Chapter 1

An Introduction to Distributed
Shared Memory Concepts

Editors’ Introduction

A general survey of distributed shared memory (DSM) principles, algo-
rithms, design issues, and existing systems is given in the following two
papers, included in Chapter 1:

1. J. Protié M. TomasSevi¢ and V. Milutinovié, “An Overview of Dis-
tributed Shared Memory” (originally developed for this tutorial,
1996).

2. B. Nitzberg and V. Lo, “Distributed Shared Memory: A Survey of
Issues and Algorithms,” Computer, Vol. 24, No. 8, Aug. 1991, pp.
52-60.

The first research efforts in the area of distributed shared memory sys-
tems started in the mid-1980s. This interest has continued to the
present, with the increasing attention of the research community. Having
in mind the primary goal of providing a shared memory abstraction in a
distributed memory system, in order to ease the programming, designers
of the early DSM systems were inspired by the principles of virtual mem-
ory, as well as the cache coherence maintenance in shared memory
multiprocessors.

On the one hand, networks of workstations are becoming more and
more popular and powerful nowadays, so they represent the most suit-
able platform for many programmers entering the world of parallel
computing. Communication speed is still the main obstacle preventing
these systems from reaching the level of performance of supercomputers,
but weakening of the memory consistency semantics can significantly
reduce the communication needs. On the other hand, designers of shared
memory multiprocessors are striving for scalability, by physical distribu-

9



10 Distributed Shared Memory

tion of shared memory and its sophisticated organization such as clus-
tering and hierarchical layout of the overall system. For these reasons, as
the gap between multiprocessors and multicomputers (that early DSM
intended to bridge) narrows, and both classes of systems seemingly ap-
proach each other in basic ideas and performance, more and more
systems can be found that fit into a large family of modern DSM. In spite
of many misunderstandings and terminology confusion in this area, we
adopted the most general definition, which assumes that all systems pro-
viding shared memory abstraction in a distributed memory system
belong to the DSM category.

The main purpose of this chapter is to elaborate the distributed shared
memory concept and closely related issues. The papers in this chapter
define the fundamental principles and effects of DSM memory organiza-
tion on overall system performance. Insight is also provided into the
broad variety of hardware, software, and hybrid DSM approaches, with a
discussion of their main advantages and drawbacks. Chapter 1 serves as
a base for an extensive elaboration of DSM concepts and systems in
Chapters 2-6.

The paper “An Overview of Distributed Shared Memory,” by Protic,

Tomasevi¢, and Milutinovié, covers all of the topics incorporated in this
tutorial. In the first part of the paper, an overview of basic approaches to
DSM concepts, algorithms, and memory consistency models is presented,
together with an elaboration on possible classifications in this area. The
second part of the paper briefly describes a relatively large number of
existing systems, presenting their essence and selected details, including
advantages, disadvantages, complexity, and performance considerations.
The DSM systems are classified according to their implementation level
into three groups: hardware, software, and hybrid DSM implementations.
Relevant information about prototypes, commercial systems, and stan-
dards is also provided. The overall structure of the paper is quite similar
to the layout of this tutorial. The paper also presents an extensive list of
references covering the area of distributed shared memory.

In the paper “Distributed Shared Memory: A Survey of Issues and Al-
gorithms,” Nitzberg and Lo introduce DSM concepts, algorithms, and
some existing systems. They consider the relevant choices that a DSM
system designer must make, such as structure and granularity of shared
data, as well as the coherence semantics. The issues of scalability and
heterogeneity in DSM systems are also discussed. The authors explain
the essential features of the DSM approach—data location and access,
and coherence protocol—and illustrate general principles by a more de-
tailed description of coherence maintenance algorithms used in the Dash
and PLUS systems. Other issues such as replacement strategy, synchro-
nization, and the problem of thrashing are also mentioned. The paper
provides an extensive list of DSM systems, available at the time of writ-
ing, with a brief description of their essence, and a survey of the design
issues for some of them.



Chapter 1: An Introduction to Distributed Shared Memory Concepts

Suggestions for Further Reading

1.

2.

V. Lo, “Operating System Enhancements for Distributed Shared Memory,” Ad-
vances in Computers, Vol. 39, 1994, pp. 191-237.

D.R. Cheriton, “Problem-Oriented Shared Memory: A Decentralized Approach to
Distributed System Design,” Proc. 6th Int'l Conf. Distributed Computing Systems,
IEEE CS Press, Los Alamitos, Calif., 1986, pp. 190-197.

M. Dubois, C. Scheurich, and F.A. Briggs, “Synchronization, Coherence, and
Event Ordering in Multiprocessors,” Computer, Vol. 21, No. 2, Feb. 1988, pp. 9-
21.

J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach,
Morgan Kaufmann Publishers, San Mateo, Calif., 1990.

K. Hwang, Advanced Computer Organization: Parallelism, Scalability, Program-
mability, McGraw-Hill, New York, N.Y., 1993.

M.J. Flynn, Computer Architectures: Pipelined and Parallel Processor Design,
Jones and Bartlett, Boston, Mass., 1995.

11



12 Distributed Shared Memory

An Overview of Distributed Shared
Memory

Jelica Protié
Milo Tomasevi¢
Veliko Milutinovi¢

Department of Computer Engineering
School of Electrical Engineering

University of Belgrade

Belgrade, Yugoslavia
{ieca.etomasev.emilutivi@ubbg.etf.bg.ac.yu

1. Concepts

A. Introduction

Significant progress has been made in the research on and development of sys-
tems with multiple processors that are capable of delivering high computing
power satisfying the constantly increasing demands of typical applications. Sys-
tems with multiple processors are usually classified into two large groups,
according to their memory system organization: shared memory and distributed
memory systems.

In a shared memory system (often called a tightly coupled multiprocessor), a
global physical memory is equally accessible to all processors. An important
advantage of these systems is the general and convenient programming model
that enables simple data sharing through a uniform mechanism of reading and
writing shared structures in the common memory. Other programming models
can be readily emulated on those systems. The cost of parallel software develop-
ment is reduced owing to the ease of programming and portability. However,
shared memory multiprocessors typically suffer from increased contention and
longer latencies in the accessing of shared memory, resulting in a somewhat
lower peak performance and limited scalability compared to distributed systems.
In addition, the design of memory systems tends to be complex. A detailed dis-
cussion of shared memory multiprocessors is provided in [FLYNN95].

On the other hand, a distributed memory system (often called a multicom-
puter) consists of multiple independent processing nodes with local memory
modules, connected by means of some general interconnection network.
Distributed memory systems are claimed to be scalable, and systems with very
high computing power are possible. However, communication between processes




Chapter 1: An Introduction to Distributed Shared Memory Concepts

13

residing on different nodes is achieved through a message-passing model, which
requires explicit use of send/receive primitives; most programmers find this more
difficult to achieve, since they must take care of data distribution across the sys-
tem, and manage the communication. Also, process migration imposes problems
because of different address spaces. Therefore, compared to shared memory sys-
tems, the hardware problems are easier and software problems more complex in
distributed memory systems.

A relatively new concept—distributed shared memory (DSM), discussed in
[LL094] and [PROTI96]}—tries to combine the advantages of the two approaches.
A DSM system logically implements the shared memory model in a physically
distributed memory system. The specific mechanism for achieving the shared
memory abstraction can be implemented in hardware and/or software in a vari-
ety of ways. The DSM system hides the remote communication mechanism from
the application writer, so the ease of programming and the portability typical of
shared memory systems are preserved. Existing applications for shared memory
systems can be relatively easily modified and efficiently executed on DSM sys-
tems, preserving software investments while maximizing the resulting perform-
ance. In addition, the scalability and cost-effectiveness of underlying distributed
memory systems are also inherited. Consequently, the importance of the distrib-
uted shared memory concept comes from the fact that it seems to be a viable
choice for building efficient large-scale multiprocessors.

The ability to provide a transparent interface and a convenient programming
environment for distributed and parallel applications has made the DSM model
the focus of numerous research efforts. The main objective of current research in
DSM systems is the development of general approaches that minimize the aver-
age access time to shared data, while maintaining data consistency. Some solu-
tions implement a specific software layer on top of existing message-passing sys-
tems, while others extend strategies applied in shared memory multiprocessors
with private caches, described in [TOMAS94a], [TOMAS94b], and [TARTA95], to
multilevel memory systems.

Part I of this paper provides comprehensive insight into the increasingly
important area of DSM. As such, Sections I.B-D cover general DSM concepts
and approaches. Possible classifications of DSM systems are discussed, as well
as various important design choices in building DSM systems. Section I.LE pre-
sents a set of DSM algorithms from the open literature, and differences between
them are analyzed under various conditions. Part II of this paper represents a
survey of existing DSM systems, developed either as research prototypes or as
commercial products and standards. It consists of three sections dedicated to
DSM implementations on the hardware level, software level, and using a hybrid
hardware/software approach. Although not exhaustive, this survey presents
extensive and up-to-date information on several key implementation schemes for
maintaining data in DSM systems. In the description of each DSM system, the
essentials of the approach, implementation issues, and basic DSM mechanism
are highlighted.

B. General Structure of a Distributed Shared Memory System

A DSM system can be generally viewed as a set of nodes or clusters, connected
by an interconnection network (Figure 1). A cluster can be a uniprocessor or a




14 Distributed Shared Memory

( Interconnection network 6
e —————

—1
Cluster 1 Cluster 2 Cluster N
Interconnection Interconnection Interconnection
controller controller controller
Directory Processors Directory Processors . e . Directory Processors

Caches Caches Caches
T T —DSM— T
portion
e

- = | s s

Figure 1. Structure and organization of a DSM system.

multiprocessor system, usually organized around a shared bus. Private caches
attached to the processors are inevitable for reducing memory latency. Each
cluster in the system contains a physically local memory module, which is par-
tially or entirely mapped to the DSM global address space. Regardless of the
network topology (for example, a bus, ring, mesh, or local area network), a
specific interconnection controller within each cluster is needed to connect it
into the system.

Information about states and current locations of particular data blocks is
usually kept in the form of a system table or directory. Storage and organization
of directory are among the most important design decisions, with a large impact
on system scalability. Directory organization varies from a full-map storage to
different dynamic organizations, such as single- or double-linked lists and trees.
No matter which organization is employed, the cluster must provide the storage
for the entire directory, or just a part of it. In this way, the system directory can
be distributed across the system as a flat or hierarchical structure. In hierarchi-
cal topologies, if clusters on intermediate levels exist, they usually contain only
directories and the corresponding interface controllers. Directory organization
and the semantics of information kept in directories depend on the applied
method for maintaining data consistency.

C. Classifications of Distributed Shared Memory Systems

Since the first research efforts in the area of DSM in the mid-1980s, the interest
in this concept has increased continuously, resulting in tens of systems devel-
oped predominantly as research prototypes. Designers of the early DSM systems
were inspired by the principle of virtual memory, as well as by the principle of
cache coherence maintenance in shared memory multiprocessors.

On the one hand, networks of workstations are becoming more and more
popular and powerful nowadays, so they represent the most suitable platform for




Chapter 1: An Introduction to Distributed Shared Memory Concepts

15

many programmers entering the world of parallel computing. However,
communication speed is still the main obstacle preventing these systems from
reaching the level of performance of high-end machines. On the other hand,
designers of shared memory multiprocessors are striving for scalability, by
physical distribution of shared memory and its sophisticated organization such
as clustering and hierarchical layout of the overall system. For these reasons, as
the gap between multiprocessors and multicomputers (that early DSM intended
to bridge) narrows, and both classes of systems seemingly approach each other in
basic ideas and performance, more and more systems can be found that fit into a
large family of modern DSM. In spite of many misunderstandings and terminol-
ogy confusion in this area, we adopt the most general definition, which assumes
that all systems providing shared memory abstraction on a distributed memory
system belong to the DSM category. This abstraction is achieved by specific
actions necessary for accessing data from global virtual DSM address space,
which can be shared among the nodes. Three important issues are involved in
the performance of these actions, which bring the data to the site where
accessed, while keeping them consistent (with respect to other processors); each
of these actions leads to a specific classification of DSM systems:

e How the access actually executes - DSM algorithm
o  Where the access is implemented - Implementation level of
DSM mechanism
o  What the precise semantics of - Memory consistency
the word consistent is model

Having in mind these most important DSM characteristics, we next discuss
three possible classifications of DSM approaches.

1. The First Classification: According to the DSM Algorithm

DSM algorithms can be classified according to the allowable existence of multi-
ple copies of the same data, also considering access rights of those copies. Two
strategies for distribution of shared data are most frequently applied: replication
and migration. Replication allows that multiple copies of the same data item
reside simultaneously in different local memories (or caches), in order to increase
the parallelism in accessing logically shared data. On the other hand, migration
implies a single copy of a data item that must be moved to the accessing site for
exclusive use, counting on the locality of references in parallel applications. DSM
algorithms can be classified as:

1. SRSW (single reader/single writer)
a. Without migration
b. With migration
2. MRSW (multiple reader/single writer)
3. MRMW (multiple reader/multiple writer)

Replication is prohibited in SRSW, while it is allowed in MRSW and MRMW
algorithms. The complexity of coherence maintenance is strongly dependent on




16 Distributed Shared Memory

the introduced classes. To adapt to the application characteristics on the basis of
typical read/write patterns, while keeping the acceptable complexity of the algo-
rithm, many solutions have been proposed. Among them, MRSW algorithms are
predominant. More details on DSM algorithms are given in Section LE.

2. The Second Classification: According to the Implementation Level
of the DSM Mechanism

The level at which the DSM mechanism is implemented is one of the most
important decisions in building a DSM system, since it affects both the
programming and the overall system performance and cost. Possible implemen-
tation levels are:

1. Software
a. Runtime library routines
b. Operating system
i. Inside the kernel
ii. Outside the kernel
c. Compiler-inserted primitives
2. Hardware
3. Hardware/software combination (hybrid)

Software-oriented DSM started with the idea of hiding the message-passing
mechanism and providing a shared memory paradigm in loosely coupled sys-
tems. Some of these solutions rely on specific runtime libraries that are to be
linked with the application that uses shared data. The others implement DSM
on the level of programming language, since the compiler can detect shared
accesses and insert calls to synchronization and coherence routines into the
executable code. Another class of approaches finds it appropriate to incorporate a
DSM mechanism into the distributed operating system, inside or outside the
kernel. Operating system- and runtime library-oriented approaches often inte-
grate the DSM mechanism with an existing virtual memory management sys-
tem. However, existing DSM systems usually combine elements of different
software approaches. For example, IVY is predominantly a runtime library solu-
tion that also includes modifications to the operating system, while Midway
implementation is based on a runtime system and the compiler for code genera-
tion that marks shared data as dirty when written into.

