Chapter 1

Introduction

N. Sundararajan

P. Saratchandran

School of Electrical and Electronic Engineering,
Nanyang Technological University,

Singapore

Jim Torresen

Department of Computer and Information Science,
Norwegian University of Science and Technology,
Norway

Artificial Neural Network (ANN) is a discipline that draws its inspiration from the
incredible problem-solving abilities of nature’s computing engine, the human brain, and
endeavors to translate these abilities into computing machines which can then be used to
tackle difficult problems in science and engineering. The field of ANN itself is very broad,
attracting researchers from such diverse disciplines as neuroscience, engineering, physics,
computer science, and biology. The eclectic nature of this field has given rise to several
paradigms each purporting to emulate some functional capabilities of the brain. From
an application standpoint all these paradigms have their strengths and weaknesses. Each
perform very well in solving certain problems but are not appropriate for others.

However, all ANN paradigms involve a learning phase in which the neural network
is trained with a set of examples of a problem. The trained network is then used in a
real environment to solve instances of the problem not contained in the examples. This is
known as the recall phase. The learning phase usually takes a large amount of computing
time for all but simple toy problems. For practical problems where the training data is large,
training times of the order of days and weeks are not uncommon on serial machines [1-3].
This has been the main stumbling block for ANN’s use in real-world applications and has
also greatly impeded its wider acceptability.

The problem of large training time can be overcome either by devising faster learning
algorithms or by implementing the existing algorithms on parallel computing architectures.
Improving the learning algorithm per se is an active area of research [4, 5], but this book
focuses on the latter approach of parallel implementation. The good thing about this ap-
proach is that an improved fast learning algorithm can be further speeded up by parallel
implementation.

1.1 Parallel Processing for Simulating ANNs

An ANN consists of an enormous number of massively interconnected nonlinear compu-
tational elements (neurons). Each neuron receives inputs from other neurons, performs a
weighted summation, applies an activation function to the weighted sum, and outputs its
results to other neurons in the network. Simulation of an ANN comprises simulation of the

CHAPTER 1. INTRODUCTION

(8]

learning phase and the recall phase. Parallel processing of neural network simulations has
attracted much interest during the past years. The learning and recall of neural networks
can be represented mathematically as linear algebra functions that operate on vectors and
matrices [6]. Thus, standard parallelization schemes can be exploited for both. However,
the focus of parallel neural simulations has been more on the learning phase, which is the
most computation-intensive part of neuroprocessing.

Parallel architectures for simulating neural networks can be subdivided into general
purpose parallel computers and neurocomputers. Neurocomputers are designed as boards
and systems for high-speed ANN simulations [7]. Neurocomputers can be classified as
general purpose or special purpose [8]. A general-purpose neurocomputer is programmable
and is capable of supporting a large range of neural network models, whereas a special-
purpose neurocomputer implements one neural model in dedicated hardware. The latter
benefits from higher speed than the former. Most neurocomputers are based on processing
elements computing in parallel. A survey by Solheim [9] lists about 80 different digital
neural hardware projects. However, only 20 of these proposed architectures have been
implemented. These systems are designed and built by either research institutes or com-
mercial companies.

1.1.1 Performance Metrics

Two metrics are commonly used for the speed of neural network simulations. Performance
during training is measured in connections updates per second (CUPS). This accounts for
the number of weights updated per second. For the recall phase performance, connections
per second (CPS) are used, which describe the number of weight multiplications in the
forward pass per second.

According to Crowl [10], presentation of parallel performance can be easily and un-
intentionally distorted. To avoid this, he suggests presenting the elapsed time as opposed
to the speedup where possible. The use of speedup to define performance is limited by
the lack of consensus for speedup definition. Crowl is of the opinion that many machines
sacrifice sequential performance for parallel scalability, which gives rise to overestimated
speedup. Linear speed (that is, solutions per time unit) is visually similar to speedup and
may be used instead. CPS and CUPS measure linear speed by connections computed or
updated per second.

The CUPS measure is sensitive to several factors." When the number of neurons is
large, the computation grains become large, which in most cases improve performance
compared to that obtained from a small number of neurons. However, if the network is too
large to be stored in main memory, the training slows down.

|

1.1.2 General Aspects of Parallel Processing

A parallel computer usually consists of a number of processing elements (PEs). Each
processing element consists of a processor and memory.>2 The memory can either be on
the processing chip or on separate chip(s). Recently, neural circuits have been produced
containing several PEs on a single chip. Because the processing elements may have to

'For example, in the case of multilayer networks with backpropagation, inclusion of the momentum term
increases the speed of convergence. But, there are more computations per iteration, leading to reduced CUPS
performance. Also, the output layer has less backward error computation than the hidden layer. Thus, if more
hidden layers are added to a network, the CUPS performance will be reduced.

