
INTRODUCTION

On an outside wall of the thirteenth century Town Hall in
Rothenburg-ob-der-Tauber, Germany hangs an equally old iron
standard used to measure the length of loaves of bread. Subject to
punishment were bakers who made their loaves too short—for
cheating their customers—as were those who made their loaves too
long—for raising unrealistic expectations. The goal of this- chapter
is to provide general material about software engineering and soft-
ware engineering standards and to address the reader's expecta-
tions regarding the usefulness of the standards.

Software Engineering
The Institute of Electrical and Electronics Engineers defines

software engineering, in IEEE Std 610.12, as:

(1) The application of a systematic, disciplined,
quantifiable approach to the development, opera-
tion and maintenance of software, that is, the ap-
plication of engineering to software. (2) The study
of approaches as in (1).

Most of the standards to be considered are practice standards
rather than product standards, concerned with the regulation of the
practice of software engineering rather than the interfaces of the
products produced.

Is it Engineering?
One could be excused for denying the premise of this book.

Software engineering is not among the 36 engineering professions
licensed in the United States. Furthermore, 48 states have laws
forbidding an unlicensed individual from advertising as an
"engineer." The state of Texas has prohibited its universities from
offering master's degrees in software engineering and the state of
New Jersey has considered legislation requiring the licensing of all
software professionals [Jones95].



Software Engineering Standards: A User's Road Map

Nevertheless, in deference to common usage, this book will use
the term "software engineering"; readers may choose to view the
term as a statement of a goal or ideal rather than as a statement of
a fact.

Engineering can be viewed as a closed feedback loop as shown
in Figure 1. An engineering process consists of related activities
performed in response to a statement of needs and consuming re-
sources to produce a product. In order to manage or improve the
process, one must exert control. Control is a decision-making
mechanism that considers goals and constraints in the formulation
of action that is intended to direct or modify the process. The deci-
sion to take action is based on measurements, quantitative evidence

Goals

Constraints Control

Measurement

Needs^

Acti

Process
Product

Resources

Figure 1. A model of engineering. (Source: [SESC93].)

regarding the state of the process. Measurements can be made of
conditions inside the process, products of the process, and the satis-
faction of users of the products [SESC93]. We would expect soft-
ware engineering standards to contribute to the implementation of
such a model with respect to the development, operation, and main-
tenance of software systems.

Indeed, we will find standards related to the process, product,
and resources involved in the software discipline. We will find
standards describing the treatment of needs in software develop-
ment, not only as requirements and specifications, but articulating
less formal needs from more remote stakeholders. We will find
standards describing management plans, measurements, and ac-



Chapter 1—Introduction

tions for the purpose of controlling the ongoing processes. Finally,
we will find methods to articulate goals and constraints, even in-
formal ones, to guide the managers.

So, even if the software discipline has not yet formalized the
empirical underpinnings of an engineering discipline, we will find
that, in many ways, it is acting as if it has.

Relationship to Other Disciplines
Software engineering occupies a position intermediate between,

on the one hand, the mathematical and physical disciplines of com-
puter science and technology and, on the other hand, the require-
ments of the particular application domains applying the findings
of the former to solve problems of the latter (Figure 2). The tech-
niques for the engineering of software can be viewed, in part, as
specializations of those of more general disciplines, such as project
management, system engineering, and quality management. Fur-
thermore, a software project must implement requirements im-
posed by cross-cutting disciplines like dependability (a term more
general than reliability) and safety. These contextual disciplines are

Project
Management

Computer
Science and
Technology

Systems
Engineering

Software
Engineering

Dependability

Quality
Management

Safety

Application
Domains

Figure 2. Relationship of software engineering to other disciplines.



Software Engineering Standards: A User's Road Map

important to the book because subsequent chapters will use them
as entry points for selecting appropriate software engineering stan-
dards.

Fundamental Principles
The engineering style of education deals with rapidly changing

technology by teaching fundamentals; students are provided little
choice regarding their curriculum. As a consequence, there is a set
of things that we can expect every engineer to know [Parnas95].
The teaching material is based on a common, principle-based body
of knowledge, codified by some more-or-less officially designated
organization, often enforced by licensing requirements.

Relating to the engineering style of education, Tom Gilb
[Gilb96] offers a definition of engineering that he credits to Billy
Koen:

Engineering is the use of principles to find designs
that will meet multiple competing objectives,
within limited resources and other constraints, un-
der conditions of uncertainty.

