimized. For example, if the computer
object wrote information directly onto a floppy disk, there is a danger it would accidently corrupt the file
allocation table. In such an event, the floppy disk object would be placed into an unpredictable state and the

7

Boo<h.93 Notation:

A p. B Class A i*-a Class 8 (Inheritance)

& ^ | — 0 Class A has-a Class B (Composition)

A (B Class A uses-a Class B (Using)

PrinterPort

Serial Port

Parallel Port
— —̂

Computer

Processor
- —*

3.5" Floppy

£25"Ftoppy N

Floppy Disk \

Hard Disk

Disk

RAM

CacheMonitor

Modem

Keyboard

Memory

Object-Oriented Design Chapter t

reliability of the floppy disk is adversely affected. By using the store() function provided by the floppy disk class
(Figure 1.7), the floppy disk object would ensure the information is written properly to the disk while keeping the
floppy disk object in a valid state.

1.2.3 Abstraction

The operations provided by a class abstract the internal processes from other classes. For instance, the computer
class would use the floppy disk store() function to store a file to a floppy disk (Figure 1.7). The store() function
needs to reserve tracks/sectors on the disk. Then the file content must be partitioned into blocks and the data
blocks stored on the medium. As blocks are stored to specific sectors on the disk, the store() function also needs
to update the file allocation table to identify the locations of the blocks. The floppy disk store() function abstracts
the details of the data storage process and hardware interaction from the computer object or other users of the
floppy disk. In addition, the implementation for the storage operation varies among computer systems and
operating systems; the abstraction provided by the method localizes and hides these dependencies. Abstraction
hides the implementation's complexity from other classes.

FIGURE 1.7 Disk class diagram.

1.2.4 Design Hierarchy

Design hierarchies are formed by allowing new designs to inherit the properties and attributes of the existing
designs. Through inheritance, a new class inherits the attributes and services of an existing class. In a design
hierarchy, classes form an "is-a" relationship. By inheriting the properties of an existing class, a new class builds
on tested and mature classes, while existing designs are reused and development productivity is improved. In

3

Booch'93 Notation:

A B Class A has-a Class B (Composition)

Computer

Floppy Disk
media size N

file : store(). delete(). retrieve(), and move()
^directory: list(), changeO, rcmove(), and makeO

media size \ .

file; store<), deleteQ, retrieve(), and moveO
__directoty: lisi(), changeO, remove(), and make()

Hard Disk

1.2 Object Model

Figure L7, both the hard disk and floppy disk objects provide directory and file services such as the store(),
ereate(), delete(), and move() operations. The implementations for the above operations vary on the basis of
system, hardware, and storage medium characteristics. The two objects can be viewed as different types of disks.
From the perspective of the computer, the disk operations on both floppy disk and hard disk objects are identical.
The design presented in Figure 1.7 does not convey any relationship between the two, which forces the computer
object to support unique and custom code for using each of them. In addition, the floppy disk and hard disk
objects are duplicating the common attributes and features in the implementation.

The design presented in Figure 1.7 can be modularized and simplified by using a design hierarchy. In
Figure 1.8, the design for hard disk and floppy disk classes has been rearchitected. The hierarchy as shown
improves the design by providing the following benefits:

FIGURE 1.8 Disk class diagram

1. Common Characteristics: The common attributes and operations between the disk classes are maintained
in the common disk class, and the floppy and hard disk classes do not need to provide unique
implementations for these common features. Since common properties are inherited through disk, changes
to the common attributes become localized to disk. This localization of changes will reduce redevelopment,
test, validation, and integration time. As an added benefit, both the floppy and hard disk classes are built on
a tested disk class.