“The name processing element was originally used for simple elements in SIMD computers, but today it is
also used for the more complex elements in MIMD computers.

1.1. PARALLEL PROCESSING FOR SIMULATING ANNS

exchange data with their neighbors, a communication module may be required for each
PE.

A number of topologies exist for interconnecting PEs [11]. The most common are
shown in Figure 1.1: broadcast bus, ring, array, 2-D mesh, 2-D toroidal mesh (2D-torus),
3-D mesh, and hypercube. 1-D systems have a much lower optimal processor count than
2-D and 3-D systems [7, 12]. This means that much finer grained parallel processing can
be realized by using a multidimensional topology.

Designers of parallel programs should be aware of Amdahl’s law, which states in
essence that the improvement of overall system performance attributed to the speeding
up of one part of the system is limited by the fraction of the job that is not speeded up [13].

Parallel computers can be classified according to Flynn’s classification, based on the
number of simultaneous instruction and data streams [14]:

SISD (single instruction stream single data stream): A sequential computer with a single
CPU.

SIMD (single instruction stream multiple data streams): A single program controls mul-
tiple execution units.

MISD (multiple instruction streams single data stream): Systolic arrays with pipelined
execution.

MIMD (multiple instruction streams multiple data streams): Computers with more than
one processor and the ability to execute more than one program simultaneously.
Computers in this category are also called multiprocessors or multicomputers de-
pending on shared or distributed memory, respectively.

A special execution mode of MIMD has been defined:

SPMD (single programs operating on multiple data streams): The same program is down-
loaded onto all the processing elements. The processors are usually performing the
same operations but on different parts of the data [15].

Several different methods are used for interprocessor communication. The two major
switching methods for communication [14] are the following :

Circuit Switching. A physical path is established between the source and the destination
before the message is sent. SIMD machines frequently use circuit switching.

Packet Switching. A message is split into fixed or flexible-sized packets. Each packet is
routed through the interconnection network independent of other packets. As such,
packets may take different routes through the network. MIMD machines are usually
based on packet switching.

Two major concerns in parallel implementations are the following:

Load Balancing. To minimize idle time, it is necessary to keep the processors active.
Each processor should be given an equivalent computation load.

Communication. To maximize the time processors perform computation, communication
should be minimized. Moreover, the communication should be distributed as evenly
as possible over all the communication links [16].

As the number of processors increases, these factors become more dominating. One of
the purposes of the work presented in this book is to show how fixed mappings of neural

CHAPTER 1. INTRODUCTION

paasi

BUS >
a) Broadcast bus

: g) Hypercube

f) 3-D mesh Processing element

FIGURE 1.1. Processor topologies for simulating ANNs (from [11]).

1.2. CLASSIFICATION OF ANN MODELS

networks to large parallel systems can be weakened by these problems. Another purpose
is to propose solutions to minimize these problems.

The computation grain size is an important factor in load balancing [17]. Grain size
determines the basic program segment chosen for parallel processing [18]. Fine-grained
parallelism means that the computation is spread over a number of small tasks; for coarse-
grained parallelism, however, the tasks are substantially larger. Some computers are suited
for coarse-grained computation (such as message-passing MIMD computers), whereas oth-
ers are designed for fine-grained computation (massively parallel SIMD computers, for
example).

Complexity modeling is theoretically a way to specify the upper bound on a program’s
running time. It is specified by the “big-oh” notation. For an input size n, O(n?) means
that there are positive constants ¢ and ng, such that for n equal to or greater than ng, the
running time for a program is 7'(n) < en?.