In other fields, practice standards can be traced to a body of fun-
damental scientific and engineering principles that constrain the
standards. A trivial example is that mechanical engineering stan-
dards are constrained by the three-dimensional geometry of physi-
cal objects. The codification of software engineering standards is
faced by particular challenges in this area. First, the subject of the
standards—software—is inherently intangible and unconstrained
by the common laws of physics. Second, the discipline is relatively
new, compared to other engineering disciplines, and many of its
important concepts remain immature. Third, there is not yet a
commonly accepted body of knowledge1 that can serve as a founda-
tion, nor any body empowered to develop it [Abran96]. Finally, un-
like product interface standards, there are few market forces to
cause convergence on selected technologies.

This has caused some problems. Unfettered by any integrating
forces of principles or dominant products, most software engineer-
ing standards are ad hoc recordings of individual practices claimed
to be "best." This is not bad when each standard is considered in
isolation, but when the standards are considered as a body, we find
them to be dis-integrated, capriciously different in detail, overlap-

'There have been some attempts, though; [Davis95] is a catalog
of principles.



Chapter 1—Introduction

ping and occasionally contradictory. These characteristics put the
erstwhile adopter of the corpus of standards into a difficult situa-
tion, because the adopters must themselves develop some mecha-
nism to rationalize, explain, and relate the various standards cho-
sen for implementation.

Part of the solution to the problem is the adoption of a frame-
work of vocabulary, key relationships and other constraints to
which each individual standard must adhere. In fact, IEEE Soft-
ware Engineering Standards Committee (SESC) and its interna-
tional counterpart, ISO/IEC JTC1/SC7, have taken steps in this
direction, efforts that are described elsewhere in this book. Perhaps
a more basic requirement is for the identification of a set of funda-
mental principles that would serve to explain and motivate the pro-
visions of the various standards. IEEE SESC is initiating this step.

Figure 3 shows a notional depiction of the role of principle
standards. The principles of software engineering would be re-
garded as selected, adapted and specialized from the principles of
engineering in general. The provisions of practice standards would
be motivated by the software engineering principles and would be
traceable to those principles. So-called "best practices" would be
viewed as the detailed implementation of the provisions of the prac-
tice standards. Viewed in the other direction, practice standards
would be regarded as descriptions of observed, effective best prac-
tices and the principles as abstractions of the practice standards.
The principles found to be relevant beyond the scope of software
engineering (perhaps those related to complexity, for example)
might be considered as general principles of engineering.

Figure 3. Relationship of principles and practice.

In this model, we can view practice standards as existing in a
tension between the consolidating and integrating forces exerted by
the principles and the expansive and innovative forces exerted by
the recognition of new, effective practices.

IEEE SESC has initiated an effort to identify fundamental
principles for software engineering. A workshop at the 1996 Soft-
ware Engineering Standards Forum considered candidate princi-



Software Engineering Standards: A User's Road Map

pies and developed a set of criteria to be applied to candidates
[Jabir97]. A Delphi experiment involving a number of notable ex-
perts in software engineering identified an initial working set of
principles during 1997. A follow-up workshop held at the 1997 In-
ternational Software Engineering Standards Symposium reviewed
the results of the Delphi experiment and produced a working set of
principles. More refinement is planned.

Software Engineering Standards
For the purposes of this book, the characterization of standards

provided in [SESC93] is helpful:

A standard can be: (1) an object or measure of
comparison that defines or represents the magni-
tude of a unit; (2) a characterization that estab-
lishes allowable tolerances or constraints for cate-
gories of items; and (3) a degree or level of required
excellence or attainment. Standards are defini-
tional in nature, established either to further un-
derstanding and interaction, or to acknowledge ob-
served (or desired norms) of exhibited characteris-
tics or behavior.

Most of the standards described in this book have been devel-
oped by Standards Developing Organizations (SDO) operating on
the principles of consensus development and voluntary adoption.
For the purposes of this book, the organizations are regarded as
national (US, with a few exceptions) or international. It must be
noted, however, that even this basic distinction over-simplifies the
actual situation.2 Many major standards developers, for example,
the IEEE, include members from many nations, any of whom may
contribute to the development of standards. The resulting stan-
dards may be adopted by anyone, anywhere on the globe. Never-
theless, for purposes of international standardization, these
trans-national organizations are regarded as national entities and
required to participate via the designated national body. For exam-
ple, IEEE contributions to international standardization are ad-
ministered by the American National Standards Institute (ANSI)

2It turns out that almost every general statement made about
standardization is an oversimplification. It seems that nearly every
organization and every project involves special circumstances that
make it exceptional in some regard. The term standards organiza-
tion may be a not-so-funny oxymoron.