2. Data Dependencies: Even though the services such as the store{) operation provided by the floppy and
hard disk objects are implemented differently for each distinct object, the client perceives them as the same.
By defining a common interface (parameter list) for this function, a greater level of abstraction can be

9

Booch-93 Notation:

A ^> B Class A is-a Class B ilnherimnce)

A ^ _ g Q . ^ A h a s - a C l a s s B (Composition)

Disk
media size N

file: storeO, delete(), rctrieveO, and move()
directory: list()t change(), remove(), and make()

^ Floppy Disk Hard Disk

10 Object-Oriented Design Chapter 1

achieved because the actual store() operation on different media is transparent to the client. This approach
allows the client to develop applications that are independent of a specific type of disk:

disk,store(arguments)

The client is not dependent on any specific disk type in the hierarchy. Depending on the type of disk object,
the applicable store() operation is invoked at run time. This gives the software the ability to operate on
different but related data types, and is referred to as polymorphic behavior. When a new type of disk is later
added to the hierarchy, the client's program will require minimal or no modifications. The decoupling of the
client's code to specific data types minimizes the data dependencies and limits the scope of redevelopment
and retesting.

3. Customization: New objects can be added to the design hierarchy simply by creating customized versions
of the existing ones. In Figure 1.9, the floppy disk object has been customized and two new customized
versions are introduced: 5.5" and 5.25" floppies. These new objects are built on existing designs that are
tested and validated. This characteristic can help reduce development time for a new class in the hierarchy.

FIGURE 1.9 Disk class diagram.

A design hierarchy forms & parent-child relationship between the classes. The parent class is referred to as
the base or superclass and the child is called the derived or subclass. In Figure 1.9, disk is the base class for the

Booch-93 Notation:

A

A <

B Class A is-a Class B (Inheritance)

B Class A hus-a Class B (Composition)

Disk

Floppy Disk Hard Disk

^"Floppy 5.25" Floppy

1.2 Object Model 11

floppy and hard disk derived classes. Similarly, the floppy disk is the base class for 3.5" and 5.25" floppy disk
classes. The computer class diagram depicted in Figure 1.6 illustrates design hierarchies for several different
types of classes, such as memory.

1.2.5 Concurrency

With distributed processing and client/server applications, a software application requires the cooperation of
several programs running asynchronously on different platforms/systems. The objects become scattered across
hardware boundaries and are no longer contained within the address space of one computer. Figure 1.10 depicts a
distributed Graphical On-Line Documentation (GOLD) software application that would maintain aircraft
electronic maintenance data across heterogeneous systems [PARTA 1993].

FIGURE 1.10 Aircraft repair maintenance data system.

Like a single process application, the distributed objects must interact with each other in some logical and
structured manner. The distributed architecture requires the design to address concurrency issues; otherwise the
objects will contend for resources, which could result in deadlocks. For instance, several objects may invoke

object association

Network

Radar x F-16

System n

A/Veapon
^System

Network

Fuel

12 Object-Oriented Design Chapter 1

operations on another object simultaneously. The requests may conflict with each other and may cause the object
to go into an unpredictable state. Unlike a single process application, the requests must be coordinated so that the
objects will remain in a predictable state.

Regulation of concurrent processes through mechanisms such as semaphores assure an object's state and
information are protected. A semaphore is a locking mechanism that regulates access to data by allowing only a
single process to access the locked entity within a given time domain. When executing a critical area, the active
process activates the lock, thus preventing other processes from accessing the protected entity. Requests by other
processes will wait until the lock is released. The object will not be placed into an unpredictable state since access
to protected code and data is synchronized.

Object-oriented design views concurrency as an optional aspect of the object model [Booch 1994].
However, with distributed architectures and objects, concurrency is an integral part of an object-oriented design
and must be addressed. Chapter 12 discusses general concurrency issues.

1.2.6 Persistence

In a single platform application, objects are created during the program's execution and, depending on the scope
of the object, they are later destroyed. The life span of the objects is directly tied to the lifetime of the program.
When the program execution ceases, the objects and their states are permanently lost unless the information is
stored in a database. For instance, a human resource software application can have persistence by using a
database to store the employee record objects. The state of the objects will then persist beyond the end of the
software execution.

In distributed applications, when a process terminates, certain objects associated with the process cannot be
destroyed because other processes running on different platforms may depend on these objects and their
information. Thus, these objects must persist independent of the process which they are associated. The state of
these objects is normally stored in a database or file. Figure 1.11 depicts the graphical user interface (GUI) of the
GOLD system [PARTA 1993]. In a distributed architecture, the F-16 fighter plane object model may be allocated
across several computer systems. For instance, the radar object may be maintained on a UNIX-based platform
and the weapon system object may reside on a Windows-NT-based system. When a user accesses and updates the
F-16 radar object, the updated radar information must persist. If the updated radar object is destroyed at the
termination of the user process, the current information would be lost. The reliability of the software application
can also be compromised if the state of a distributed object is not maintained. If a second user on another system
happened to access the F-16 radar object simultaneously, then the destruction of the radar object will cause
unexpected results. In distributed architectures, the state of objects must transcend through time and space
[Booch 1994].