Some DSM systems use dedicated hardware responsible for locating, copying
shared data items, and keeping their coherence. Those solutions extend tradi-
tional caching techniques typical of shared memory multiprocessors to DSM sys-
tems with scalable interconnection networks. They can for the most part be
classified into three groups according to their memory system architecture:
CC-NUMA (cache coherent nonuniform memory access) architecture, COMA
(cache-only memory architecture), and RMS (reflective memory system) architec-
ture. In a CC-NUMA system, DSM address space is statically distributed across
local memory modules of clusters, which can be accessed both by the local proc-
essors and by processors from other clusters in the system, although with quite
different access latencies. COMA provides the dynamic partitioning of data in
the form of distributed memories, organized as large second-level caches




Chapter 1: An Introduction to Distributed Shared Memory Concepts

17

(attraction memories). RMS architectures use a hardware-implemented update
mechanism in order to propagate immediately every change to all sharing sites
using broadcast or multicast messages. This kind of memory system is also
called “mirror memory.”

Because of possible performance/complexity trade-offs, the integration of soft-
ware and hardware methods seems to be one of the most promising approaches
in the future of DSM. Some software approaches include hardware accelerators
for frequent operations in order to improve the performance, while some hard-
ware solutions handle infrequent events in software to minimize complexity. An
example of a hybrid solution is to use hardware to manage fixed size fine-grain
data units, in combination with the coarse-grain data management in software.
To gain better performance in DSM systems, recent implementations have used
multiple protocols within the same system, and even integrate message passing
with the DSM mechanism. To handle the complexity of recent, basically soft-
ware solutions, special programmable protocol processors can also be added to
the system.

While hardware solutions bring total transparency of the DSM mechanism to
the programmer and software layers, and typically achieve lower access
latencies, software solutions can take better advantage of application character-
istics through the use of various hints provided by the programmer. Software
systems are also very suitable for experimenting with new concepts and algo-
rithms. As a consequence, the number of software DSM systems presented in the
open literature is considerably higher; however, the ideas generated in software-
based solutions often migrate to hardware-oriented systems. Qur presentation of
DSM systems in Part II follows the classification of hardware, software, and hy-
brid DSM implementations and elaborates extensively on these issues.

3. The Third Classification: According to the Memory Consistency Model

A memory consistency model defines the legal ordering of memory references
issued by some processor, as observed by other processors. Different types of
parallel applications inherently require various consistency models. Performance
of the system in executing these applications is largely influenced by the restric-
tiveness of the model. Stronger forms of the consistency model typically increase
the memory access latency and the bandwidth requirements, while simplifying
programming. Looser constraints in more relaxed models that allow reordering,
pipelining, and overlapping of memory consequently result in better perform-
ance, at the expense of higher involvement of the programmer in synchronizing
the accesses to shared data. To achieve optimal behavior, systems with multiple
consistency models adaptively applied to appropriate data types have been
proposed.

Stronger memory consistency models that treat synchronization accesses as
ordinary read and write operations are sequential and processor consistency
models. More relaxed models that distinguish between ordinary and synchroni-
zation accesses are weak, release, lazy release, and entry consistency models. A
brief overview of memory consistency models can be found in [LO94]. Sufficient
conditions for ensuring sequential, processor, weak, and release memory consis-
tency models are given in [GHARA90].

Sequential consistency provides that all processors in the system observe the
same interleaving of reads and writes issued in sequences by individual proces-




18 Distributed Shared Memory

sors. A simple implementation of this model is a single-port shared memory sys-
tem that enforces serialized access servicing from a single first in—first out
(FIFO) queue. In DSM systems, similar implementation is achieved by serializ-
ing all requests on a central server node. In both cases, no bypassing of read and
write requests is allowed. Conditions for sequential consistency hold in the
majority of bus-based shared memory multiprocessors, as well as in early DSM
systems, such as IVY and Mirage.

Processor consistency assumes that the order in which memory operations can
be seen by different processors need not be identical, but the sequence of writes
issued by each processor must be observed by all other processors in the same
order of issuance. Unlike sequential consistency, processor consistency imple-
mentations allow reads to bypass writes in queues from which memory requests
are serviced. Examples of systems that guarantee processor consistency are VAX
8800, PLUS, Merlin, RMS, and so on.

Weak consistency distinguishes between ordinary and synchronization memory
accesses. It requires that memory becomes consistent only on synchronization
accesses. In this model, requirements for sequential consistency apply only on
synchronization accesses themselves. In addition, a synchronization access must
wait for all previous accesses to be performed, while ordinary reads and writes
must wait only for completion of previous synchronization accesses. A variant of
weak consistency model is used in SPARC architecture by Sun Microsystems.

Release consistency further divides synchronization accesses into acquire and
release, so that protected ordinary shared accesses can be performed between
acquire-release pairs. In this model, ordinary read or write access can be
performed only after all previous acquires on the same processor are performed.
In addition, release can be performed only after all previous ordinary reads and
writes on the same processor are performed. Finally, acquire and release syn-
chronization accesses must fulfill the requirements that processor consistency
imposes on ordinary read and write accesses, respectively. Different implementa-
tions of release consistency can be found in Dash and Munin DSM systems.

An enhancement of release consistency, lazy release consistency, is presented
in [KELEH92]. Instead of propagating modifications to the shared address space
on each release (as in release consistency—sometimes called eager release), modi-
fications are further postponed until the next relevant acquire. In addition, not
all modifications need to be propagated on the acquire—only those associated to
the chain of preceding critical sections. In this way, the amount of data
exchanged is minimized, while the number of messages is also reduced by com-
bining modification with lock acquires in one message. Lazy release consistency
was implemented in the DSM system TreadMarks.

Finally, entry consistency is a new improvement of release consistency. This
model requires that each ordinary shared variable or object be protected and
associated to the synchronization variable using language-level annotation. Con-
sequently, modification to the ordinary shared variable is postponed to the next
acquire of the associated synchronization variable that guards it. Since only the
changes for associated variables need be propagated at the moment of acquire,
the traffic is significantly decreased. Latency is also reduced since a shared
access does not have to wait for the completion of other nonrelated acquires. Per-
formance improvement is achieved at the expense of higher programmer
involvement in specifying synchronization information for each variable. Entry
consistency was implemented for the first time in the DSM system Midway.




Chapter 1: An Introduction to Distributed Shared Memory Concepts

19

D. Important Design Choices in Building Distributed Shared Memory Systems

In addition to the DSM algorithm, implementation level of DSM mechanism, and
memory consistency model, a set of characteristics that can strongly affect the
overall performance of a DSM system includes:

Cluster configuration—Single/multiple processor(s), with/without
(shared/private) (single/multiple level) caches, local memory organization, net-
work interface, etc.

Interconnection network—Bus hierarchy, ring, mesh, hypercube, specific
LAN, and so on

Structure of shared data—Nonstructured or structured into objects, language
types, and so on

Granularity of coherence unit—Word, cache block, page, complex data struc-
ture, and so on

Responsibility for DSM management—Centralized, distributed fixed, dis-
tributed dynamic

Coherence policy—Write-invalidate, write-update, type-specific, and so on

Cluster configuration varies greatly across different DSM systems. It includes
one or several (usually off-the-shelf) processor(s). Since each processor has its
local cache (or even cache hierarchy) the cache coherence on a cluster level must
be integrated with the DSM mechanisms on the global level. Parts of a local
memory module can be configured as private or shared (mapped to the virtual
shared address space). In addition to coupling the cluster to the system, the net-
work interface controller sometimes integrates some important responsibilities
of DSM management.

Almost all types of interconnection networks found in multiprocessors and dis-
tributed systems can also be used in DSM systems. The majority of software-
oriented DSM systems are network independent, although many of them hap-
pened to be built on top of an Ethernet network, readily available in most envi-
ronments. On the other hand, topologies such as a multilevel bus, ring hierarchy,
or mesh have been used as platforms for some hardware-oriented DSM systems.
The topology of the interconnection network can offer or restrict good potential
for parallel exchange of data related to DSM management. For the same reasons,
topology also affects scalability. In addition, it determines the possibility and
cost of broadcast and multicast transactions, very important for implementing
DSM algorithms.

Structure of shared data represents the global layout of shared address space,
as well as the organization of data items in it. Hardware solutions always deal
with nonstructured data objects, while some software implementations tend to
use data items that represent logical entities, in order to take advantage of the
locality naturally expressed by the application.

Granularity of coherence unit determines the size of data blocks managed by
coherence protocols. The impact of this parameter on overall system performance
is closely related to the locality of data access typical for the application. In gen-
eral, hardware-oriented systems use smaller units (typically cache blocks), while
some software solutions, based on virtual memory mechanisms, organize data in




20 Distributed Shared Memory

larger physical blocks (pages), counting on coarse-grain sharing. The use of
larger blocks results in saving space for directory storage, but it also increases
the probability that multiple processors will require access to the same block
simultaneously, even if they actually access unrelated parts of that block. This
phenomenon is referred to as false sharing. This can cause thrashing—a behav-
ior characterized by extensive exchange of data between sites competing for the
same data block.

Responsibility for DSM management determines which site must handle
actions related to the consistency maintenance in the system; the management
can be centralized or distributed. Centralized management is easier to imple-
ment, but the central manager represents a bottleneck. The responsibility for
distributed management can be defined statically or dynamically, eliminating
bottlenecks and providing scalability. Distribution of responsibility for DSM
management is closely related to the distribution of directory information.

Coherence policy determines whether the existing copies of a data item being
written to at one site will be updated or invalidated at other sites. The choice of
coherence policy is related to the granularity of shared data. For very fine-grain
data items, the cost of an update message is approximately the same as the cost
of an invalidation message. Therefore, the update policy is often used in systems
with word-based coherence maintenance. On the other hand, invalidation is
largely used in coarse-grain systems. The efficiency of an invalidation approach
increases when the read and write access sequences to the same data item by
various processors are not highly interleaved. The best performance can be
expected if coherence policy dynamically adapts to the observed reference pattern.

E. Distributed Shared Memory Algorithms

The algorithms for implementing distributed shared memory deal with two basic
problems: (1) static and dynamic distribution of shared data across the system,
in order to minimize their access latency, and (2) preserving a coherent view of
shared data, while trying to keep the overhead of coherence management as low
as possible. Replication and migration are the two most frequently used policies
that try to minimize data access time, by bringing data to the site where they are
currently used. Replication is mainly used to enable simultaneous accesses by
different sites to the same data, predominantly when read sharing prevails.
Migration is preferred when sequential patterns of write sharing are prevalent
in order to decrease the overhead of coherence management. The choice of a
suitable DSM algorithm is a vital issue in achieving high system performance.
Therefore, is must be well adapted to the system configuration and characteris-
tics of memory references in typical applications.

Classifications of DSM algorithms and the evaluation of their performance
have been extensively discussed in [LIHUDS89], [STUM90], [BLACKS89], and
[KESSL89]. This presentation follows a classification of algorithms similar to the
one found in [STUM90].

1. Single Reader/Single Writer Algorithms

Single reader/single writer (SRSW) algorithms prohibit the possibility of replica-
tion, while the migration can be, but is not necessarily, applied. The simplest
algorithm for DSM management is the central server algorithm [STUM90]. The




Chapter 1: An Introduction to Distributed Shared Memory Concepts 21

approach is based on a unique central server that is responsible for servicing all
access requests from other nodes to shared data, physically located on this node.
This algorithm suffers from performance problems since the central server can
become a bottleneck in the system. Such an organization implies no physical dis-
tribution of shared memory. A possible modification is the static distribution of
physical memory and the static distribution of responsibilities for parts of shared
address space onto several different servers. Some simple mapping functions (for
example, hashing) can be used to locate the appropriate server for the corre-
sponding piece of data.

More sophisticated SRSW algorithms additionally allow for the possibility of
migration. However, only one copy of the data item can exist at any one time and
this copy can be migrated on demand. In [KESSL89] this kind of algorithm is
referred to as Hot Potato. If an application exhibits high locality of reference, the
cost of data migration is amortized over multiple accesses, since data are moved
not as individual items, but in fixed size units—blocks. It can perform well in
cases where a longer sequence of accesses from one processor uninterrupted with
accesses from other processors is likely to happen, and write after read to the
same data occurs frequently. In any case, the performance level of this rarely
used algorithm is restrictively low, since it does not take advantage of the paral-
lel potential of multiple read-only copies, in cases when read sharing prevails.

2. Multiple Reader/Single Writer Algorithms

The main intention of multiple reader/single writer (MRSW) (or read-replication)
algorithms is to reduce the average cost of read operations, by counting on the
fact that read sharing is the prevalent pattern in parallel applications. To this
end, they allow read operations to be simultaneously executed locally at multiple
hosts. Permission to update a replicated copy can be given to only one host at a
time. On the occurrence of write to a writable copy, the cost of this operation is
increased, because the use of other replicated stale copies must be prevented.
Therefore, the MRSW algorithms are usually invalidation based. Protocols fol-
lowing this principle are numerous.

A variety of algorithms belong to this class. They differ in the way the respon-
sibility for DSM management is allocated. Several MRSW algorithms are pro-
posed in [LIHUDS89]. Before discussing those algorithms, the following terms
must be defined:

Manager—The site responsible for organizing the write access to a data block
Owner—The site that owns the only writable copy of the data block
Copy set—A set of all sites that have copies of the data block

A list of algorithms proposed by Li and Hudak includes the following.

a. Centralized Manager Algorithm. All read and write requests are sent to
the manager, which is the only site that keeps the identity of the owner of a
particular data block. The manager forwards the request for data to the
owner, and waits for confirmation from the requesting site, indicating that it
received the copy of the block from the owner. In the case of a write opera-
tion, the manager also sends invalidations to all sites from the copy set (a vec-
tor that identifies the current holders of the data block, kept by the manager).




22 Distributed Shared Memory

b.

C.

e.

Improved Centralized Manager Algorithm. Unlike the original cen-
tralized manager algorithm, the owner, instead of the manager, keeps the
copy set in this version of the centralized algorithm. Copy set is sent to-
gether with the data to the new owner, which is also responsible for invali-
dations. In this case, the overall performance can be improved because of the
decentralized synchronization.