1.2 Classification of ANN Models

Research on artificial neural networks can be traced back to the 1940s, when McCulloch
and Pitts published their pioneering paper [19] describing the properties of a simple binary
threshold type of artificial neuron that has both excitatory and inhibitory inputs. When con-
nected as a network, these neurons could compute any logical (Boolean) function. This,
together with Donald Hebb’s discovery that learning in biological neurons occurs through
synaptic growth, triggered the development of several artificial neural computing models
in the 1950s. The most notable among the early models was the perceptron [20]. Dur-
ing the early 1960s, researchers presented convincing demonstrations using the perceptron
model [21]. But in the late 1960s, Minsky and Papert uncovered severe restrictions in the
learning capabilities of the perceptron model [22]. Very little research emerged during
the next 15 years, although stalwart researchers like Stephen Grossberg, Teuvo Kohonen,
James Anderson, Bernerd Widrow, David Willshaw, Amari, and a few others continued
to develop various ANN models and learning algorithms. The major thrust of their work
was in the area of associative content-addressable memory in which sufficiently similar
inputs become associated with one another. Finally, in 1986, Rumelhart and colleagues
introduced the learning algorithm for the multilayer perceptron network, called backprop-
agation (BP) [23]. This initiated a remarkable increase in neural network research resulting
in an explosion of network architectures and learning algorithms.

Because the number of learning algorithms and architectures in the ANN literature is
large, diverse, and growing, it is impossible to come up with a single classification scheme
that can capture all the essential traits of all these paradigms. A possible classification
scheme based on the type of learning (supervised/unsupervised/hybrid), architecture of the
network (feed-forward/recurrent), and the connectivity employed for the neurons (such as
multilayer, competitive, adaptive resonance theory) is shown in Figure 1.2. The learning
algorithms presented in Figure 1.2 have wide popularity but by no means are the only ones
to be found in the ANN literature.

1.3 ANN Models Covered in This Book

The ANN models for which parallel implementation is discussed in this book are enclosed
in shaded boxes in Figure 1.2. A brief description of each of these models follows.

CHAPTER |. INTRODUCTION

Learnin Network »le Learning
Paradig?n > Network < Connectivity Algorithm

Architecture

S Multi Layer {-—»{— Recurrent BP

T * > ART MAP

- o — LVQ
[Supervised Competitive

Leaming |— »
~» Multi Layer [——»

' —» Backpropagation

fffff e
—»{ Single Layer —{

o Kohonens
[SOM

U

—»| FeedForward |

Willshaw and
————p{ Van der Malsberg’s|
Method

Artificial >
Neural Networks —
Associative
—»| Hopfield| ™ *_ Memory
r—» Recurrent| |

—— |Unsupervised —» Vector
Learning —3 Competitive || Quantization

- Linsker's Self-Organisation
—> Multi Layer |————— " Feature Extraction

-»f FeedForward | __
-—>» Sanger's Method
—{ Single Layer [~ *{
-—»| Oja's Method

Clustering

IS and
A+ g Baysian Leaming

— > | Hybrid | | FeedForward |
Learning Clustering
- — > and
RBF Network Least Square Learning

FIGURE 1.2. A Taxonomy of ANN Models.

1.3. ANN MODELS COVERED IN THIS BOOK

1.3.1 Multilayer Feed-Forward Networks with BP Learning

A two-layer® feed-forward network is shown in Figure 1.3. The network is called fully
connected, because there are all-to-all connections between two adjacent neuron layers.
The number of neurons (also called units) in each layer is N;, Np, and N, for the input,
hidden, and output neuron layers, respectively. The network can be extended to any number
of layers; however, because most applications use two-weight layers, the description here
has been restricted to two-layer networks. The BP learning phase for a pattern consists of
a forward phase followed by a backward phase. The main steps are as follows:

1. Initialize the weights to small random values.

2. Select a training vector pair (input and the corresponding output) from the training
set and present the input vector to the inputs of the network.

3. Calculate the actual outputs - this is the forward phase.

4. According to the difference between actual and desired outputs (error), adjust the
weights W, and W}, to reduce the difference - this is the backward phase.

5. Repeat from step 2 for all training vectors.

6. Repeat from step 2 until the error is acceptably small.

Outputs
Output Yol Yo,No
Layer QO
2
=S Wo g
. =] =
Hidden — <
Layer § yh,1< ‘ Y hNh §_
5 T wi 1
Wi VE

Inputs

FIGURE 1.3. A two-weight layer feed-forward neural network.

The weight updating scheme used is called learning by pattern (Ibp) or on-line weight
update, and it updates the weights after each training pattern has been presented. Experi-
ments have shown this update method, which is stochastic gradient descent [24], converges
faster than the total gradient descent, which updates the weights after all training patterns
have been presented. However, only the latter method, called learning by epoch (lbe), has

3In this section, the word layer refers to the number of layers of weights in the network. This is equal to the
number of layers of neurons, when excluding the input neuron layer.