The persistence of information for distributed objects is achieved using databases such as object-oriented
database management systems (ODBMs). These systems make information storage and retrieval transparent to
the client.

1.2.7 Typing

Typing is an optional criterion in OOD and is determined by the programming language. A programming
language can provide weak or strong typing. In a weakly typed language, the designer has complete freedom to
mix data types in expressions whether it makes sense or not. The following example illustrates an expression that
properly mixes built-in types with an instance of a class:

Complex zl = z2 + 3.0 ; / / add a complex number to a real number

A strongly typed language will not allow the above operation to take place and will result in compilation
error. By preventing a design from using mixed data types in expressions, a strongly typed language helps to
avoid the logical errors caused by implicit conversions. A strongly typed language requires a software developer
to specify conversions explicitly. The above operation can then take place through explicit conversions:

Conplex z l = z2 + Complex (3 .0) ;
/ / convert the real number to a complex number and
// then add the two complex values

1.3 Relationships among Objects 13

FIGURE 1.11 GOLD software user interface.

A strongly typed language makes the implementation more tedious because it forces the developer to
address each type conversion. In addition, changes to the data types in the interfaces would require explicit
changes to the client's code due to lack of implicit data conversion.

C++ is neither a strong nor a weakly typed language and is considered to be between the two. Through
implicit conversion, C++ resolves expressions consisting of built-in data types. However, there are restrictions on
implicit conversions among objects and built-in data types. Since C++ is not strongly typed, a designer is
responsible for making sure allowable implicit conversions make sense and provide correct results.

The customer's requirements on typing determine the choice of the object-oriented language that will
produce the necessary implementation, such as using Ada 95 for military projects.

1,3 RELATIONSHIPS AMONG OBJECTS

When objects interact with each other, they form relationships. One object becomes a client of another and uses
the other object in some capacity. The relationship between the objects can be categorized as the following
[Booch 1994]:

1. Using: An object uses the resources of another for accomplishing a task. In Figure 1.12, a person uses a car
to go to the market. The classes form the "iise-a" relationship:

person uses-a car

a. Menu Bar
c. Document (Text/Picture) Area

PARTA Corp.

Document Tools View

b. Icon Bar e. Minimize/Maximize Window

Options Help

FuelCockpitRadarElectronicsWheelsStructure

Tools View

EngitKWeapons

e. Vertical
Scroll Bar

JSadan.

e. Window

Resizing

Manual: F-16A v^ Version: I.I Page: j Section: TaBtntfjgontent Topic: Radar

e. Horizontal Scroll Bar^ d. Document Identification View Area

14 Object-Oriented Design Chapter 1

FIGURE 1.12 Car/person class diagram

2. Composition: In composition, the objects form a system-subsystem architecture and the design is broken
into aggregated components. In Figure 1.13, the F-16 radar class is composed of the transmitter, receiver,
and antenna classes. The decomposition simplifies the modeling by breaking a class into several
components. In composition, objects form the "has-a" relationship:

radar has-a receiver, transmitter, and antenna
car has-an engine, body, and wheels

FIGURE 1.13 Radar class diagram.

3. Inheritance: A new class is created from an existing class by inheriting its properties. For example, a laser
printer and ink jet printer are created by inheriting the properties of a general printer (Figure 1.14). The
architecture forms an "is~a" relationship:

Booch-93 Notation:

A B Class A uses-a Class B (Using)

Car

Person

Booch-93 Notation:

A B

BA

Class A is-a Class B (Inheritance)