Fixed Distributed Manager Algorithm. In the fixed distributed man-
ager algorithm, instead of centralizing the management, each site is prede-
termined to manage a subset of data blocks. The distribution is done ac-
cording to some default mapping function. Clients are still allowed to over-
ride it by supplying their own mapping, tailored to the expected behavior of
the application. When a parallel program exhibits a high rate of requests for
data blocks, this algorithm performs better than the centralized solutions.

Broadcast Distributed Manager Algorithm. There is actually no
manager in the broadcast distributed manager algorithm. Instead, the re-
questing processor sends a broadcast message to find the true owner of the
data block. The owner performs all actions just like the manager in previ-
ous algorithms, and keeps the copy set. The disadvantage of this approach
is that all processors must process each broadcast, slowing down their own
computations.

Dynamic Distributed Manager Algorithm. In the dynamic distributed
manager algorithm, the identity of the probable owner, not the real owner,
is kept for each particular data block. All requests are sent to the probable
owner, which is also the real owner in most cases. However, if the probable
owner does not happen to be the real one, it forwards the request to the node
that represents probable owner according to the information kept in its own
table. For every read and write request, forward, and invalidation messages,
the probable owner field is changed accordingly, in order to decrease the
number of messages to locate the real owner. This algorithm is often called
the Li algorithm. For its basic version, where the ownership is changed on
both read and write fault, it is shown in [LIHUDS89] that the performance of
the algorithm does not worsen as more processors are added to the system,
but rather degrades logarithmically when more processors contend for the
same data block.

A modification of the dynamic distributed manager algorithm, also proposed in

[LIHUDB89], suggests a distribution of the copy set, which should be organized as
a tree rooted at the owner site. This is a way to distribute the responsibility for
invalidations, as well.

3. Multiple Reader/Multiple Writer Algorithms

The multiple reader/multiple writer (MRMW) algorithm (also called the full-
replication algorithm) allows the replication of data blocks with both read and
write permission. To preserve coherence, updates of each copy must be distrib-
uted to all other copies at remote sites, by multicast or broadcast messages. This
algorithm tries to minimize the cost of write access. Therefore, it is appropriate
for write sharing and it is often used with write-update protocols. This algorithm




Chapter 1: An Introduction to Distributed Shared Memory Concepts

23

can produce high coherence traffic, especially when the update frequency and
the number of replicated copies are high.

Protocols complying to the MRMW algorithm can be complex and demanding.
One possible way to maintain data consistency is to sequence the write opera-
tions globally, in order to implement reliable multicast. When a processor
attempts to write to the shared memory, the intended modification is sent to the
sequencer. The sequencer assigns the next sequence number to the modification
and multicasts the modification with this sequence number to all sites having
the copy. When the modification arrives at a site the sequence number is veri-
fied, and if it is not correct a retransmission is requested.

A modification of this algorithm proposed in [BISIA88] distributes the task of
sequencing. In this solution, writes to any particular data structure are
sequenced by the server that manages the master copy of that data structure.
Although the system is not sequentially consistent in this case, each particular
data structure is maintained in a consistent manner.

4. Avenues for Performance Improvement

Considerable effort has been dedicated to various modifications of the basic algo-
rithms, in order to improve their behavior and gain better performance by re-
ducing the amount of data transferred in the system. Most of these ideas have
been evaluated by simulation studies, and some of them have been implemented
in existing prototype systems.

An enhancement of Li’s algorithm (named the Shrewd algorithm) is proposed
in [KESSL89]. It eliminates all unnecessary page transfers with the assistance
of the sequence number per copy of a page. On each write fault at a node with a
previously existing read-only copy, the sequence number is sent with the
request. If this number is the same as the number kept by the owner, the
requester will be allowed to access the page without its transfer. This solution
shows remarkable benefits when the read-to-write ratio increases.

All solutions presented in [LIHUD89] assume that a page transfer is
performed subsequent to each attempt to access a page that does not reside on
the accessing site. A modification proposed in [BLACKS89] employs a competitive
algorithm and allows page replication only when the number of accesses to the
remote page exceeds the replication cost. A similar rule is applied to migration,
although the fact that, in this case, only one site can have the page makes the
condition to migrate the page more restrictive and dependent on the other site’s
access pattern to the same page. The performance of these policies is guaranteed
to stay within a constant factor from the optimal.

Another restriction to data transfer requests is applied in the system Mirage,
in order to reduce thrashing—an adverse effect that occurs when an alternating
sequence of accesses to the same page issued by different sites makes its migra-
tion the predominant activity. The solution to this problem is found in defining a
time window A in which the site is guaranteed to uninterruptedly possess the
page after it has acquired it. The value of A can be tuned statically or dynami-
cally, depending on the degree of processor locality exhibited by the particular
application.

There are a variety of specific algorithms implemented in existing DSM sys-
tems, or simulated extensively using appropriate workload traces. Early DSM
implementations found the main source of possible performance and scalability




24 Distributed Shared Memory

improvements in various solutions for the organization and storage of system
tables, such as copy set, as well as the distribution of management responsibili-
ties. In striving to gain better performance, recent DSM implementations have
relaxed memory consistency semantics, so the algorithms and the organization of
directory information must be considerably modified. Implementations of critical
operations using hardware accelerators and a combination of invalidate and
update methods also contribute to the better performance of modern DSM systems.

Il. Systems

A. Introduction

A distributed shared memory system logically implements a shared memory
model on physically distributed memories, in order to achieve ease of
programming, cost-effectiveness, and scalability [PROTI96]. Basic DSM concepts
are discussed extensively in Part I of this paper. Part II represents a wide over-
view of existing systems, predominantly developed as research prototypes. Since
the shared address space of DSM is distributed across local memories, on each
access to these data a lookup must be performed, in order to determine if the
requested data is in the local memory, and if not, an action must be taken to
bring it to the local memory. An action is also needed on write accesses in order
to preserve the coherence of shared data. Both lookup and action can be per-
formed in software, hardware, or the combination of both. According to this prop-
erty, systems are classified into three groups: software, hardware, and
hybrid implementations. The choice of implementation level usually depends on
price/performance trade-offs. Although typically superior in performance, hard-
ware implementations require additional complexity, allowable only in high-
performance large-scale machines. Low-end systems, such as networks of per-
sonal computers, based on commodity microprocessors, still do not tolerate cost
of additional hardware for DSM, and are limited to software implementation. For
the class of mid-range systems, such as clusters of workstations, low-cost addi-
tional hardware, typically used in hybrid solutions, seems to be appropriate.

B. Software Distributed Shared Memory Implementations

Until the last decade distributed systems widely employed the message-passing
communication paradigm. However, it appeared to be much less convenient than
the shared memory programming model since the programmer must be aware of
data distribution and explicitly manage data exchange via messages. In addition,
they introduce severe problems in passing complex data structures, and process
migration in multiple address spaces is aggravated. Therefore, the idea of build-
ing a software mechanism that provides the shared memory paradigm to the
programmer on top of message passing emerged in the mid-1980s. Generally,
this can be achieved in user-level runtime library routines, the operating system,
or the programming language. Some DSM systems combine the elements of
these three approaches. Larger grain sizes (on the order of a kilobyte) are typical
for software solutions, since DSM management is usually supported through a
virtual memory mechanism. It means that if the requested data are not present
in local memory, a page fault handler will retrieve the page either from the local




Chapter 1: An Introduction to Distributed Shared Memory Concepts

25

memory of another cluster or from disk. Coarse-grain pages are advantageous for
applications with high locality of references and also reduce the necessary direc-
tory storage. On the other hand, parallel programs characterized by fine-grain
sharing are adversely affected, owing to false sharing and thrashing.

Software support for DSM is generally more flexible than the hardware sup-
port and enables better tailoring of the consistency mechanisms to the applica-
tion behavior. However, in most cases it cannot compete with hardware imple-
mentations in performance. Apart from trying to introduce hardware accelera-
tors to solve the problem, designers also concentrate on relaxing the consistency
model, although this can put an additional burden on the programmer. The fact
that research and experiments can rely on widely available programming lan-
guages and operating systems on the networks of workstations resulted in
numerous implementations of software DSM.

1. User-Level and Combined Software Distributed Memory System
Implementations

IVY [LI88] is one of the first proposed software DSM solutions, implemented as a
set of user-level modules built on top of the modified Aegis operating system on
the Apollo Domain workstations. IVY is composed of five modules. Three of
them, from the client interface (process management, memory allocation, and ini-
tialization), consist of a set of primitives that can be used by application pro-
grams. Remote operation and memory mapping routines use the operating sys-
tem low-level support. IVY provides a mechanism for consistency maintenance
using an invalidation approach on 1-Kbyte pages. For experimental purposes,
three algorithms for ensuring sequential consistency were implemented: the
improved centralized manager, the fixed distributed manager, and the dynamic
distributed manager. Performance measurements on a system with up to eight
clusters have shown linear speedup in comparison with the best sequential solu-
tions for some typical parallel programs. Although IVY performance could have
been improved by implementing it at the system level rather than at the user
level, its most important contribution was in proving the viability of the DSM
concept in real systems with parallel applications.

A similar DSM algorithm is also used in Mermaid [ZHOU90]—the first system
to provide a DSM paradigm in a heterogeneous environment (HDSM). The proto-
type configuration includes the SUN/Unix workstations and the DEC Firefly
multiprocessors. The DSM mechanism was implemented at the user level, as a
library package which is to be linked to the application programs. Minor changes
to the SunOS operating system kernel included setting the access permission of
memory pages from the user level, as well as passing the address of a DSM page
to its user-level fault handler. Because of the heterogeneity of clusters, in addi-
tion to data exchange, the need for data conversion also arises. Besides the con-
version of standard data types, for user-defined data types conversion routines
and a table for mapping data types to particular routines must be provided by
the user. A restriction is that just one data type is allowed per page. Mermaid
ensures the variable page size that can be suited to data access patterns. Since
the Firefly is a shared-memory multiprocessor, it was possible to compare physi-
cal versus distributed shared memory. The results showed that the speedup is
increased far less than 20 percent when moving from DSM to physically shared
memory for up to four nodes. Since the conversion costs are found to be substan-




26 Distributed Shared Memory

tially lower than page transfer costs, it was concluded that the introduced over-
head caused by heterogeneity was acceptably low—page fault delay for the het-
erogeneous system was comparable to that of the homogeneous system with only
Firefly multiprocessors.

The Munin [CARTE91] DSM system includes two important features: type-
specific coherence mechanisms and the release consistency model. The
16-processor prototype is implemented on an Ethernet network of SUN-3 work-
stations. Munin is based on the Stanford V kernel and the Presto parallel pro-
gramming environment. It can be classified as a runtime system implementa-
tion, although a preprocessor that converts the program annotations, a modified
linker, some library routines, and operating system support are also required. It
employs different coherence protocols well suited to the expected access pattern
for a shared data object type (Figure 2). The programmer is responsible for pro-
viding one of several annotations for each shared object, which selects appropri-
ate low-level parameters of coherence protocol for this object. The data object
directory is distributed among nodes and organized as a hash table. The release
consistency model is implemented in software with delayed update queues for
efficient merging and propagating of write sequences. Evaluation using two rep-
resentative Munin programs (with only minor annotations) shows that their per-
formance is less than 10 percent worse compared to their carefully hand-coded
message passing counterparts.

Another DSM implementation that counts on significant reduction of data traf-
fic by relaxing consistency semantics according to the lazy release consistency
model is TreadMarks [KELEH94]. This is a user-level implementation that relies
on Unix standard libraries in order to accomplish remote process creation, inter-
process communication, and memory management. Therefore, no

Data object type Coherence mechanism
Private None

Write-once Replication

Write-many Delayed update

Results Delayed update
Synchronization Distributed locks
Migratory Migration
Producer-consumer Eager object movement
Read mostly Broadcast

General read-write Ownership

Figure 2. Munin’s type-specific memory coherence.




Chapter 1: An Introduction to Distributed Shared Memory Concepts

27

modifications to the operating system kernel or particular compiler are required.
TreadMarks runs on commonly available Unix systems. It employs an invalida-
tion-based protocol, which allows multiple concurrent writers to modify the page.
On the first write to a shared page, DSM software makes a copy (twin) that can
later be compared to the current copy of the page in order to make a diff—a rec-
ord that contains all modifications to the page. Lazy release consistency does not
require diff creation on each release (as in the Munin implementation), but
allows it to be postponed until next acquire in order to obtain better perform-
ance. Experiments were performed using DECstation-5000/240s connected by a
100-Mbps ATM network and a 10-Mbps Ethernet, and good speedups for five
SPLASH programs were reported. Results of experiments have shown that
latency and bandwidth limitations can be overcome using more efficient commu-
nication interfaces.

Unlike Munin, which uses various coherence protocols on a type-specific basis,
Midway [BERSH93] supports multiple consistency models (processor, release,
entry) that can be dynamically changed within the same program, in order to
implement a single consistency model—release consistency. Midway is opera-
tional on a cluster of MIPS R3000-based DEC stations, under the Mach OS. At
the programming language level, all shared data must be declared and explicitly
associated with at least one synchronization object, also declared as an instance
of one of Midway’s data types, which include locks and barriers. If the necessary
labeling information is included, and all accesses to shared data done with
appropriate explicit synchronization accesses, sequential consistency can also be
achieved. Midway consists of three components: a set of keywords and function
calls used to annotate a parallel program, a compiler that generates code that
marks shared data as dirty when written to, and a runtime system that imple-
ments several consistency models. Runtime system procedure calls associate
synchronization objects to runtime data. The control of versions of synchroniza-
tion objects is done using the associated timestamps, which are reset when data
are modified. For all consistency models, Midway uses an update mechanism.
Although less efficient with the Ethernet connection, Midway shows close to lin-
ear speedups of chosen applications when using the ATM network.

Blizzard is another user-level DSM implementation that also requires some
modifications to the operating system kernel [SCHOI94]. It uses Tempest—a
user-level communication and memory interface that provides mechanisms nec-
essary for both fine-grained shared memory and message passing. There are
three variants of this approach: Blizzard-S, Blizzard-E, and Blizzard-ES. The
essence of Blizzard-S, an entirely software variant, is the modification of execu-
table code by inserting a fast routine before each shared memory reference. It is
intended for state lookup and access control for the block. If the state check
requires some action, an appropriate user handler is invoked. Blizzard-E, on the
other hand, uses the machine’s memory ECC (error correction code) bits to indi-
cate an invalid state of the block by forcing uncorrectable errors. However, a
read-only state is maintained by enforcing read-only protection at page level by
the memory management unit (MMU). Otherwise, read-write permission is
assumed. The third variant, Blizzard-ES, combines the ECC approach of Bliz-
zard-E for read instructions, and software tests of Blizzard-S for write instruc-
tions. Performance evaluation of the three variants for several shared memory
benchmarks reveals that Blizzard-S is the most efficient (typically within a fac-
tor of two). When compared to a hardware DSM implementation with fine-grain




28 Distributed Shared Memory

access control (the KSR1 multiprocessor), the typical slowdown of Blizzard is
severalfold depending on the application.