Chapter 1—Introduction

despite the fact that the standards were developed by members
from many nations.

Some notable characteristics of standards developed by US or-
ganizations are listed in [Cargill97]:

• They have been written by a committee of anyone who
could attend the meetings.

• They have undergone public scrutiny.

• All technical comments have received responses.

• They are a product of consensus within the committee and
within an industry segment or professional community.

Subject to procedures administered by the American National
Standards Institute (ANSI), such a standard may be designated as
an "American National Standard." Policies of the US government3

provide that these national standards may be used in federal pro-
curements [Cargill97].

Scope of Software Engineering Standards
Software engineering standards cover a remarkable variety of

topics. ISO/IEC DTR 14399 (Version 3.0) lists 21 subject areas. For
the purpose of organizing their book [Magee97], Stan Magee and
Leonard Tripp organized 29 subjects into the three categories
adapted for Table 1.

Table 1. Scope of Software Engineering Standardization

Process
Acquisition
Requirements definition
Design
Code and test
Integration
Maintenance & operations
Configuration management
Documentation
Project management
Quality assurance
Verification and validation

Technique or Tool

CASE tools
Languages & notations
Metrics
Privacy
Process improvement
Reliability
Safety
Security
Software reuse
Vocabulary

Applicability
General
Defense
Financial
Medical
Nuclear
Process control
Scientific
Shrink-wrap
Transportation

3OMB Circular Al 19.



8 Software Engineering Standards: A User's Road Map

Importance of Software Engineering Standards
To consider the importance of software engineering standards,

one must consider the uses to which they are put and the benefits
that accrue from their application.

Improving the Product

Nearly all of the standards discussed in this book are volun-
tary, that is, an organization makes its own decision, without coer-
cion, to adopt the standard. (This contrasts with regulatory stan-
dards, imposed by processes similar to law, and mandated stan-
dards, such as military standards, required as a precondition of
doing business with a dominant customer.) Organizations often
adopt these standards because they improve their products, or im-
prove the perception of their products in a competitive marketplace.
Alternatively, the standards may improve the organization's busi-
ness processes, allowing them to make their products more
cost-effectively.

Examples of benefits that standards may provide in this regard
are the following:

• Some standards are simply statements regarding subjects
in which the uniformity provided by agreement is more
important than the gains to be made by small, but local,
improvements. Standards on terminology, e.g. IEEE Std
610.12, and notations, e.g. the draft IEEE standards on the
IDEF notation, are examples.

• Some standards provide a nomenclature for complex con-
cepts, which, absent standardization, could exhibit detailed
differences in characteristics which might ultimately prove
crucial. For example, IEEE Std 1028 provides minimum,
essential characteristics for the type of review known as an
inspection.

• Some standards, in the absence of scientific proof of valid-
ity, provide criteria for measurement and evaluation tech-
niques that are at least validated by consensus wisdom.
For example, IEEE Std 1061 provides a methodology for
metrics that can be used as early indicators of later re-
sults.

• Some standards record a community consensus of "best
practices," that is, techniques broadly regarded as gener-
ally effective. For example, IEEE Std 1008 provides re-



Chapter 1—Introduction

quirements and recommendations for the unit testing of
code.

• Some standards provide a unified and systematic treat-
ment of the so-called "ilities" in a manner that cuts across
the organization of many enterprises, hence effecting con-
sistent internal treatment. An example is IEEE Std 730 on
software quality assurance.

• Some standards provide a framework for communication
with customers and suppliers, reducing misunderstanding,
and shortening the time (and text) needed to reach agree-
ment. An important example is IEEE/EIA Std 12207 on
software life cycle processes.

• Some standards share techniques that can lead to qualita-
tive improvements in developing software better, faster, or
less expensively, for example, IEEE Std 1044 on software
anomaly classification.