Class A has-a Class B (Composition)
w Abstract Type

Transmitter

w Radar

(APG-66 Radar
Receiver

Antenna

1.3 Relationships among Objects 15

FIGURE 1.14 Printer class diagram

laser printer is-a printer
ink jet printer is-a printer

Figure 1.15 depicts a design hierarchy for military aircraft. The airplane class creates a design umbrella for
the different types of military aircraft by identifying them as some type of an airplane. This class is
considered abstract because in reality there is no generic airplane. In diagrams, the abstract property is
highlighted by using the triangular symbol with the letter "A" enclosed in it. This symbol specifies that the
airplane is an abstract class, whereas F-16 is a real airplane and is referred to as a concrete class:

F~16 is-a fighter plane

An abstract class defines the design interface for its derived classes, and captures the common operations
and attributes between the derived classes. An abstract class allows a client to operate on any of the derived
concrete classes in a generic way (polymorphism). Chapter 10 discusses this property in detail.

Booch-93 Notation:

A

A

B Class A is-a Class B (Inheritance) A

B Class A has-a Class B (Composition) A

- B Class A uscs-a Class B (Using)

- B Classes A & B are associated (Association)
W Abstract Type

Document

Computer

/ ^
Printer ^

fonts, status, memory space
printQ, downloadJbntO, statusO

^A/

Laser Printer

Printer Class Library

InkJet Line Printer

16 Object-Oriented Design Chapter 1

FIGURE 1.15 Aircraft hierarchy class diagram.

4, Association: When there is a loose relationship between two objects, they become associated with each
other. It is typically used in the early stages of analysis before a more concrete relationship such as "is-a"
has been defined. For example, a patent attorney and a legal case are associated with each other. In Figure
1.14, printer and document form an "associated" relationship and in Figure 1.15, airplanes are associated
with an airbase:

a document is-associated with a printer
an airplane is-associated with an airbase

During the design phase of an object model, relationships such as "is~a" are used to describe the association
between the classes. The classes in an object-oriented (OO) design must form proper relationships, and the
relationships must make sense. Figure 1.16a depicts an incorrect model for a car because a car is-not an engine
or a wheel The proper design approach would have been to use composition and make engine, wheel, and body
aggregate components of a car (Figure 1.16b). Improper use of relationships leads to OO designs that are hard to
maintain.

Bmich-93 NotatUtm

A

A

B Class A is-a Class B (Inheritance) A

B Class A has-a Class B {Composition) A

B Class A uses a Class B (Using)

B Classes A & B arc associated (Association)

^ Abstract Type

Airbase

TO
' Airplane

Bomber Fighter
Cargo

Surveillance

AWACS

CS
F-16B-2

F-16A F-16E

i
Airplane Class Hierarchy

FIGURE 1.15 Aircraft hierarchy class diagram.

1.4 Notation 17

FIGURE 1.16 Improper car class diagram.

1.4 NOTATION

1.4.1 Booch-93 Notation

Graphical presentations help convey design information. For example, the architectural plans for a house presents
the architect's vision to the customer before the house is built. The floor plan shows the architecture, room
layouts, and sizes. The three-dimensional plan shows the facade and shape of the house. By using different types
of diagrams, different information is conveyed to the customer.

Similarly, Booch-93 diagrams depicted in this book convey and describe the design. Booch-93 notation
uses different types of diagrams to present different aspects of the object-oriented design, and captures both static
and dynamic aspects of the object model The system architecture, classes, and their relationships represent the
static aspects. The dynamic behavior describes the interactions between the objects and their states. Figure 1.17
categorizes the following diagrams using the static and dynamic models:

a) Process diagram
b) Category diagram
c) Module diagram
d) Class diagram
e) Class specification

Booch-93 Notation:

A

A

• B Class A is-a Class B (Inheritance) A

B Class A has-a Class B (Composition) A

- B Class A uses-a Class B (Using)

- B Classes A & B are associated (Association)

V7 Abstract Type

WheelEngine Body

Car

Figure LI6a

BodyWheelEngine

Car

18 Object-Oriented Design Chapter 1

f) Object diagram
g) State transition diagram
h) Interaction diagram

Except for the process diagram and class specification, this book utilizes all of the Booch diagrams for its
presentations. For a complete description of these diagrams, the reader should refer to Object-Oriented Analysis
and Design with Applications by Grady Booch [Booch 1994].