2. Operating System Software Distributed Shared Memory implementations

In Mirage [FLEIS89], coherence maintenance is implemented inside the
operating system kernel. The prototype consists of VAX 11/750s connected by
Ethernet network, using the System V interface. The main contribution
introduced by Mirage is that page ownership can be guaranteed for a fixed
period of time, called time window A. In this way thrashing is avoided, and
inherent processor locality can be better exploited. The value of the A parameter
can be tuned statically or dynamically. Mirage uses the model based on page
segmentation. A process that creates a shared segment defines its size, name,
and access protection, while the other processes locate and access the segment by
name. All requests are sent to the site of segment creation, called the library site
(Figure 3) where they are queued and sequentially processed. The clock site,
which provides the most recent copy of the page, is either a writer or one of the
readers of the requested page, since the writer and the readers cannot possess
copies of the same page simultaneously. Performance evaluation of the worst
case example, in which two processes interchangeably perform writes to the
same page, has shown that the throughput increase is highly sensitive to the
proper choice of the parameter A value.

Clouds [RAMAC91] is an operating system that incorporates software-based
DSM management and implements a set of primitives either on top of Unix, or in
the context of the object-based operating system kernel Ra. Clouds is imple-
mented on SUN-3 workstations connected via Ethernet. The distributed shared
memory consists of objects, composed of segments, that have access attributes:
read-only, read-write, weak-read, or none. Since the weak-read mode allows the
node to obtain a copy of the page with no guarantee that the page will not be
modified during read, the memory system behavior of Clouds without any spe-
cific restrictions leads to inconsistent DSM. Fetching of segments is based on get

Request for page

Requesting
site m
Invalidate and relinquish page
to the Requesting site
Library
0 Page relinquished

Here is the requested page

H

Figure 3. Write request for a page in Mirage.




Chapter 1: An Introduction to Distributed Shared Memory Concepts 29

and discard operations provided by a distributed shared memory controller
(DSMC). This software module also offers P and V semaphore primitives as
separate operations. The DSMC is, therefore, a part of the Clouds operating sys-
tem, but implemented outside its kernel Ra. It is invoked by a DSM partition
that handles segment requests from both Ra and user objects, and determines
whether the request for segment should be satisfied locally by disk partition, or
remotely by the distributed shared memory controller. Both DSM and DSMC
partitions are also implemented on top of Unix, with minor changes due to the
operating system dependencies.

3. Programming Language Concepts for Software Distributed Shared Memory

An architecture-independent language, Linda, is introduced in [AHUJAS86). Dis-
tributed shared memory in Linda is organized as a “tuple space”—a common
pool of user-defined tuples (basic storage and access units consisting of data ele-
ments) that are addressed by logical names. Linda provides several special lan-
guage operators for dealing with such distributed data structures, such as
inserting, removing, and reading tuples, and so on. The consistency problem is
avoided since a tuple must be removed from the tuple space before an update,
and a modified version is reinserted again. By its nature, the Linda environment
offers possibilities for process decoupling, transparent communication, and
dynamic scheduling. Linda offers the use of replication as a method for problem
partitioning. Linda is implemented on shared memory machines (Encore Multi-
max, Sequent Balance) as well as on loosely coupled systems (S/Net, an Ethernet
network of MicroVAXes).

Software DSM implementations are extensively elaborated on in [BALSS]. A
new model of shared data objects is proposed (passive objects accessible through
predefined operations), and used in the Orca language for distributed program-
ming. The distributed implementation is based on selective replication, migra-
tion, and an update mechanism. Different variants of update mechanism can be
chosen, depending on the type of communication provided by the underlying dis-
tributed system (point-to-point messages, reliable multicast and unreliable mul-
ticast messages). Orca is predominantly intended for application programming.

IVY [LI88] User-level library + O MRSW Sequential 1 Kbyte nvalidate
modification
Mermaid User-level library + OS MRSW Sequential 1 Kbyte, 8 Kbytes | Invalidate
[ZHOU90] modifications
Munin Runtime system + Type-specific Release Variable-size Type-specific
[CARTE91] linker + library + pre- (SRSW, MRSW, ohjects (delayed update,
processor + OS modifica- | MRMW) invalidate)
tions
Midway Runtime system + com- | MRMW Entry, release, 4 Kbytes Update
[BERSH93] piler processor
TreadMarks | User level MRMW Lazy release 4 Kbytes Update, invalidate
[KELEH94]
Blizzard User-level + OS kernel MRSW Sequential 32-128 bytes Invalidate
[SCHOI194] modification




30 Distributed Shared Memory

Mirage OS kernel MRSW Sequential 512 bytes Invalidate
[FLEIS89]

Clouds 0S8, out of kernel MRSW Inconsistent, 8 Kbytes Discard segment
[RAMAC91] sequential when unlocked
Linda Language MRSW Sequential Variable (tuple Implementation
[AHUJAS86] size) dependent

Orca Language MRSW Synchronization | Shared data Update

[BALS88] dependent object size

[AHUJA86] S. Ahuja, N. Carriero, and D. Gelernter, “Linda and Friends,” Computer, Vol. 19, No. 8, May 1986,
pp- 26-34.

[BALSS] H.E. Bal and A.S. Tanenbaum, “Distributed Programming with Shared Data,” Proc. Int’l Conf. Com-
puter Languages ‘88, IEEE CS Press, Los Alamitos, Calif., 1988, pp. 82-91.

[BERSH93] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon, “The Midway Distributed Shared Memory System,”
Proc. COMPCON 93, IEEE CS Press, Los Alamitos, Calif., 1993, pp. 528-537.

[CARTE91] J.B. Carter, J.K. Bennet, and W. Zwaenepoel, “Implementation and Performance of Munin,” Proc. 13th
ACM Symp. Operating Systems Principles, ACM Press, New York, N.Y., 1991, pp. 152-164.

[FLEIS89] B. Fleisch and G. Popek, “Mirage: A Coherent Distributed Shared Memory Design,” Proc. 14th ACM
Symp. Operating System Principles, ACM Press, New York, N.Y., 1989, pp. 211-223.

[KELEH94] P. Keleher et al., “TreadMarks: Distributed Shared Memory on Standard Workstations and Operating
Systems,” Proc. USENIX Winter 1994 Conf., 1994, pp. 115-132.

[LI88] K. Li, “IVY: A Shared Virtual Memory System for Parallel Computing,” Proc. 1988 Int’l Conf. Parallel
Processing, Penn State Press, University Park, Pa., 1988, pp. 94-101.

[RAMAC91] U. Ramachandran and M.Y.A. Khalidi, “An Implementation of Distributed Shared Memory,” Software
Practice and Experience, Vol. 21, No. 5, May 1991, pp. 443-464.

[SCHOI94] I Schoinas et al., “Fine-Grain Access Control for Distributed Shared Memory,” Proc. 6th Int'l Conf. Ar-
chitectural Support for Programming Languages and Operating Systems, ACM Press, New York, N.Y,,
1994, pp. 297-306.

[ZHOU90] S. Zhou, M. Stumm, and T. McInerney, “Extending Distributed Shared Memory to Heterogeneous Envi-
ronments,” Proc. 10th Int’l Conf. Distributed Computing Systems, IEEE CS Press, Los Alamitos, Calif.,
1990, pp. 30-37.

C. Hardware-Level Distributed Shared Memory Implementations

A hardware-implemented DSM mechanism ensures automatic replication of
shared data in local memories and processor caches, transparently for software
layers. This approach efficiently supports fine-grain sharing. The nonstructured,
physical unit of replication and coherence is small, typically cache line. Conse-
quently, a hardware DSM mechanism usually represents an extension of the
principles found in cache coherence schemes of scalable shared-memory architec-
tures. Communication requirements are considerably reduced, since detrimental
effects of false sharing and thrashing are minimized with finer sharing granu-
larities. Searching and directory functions implemented in hardware are much
faster compared to the software-level implementations, and memory access
latencies are decreased. However, advanced techniques used for coherence main-
tenance and latency reduction usually make the design complex and difficult to
verify. Therefore, hardware DSM is often used in high-end machines where per-
formance is more important than cost.

According to the memory system architecture, three groups of hardware DSM
systems are regarded as especially interesting:

CC-NUMA—Cache coherent nonuniform memory access architecture
COMA—Cache-only memory architecture
RMS—Reflective memory system architecture




Chapter 1: An Introduction to Distributed Shared Memory Concepts

31

1. CC-NUMA Distributed Shared Memory Systems

In a CC-NUMA system (Figure 4), the shared virtual address space is statically
distributed across local memories of clusters, which can be accessed both by the
local processors and by processors from other clusters in the system, although
with quite different access latencies. The DSM mechanism relies on directories
with organization varying from a full map to different dynamic structures, such
as singly or doubly linked lists and trees. The main effort is to achieve high per-
formance (as in full-map schemes) and good scalability provided by reducing the
directory storage overhead. To minimize latency, static partitioning of data
should be done carefully, so as to maximize the frequency of local accesses. Per-
formance indicators are also highly dependent on the interconnection topology.
The invalidation mechanism is typically applied in order to provide consistency,
while some relaxed memory consistency model can be used as a source of per-
formance improvement. Typical representatives of this type of DSM approach
are Memnet, Dash, and SCI.

Memnet (MEMory as NETwork abstraction)—a ring-based multiprocessor—is
one of the earliest hardware DSM systems [DELP91]. The main goal was to
avoid costly interprocessor communication via messages and to provide an
abstraction of shared memory to applications directly from the network, without
kernel OS intervention. The Memnet address space is mapped onto the local
memories of each cluster (reserved area) in an NUMA fashion. Another part of
each local memory is the cache area, which is used for replication of 32-byte
blocks whose reserved area is in some remote host. The coherence protocol is

ICN

C C
Figure 4. CC-NUMA memory architecture. P, Processor, C, cache; M, memory;
ICN, interconnection network.




32 Distributed Shared Memory

implemented in hardware state machines of the Memnet device in each cluster—
a dual port memory controller on its local bus, and an interface to the ring. On a
miss in local memory, the Memnet device sends an appropriate message that cir-
culates on the ring. The message is inspected by each Memnet device on the ring
in a snooping manner. The request is satisfied by the nearest cluster with a valid
copy, which inserts requested data in the message before forwarding. The write
request to a nonexclusive copy results in a message that invalidates other shared
copies as it passes through each Memnet device that has a valid copy of that
block. Finally, the message is received and removed from the ring by the inter-
face of the cluster that generated it.

Dash (Directory Architecture for SHared memory), a scalable cluster
multiprocessor architecture using a directory-based hardware DSM mechanism
[LENOS92], also follows the CC-NUMA approach. Each four-processor cluster
contains an equal part of the overall system’s shared memory (home property)
and corresponding directory entries. Each processor also has a two-level private
cache hierarchy where the locations from other clusters’ memories (remote) can
be replicated or migrated in 16-byte blocks (unlike Memnet, where a part of local
memory is used for this purpose). The memory hierarchy of Dash is split into
four levels: (1) processor cache, (2) caches of other processors in the local cluster,
(3) home cluster (cluster that contains directory and physical memory for a given
memory block), and (4) remote cluster (cluster marked by the directory as hold-
ing the copy of the block). Coherence maintenance is based on a full-map direc-
tory protocol. A memory block can be in one of three states: uncached (not cached
outside the home cluster), cached (one or more unmodified copies in remote clus-
ters), and dirty (modified in some remote cluster). In most cases, owing to the
property of locality, references can be satisfied inside the local cluster. Othewise,
a request is sent to the home cluster for the involved block, which takes some
action according to the state found in its directory. Improved performance is
achieved by using a relaxed memory consistency model—release consistency, as
well as some memory access optimizations. Techniques for reducing memory
latency, such as software-controlled prefetching, update, and deliver operations,
are also used in order to improve performance. Hardware support for synchroni-
zation is also provided.

Memory organization in an SCI-based CC-NUMA DSM system is similar to
Dash and data from remote memories can be cached in local caches. Although
the IEEE P1596 Scalable Coherent Interface (SCI) [JAMES94] represents an
interface standard, rather than a complete system design, among other issues, it
defines a scalable directory cache coherence protocol. Instead of centralizing the
directory, SCI distributes it among those caches that are currently sharing the
data, in the form of doubly linked lists. The directory entry is a shared data
structure that may be concurrently accessed by multiple processors. The home
memory controller keeps only a pointer to the head of the list and a few status
bits for each cache block, while the local cache controllers must store the forward
and backward pointers, and the status bits.

A read miss request is always sent to the home memory. The memory control-
ler uses the requester identifier from the request packet to point to the new head
of the list. The old head pointer is sent back to the requester along with the data
block (if available). It is used by the requester to chain itself as the head of the
list, and to request the data from the old head (if not supplied by the home clus-
ter). In the case of write to a nonexclusive block, the request for the ownership is




Chapter 1: An Introduction to Distributed Shared Memory Concepts

33

also sent to the home memory. All copies in the system are invalidated by for-
warding an invalidation message from the head down the list, and the requester
becomes the new head of the list. However, the distribution of individual direc-
tory entries increases the latency and complexity of the memory references. To
reduce latency and to support additional functions, the SCI working committee
has proposed some enhancements, such as converting sharing lists to sharing
trees, request combining, support for queue-based locks, and so on.

2. COMA Distributed Shared Memory Systems

Cache-only memory architecture (Figure 5) uses local memories of the clusters as
huge caches for data blocks from virtual shared address space (attraction memo-
ries). There is no physical memory home location predetermined for a particular
data item, and it can be replicated and migrated in attraction memories on
demand. Therefore, the distribution of data across local memories (caches) is
dynamically adaptable to the application behavior. The existing COMAs are
characterized by hierarchical network topologies that simplify two main prob-
lems in these types of systems: location of a data block and replacement. They
are less sensitive to static distribution of data than are NUMA systems. Owing
to its cache organization, attraction memories are efficient in reducing capacity
and conflict miss rates. On the other hand, the hierarchical structure imposes
slightly higher communication and remote miss latencies. A somewhat increased
storage overhead for keeping the information typical of cache memory is also
inherent to COMA systems. The two most relevant representatives of COMA
systems are KSR1 and DDM.