To be sure, not all observers agree that software engineering
standards have been successful. [Pfleeger94] says that the
"standards lack objective assessment criteria, involve more process
than product, and are not always based on rigorous experimental
results." [Fenton96] finds "no evidence that any of the existing
standards are effective [in improving] the quality of the resulting
software products cost-effectively." [Schneidewind96], though,
points to success stories such as the organization that has produced
nearly error-free code for the space shuttle, in part, through use of
software engineering standards. All parties would agree, though,
that improvement is desirable.

Protecting the Buyer

With many products, buyers can make appropriate decisions
based on advertising literature, previous experience with the seller
or direct examination. The increasing complexity of technol-
ogy-based products, however, inevitably causes essential charac-
teristics to remain hidden until after purchase. Standards can play
a role when they provide accurate information regarding the suit-
ability of products for specific uses [Brobeck96]. The product qual-
ity standards of ISO/IEC JTC1/SC7/WG6 are aimed in this direc-
tion. For the most complex of systems, the application of standards
by the developer can serve to increase the buyer's confidence in the
seller's methods for coping with that complexity. The standards
applied by the avionics and nuclear industries are examples.



10 Software Engineering Standards: A User's Road Map

Protecting the Business

Courts in the United States have used voluntary standards to
establish a supplier's "duty of care." Failure to adhere to standards
does not necessary establish negligence but may be considered as
evidence when dealing with issues like product safety and liability
[Peach94, p. 322J. On the other hand, adherence to the appropriate
standards is a strong defense that the supplier was not negligent in
its development practices and has taken due care to deliver a prod-
uct that is safe and fit for its intended use. The introduction of
evidence that a product meets a voluntary standard is admissible in
47 of the 50 states [Batik92]. Increasingly, companies are develop-
ing liability prevention programs that incorporate voluntary stan-
dards as key parts.4 IEEE Std 1228 for software safety plans, might
be appropriate for such usage.

Florida Power and Light (a winner of the prestigious Deming
Award in 1990 [Batik92]), not only applies software engineering
standards but sometimes performs causal analysis back to the
standards themselves when failures are noted. A major credit re-
porting firm has applied the entire corpus of IEEE SESC standards
to its organizational software development processes to further bol-
ster its defenses against claims of reckless development, mainte-
nance, and operation of its databases and their accompanying soft-
ware.

Even in contractual situations, the appropriate application of
standards protects both parties by dividing up responsibilities,
clarifying terminology, and defining expected practices. Examples
of standards appropriate for this purpose include IEEE/EIA 12207
and EIA/IEEE J-Std-016.

Increasing Professional Discipline

Even if the practice of software is not yet a proper engineering
discipline, it is moving in that direction. A body of practice stan-
dards is an essential step because it would serve to define the

4Of course, the writers of standards assume some liability for
their product—the standard. In a famous case, the Sunshine Mine
used, for thermal insulation, a foam material incidentally described
as "fireproof in a standard of the American Society for Testing and
Materials (ASTM). A fire at the mine was blamed partly on the
poorly written standard and ASTM was named as a co-defendant in
the lawsuit. Although the lawsuit eventually was dropped, ASTM
and other standards organizations have taken steps to protect
themselves, and their voluntary participants [Batik92].



Chapter 1 —Introduction 11

methods to be expected in the responsible practice of software engi-
neering. An example might the software verification and validation
(V & V) standard, IEEE Std 1012. A joint task force of the IEEE
Computer Society and the ACM is currently investigating other
steps necessary to move toward the goal [Jones95].

Introducing Technology

Finally, the Software Engineering Institute notes that stan-
dards play a vital role in technology transition. "Standards provide
users with common terminology and a framework for communicat-
ing about technologies across organizational boundaries. Such
communications is particularly critical to acceptance by late adopt-
ers." Furthermore, codification of technologies prepares them for
adoption [Pollak96], Examples might include the recommended
practices on Computer-Aided Software Engineering (CASE) tool
selection and adoption developed by IEEE SESC and now under
consideration by ISO/IEC JTC1/SC7.

History
Although software engineering may not yet be a recognized

branch of engineering, the roots of an organized discipline began to
emerge in the 1960s and use of the term itself dates back to the
now-famous 1968 North Atlantic Treaty Organization (NATO) con-
ference.