In typical object-oriented designs, the object models may consist of hundreds of classes. To present these
classes using a single class, object, and interaction diagram is not only impractical but counterproductive. The
audience will become overwhelmed with the vast amount of information. The purpose of these diagrams is to
convey design ideas in a concise and standard manner, and are not to overwhelm the reader. Therefore, different
aspects of the design are illustrated using different and multiple diagrams.

Static Model

Process Diagram

Module Diagram

Category Diagram

Class Diagram

Class Specification

Dynamic Model

State Transition Diagram

Interaction Diagram

Object Diagram

FIGURE 1.17 Booch-93 Diagrams

1.4.1.1 Module Diagram
The module diagram presents a high-level view of the system and partitions a system in terms of subsystems and
modules. A subsystem is a collection of modules logically grouped together. Similarly, a module is a collection of
classes logically grouped together in order to perform a specific task in a system. For example, the classes
associated to a fax system's communication module are responsible for coordinating the transmission of data via
the phone line.

In Figure 1.18, a high-level module diagram for the GOLD system is presented [PARTA 1993]. The
dependencies between modules and subsystems are shown, using arrows. The system is partitioned into GUI,
multimedia, maintenance log (persistence), airplane repair manuals, and airbase spare parts. The module
specification and body icons are based on Ada's package specification and package body. These icons can be
loosely compared to a C/C++ header and source file. These icons are superimposed in the module diagram to
denote the association between the declarations and definitions.

The use of a module diagram partitions the design along well-defined boundaries by breaking down the
system architecture into subsystems and modules. The logical partitioning of a system into subsystems permits the
targeted audience to focus on a high-level view of the system.

1.4 Notation 19

FIGURE 1.18 GOLD system module diagram.

1.4.1.2 Category Diagram
The category diagram facilitates the presentation and partitioning of a subsystem and module into logical and
cohesive categories. Each category will consist of its own set of classes. A category organizes a group of classes
in a set. In the design of complex modules, a category diagram provides a high-level view of the module's
detailed design. The classes associated to category may be documented in the category diagram by listing the
classes in the applicable category box. The categories interact with each other through well-defined interfaces.

Figure 1.19 depicts the categories used in the design of the spare parts module for the GOLD system
[PARTA 1993]. This diagram views the system as a hierarchical (multilayered) architecture by having the higher
level categories appear on top.

In the diagram, the categories form a "using" relationship. The common and core categories that are used
by all or most categories in the diagram are grouped at the bottom of Figure 1.19 and are denoted using the
"global" keyword. This notation prevents the diagram from becoming too cluttered with the "using" relationship
lines.

1.4.1.3 Class Diagram
For a detailed view of a module or class category, a class diagram is used to show the exact relationships between
the classes. A class diagram captures detailed information for the static model by identifying the classes and their
relationships. Examples of this diagram have been depicted throughout the chapter, such as in Figure 1.15. In
addition to relationships, a class diagram may specify other details such as containment, cardinality, properties,
and export controls:

Bmeh-93 Natation:

subsystem
name

specification
name

body
name

main program
name

A • • B Module A is dependent on module B

User Interface Subsystem
GUI

Aircraft

Maintenace
Lot '

^ Spare Parts

Maintenance Subsystem

Multimedia

Documentation Subsystem

Repair
Manuals

Object-Oriented Design Chapter 1

FIGURE 1.19 Spare part list category diagram.

1. Containment: Identifies how a system class maintains its subsystem class: externally or internally. For
example, an F-14 fighter plane may be modeled on the basis of its structural architecture. Figure 1.20
decomposes this plane and shows the relationship and containment type for some of its parts. For every
instance of an F-14 fighter plane class, there are two instances of the engine and three instances of the
wheel classes.

Containment is denoted by the square shape symbols. A darkened square denotes internal containment
(value) and a white square denotes external (reference) containment. With internal containment, an instance
of F-14 contains three instances of wheel objects. The lifetime of F-14 and its wheels are closely coupled.
Since an F-14 contains three instances of wheel, when an F-14 object comes into existence the wheel
objects are also created, and when the F-14 object is destroyed, the wheel objects are also destroyed. In the
case of external containment, the above is not necessarily true. F-14 may create the engine objects or they
may have been created prior to construction of F-14. The lifetime of the two objects becomes an
implementation issue. However, F-14 is basically referencing two engine objects, which reside outside of it.