ICN

Figure 5. Cache-only memory architecture (COMA). P, Processor; C, cache; AM,
attraction memory; ICN, inferconnection network.




34 Distributed Shared Memory

The KSR1 multiprocessor represents one of the early attempts to make DSM
systems available on the market [FRANK93]. It consists of a ring-based hierar-
chical organization of clusters, each with a local 32-Mbyte cache. The unit of
allocation in local caches is a page (16 Kbytes), while the unit of transfer and
sharing in local caches is a subpage (128 bytes). The dedicated hardware respon-
sible for locating, copying, and maintaining coherence of subpages in local caches
is called the ALLCACHE engine, and it is organized as a hierarchy with directo-
ries on intermediate levels. The ALLCACHE engine transparently routes the
requests through the hierarchy. Missed accesses are most likely to be satisfied
by clusters on the same or next higher level in the hierarchy. In that way, the
ALLCACHE organization minimizes the path to locate a particular address. The
coherence protocol is invalidation based. Possible states of a subpage within a
particular local cache include the following: exclusive (only valid copy),
nonexclusive (owner; multiple copies exist), copy (nonowner; valid copy), and
invalid (not valid, but allocated subpage). Besides these usual states, an atomic
state is provided for synchronization purposes. Locking and unlocking the sub-
page are achieved by special instructions. As in all architectures with no main
memory, where all data are stored in caches, the problem of the replacement of
cache lines arises. There is no default destination for the line in the main mem-
ory, so the choice of a new destination and the directory update can be compli-
cated and time consuming. Besides that, propagation of requests through hierar-
chical directories is responsible for longer latencies.

The DDM (Data Diffusion Machine) is another COMA multiprocessor
[HAGER92]. The DDM prototype is made of four-processor clusters with an
attraction memory and an asynchronous split-transaction bus. Attaching a direc-
tory on top of the local DDM bus, to enable its communication with a higher level
bus of the same type, is the way DDM builds a large system with directory/bus-
based hierarchy (as opposed to the KSR1 ring-based hierarchy). The directory is
a set-associative memory that stores the state information for all items in attrac-
tion memories below it, but without data. The employed coherence protocol is of
the snoopy write-invalidate type, which handles the attraction of data on read,
erases the replicated data on write, and manages the replacement when a set in
an attraction memory is full. An item can be in seven states; three of them corre-
spond to Invalid, Exclusive, and Valid (typical for the snoopy protocols), while
the state Dirty is replaced with a set of four transient states needed to remember
the outstanding requests on the split-transaction bus. Transactions that cannot
be completed on a lower level are directed through the directory to the level
above. Similarly, the directory recognizes the transactions that need to be serv-
iced by a subsystem and routes them onto the level below it.

3. Reflective Memory Distributed Shared Memory Systems

Reflective memory systems are DSM systems with a hardware-implemented
update mechanism designed for fine data granularity. The global shared address
space is formed out of the segments in local memories, which are designated as
shared, and mapped to this space through programmable mapping tables in each
cluster (Figure 6). Hence, the parts of this shared space are selectively replicated
(“reflected”) across different clusters. Coherence maintenance of shared regions
is based on the full-replication, MRMW algorithm. Each write to an address in
this shared address space in a cluster is propagated using a broadcast or mul-




Chapter 1: An Introduction to Distributed Shared Memory Concepts 35

et

Global | ¥
Virtual Address o
Space |

(GVA)

AR

Local Memory

..,
'~ s

Figure 6. Reflective memory system (RMS) architecture.

ticast mechanism to all other clusters to which the same address is mapped, to
keep it updated in a nondemand, anticipatory manner. The processor does not
stall on writes, and computation is overlapped with communication. This is the
source of performance improvement typical of relaxed memory consistency mod-
els. Also, there is no contention and long latencies as in typical shared memory
systems, since unrestricted access to shared data and simultaneous accesses to
local copies are ensured. On the other hand, all reads from the shared memory
are local, with a deterministic access time. The principle of this DSM mechanism
is similar to the write-update cache coherence protocols. Typical reflective mem-
ory systems are RMS and Merlin.

The reflective memory concept is applied in some existing systems with
different clusters and network topologies. Since broadcast is the most appropri-
ate mechanism for updating of replicated segments, the shared bus topology is
especially convenient for the reflective memory architecture. A number of bus-
based reflective memory systems (RMS), for example, the Encore Infinity
[LUCCI95], have been developed by the Encore Computer Corporation for a wide
range of applications. These systems typically consist of a lower number of mini-
computer clusters connected by an RM bus—a “write-only” bus since traffic on it
consists only of word-based distributed write transfers (address + value of the
data word). Some later enhancements also allow for block-based updates
(memory channel). The unit of replication is an 8-Kbyte segment. Segments are
treated as “windows” that can be open (mapped into reflective shared space) or
closed (disabled for reflection and exclusively accessed by each particular clus-
ter). A replicated segment can be mapped to different addresses in each cluster.
Therefore, the translation map tables are provided separately for the transmit
(for each block of local memory), and receive (for each block of reflected address
space) sides.




36 Distributed Shared Memory

Although very convenient for broadcasting, bus-based systems are notorious
for their restricted scalability. Hence, Merlin (MEmory Routed, Logical Inter-
connection Network) represents a reflective memory-based interconnection sys-
tem using mesh topology with low-latency memory sharing on the word basis
[MAPLE90]. Besides user-specified sharing information, OS calls are necessary
to initialize routing maps and establish data exchange patterns before program
execution. The Merlin interface in the host backplane monitors all memory
changes, and on each write to the local physical memory mapped as shared it
makes a temporary copy of the address and the written value noninvasively.
Instead of broadcast as in RMS, multicast is used to transmit the word packet
through the interconnection network to all shared copies in other local memo-
ries. Two types of sharing are supported in hardware: synchronous (updates to
the same region are routed through a specific canonical cluster) and rapid
(updates are propagated individually by the shortest routes). This system also
addresses the synchronization, interrupt, and lock handling integrated with
reflective memory sharing. Merlin also provides a support for heterogeneous
processing.

A similar principle is employed even in multicomputers to minimize message-
passing overhead, for example, in the SHRIMP multicomputer [BLUMR94]. A
virtual memory-mapped network interface implements an “automatic update”
feature in hardware. On analyzing communication patterns, it was noticed that
most messages from a send buffer are targeted to the same destination. There-
fore, after some page (send buffer) is mapped out to some other’s cluster memory
(receive buffer), each local write (message) to this page is also immediately
propagated to this destination. There are two implementations of automatic
updates: single-write and block-write. In this way, passing the message avoids
any software involvement.

Memunet Bingle  processor, | Token ring MREW Sequential 32 Invatidate
[DELPOL] Memmnet device
Dash SGI 407346 (4 PEs, | Mesh MBEW Release 16 Invalidate
LENORS2] L caches), local

memory
BCY Arbitrary Arbitrary MREW Bequential 18 Invalidate
JAMESng]
RER1 G4-bit custors PE, | Ring-based MERSW Seguential 128 Invalidate
[FRANKSS | I+ caches, 3% | hierarchy

Mbyte local mem-

ory
DM 4 MCES1I0s, 2L | Bus-hased MRESW Lequential 18 Invalidate
[HAGERS2] | caches, R to 32 | hierarchy

Mbyte local mem-

ary
Merlin 40-MIPE computer | Mash MRMW Provessor 8 Update
IMAPLESD]
BMS 1d processers, | RM bos MRMW Processor 4 Update
{LUCCISS) caches, 256-Mbyte

local memory




Chapter 1: An Introduction to Distributed Shared Memory Concepts

37

[DELP91]

[FRANK93]
[HAGER92]
[JAMES94]

[LENOS92]
[LUCCI95]

[MAPLE90]

G. Delp, D. Farber, and R. Minnich, “Memory as a Network Abstraction,” IEEE Network, July 1991, pp.
34-41.

S. Frank, H. Burkhardt III, and J. Rothnie, “The KSR1: Bridging the Gap between Shared Memory and
MPPs,” Proc. COMPCON 93, IEEE CS Press, Los Alamitos, Calif., 1993, pp. 285-294.

E. Hagersten, A. Landin, and S. Haridi, “DDM—A Cache-Only Memory Architecture,” Computer, Vol.
25, No. 9, Sept. 1992, pp. 44-54.

D.V. James, “The Scalable Coherent Interface: Scaling to High-Performance Systems,” Proc.
COMPCON °94: Digest of Papers, IEEE CS Press, Los Alamitos, Calif., 1994, pp. 64-71.

D. Lenoski et al., “The Stanford Dash Multiprocessor,” Computer, Vol. 25, No. 3, Mar. 1992, pp. 63-79.
S. Lucci et al., “Reflective-Memory Multiprocessor,” Proc. 28th IEEE |ACM Hawaii Int'l Conf. System
Sciences, IEEE CS Press, Los Alamitos, Calif., 1995, pp. 85-94.

C. Maples and L. Wittie, “Merlin: A Superglue for Multicomputer Systems,” Proc. COMPCON 90, IEEE
CS Press, Los Alamitos, Calif., 1990, pp. 73-81.

D. Hybrid Level Distributed Shared Memory Implementations

During the evolution of this field, numerous entirely hardware or software
implementations of DSM mechanism were proposed. However, even in entirely
hardware DSM approaches, there are software-controlled features explicitly
visible to the programmer for memory reference optimization (for example, pre-
fetch, update, and deliver in Dash; prefetch and poststore in KSR1). On the other
side, many purely software solutions require some hardware support (for exam-
ple, virtual memory management hardware in IVY; error correction code in Bliz-
zard-E). As can be expected, neither approach has all the advantages. Therefore,
it seemed quite natural to employ hybrid methods, with predominantly or par-
tially combined hardware and software elements, in order to balance the
cost/complexity trade-offs. A solution implemented in some industrial computers
provided a DSM-like paradigm in software executed by a microcontroller located
on a separate communication board [PROTI93].

One of the typical hybrid approaches is to achieve replication and migration of
data from a shared virtual address space across the clusters in software, while
their coherence management is implemented in hardware. PLUS is an example
of such a system [BISIA90]. In PLUS, software is responsible for data placement
and replacement in local memories in units of 4-Kbyte pages. However, memory
coherence for replicated data is maintained on the 32-bit word basis by a
nondemand, write-update protocol implemented in hardware. Replicated
instances of a page are chained into an ordered, singly linked list, headed with
the master copy, in order to ensure the propagation of updates to all copies. Since
a relaxed consistency model is assumed, writes are nonblocking, and the fence
operation is available to the user for explicit strong ordering of writes. In order
to optimize the synchronization, PLUS provides a set of specialized interlocked
read-modify-write operations called delayed operations. Their latency is hidden
by splitting them into issue and verify phases, and allowing them to proceed con-
currently with regular processing.

Some solutions to DSM issues in another hybrid DSM system—Galactica Net
[WILSO94]—are similar to those applied in PLUS. Pages from virtual address
space are replicated on demand under control of virtual memory software,
implemented in the Mach operating system. In addition, there is hardware sup-
port for the virtual memory mechanism, realized through a block transfer
engine, which can rapidly transfer pages in reaction to page faults. A page can
be in one of three states: read-only, private, and update, denoted by tables main-




38 Distributed Shared Memory

tained by the OS. The coherence for writable shared pages (update mode) is kept
by a write-update protocol implemented entirely in hardware. All copies of a
shared page in update mode are organized in a virtual sharing ring—a linked
list used for forwarding of updates. Virtual shared rings are realized using
update routing tables kept in the network interface of each cluster, and also
maintained by software. Therefore, write references to pages in update mode are
detected by hardware and propagated according to the table. Because of the
update mechanism, for some applications, broadcast of excessive updates can
produce a large amount of traffic. Besides that, the unit of sharing is quite large,
and false sharing effects can adversely affect performance. On recognizing an
actual reference pattern, Galactica Net can dynamically switch from a hardware
update scheme to software invalidate coherence (another hybrid and adaptive
feature), using a competitive protocol based on per-page update counters. When
remote updates to a page far exceed local references, an interrupt is raised, and
the OS invalidates this page and removes it from its sharing ring in order to
prevent the unnecessary traffic to unused copies.

MIT’s Alewife is a specific hybrid system that implements the LimitLESS
directory protocol. This protocol represents a hardware-based coherence scheme
supported by a software mechanism [CHAIK94]. Directory entries contain only a
limited number of hardware pointers, in order to reduce the storage require-
ments—the design assumes that it is sufficient in the vast majority of cases.
Exceptional circumstances, when more pointers are needed, are handled in soft-
ware. In those infrequent cases, an interrupt is generated, and a full-map direc-
tory for the block is emulated in software. A fast trap mechanism provides sup-
port for this feature, and a multiple context concept is used for hiding the mem-
ory latency. The main advantage of this approach is that the applied directory
coherence protocol is storage efficient, while performing about as well as the full-
map directory protocol.

Unlike Alewife, the basic idea behind the FLASH multiprocessor is to imple-
ment the memory coherence protocol in software, but to move the burden of its
execution from the main processor to an auxiliary protocol processor—MAGIC
(Memory And General Interconnection Controller) [KUSKI94]. This specialized
programmable controller allows for efficient execution of protocol actions in a
pipelined manner, avoiding context switches on the main processor. This
approach, which also ensures great flexibility in experimenting and testing, is
followed in some other systems, for example the network interface processor
(NP) in Typhoon [REINH94]. The NP uses a hardware-assisted dispatch mecha-
nism to invoke a user-level procedure to handle some events.

To improve performance, a hybrid approach called cooperative shared memory
is based on programmer-supplied annotations [HILL93]. The programmer iden-
tifies the segments that use shared data with corresponding Check-In (exclusive
or shared access) and Check-Out (relinquish) annotations, executed as memory
system directives. These performance primitives do not change program seman-
tics (even misapplied), but reduce unintended communication caused by
thrashing and false sharing. Cooperative prefetch can also be used to hide the
memory latency. The CICO programming model is completely and efficiently
supported in hardware by a minimal directory protocol DirjSW. Traps to the
system software occur only on memory accesses that violate the CICO.