Perhaps because of government's inherent need to conduct its
business in a procedural manner, early US software engineering
standards were written by organizations within the federal gov-
ernment. In 1973, a task force of the National Bureau of Standards
concluded that such standards were feasible. Accordingly, three
years later, Federal Information Processing Standard Publication
(FIPS Pub.) 38, Guidelines for Documentation of Computer Pro-
grams and Automated Systems, was published. It was organized
around the production of 10 documents: functional requirements;
data requirements; system/subsystem specifications; program
specifications; database specifications; user manual; operations
manual; program maintenance manual; test plan; and test analysis
report. Meanwhile, in 1974, the US Navy initiated the development
of its Mil-Std 1679, Weapons System Software Development, one of
the first standards treating the usage, control, and management of
embedded computer resources [SESC93].

IEEE activity began in 1976 with the creation of the Software
Engineering Standards Subcommittee (SESS). Its first standard,
IEEE Std 730, Standard for a Quality Assurance Plan, was ap-



12 Software Engineering Standards: A User's Road Map

proved for trial use in 1979 and full use 2 years later. Like FIPS
Pub. 38, it was (and remains) oriented toward the documentation
requirements, only implicitly placing requirements on the under-
lying processes.

International standardization activities related to software oc-
curred in various technical committees of the International Organi-
zation for Standardization (ISO) and the International Electrotech-
nical Commission (IEC), depending upon the application area. ISO
and IEC agreed in 1987 to form Joint Technical Committee 1
(JTC1) to deal with the area of information technology (IT). Never-
theless, we will see that important work strongly related to IT con-
tinues in committees of ISO and IEC.

Makers of Software Engineering Standards
The need for software engineering standards has been filled by

an amount that some would regard as exceeding the requirement.
An authoritative source [Magee97] identifies 315 standards created
and maintained by 55 different international, national, sector, and
professional organizations; Magee is selective—others identify
more.

IEEE SESC alone maintains about 50 standards, if we count
"parts" individually. Its planned 1998 collection will be packaged in
four volumes comprising a total of about 2,300 pages. The chairman
of the SESC, Leonard Tripp, has estimated that the typical SESC
standard takes 2 to 4 years to develop and costs (in the labor and
travel of volunteers) between $2,000 and $10,000 per page
[SESC93J.

At the international level, the process is even longer and more
expensive. One estimate [Spring95] says that ISO standardization
typically exceeds 7 years in duration and the attentive reader will
find that at least one family of standards described in this book has
been in development for 14 years so far.

At the center of software engineering standardization in the
United States is the Software Engineering Standards Committee
(SESC) of the IEEE Computer Society. Its collection has grown
from 1 in 1981 to about 50 by the end of 1997 and continues to grow
at the rate of five or so per year. The size and growth of the collec-
tion has exposed many stresses and SESC has been taking the ini-
tiative to address the problems apparent in the world-wide corpus
of process standards.

The counterpart of SESC in the international forum is ISO/IEC
JTC1/SC7. It inherited an obsolescent set of mainframe-oriented



Chapter 1 —Introduction 13

practice standards (on subjects like flowcharts and sequential rec-
ord processing) when it was formed in 1987 but has turned its at-
tention toward more significant contributions, such as its 1995
standard for software life cycle processes, ISO/IEC 12207. SESC
participates in SC7 through its membership in the US Technical
Advisory Group (TAG) that formulates national positions and se-
lects the delegation for meetings of SC7.

These two organizations are not alone in their work. Other
relevant standards have been written by US organizations includ-
ing the American Institute for Aeronautics and Astronautics
(AIAA), the Electronic Industries Association (EIA), and the Power
Engineering Society of the IEEE; national organizations like the
Canadian Standards Association (CSA) and Standards Australia;
and committees of international organizations, like ISO TC176
(quality), IEC TC56 (dependability), and IEC SC45A and 65A
(safety). Important contributions have been made by organizations
that are not formally accredited to develop standards, including the
International Council on Systems Engineering (INCOSE), the Proj-
ect Management Institute (PMI), and the Reuse Library Interoper-
ability Group (RIG). Even this list is far from complete; [Magee97]
lists 55 organizations that have developed relevant standards—and
its authors were selective.

Components of the US federal government sometimes write
specifications to regulate their own procurement practices. The role
of the Department of Defense is well-known, particularly with re-
spect to development process standards, but the National Aeronau-
tics and Space Administration (NASA) and the Federal Aviation
Agency (PAA) have also written standards.