2. Cardinality: Specifies the number of instances associated between two classes. In Figure 1.20, for every F-
14 object there are two instances of engines. Therefore, there is a 1-2 cardinality. Booch notation supports
one-to-many, many-to-one, or many-to-many cardinality [Booch 1994]:

20

Booch-93 Notation:

Category Name

Class

Spare Parts
List

F-16
Spare Parts List

F-15
Spare Parts List

Spare Parts on Order

global

1.4 Notation 21

Cardinality applies to composition and association relationships.

FIGURE 1.20 F-14 fighter plane class diagram.

3. Property: A property is enclosed in an upside-down triangle. The following identifies the available
properties:

a. abstract (A): An abstract class is used in the formation of a design hierarchy. In Figure 1.15, a generic
aircraft was marked as an abstract class. These types of classes establish a common design interface for
their derived classes and cannot have an instance.

b. friend (F): This property denotes that a class is a friend of another and has access to the internal data
members of another class. This property tightly couples design components and eliminates modularity
and encapsulation between the two classes. This property should be used sparingly in a design.

c. virtual (v): The virtual property is used when a class may be inherited indirectly twice or more.
Examples of abstract and virtual properties are presented in Chapters 9 and 10 of this book.

.Exactly one relationship: 1

.Unlimited number (0 or more): n

. Zero or more: 0 .. n

. One or more: 1 .. n

.Range: 10.. 30

.Range and number: 2 .. 4 , 8

Booch-93 Notation:

A B Class A has-a Class B (Composition} internal Containment

External Containment

Engine

2

F-14

1

1
3

Wheel

22 Object-Oriented Design Chapter 1

d. static (s): This property identifies that the class is a static member of another class and one instance of
the class will be shared by all instances of the other class. Static members are described in detail in
Chapter 5.

4. Export Controls: Identifies the access levels. There are four types of export control: public, protected,
private, and implementation. The export controls are depicted using vertical bars on the relationship lines.
Examples of this feature are provided in subsequent chapters.
Except for the abstract property, the other properties appear on the line identifying the relationship between
two classes. Examples of these properties are provided in later chapters.

1.4.1.4 State Transition Diagram
A state transition diagram defines the dynamic behavior of an object by identifying the possible states for an
object. This diagram identifies the events and operations that cause the object to transition from one state to
another. In Figure 1.21, the state transition diagram identifies the possible states for the modem object: idle,
setup, transmitting, receiving, error, and termination. The condition enclosed in brackets identifies the
criterion that has caused the state transition.

FIGURE 1.21 Modem state transition diagram.

Some of the events and operations cannot cause the object to transition unless a certain condition is met,
also known as a guarded condition. For instance, a transmit request event causes the transmitting state to
transition to the error state when the modem times out. Since an event may cause a state to transition to several
other states, the guarded condition is used to identify the criterion for the transitioning and makes the state
diagram deterministic. In the transmitting state, the transmit() operation either maintains the object in the same
state or transitions it to the error state. Without the guarded condition, the behavior is not clear. Associated With
an event, there also may be an action. For instance, the communication failure status is set before transitioning

Boock-93 Notation:

Start

State

do activity

event (condition yuclion

Stop

Idle Initialize Modem Stream
Setup

Do configure modem for receive/tranamtt
. Do initialize modem buffer/pointers
. Do synchronize communication

Transmit)

Receivef)

Terminate()

Receiving

, Do store data in modem buffer
| Receive!)

Transmitting

.Do transmit data a byte at time

_jr^ Transmit)
[modem buffer not empty]

Transmit)
(timeout]

/set communication status
Error

Do log error condition

[buffer overflow]
Si,,, /set communication statusTermination

Do flush modem buffo-
Do release phone line

. Do disable modem interrupt

. Do reset hardware

1.4 Notation 23

from the receiving state to the error state. An action is considered to take zero processing time and cannot be
interrupted. The following identifies the sequence for transitioning from an event:

1. An event occurs
2. Guarded condition is evaluated
3. Action is performed
4. State transition takes place

Within a state, several activities can take place and are documented by "do activity!' In the error state, an
activity is to log the error condition. An activity may be interrupted by an event.