A hybrid DSM protocol presented in [CHAND93] tries to combine the advan-
tages of a software protocol for coarse-grain data regions and a hardware




Chapter 1: An Introduction to Distributed Shared Memory Concepts

39

coherence scheme for fine-grain sharing in a tightly coupled system. The soft-
ware part of the protocol is similar to Midway. The programmer is expected to
identify explicitly the regions—coarse-grain data structures. Usage annotations
(for example, BeginRead/EndRead, BeginWrite/ EndWrite) are then provided to
identify program segments where the data from a certain region are safely refer-
enced (without modification from other processors). Coherence of annotated data
is kept by library routines invoked by these annotations. Coherence of
nonannotated data is managed by means of a directory-based hardware protocol.
Both software and hardware components of the protocol use the invalidation
policy. The variable-size coherence unit of the software part of the protocol
eliminates the problem of false sharing, while reducing remote misses by effi-
cient bulk transfers of coarse-grain data and their replication in local memories.
The protocol is also insensitive to initial data placement. Just like in Midway,
Munin, and CICO, the main disadvantage is the burden put on the programmer
to insert the annotations, although this appears to be not so complicated since
this information about the data usage is naturally known.

The implementation of automatic update release consistency (AURC) turns
Shrimp [BLUMR96] into an efficient hybrid DSM system. In this approach, only
one copy of a page is kept consistent, using fine-grain automatic updates per-
formed by hardware, after necessary software mappings. All other copies are
kept consistent using an invalidation-based software protocol. An AURC refine-
ment called scope consistency [IFTOD96] represents a successful compromise
between entry and lazy release consistency.

Finally, since message passing and shared memory machines have been con-
verging recently, some efforts have been made to integrate these two communi-
cation paradigms within a single system (Alewife, Cray T3D, FLASH, Typhoon).
In addition to the above-mentioned coherence protocol, Alewife also allows
explicit sending of messages in a shared memory program. Messages are deliv-
ered via an interrupt and dispatched in software. Cray T3D is also a physically
distributed memory machine with hardware-implemented logically shared mem-
ory. It also integrates message passing extensively supported by DMA. Besides
the Dash-like software-implemented directory cache coherence protocol, FLASH
also provides message passing with low overhead, owing to some hardware sup-
port. Accesses to block transfer are allowed to the user without sacrificing pro-
tection, while the interaction of message data with cache coherence is ensured.
Typhoon is a proposed hardware implementation especially suited for the Tem-
pest interface—a set of user-level mechanisms that can be used to modify the
semantics and performance of shared memory operations. Tempest consists of
four types of user-level mechanisms: low-overhead messages, bulk data trans-
fers, virtual memory management, and fine-grain access control. For example,
user-level transparent shared memory can be implemented using Stache-—a user
library with Tempest fine-grain access mechanisms. Stache replicates the remote
data in part of a cluster’s local memory according to a COMA-like policy. It maps
virtual addresses of shared data to local physical memory at page granularity,
but maintains coherence at the block level. A coherence protocol similar to Lim-
itLESS is implemented entirely in software.




40 Distributed Shared Memory

MB8000, 32-Kbyie vache, 8- | MRMW Processer 4 Khytes Update
{BISIASD] to 82-Mbyte local menwry,
mesh
Gulactica Net | 4 M8B110s, 2.L cuches, 256- | MEMW Multiple & Kbytes Update/Invalidate
TWILSDS4] Mbyte local memory, mesh
Alewife Sparcle PB, 64Kbytes | MRSW Sequential 18 bytes Invalidate
{CHAIKS4] vache, 4-Mbyte local mem-
ory, CMMU, rassh
FLASH MIPE T8, I+D  caches, | MRSW Release 138 bytes Invalidate
[RKUSKIBg] MAGIC controller, mesh
Pyphoon SuperSPARC, 2L caches, | MRSW Custom 32 bytes Invalidate costom
[REINHG4] NP controtler
Hybrid D3M | FLASH-like MREW Release Variable Invalidate
{CHANDY3]
Shrimp 18 Pentium PC podes. Intel | MRESW AURC, Seape 4 Kbytes Update/Invalidate
FIETODSS! Paragon routing network
[BISIA90] R. Bisani and M. Ravishankar, “PLUS: A Distributed Shared-Memory System,” Proc. 17th Ann. Int’l
Symp. Computer Architecture, IEEE CS Press, Los Alamitos, Calif., 1990, pp. 115-124.
[CHAIK94] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “Software-Extended Coherent Shared Memory: Perform-
ance and Cost,” Proc. 21st Ann. Int’l Symp. Computer Architecture, IEEE CS Press, Los Alamitos, Calif.,
1994, pp. 314-324.
[CHAND93] R. Chandra et al., “Performance Evaluation of Hybrid Hardware and Software Distributed Shared
Memory Protocols,” CSL-TR-93-597, Stanford University, Stanford, Calif., Dec. 1993.
[IFTOD96] L. Iftode, J. Pal Singh, and K. Li, “Scope Consistency: A Bridge between Release Consistency and Entry
Consistency,” Proc. 8th Ann. Symp. Parallel Algorithms and Architectures, 1996, pp. 277-287.
[KUSKI94] J. Kuskin et al., “The Stanford FLASH Multiprocessor,” Proc. 21st Ann. Int’l Symp. Computer Architec-
ture, IEEE CS Press, Los Alamitos, Calif., 1994, pp. 302-313.
[REINH94] S. Reinhardt, J. Larus, and D. Wood, “Tempest and Typhoon: User-Level Shared Memory,” Proc. 21st
Ann. Int’l Symp. Computer Architecture, IEEE CS Press, Los Alamitos, Calif., 1994, pp. 325-336.
[WILS094] A. Wilson, R. LaRowe, and M. Teller, “Hardware Assist for Distributed Shared Memory,” Proc. 13th

Int’l Conf. Distributed Computing Systems, IEEE CS Press, Los Alamitos, Calif., 1993, pp. 246-255.

E. Conclusion

This survey provides extensive coverage of relevant topics in an increasingly
important area—distributed shared memory computing. A special attempt has
been made to give a broad overview of various approaches, presented according
to the implementation level of the DSM mechanism. Because of the combined
advantages of the shared memory and distributed systems, DSM approaches
appear to be a viable step toward large-scale high-performance systems with
reduced cost in parallel software development. In spite of this, the building of
successful commercial systems that follow the DSM paradigm is still in its
infancy; and research prototypes still prevail. Therefore, the DSM field remains a
very active research area. Some of the promising research directions include (1)
improving the DSM algorithms and mechanisms, and adapting them to the char-
acteristics of typical applications and system configurations, (2) synergistic com-
bining of hardware and software DSM implementations, (3) integration of the
shared memory and message-passing programming paradigms, (4) creating new
and innovative system architectures (especially in the memory system), (5) com-
bining multiple consistency models, and so on. From this point of view, further




Chapter 1: An Introduction to Distributed Shared Memory Concepts

a1

References

investments in exploring, developing, and implementing DSM systems seem to
be quite justified and promising.

[BLACKS89]

[BLUMR94]

[FLYNN95]

[GHARA90]

[HILL93]

[KELEH92]

[KESSL89]

[LIHUD89]
[LO94]

[PROTI93]

[PROTI95]

[PROTI96]

[STUM90]

[TARTA95]

[TOMAS94a]

[TOMAS94b]

D.L. Black, A. Gupta, and W. Weber, “Competitive Management of Distributed
Shared Memory,” Proc. COMPCON °89, IEEE CS Press, Los Alamitos, Calif.,
1989, pp. 184-190.

M. Blumrich et al., “Virtual Memory Mapped Network Interface for the
SHRIMP Multicomputer,” Proc. 21st Int’l Symp. Computer Architecture, IEEE
CS Press, Los Alamitos, Calif., 1994, pp. 142-153.

M.J. Flynn, Computer Architecture: Pipelined and Parallel Processor Design,
Jones and Bartlett Publishers, Boston, Mass., 1995.

K. Gharachorloo et al., “Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors,” Proc. 17th Ann. Int’l Symp. Computer Archi-
tecture, IEEE CS Press, Los Alamitos, Calif., 1990, pp. 15-26.

M. Hill, J. Larus, and S. Reinhardt, “Cooperative Shared Memory: Software and
Hardware for Scalable Multiprocessors,” ACM Trans. Computer Systems, Nov.
1993, pp. 300-318.

P. Keleher, A.L. Cox, and W. Zwaenepoel, “Lazy Release Consistency for Soft-
ware Distributed Shared Memory,” Proc. 19th Ann. Int’l Symp Computer Archi-
tecture, IEEE CS Press, Los Alamitos, Calif., 1992, pp. 13-21.

R.E. Kessler and M. Livny, “An Analysis of Distributed Shared Memory Algo-
rithms,” Proc. 9th Int’l Conf. Distributed Computing Systems, IEEE CS Press,
Los Alamitos, Calif., 1989, pp. 498-505.

K. Li and P. Hudak, “Memory Coherence in Shared Virtual Memory Systems,”
ACM Trans. Computer Systems, Vol. 7, No. 4, Nov. 1989, pp. 321-359.

V. Lo, “Operating System Enhancements for Distributed Shared Memory,” Ad-
vances in Computers, Vol. 39, 1994, pp. 191-237.

dJ. Proti¢ and M. Aleksi¢, “An Example of Efficient Message Protocol for Indus-
trial LAN,” Microprocessing and Microprogramming, Vol. 37, Jan. 1993, pp. 45—
48.

J. Proti¢, M. Tomas8evié¢, and V. Milutinovi¢, “A Survey of Distributed Shared
Memory: Concepts and Systems,” Technical Report No. ETF-TR-95-157, De-
partment of Computer Engineering, Univ. Belgrade, Belgrade, Yugoslavia, July
1995.

dJ. Proti¢, M. Toma3evié, and V. Milutinovié¢, “Distributed Shared Memory:
Concepts and Systems,” Parallel & Distributed Technology, Vol. 4, No. 2, 1996,
pp. 63-79.

M. Stumm and S. Zhou, “Algorithms Implementing Distributed Shared Mem-
ory,” Computer, Vol. 23, No. 5, May 1990, pp. 54-64.

I. Tartalja and V. Milutinovié, “A Survey of Software Solutions for Maintenance
of Cache Consistency in Shared Memory Multiprocessors,” Proc. 28th Ann. Ha-
waii Int’l Conf. System Sciences, IEEE CS Press, Los Alamitos, Calif., 1995, pp.
272-282.

M. Tomasevié¢ and V. Milutinovié, “Hardware Approaches to Cache Coherence in
Shared-Memory Multiprocessors, Part 1 (Basic Issues),” IEEE MICRO, Vol. 14,
No. 5, Oct. 1994, pp. 52-59.

M. Tomasevié and V. Milutinovié, “Hardware Approaches to Cache Coherence in
Shared-Memory Multiprocessors, Part 2 (Advanced Issues),” IEEE MICRO, Vol.
14, No. 6, Dec. 1994, pp. 61-66.




42 Distributed Shared Memory

Distributed shared-
memory systems
implement the shared-
memory abstraction on
multicomputer
architectures,
combining the
scalability of network-
based architectures
with the convenience of
shared-memory
programming.

Distributed Shared
Memory: A Survey
of Issues and Algorithms

Bill Nitzberg and Virginia Lo, University of Oregon

itis becoming more attractive to use multiprocessors to increase comput-

ing power. Two kinds of parallel processors have become popular: tightly
coupled shared-memory multiprocessors and distributed-memory multiproces-
sors. A tightly coupled multiprocessor system — consisting of multiple CPUs and
a single global physical memory — is more straightforward to program because it
isanatural extension of a single-CPU system. However, this type of multiprocessor
has a serious bottleneck: Main memory is accessed via a common bus — a
serialization point — that limits system size to tens of processors.

Distributed-memory multiprocessors, however, do not suffer from this draw-
back. These systems consist of a collection of independent computers connected by
a high-speed interconnection network. If designers choose the network topology
carefully, the system can contain many orders of magnitude more processors than
a tightly coupled system. Because all communication between concurrently exe-
cuting processes must be performed over the network in such a system, until
recently the programming model was limited to a message-passing paradigm.
However, recent systems have implemented a shared-memory abstraction on top
of message-passing distributed-memory systems. The shared-memory abstraction
gives these systems the illusion of physically shared memory and allows program-
mers to use the shared-memory paradigm.

As Figure 1 shows, distributed shared memory provides a virtual address space
shared among processes on loosely coupled processors. The advantages offered by
DSM include ease of programming and portability achieved through the shared-
memory programming paradigm, the low cost of distributed-memory machines.
and scalability resulting from the absence of hardware bottlenecks.

DSM has been an active area of research since the early 1980s, although its
foundations in cache coherence and memory management have been extensively
studied for many years. DSM research goals and issues are similar to those of
research in multiprocessor caches or networked file systems, memories for nonuni-
form memory access multiprocessors, and management systems for distributed or
replicated databases.! Because of this similarity, many algorithms and lessons
learned in these domains can be transferred to DSM systems and vice versa.

q s we slowly approach the physical limits of processor and memory speed,

Reprinted from Computer, Vol. 24, No. 8, Aug. 1991, pp. 52-60.
Copyright © 1991 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.




Chapter 1: An Introduction to Distributed Shared Memory Concepts

43

However, each of the above systems has
unique features (such as communica-
tion latency), so each must be consid-
ered separately.

The advantages of DSM can be real-
ized with reasonably low runtime over-
head. DSM systems have been imple-
mented using three approaches (some
systems use more than one approach):

(1) hardware implementations that
extend traditional caching tech-
niques to scalable architectures,

(2) operating system and library
implementations that achieve
sharing and coherence through
virtual memory-management
mechanisms, and

(3) compiler implementations where
shared accesses are automatically
converted into synchronization
and coherence primitives.

These systems have been designed on
common networks of workstations or
minicomputers, special-purpose mes-
sage-passing machines (such as the
Intel iPSC/2), custom hardware, and
even heterogeneous systems.

This article gives an integrated over-
view of important DSM issues: memory
coherence, design choices, and imple-
mentation methods. In our presenta-
tion, we use examples from the DSM
systems listed and briefly described in
the sidebar on page 55. Table 1 com-
pares how design issues are handledina
selected subset of the systems.

Design choices

A DSM system designer must make
choices regarding structure, granulari-
ty, access, coherence semantics, scal-
ability, and heterogeneity. Examination
of how designers handled these issuesin
several real implementations of DSM
shows the intricacies of such a system.

Structure and granularity. The struc-
ture and granularity of a DSM system
are closely related. Structure refers to
the layout of the shared data in mem-
ory. Most DSM systems do not struc-
ture memory (it is a linear array of
words), but some structure the data as
objects, language types, or even an as-
sociative memory. Granularity refers to
the size of the unit of sharing: byte,
word, page, or complex data structure.