The most influential government agency in information tech-
nology standardization, though, has been the Computer Systems
Laboratory (CSL) of the National Institute of Standards and Tech-
nology (NIST), "where much of the technology infrastructure that is
necessary to the United States is either created or validated." NIST
is a 1988 renaming of the National Bureau of Standards, formed in
1901. The Computer Systems Laboratory specializes in information
technology; it was formed in 1966, as a result of the Brooks Act, to
help resolve the problems of incompatible computer systems in the
federal government, the world's largest purchases of information
technology, by making procurement practices more uniform and
enlightened. This was accomplished largely through the creation of
the famous Federal Information Processing Standards (FIPS)
[Cargill971.



14 Software Engineering Standards: A User's Road Map

The FIPS publications provided important guidance to govern-
ment managers on how to make open systems procurements. Com-
plementary processor validation programs ensured that suppliers of
open systems met their claims regarding adherence to standards.
Process standards were not ignored—NIST/CSL played important
roles in the development of standards for life cycle process and
high-integrity systems. In recent months, though, CSL has redi-
rected its priorities to specifically targeted efforts, like the National
Information Infrastructure.

Roles of Software Engineering Standards
Software engineering standards can play a variety of important

roles for an organization. Some of those roles are:

• Naming: A standard can provide a succinct name for a
complicated concept. Particularly when two parties are
contracting for a complex item, it is helpful to have a stan-
dard specifying the details. For example, is it easier to
judge the adequacy of a 20-page explanation of a supplier's
verification and validation procedures or a simple claim
that they conform to IEEE Std 1012?

• Best Practices'. Sometimes organizations want to adopt
software development practices that are agreed by the
community to represent "best of breed." Practice stan-
dards describe practices that are consensually agreed to be
sound.

• Badging: Organizations need a way to assert (in a support-
able fashion) that their institutional practices conform to a
constellation of best principles and practices. The need is
met by "badges," formulated by expert authorities and
sometimes independently certified, for example, ISO 9000
and SEI Capability Maturity Model "levels." This usage is
so important that we can expect to see new badges in the
near future [Moore95l.

• Contractual Agreement: In a complex information technol-
ogy procurement, it is helpful and efficient to decouple
complex technological issues from the business aspects of
the agreement. Standards such as IEEE/EIA 12207 provide
this service by setting norms which may be referenced
rather than described in a contract.



Chapter 1—Introduction 15

Organizational Goals for Using Software
Engineering Standards

Not all organizations will have the same goals in the adoption
of software engineering standards.5 Some possibilities are listed
here along with the needs that software engineering standards may
fill in the achievement of the goals.

Improve and Evaluate Software Competency. An organization
may desire processes and measures to calibrate its ability to pro-
duce software that is competitive in some or all of the following
areas:

• Quality. Analyze trends in product and process quality for
software organizations.

• Customer Satisfaction: Measure the extent to which soft-
ware satisfies the customers* needs.

• Cycle Time and Productivity: Track progress toward goals
for software cycle time and productivity improvement.

• Process Maturity: Assess progress relative to industry
software process benchmarks.

• Technology: Assess the application of technology within the
organization.

Provide Framework and Terminology for Two-Party Agree-
ments. An organization that specializes in buying or selling soft-
ware services under contract may desire a uniform framework for
defining the relationship and respective responsibilities of the ac-
quirer and the supplier for software and systems containing soft-
ware, a framework that transcends the scope of any particular con-
tract:

• Acquisition Process: Provide the essential actions and cri-
teria to be used by an organization in planning and exe-
cuting an acquisition for software or software-related
services.

• Supply Process: Provide the essential actions and criteria
to be used by an organization in supplying software or
software-related services to an acquirer.

5The material in this section is based on an untitled point pa-
per written by Leonard Tripp.



16 Software Engineering Standards: A User's Road Map

• Life Cycle Processes: Provide the process requirements to
be met during the life cycle (definition, development, de-
ployment, operation, etc.) of software or systems contain-
ing software.

• Life Cycle Deliverables: Provide the requirements for in-
formation to be passed between the supplier and the ac-
quirer during the performance of software life cycle proc-
esses.

Evaluate Products of Software Engineering Activities. An or-
ganization may need to formulate criteria, processes, and measures
to determine the adequacy of a software product to fulfill its mis-
sion.

• External Measurements: Measurements of completed soft-
ware products to evaluate the achievement of development
goals.