A transition diagram may identify entry and exit points denoted by darkened and semidarkened circles,
respectively. The entry point identifies the initial state when an object comes into existence. There can be only
one entry point in a transition diagram but there can be many exit points (Figure 1.21).

1.4.1.5 Interaction Diagram
The interaction diagram traces events within a design and defines the messages (events and operations) between
the objects. Figure 1.22 illustrates the events and operations associated with the interaction among the personnel

FIGURE 1.22 Software development group interaction diagram.

Booch-93 Notation:

time

Object

Event

OperattonO

Object

Manager

Work Assignment

Engineer Marketing Customer

DesignO

ReviewQ

deliver product

report sales

Lay off()

SellQ

24 Object-Oriented Design Chapter 1

of a software development company in the 1990s. The operations are differentiated from events by using
parentheses. In this diagram, the company's personnel are viewed as objects. This diagram provides a chronology
of events: the company executive provides the Research/Development (R/D) engineer with a statement of work.
The engineer designs the product and then reviews the design. Upon product acceptance, the engineer delivers the
product to the marketing department, which later sells the product to the customer. Marketing reports the product
sales to the management. At the end of the project, the management consolidates the company by laying off the
engineer. The order of events is from top to bottom with the time axis pointing downward.

The interaction diagram does not provide many details, making it useful for high- level design. The diagram
permits algorithm notes and pseudocode to appear on the left-hand side, explaining the events in greater detail in
addition to identifying conditional statements, decisions, and loops.

1.4.1.6 Object Diagram
The object diagram presents the same information as the interaction diagram except that it shows greater detail.
This type of diagram defines the object interactions, synchronization, roles, visibility, data flow, and data
direction.

Figure 1.23 uses a new notation to show the event interactions for the software development company
depicted in Figure 1.22. Unlike an event interaction diagram, the location of interaction lines in the object
diagram are unimportant. Thus, the events and operations must be numbered in order to identify the sequence of
events.

FIGURE 1.23 Software development group object diagram.

The direction of the message is shown by the arrows. The object diagram supports different notation for the
messages in order to support real-time applications and concurrency:

Boftch-93 Notation:

1 Source
Object

Order: message
^TargeT

Object

Synch ronization
Simple

Synchronous

• Timeout

• Asynchronous

Balking

3: ReviewQ

Engineer

2: Design()

4: Deliver Product

6: Report Sales

1: Work Assignment
7:LayOff()

Manager

Customer

5:Sell()Marketing

Summary 25

1. Simple: The standard arrow is used to depict a single thread control from a source to a target object.
2. Synchronous: A synchronous message is shown by an arrow with an X mark. This message indicates the

operation that takes place after the target object accepts the request. The source object waits until the
message is accepted.

3. Timeout: The timeout synchronization is shown by the clock above an arrow to indicate that the event or
operation must be completed within a specified amount of time. The source object abandons the operation if
it is not completed within the allowed time.

4. Asynchronous: An asynchronous message is shown by a modified arrow (-1). This synchronization scheme
is used for multithreaded applications when the source object sends a message to another object and
continues its execution without waiting for a response. The modified arrow (-i) denotes that the operation is
executed asynchronously.

5. Balking: The balking synchronization is shown by an arrow that points back to the source object. The
message is passed to the target object only if the target object is ready to receive it. The operation is
abandoned if the target is not ready.

The above synchronization scenarios are useful for describing the dynamic behavior of distributed objects.
Subsequent chapters utilize the above symbols in their object diagram examples.

1.4.2 Function Hierarchy

For classes whose operations form a hierarchy, the function hierarchy diagram is used to illustrate the
relationships between the functions. This diagram is useful for low-level design and is not part of the Booch
methodology. This book uses this type of diagram to show the relationships between the functions. For example,
Figure 1.24 depicts the data transmission function hierarchy for a Serial Stream class library. The external
operations are denoted by bold face characters and are part of the design interface. The operations denoted by
nonbold face characters are internal functions to the design of the class. This diagram creates a pictorial
representation of the functions and their relationships in a complicated design. In Figure 1.24, the
transmiLpaeketO function calls several private and public member functions such as the transmitjstringO and
receiveQ functions.