Ivy,? one of the first transparent DSM

d memol
Shared m \ry\\

CPU

Floating-
point unit

Node n

Figure 1. Distributed shared memory.

systems, implemented shared memory
as virtual memory. This memory was
unstructured and was shared in 1-Kbyte
pages. In systems implemented using
the virtual memory hardware of the
underlying architecture, itis convenient
to choose a multiple of the hardware
page size as the unit of sharing. Mirage?
extended Ivy’s single shared-memory
space to support a paged segmentation
scheme. Users share arbitrary-size re-
gions of memory (segments) while the
system maintains the shared space in
pages.

Hardware implementations of DSM
typically support smaller grain sizes. For
example, Dash* and Memnet® also sup-
port unstructured sharing, but the unit
of sharing is 16 and 32 bytes respec-
tively — typical cache line sizes. Plus® is
somewhat of a hybrid: The unit of rep-
lication is a page, while the unit of co-
herence is a 32-bit word.

Because shared-memory programs
provide locality of reference, a process
is likely to access a large region of its
shared address space in a small amount
of time. Therefore, larger “page” sizes
reduce paging overhead. However, shar-
ing may also cause contention, and the
larger the page size, the greater the
likelihood that more than one process
will require access to a page. A smaller
page reduces the possibility of false shar-
ing, which occurs when two unrelated
variables (each used by different pro-
cesses) are placed in the same page. The
page appears shared, even though the

original variables were not. Another
factor affecting the choice of page size is
the need to keep directory information
about the pages in the system: the small-
erthe pagesize, the larger the directory.

A method of structuring the shared
memory is by data type. With this
method, shared memory is structured
as objects in distributed object-
oriented systems, as in the Emerald,
Choices, and Clouds’ systems; or it is
structured as variables in the source
language, as in the Shared Data-Object
Model and Munin systems. Because with
these systems the sizes of objects and
data types vary greatly. the grain size
varies to match the application. How-
ever, these systems can still suffer from
false sharing when different parts of an
object (for example. the top and bottom
halves of an array) are accessed by dis-
tinct processes.

Another method is to structure the
shared memory like a database. Linda,*
a system that has such a model, orders
its shared memory as an associative
memory called a ruple space. This struc-
ture allows the location of data to be
separated from its value, but it also re-
quires programmers to use special ac-
cess functions tointeract with the shared-
memory space. In most other systems,
access to shared data is transparent.

Coherence semantics. For program-
mers to write correct programs on a
shared-memory machine, they must
understand how parallel memory up-
dates are propagated throughout the




44 Distributed Shared Memory

Table 1. DSM design issues.

System  Current Structure Coherence Coherence Sources of Support Hetero-
Name  Implementation and Semantics  Protocol Improved for Synchro- geneous
Granularity Performance  nization Support
Dash Hardware, 16 bytes Release Write- Relaxed Queued locks, No
modified Silicon invalidate coherence, atomic incre-
Graphics Iris prefetching mentation and
4D/340 worksta- decrementation
tions, mesh
Ivy Software, Apollo 1-Kbyte Strict Write- Pointer chain  Synchronized No
workstations, pages invalidate collapse, selec- pages, sema-
Apollo ring, tive broadcast phores, event
modified Aegis counts
Linda  Software, Tuples No Varied Hashing ?
variety of mutable
environments data
Memnet Hardware, 32 bytes Strict Write- Vectored in- No
token ring invalidate terrupt support
of control flow
Mermaid Software, Sun 8 Kbytes Strict Write- Messages for Yes
workstations (Sun), invalidate semaphores
DEC Firefly 1 Kbyte and signal/
multiprocessors, (Firefly) wait
Mermaid/native
operating system
Mirage Software, VAX  512-byte Strict Write- Kernel-level  Unix System V' No
11/750, Ether- pages invalidate implementa-  semaphores
net, Locus dis- tion, time
tributed operat- window
ing system, Unix coherence
System V interface protocol
Munin  Software, Sun Objects Weak Type-specific Delayed Synchronized  No
workstations, (delayed write update objects
Ethernet, Unix update for queue
System V kernel read-mostly
and Presto paral- protocol)
lel programming
environment
Plus Hardware and Page for Processor Nondemand  Delayed Complex No
software, sharing, write-update  operations synchronization
Motorola 88000, word for instructions
Caltech mesh, coherence
Plus kernel
Shiva Software, 4-Kbyte Strict Write- Data structure Messages for No
Intel iPSC/2, pages invalidate compaction,  semaphores
hypercube, memory as and signal/
Shiva/native backing store  wait
operating system

system. The most intuitive semantics
for memory coherence is strict consis-
tency. (Although “coherence” and “con-
sistency” are used somewhat inter-
changeably in the literature, we use
coherence as the general term for the

semantics of memory operations, and
consistency to refer to a specific kind of
memory coherence.) In a system with
strict consistency, a read operation re-
turns the most recently written value.
However, “most recently” is an ambig-

uous concept in a distributed system.
For this reason, and to improve perfor-
mance,some DSM systems provide only
a reduced form of memory coherence.
For example, Plus provides processor
consistency, and Dash provides only




Chapter 1: An Introduction to Distributed Shared Memory Concepts

45

release consistency. In accordance with
the RISC philosophy, both of these sys-
tems have mechanisms for forcing co-
herence, but their use must be explicitly
specified by higher level software (a
compiler) or perhaps even the program-
mer.

Relaxed coherence semantics allows
more efficient shared access because it
requires less synchronization and less
datamovement. However, programsthat
depend on a stronger form of coherence
may not perform correctly if executed
in a system that supports only a weaker
form. Figure 2 gives brief definitions of
strict, sequential, processor, weak, and
release consistency, and illustrates the
hierarchical relationship among these
types of coherence. Table 1 indicates
the coherence semantics supported by
some current DSM systems.

Figure 2. Intuitive definitions of mem-
ory coherence. The arrows peint from
stricter to weaker consistencies.

Strict consistency

A read retums the most recently written value
(what most programmers intuitively expect).

Y

Sequential consistency

The result of any execution appears as some
interleaving of the operations of the individual
nodes when executed on a multithreaded
sequential machine.

pd

N

differently.

Processor consistency

Writes issued by each individual
node are never seen out of order,
but the order of writes from two
different nodes can be observed

Weak consistency

The programmer enforces con-
sistency using synchronization
operators guaranteed to be
sequentially consistent.

N pd

Weak consistency with two types of synchron-
ization operators: acquire and refease. Each
type of operator is guaranteed to be processor
consistent.

Release consistency

DSM systems

portweak consistency.

tension of DSM to a wide area network.
uted operating system.

where objects can migrate.

consistency.

DSMona network of Apolio workstations.

Agora (Bisianiand Forin, Camegie Mellon University,
1987- ): A heterogeneous DSM system that allows data structures
tobe shared across machines. Agora was the first systemto sup-

Amber (Chase, Feeley, and Levy, University of Washington,
1988-): Anobject-based DSM system in which sharingis performed
by migrating processes to data as well as data to processes,

Capnet (Tamand Farber, University of Delaware, 1990-): Anex-

Cholces (Johnston and Campbell, University of lllinols,
1988- ): DSMincorporaled into a hlerarchical object-oriented distrib-

This partial listing gives the name of the DSM system, the princi-
pal developers of the system, the site and duration of their research,
and a brief description of the system, Table 1 gives more informa-
tion about the systems followed with an asterisk.

Clouds (Ramachandran and Khalidi, Georgia Institute ol Tech-
nology, 1987-): Anobject-oriented distributed operating system

Dash* (Lenoski, Laudon, Gharachorloo, Gupta, and Hennessy,
Stanford University, 1988- ): Ahardware implementation of DSM
with a directory-based coherence protocol. Dash provides release

Emerald (Jul, Levy, Hutchinson, and Black, University of Wash-
ington, 1986-1988): An object-oriented language and system that
indirectly supports DSM through object mobility.

Ivy* (Ui, Yale University, 1984-1986): An early page-oriented

Linda* (Carriero and Gelemter, Yale University, 1982-): A
shared associative object memory with access functions. Lindacan
beimplemented for many languages and machines.

Memnet* (Delp and Farber, University of Delaware, 1986-1988):
Ahardware implementation ot DSM implemented on a 200-Mbps
tokenring usedtobroadcastinvalidates and read requests.

Mermald* (Stumm, Zhou, Li, and Wortman, University of Toronto
and Princeton University, 1988-1991): A heterogeneous DSM sys-
tem where the compiler forces shared pages to contain a single
datatype. Type conversion is performed on reference.

Maether (Minnichand Farber, Supercomputing Research Center,
Bowie, Md., 1990- ): A transparent DSMbuilt on Sun0S 4.0.
Mether allows applications to access an inconsistent state for
efficiency.

Mirage* (Fleisch and Popek, University of California at Los
Angeles, 1987-1989): A kernel-level implementation of DSM.
Mirage reduces thrashing by prohibiting a page from being slo-
len before a minimum amount of time (A) has elapsed.

Munin* (Bennett, Carter, and Zwaenepoel, Rice University,
1989- ): An object-based DSM system that investigates type-
specific coherence protocols.

Plus* (Bisiani and Ravishankar, Carnegle Mellon University,
1988- ): A hardware implementation of DSM. Plus uses a write-
update coherence protocol and performs replication only by pro-
gram request.

Shared Data-Object Model (Bal, Kaashoek, and Tannen-
baum, Vrije University, Amsterdam, The Netherlands, 1988-): A
DSM implementation on top of the Amoeba distributed operat-
ing system.

Shiva* (Li and Schaefer, Princeton University, 1988- ): An
tvy-like DSM system for the Intel iPSC/2 hypercube.




46

Distributed Shared Memory

Scalability. A theoretical benefit of
DSM systems is that they scale better
than tightly coupled shared-memory
multiprocessors. The limits of scal-
ability are greatly reduced by two fac-
tors: central bottlenecks (such as the
bus of a tightly coupled shared-
memory multiprocessor), and global
common knowledge operations and
storage (such as broadcast messages or
full directories, whose sizes are pro-
portional to the nuinber of nodes).

Li and Hudak? went through several
iterations to refine a coherence proto-
col for Ivy before arriving at their dy-
namic distributed-manager algorithm,
which avoids centralized bottlenecks.
However, Ivy and most other DSM
systems are currently implemented on
top of Ethernet (itself a centralized
bottleneck), which can support only
about 100 nodes at a time. This limita-
tion is most likely a result of these
systems being research toolsrather than
an indication of any real design flaw.
Shiva’ is an implementation of DSM
on an Intel iPSC/2 hypercube, and it
should scale nicely. Nodes in the Dash
system are connected on two meshes.
This implies that the machine should
be expandable, but the Dash proto-
type is currently limited by its use of a
full bit vector (one bit per node) to
keep track of page replication.

Heterogeneity. At first glance, shar-
ing memory between two machines with
different architectures seems almost
impossible. The machines may noteven
use the same representation for basic
data types (integers, floating-point
numbers, and so on). It is a bit easier if
the DSM system is structured as vari-
ables or objects in the source language.
Then a DSM compiler can add conver-
sion routines to all accesses to shared
memory. In Agora, memory is struc-
tured as objects shared among hetero-
geneous machines.

Mermaid'® explores another novel
approach: Memory is shared in pages,
and a page can contain only one type of
data. Whenever a page is moved be-
tween two architecturally different sys-
tems, a conversion routine converts
the data in the page to the appropriate
format.

Although heterogeneous DSM might
allow more machines to participate in
a computation, the overhead of con-
version seems to outweigh the bene-
fits.

Implementation

A DSM system must automatically
transform sharcd-memory access into
interprocess communication. This re-
quires algorithms to locate and access
shared data, maintain coherence, and
replace data. A DSM system may also
have additional schemes to improve per-
formance. Such algorithms directly sup-
port DSM. In addition, DSM implement-
ers must tailor operating system
algorithms to support process synchro-
nization and memory management. We
focuson the algorithms used in Ivy, Dash,
Munin, Plus, Mirage, and Memnet be-
cause these systems illustrate most of
the important implementation issues.
Stumm and Zhou' give a good evolu-
tionary overview of algorithms that sup-
port static, migratory, and replicated
data.

Data location and access. To share
data in a DSM system, a program must
be able to find and retrieve the data it
needs. If data does not move around in
the system — it resides only in a single
static location — then locating it is easy.
All processes simply “know” where to
obtain any piece of data. Some Linda
implementations use hashing on the tu-
ples to distribute data statically. This
has the advantages of being simple and
fast, but may cause a bottleneck if data is
not distributed properly (for example,
allshared dataends up onasingle node).

An alternative is to allow data to mi-
grate freely throughout the system. This
allows data to be redistributed dynami-
cally to where it is being used. However,
locating data then becomes more diffi-
cult. In this case, the simplest way to
locate data is to have a centralized
server that keeps track of all shared
data. The centralized method suffers
from two drawbacks: The server serial-
izes location queries, reducing parallel-
ism, and the server may become heavily
loaded and slow the entire system.

Instead of using a centralized server, a
system can broadcast requests for data.
Unfortunately, broadcasting does not
scale well. All nodes — not just the
nodes containing the data — must pro-
cess a broadcast request. The network
latency of a broadcast may also require
accesses to take a long time to complete.

To avoid broadcasts and distribute
the load more evenly, several systems
use an owner-based distributed scheme.

This scheme is independent of data rep-
lication, but is seen mostly in systems
that support both data migration and
replication. Each piece of data has an
associated owner — a node with the
primary copy of the data. The owners
change as the data migrates through the
system. When another node needs a copy
of the data, it sends a request to the
owner. If the owner still has the data, it
returns the data. If the owner has given
the data to some other node, it forwards
the request to the new owner.

The drawback with this scheme is that
arequest may be forwarded many times
before reaching the current owner. In
some cases, this is more wasteful than
broadcasting. In Ivy, all nodes involved
in forwarding a request (including the
requester) are given the identity of the
current owner. This collapsing of
pointer chains helps reduce the forward-
ing overhead and delay.

When it replicates data, a DSM sys-
tem must keep track of the replicated
copies. Dash uses a distributed directo-
ry-based scheme, implemented in hard-
ware. The Dash directory for a given
cluster (node) keeps track of the physi-
cal blocks in that cluster. Each block is
represented by a directory entry that
specifies whether the block is unshared
remote (local copy only), shared remote,
or shared dirty. If the block is shared
remote, the directory entry also indi-
cates the location of replicated copies of
the block. If the block is shared dirty, the
directory entry indicates the location of
the single dirty copy. Only the special
node known as the home cluster posses-
ses the directory block entry. A node
accesses nonlocal data for reading by
sending a message to the home cluster.