• Internal Measurements: Measurement of incomplete soft-
ware artifacts and development processes to provide early
indicators of the achievement of development goals.

Assure High Integrity Levels for Software. An organization may
need to develop software for critical applications where safety and
dependability are important to protect lives or property.

• Planning: A framework to determine that appropriate re-
sources and appropriate controls are provided to ensure
treatment of concerns of criticality.

• Achievement: Provisions for ensuring that critical require-
ments for safety and dependability are appropriately
treated throughout the providing of the software service

• Assessment: Verifiable measurement of the extent to which
criticality goals have been achieved.

Trends
Some trends for the future of software engineering standardi-

zation are becoming apparent, particularly in the collections of the
major organizations involved in developing these standards.

The absence of a firm, empirical and scientific foundation for
software engineering standards has been a continuing vulnerabil-
ity, one that has not gone unnoticed by its critics, for example,
[Fenton96] and [Pfleeger94]. With the continuing maturation of the



Chapter 1 -—Introduction 17

field, attempts are being made to address this problem. Notable
efforts include:

• The series of workshops and other projects, mentioned
above, to develop fundamental principles.

• Standardization efforts cooperative with related but more
mature disciplines such as systems engineering and project
management.

• The so-called "SPICE trials" (more properly termed as the
Software Process Improvement and dEtermination proj-
ect), efforts to empirically validate the process assessment
mechanisms of the planned ISO/IEC 15504 series of stan-
dards [Emam95].

Little progress toward a coherent discipline can be made when
each standard is an individual island of practice unrelated to its
peers. Recent years, though, have seen a trend toward the recogni-
tion of key standards that provide a framework which may be
elaborated by other, more detailed ones. Examples include:

• The broadly recognized quality management framework of
the ISO 9000 standards.

• The life cycle process framework of the ISO/IEC 12207
standard on software life cycle processes.

• Cooperative liaison efforts among standards committees
concerned with cross-cutting areas like functional safety,
dependability, quality, and software engineering.

No one should be surprised at disrespect of software engineer-
ing standards if the various collections do not respect and build
upon the contributions of other collections. Recent years have seen
huge steps toward the harmonization of the important collections.
For example:

• SESC standards have been used as the basis upon which
SC7 standards have been drafted. On the other hand,
SESC has voted to adopt newer SC7 standards to replace
their own standards with a similar scope.

• ISO TC176 and IEC TC56 share a single standard, under
two numbers, specifying the relationship between quality
management and dependability.

• SESC has adopted policies designating various interna-
tional standards, such as ISO/IEC 12207 and the ISO 9000



18 Software Engineering Standards: A User's Road Map

series as key standards with which its own must harmo-
nize.

• A major accomplishment of the US adaptation of the
ISO/IEC 12207 standard has been the addition of an annex
explaining how SESC standards may be used to accomplish
the requirements of the 12207 standard. SESC plans a
"block change" of those standards during the next 2 years
to increase the precision of the fit.

The great success of the SEI Capability Maturity Model and
the ISO 9000 quality management standards provide ample indica-
tion of the need for "badges" summarizing achievement of impor-
tant capabilities. It is appropriate for executive managers to deal
with badges in order to set corporate level objectives and allocate
resources while properly delegating technical activity. Before the
end of the millennium, we can expect to see an SESC badge sum-
marizing the enterprise-level achievement of a core set of software
engineering practices [Moore95].

Using This Book
Recognizing the unique nature of every enterprise, this text

"slices and dices" the important collections of software engineering
standards in a variety of ways. The chapters describing the collec-
tions usually organize their constituent standards in ways sug-
gested by the creators of the collections. The chapters describing
the context of software engineering allow one to select software
engineering standards by building on recognized contextual
strengths of an organization, or by remedying notable contextual
weaknesses. The chapters describing the objects of software engi-
neering present the opportunity to consider standards addressing a
single object, such as process, of the discipline.

Throughout, emphasis is placed on the idea that two extreme
policies should be avoided: (1) software engineering standards are
not isolated islands of practice that should be individually adopted;
and (2) software engineering standards (even a single SDO's collec-
tion) are not a monolithic whole whereby a commitment to one re-
quires a commitment to all of them. Instead, the book provides a
middle course, allowing the selection of coherent subsets of stan-
dards, suitable for the achievement of goals specific to an organiza-
tion.