SUMMARY

The object-oriented design (OOD) methodology focuses on objects rather than on processes and algorithms.
Objects become abstract representations of the entities in the problem domain. For example, the design of a
facsimile (fax) machine will focus on identifying the objects required to represent a fax machine, such as a
modem, scanner, keypad, and printer. These objects collaborate with each other and model the operation of a fax
machine. Object-oriented design formalizes the definition of an object as "a« entity that has a state, identity, and
behavior!'

In C++, only the memory layout and content (static behavior) of the object can be defined at the source file
level, and is known as the class definition. A class definition logically groups data and functions. On the basis of
the values and settings of the data members, the instance of the class would exhibit a state. The member functions
operate on the data elements and perform operations such as initialization and cleanup. These functions give the
instance of the class a behavior. Since a class may have many instances, each instance is considered to have a
unique identity. An object is an instance of a class.

In object-oriented systems, an object model is created by analyzing the software requirements. The
granularity of the object model is enhanced and completed iteratively. Finally, the design is implemented using an
object-oriented programming language. An object-oriented design must incorporate and address the major
elements of the object model's framework:

1. Modularity
2. Encapsulation
3. Abstraction
4. Design hierarchy

26 Object-Oriented Design Chapter 1

FIGURE 1.24 Serial stream class function hierarchy (data transmission)

The framework is formalized to enhance software maintainability, reliability, and reusability. These
elements are required components of the object model. Designs lacking the design hierarchy elements are called
object-based designs instead of object-oriented designs.

The object model also has three other minor elements that are considered optional:

1. Concurrency
2. Persistence
3. Typing

Concurrency and persistence play an important role in distributed objects where the objects reside across
multithreaded and multiprocess environments.

At the time of implementation, the object model must identify both dynamic and static behaviors:

1. Static Behavior: The system's architecture, data representation, interfaces, and relationships among the
classes are identified.

2. Dynamic Behavior: The state and the interaction among the objects are specified.

normal - Private interface

italic • Protected Interface

boldface- Public interface Client

transmit_packet()

receiveQverify__checksum() transmit_string()

special__char_received()receivejrtringO

Serial Stream Class Library

SeriaLStream

Glossary 27

To help capture the above information, industry standard notations such as Booch are used. Owing to the
graphical nature of the Booch notation, this book uses the Booch-93 notation. The diagrams represent the details
and the architecture of design and convey ideas visually, similar to other notations such as the Unified Modeling
Language [Rational 1996],

GLOSSARY

Abstraction
Hiding the complexity of the design and the underlying processes involved in carrying out the operations on
an object

Base class
In inheritance, the base class is used to create new classes {derived). The derived classes inherit the
properties and attributes of the existing class {base)

Cardinality
Number of instances of a class

Class
A class is a structured set consisting of the declarations of member data with the member functions being
the operation on the set. A class identifies the memory layout for an object and specifies the functions that
operate on the object

Client
A class becomes a client of another class by using its features in its design. Depending on the relationships
and syntax in C++, the clients can be grouped into is-a, associate, has-a, and use-a relationships

Data encapsulation
The process of hiding the internal architecture of a data structure and the underlying data representation by
building a series of functions around the design. The functions act as the gateway by regulating the access
of clients to the data members

Derived class
By inheriting properties and attributes of an existing class {base) and adding additional features, a new class
{derived) emerges from the design

Inheritance
The ability to inherit the architecture, attributes, and properties of an existing {base) class in the design of a
new {derived) class. Inheritance creates an "w-a" relationship between the base class and its derived class

Modularity
A design that exhibits high cohesion and low coupling

Member function
A function that can operate freely on the data members of a class and is part of the class design. A member
function hides the internal architecture and specifies the operations on the class

Method
An Ada term for function. This book uses method, function, and operation interchangeably

Object
An object is an entity that has a state, behavior, and identity

Object-based
A design that focuses on collaborative effort of objects that are instances of different classes. However, the
objects do not form hierarchical architecture

28 Object-Oriented Design Chapter 1

Object-oriented
A design must not only satisfy the object-based criteria, but also the classes must form design hierarchies
through inheritance

OOA
Object-oriented analysis (OOA)

OOD
Object-oriented design (OOD)

Subclass
Another term for the derived class

Superclass
Another term for the base class