Ivy’sdynamicdistributed scheme also
supports replicated data. A ptable on
each node contains for each page an
entry that indicates the probable loca-
tion for the referenced page. As de-
scribed above, a node locates data by
following the chain of probable owners.
The copy-list scheme implemented by
Plus uses a distributed linked list to keep
track of replicated data. Memory refer-
ences are mapped to the physically clos-
est copy by the page map table.

Coherence protocol. All DSM systems
provide some form of memory coher-
ence. If the shared data is not replicated,
then enforcing memory coherenceis triv-
ial. The underlying network automati-
cally serializes requests in the order they




Chapter 1: An Introduction to Distributed Shared Memory Concepts 47

<write request (read-exclusive)>
<data and invalidate count>
DC sends data 4 CPU issues
and invalidate write (read-
count to requester. Copy is exclusive) to home
DC sends invalidate | > invalidated. cluster.
request to B. ‘\N
New directory <invalidate request> <invalidate @ Write completes.
@ block entry: acknowledgment>
Dirty Copy
remote onC
Cluster A Cluster B Cluster C
(home cluster) (requesting cluster)
(a)
<write request (read-exclusive)>
<forwarded request>
DC forwards CPU issues DC sends data
request to write (read- - to requester
owner cluster. exclusive to home /‘—\ and ownership up-
cluster. <data> date message to
@ New directory home node.
block entry: @Write completes
Dirty Cop!
remote | on \ /r/
DC sends ack-
nowledgment <Zgg§;:ﬁ’p
to new owner. <acks Cluster B Cluster C
(requesting cluster) (owner cluster)
Cluster A
(home cluster)
(b)

Figure 3. Simplified Dash write-invalidate protocol: (a) Data is shared remote; (b) data is dirty remote (after events de-
picted in Figure 3a). (DC stands for directory controller.)

occur. A node handling shared data can
merely perform each request as it is
received. This method will ensure strict
memory consistency — the strongest
form of coherence. Unfortunately, seri-
alizing data access creates a bottleneck
and makes impossible a major advan-
tage of DSM: parallelism.

To increase parallelism, virtually all
DSM systems replicate data. Thus, for
example, multiple reads can be per-
formed in parallel. However, replica-
tion complicates the coherence proto-
col. Two types of protocols —
write-invalidate and write-update pro-
tocols — handle replication. In a write-
invalidate protocol, there can be many

copies of a read-only piece of data, but
only one copy of a writable piece of
data. The protocol is called write-
invalidate because it invalidates all cop-
ies of a piece of data except one before
a write can proceed. In a write-update
scheme, however, a write updates all
copies of a piece of data.

Most DSM systems have write-
invalidate coherence protocols. All the
protocols for these systems are similar.
Each piece of data has a status tag that
indicates whether the data is valid,
whether it is shared, and whether it is
read-only or writable. For a read, if the
data is valid, it is returned immediately.
If the data is not valid, a read request is

sent to the location of a valid copy, and
acopy of the data is returned. If the data
was writable on another node, this read
request will cause it to become read-
only. The copy remains valid until an
invalidate request is received.

For a write, if the data is valid and
writable, the request is satisfied imme-
diately. If the data is not writable, the
directory controller sends out an invali-
date request, along with a request for a
copy of the data if the local copy is not
valid. When the invalidate completes,
the data is valid locally and writable,
and the original write request may com-
plete.

Figure 3 illustrates the Dash directory-




48 Distributed Shared Memory

Copy-list Copy-list Copy-list
Master |Next copy Master |Next copy Master | Next co
X =A onB X = onC X =A on N’I)IY
<update>
MCM updates x. /_\ MCM sends MCM updates x.
@ update message dat @ updates x.
to master node. <upaate>
MCM sends <update> @ MCM updates x MCM indicates
update message and sends updates are
to next copy. update message to complete.
next copy.
Node A Node B Node C
<write request>
Page map table
oo o |
<acknowledgment>
MCM sends
Figure 4. The Plus write-update remg:gtr?ordeg%?ﬂ to

protocol. (MCM stands for
memory coherence manager.)

Node D

based coherence protocol. The sequence
of events and messages shown in Figure
3a occurs when the block to be written
isinshared-remote state (multiple read-
only copies on nodes A and B) just
before the write. Figure 3b shows the
events and messages that occur when
the block to be written is in shared-dirty
state (single dirty copy on node C) just
before the write. In both cases, the ini-
tiator of the write sends a request to the
home cluster, which uses the informa-
tion in the directory to locate and trans-
fer the data and to invalidate copies.
Lenoskietal.* give turther details about
the Dash coherence protocol and the
methods they used to fine-tune the pro-
tocol for high performance.

Li and Hudak? show that the write-
invalidate protocol performs well for a
variety of applications. In fact, they show
superlinear speedups for a linear equa-
tionsolverand a three-dimensional par-
tial differential equation solver, result-
ing from the increased overall physical
memory and cache sizes. Li and Hudak
rejected use of a write-update protocol
at the onset with the reasoning that
network latency would make it ineffi-
cient.

Subsequent research indicates thatin
the appropriate hardware environment
write-update protocols can be imple-

mented efficiently. For example, Plus is
ahardware implementation of DSM that
uses a write-update protocol. Figure 4
traces the Plus write-update protocol,
which begins all updates with the block’s
master node, then proceeds down the
copy-list chain. The write operation is
completed when the last node in the
chain sends an acknowledgment mes-
sage to the originator of the write re-
quest.

Munin'! uses type-specific memory
coherence, coherence protocols tailored
for different types of data. For example,
Munin uses a write-update protocol to
keep coherent data that is read much
more frequently than it is written (read-
mostly data). Because an invalidation
message is about the same size as an
update message, an update costs nomore
than an invalidate. However, the over-
head of making multiple read-only
copies of the data item after each inval-
idate is avoided. An eager paging strat-
egy supports the Munin producer-
consumer memory type. Data, once
written by the producer process, is trans-
ferred to the consumer proce: where
it remains available until the consumer
process is ready to use it. This reduces
overhead, since the consumer does not
request data already available in the
buffer.

Replacement strategy. Insystems that
allow data to migrate around the sys-
tem, two problems arise when the avail-
able space for “caching” shared data
fills up: Which data should be replaced
to free space and where should it go? In
choosing the data item to be replaced, a
DSM system works almost like the cach-
ing system of a shared-memory multi-
processor. However, unlike most cach-
ing systems, which use a simple least
recently used or random replacement
strategy, most DSM systems differenti-
ate the status of data items and priori-
tize them. For example, priority is given
to shared items over exclusively owned
items because the latter have to be trans-
ferred over the network. Simply delet-
ing a read-only shared copy of a data
item is possible because no data is lost.
Shiva prioritizes pages on the basis of a
linear combination of type (read-only,
ownedread-only, and writable) and least
recently used statistics.

Once a piece of data is to be replaced,
the system must make sure it is not lost.
In the caching system of a multiproces-
sor, the item would simply be placed in
main memory. Some DSM systems, such
as Memnet, use an equivalent scheme.
The system transfers the data item to a
“home node” that has a statically allo-
cated space (perhaps on disk) to store a




Chapter 1: An Introduction to Distributed Shared Memory Concepts 49

copy of an item when it is not needed
elsewhere in the system. This method is
simple to implement, but it wastes a lot
of memory. Animprovement is to have
the node that wants to delete the item
simply page it out onto disk. Although
this does not waste any memory space,
it is time consuming. Because it may be
faster to transfer something over the
network than to transfer it to disk, a
better solution (used in Shiva)is to keep
track of free memory in the system and
to simply page the item out to a node
with space available to it.

Thrashing. DSM systems are par-
ticularly prone to thrashing. For exam-
ple, if two nodes compete for write
access to a single data item, it may be
transferred back and forth at such a
high rate that no real work can get done
(a Ping-Pong effect). Two systems,
Munin and Mirage, attack this problem
directly.

Munin allows programmers to associ-
ate types with shared data: write-once,
write-many, producer-consumer, pri-
vate, migratory, result, read-mostly, syn-
chronization, and general read/write.
Shared data of different types get dif-
ferent coherence protocols. To avoid
thrashing with two competing writers, a
programmer could specify the type as
write-many and the system would use a
delayed write policy. (Munin does not
guarantee strict consistency of memory
in this case.)

Tailoring the coherence algorithm to
the shared-data usage patterns can
greatly reduce thrashing. However,
Munin requires programmers to specify
the type of shared data. Programmers
are notoriously bad at predicting the
behavior of their programs, so this
method may not be any better than
choosing a particular protocol. In addi-
tion, because the type remains static
once specified, Munin cannot dynami-
cally adjust to an application’s changing
behavior.

Mirage® uses another method to re-
duce thrashing. It specifically examines
the case when many nodes compete for
access to the same page. To stop the
Ping-Pongeffect, Mirage adds adynam-
ically tunable parameter to the coher-
ence protocol. This parameter deter-
mines the minimum amount of time (A)
a page will be available at a node. For
example, if a node performed a write to
a shared page, the page would be writ-
able on that node for A time. This solves

the problem of having a page stolen
away after only a single request on a
node can be satisfied. Because Ais tuned
dynamically on the basis of access pat-
terns, a process can complete a write
run (orread run) before losing access to
the page. Thus, A is akin to a time slice
in a multitasking operating system, ex-
cept in Mirage it is dynamically ad-
justed to meet an application’s specific
needs.

Related algorithms. Tosupporta DSM
system, synchronization operations and
memory management must be specially
tuned. Semaphores, for example, are
typically implemented on shared-
memory systems by using spin locks. In
a DSM system, a spin lock can easily
cause thrashing, because multiple nodes
may heavily access shared data. For
better performance, some systems pro-
vide specialized synchronization primi-
tives along with DSM. Clouds provides
semaphore operations by grouping
semaphoresinto centrally managed seg-
ments. Munin supports the synchroni-
zation memory type with distributed
locks. Plus supplies a variety of syn-
chronization instructions, and supports
delayed execution, in which the syn-
chronization can be initiated, then later
tested for successful completion. Dubois,
Scheurich, and Briggs' discuss the rela-
tionship between coherence and syn-
chronization.

Memory management can be restruc-
tured for DSM. A typical memory-
allocation scheme (as in the C library
malloc()) allocates memory out of a
common pool, which is searched each
time a request is made. A linear search
of all shared memory can be expensive.
A better approach is to partition avail-
able memory into private buffers on
each node and allocate memory from
the global buffer space only when the
private buffer is empty.

esearch has shown distributed
R shared memory systems to be

viable. The systems described
in this article demonstrate that DSM
canbeimplementedin avariety of hard-
ware and software environments: com-
mercial workstations with native oper-
ating systems software, innovative
customized hardware, and even hetero-
geneous systems. Many of the design
choices and algorithms needed to im-
plement DSM are well understood and

integrated with related areas of com-
puter science.

The performance of DSM is greatly
affected by memory-access patterns and
replication of shared data. Hardware
implementations have yielded enormous
reductionsin communication latency and
the advantages of a smaller unit of shar-
ing. However, the performance results
to date are preliminary. Most systems
are experimental or prototypes consist-
ing of only a few nodes. In addition,
because of the dearth of test programs,
most studies are based on a small group
of applications or a synthetic workload.
Nevertheless, research has proved that
DSM effectively supports parallel pro-
cessing, and it promises to be a fruitful
and exciting area of research for the
coming decade. B

Acknowledgments

This work was supported in part by NSF
grant CCR-8808532, a Tektronix research
fellowship, and the NSF Research Experi-
ences for Undergraduates program. We ap-
preciate the comments from the anonymous
referees and thank the authors who verified
information about their systems. Thanks also
to Kurt Windisch for helping prepare this
manuscript.

References

1. M. Stumm and S. Zhou, “Algorithms
Implementing Distributed Shared Mem-
ory,” Computer, Vol. 23, No. 5, May 1990,
Pp. 54-64.

2. K. Li and P. Hudak, “Memory Coher-
ence in Shared Virtual Memory Systems,”
ACM Trans. Computer Systems, Vol. 7,
No. 4, Nov. 1989, pp. 321-359.

3. B. Fleisch and G. Popek, “Mirage: A
Coherent Distributed Shared Memory
Design,” Proc. 14th ACM Symp. Operat-
ing System Principles, ACM, New York,
1989, pp. 211-223.

4. D. Lenoski et al., “The Directory-Based
Cache Coherence Protocol for the Dash
Multiprocessor,” Proc. 17th Int’l Symp.
Computer Architecture, IEEE CS Press,
Los Alamitos, Calif., Order No. 2047,
1990, pp. 148-159.

5. G. Delp, The Architecture and Imple-
mentation of Memnet: A High-Speed
Shared Memory Computer Communica-
tion Network, doctoral dissertation, Univ.
of Delaware, Newark, Del., 1988.

6. R.Bisiani and M. Ravishankar, “Plus: A
Distributed Shared-Memory System,”
Proc. 17th Int’l Symp. Computer Archi-




50 Distributed Shared Memory

tecture, IEEE CS Press, Los Alamitos,
Calif., Order No. 2047, 1990, pp. 115-124.

. U. Ramachandran and M.Y.A. Khalidi,
“An Implementation of Distributed
Shared Memory," First Workshop Expe-
riences with Building Distributed and
Multiprocessor Systems, Usenix Assoc.,
Berkeley, Calif., 1989, pp. 21-38.

. N. Carriero and D. Gelernter, How to
Write Parallel Programs: A First Course,
MIT Press, Cambridge, Mass., 1990.

. K. Li and R. Schaefer, “A Hypercube
Shared Virtual Memory System,” Proc.
Int'l Conf. Parallel Processing, Pennsyl-
vania State Univ. Press, University Park,
Pa., and London, 1989, pp. 125-132.

10. S. Zhou et al., “A Heterogeneous Dis-

i~
—

12.

tributed Shared Memory,” to be published
in I[EEE Trans. Parallel and Distributed
Systems.

. J. Bennett, J. Carter, and W. Zwaene-

poel. “Munin: Distributed Shared Mem-
ory Based on Type-Specific Memory Co-
herence,” Proc. 1990 Conf. Principles and
Practice of Parallel Programming, ACM
Press.New York.N.Y., 1990, pp. 168-176.

M. Dubois, C. Scheurich, and F.A. Briggs.
“Synchronization, Coherence, and Event
Ordering in Multiprocessors,” Com-
puter, Vol. 21, No. 2, Feb. 1988, pp. 9-21.