CHAPTER 1. INTRODUCTION

been proved to converge.* An intermediate method is called learning by block (1bb) and it
updates the weights after a certain number of patterns have been presented.

1.3.1.1 A Detailed Description of the BP Learning Algorithm. In the forward phase the
hidden layer weight matrix W}, is multiplied by the input vector X = (x1,2,... ,zn;)7,
to calculate the hidden layer output

N;
Yh.j =f(th.ji$i*9) (1.1)
i=1

where wy, j; is the weight connecting input unit ¢ to unit j in the hidden neuron layer.’> The
0 is an offset termed bias incorporated into the training algorithm by a weight connected
to +1 for each neuron [21]. This bias-weight is trained like an ordinary weight.

The function f is a nonlinear activation function. Normally the S-shaped sigmoid
function

1

f(a)zm;j

(1.2)

is used. It compresses the output value to lie in < 0,1 >, as shown in Figure 1.4. Moreover,
the function is differentiable, which is a demand of the training algorithm.

0.9 - /]

0.6 | _
05| |
04 | /
0.3t /

oz / :

0.1 s

FIGURE 1.4. The sigmoid function f(a) = T+—1—
e“(l'

The output from the hidden layer, yj, ;, is used to calculate the output of the network,
Yo .k

Ny
Yo,k = f(z Wo,kjYh,j — 9) (1.3)

=1

“However, the number of training set presentations required for convergence has no known theoretical bound.
5To distinguish the different neuron layers, the indices %, 7, and & are used for indexing the input, hidden, and
output neuron layers, respectively.

1.3. ANN MODELS COVERED IN THIS BOOK

The error measure E, for a training pattern p is given by

N,
1 <= 2
E, = 3 kE—l(d & — Yp.ok) - (1.4)

The overall error measure for a training set of P patterns is

E=) E, (15)

p=1

In the following expressions, the pattern index p has been omitted on all variables to
improve clarity. In the backward phase the target, d, and output, y,, are compared and the
difference (error) is used to adapt the weights to reduce the error.

The error used to update the weights can be shown [23] to be

do.k = Yo,k (1 — Yo,k) (dk — Yo,)- (1.6)

Similar to computing the output delta error, the hidden delta error value for neuron j is

N,
Sng = Yni(1 = Yn;s) D Go ko k;- (L.7)
k=1

The error is not explicitly given and is computed based on the impact of the fan-in of the
output delta errors. To perform steepest descent in the weight space, the weight changes
become

Awo kj = 100,k Yh,j (1.8)
Awp,ji = Noh,;T; (1.9)

where 7 is the learning rate coefficient.
If learning by pattern is applied, the output layer weights are changed to w;, , j

W ;i = Wo,kj + 1700,kYh,j- (1.10)
The hidden layer weights are updated accordingly
W ji = Wh,ji + NOk,;Ti- (1.11)

The training continues for each vector in the training set until the error for the entire set
becomes acceptably small.

Instead of updating the weights after each training pattern presentation, they can be
updated less frequently by using learning by block. For updates after . patterns have been
presented, Equations 1.10 and 1.11 become 1.12 and 1.13:

P+

Wi = Woks +71 D OpokYph (1.12)
p=p'+1
p'Hu

Whji = Whji +1 Z Op,h,ip,i- (1.13)

p=p'+1

CHAPTER 1. INTRODUCTION

The total number of training patterns is P and p < P. Learning by block is well suited
to parallelization, but as shown by Paugam—Moisy [25], the convergence rate declines as
w gets larger. Therefore, an appropriate value for 4 needs to be chosen. When p = P, the
scheme is called learning by epoch.

The error measure in Equation 1.5 is dependent on IV, and P. Thus, large numbers for
N, and P result in a large value for the overall error E. An alternative measure for the
overall error is the root mean square error (RMSE) given by

P N
1 .
Epyvse = E E (dpk = Yp,o.k)?> (1.14)
PNO p=1 k=1

As stated, no proven convergence for the backpropagation algorithm exists,® and there-
fore, the word convergence is defined as reaching a predetermined stopping criteria [25].

1.3.1.2 Momentum. To obtain true gradient descent requires infinitesimal small changes
of the weights. This is obtained by selecting a small value for the learning rate. However,
we want to choose as large a learning rate as possible without leading to oscillation,” be-
cause experiments show that this offers the most rapid learning [23]. To increase the learn-
ing rate and avoid oscillation, a momentum can be included. Rumelhart and colleagues
proposed to add a fraction, equal to «, of the previous weight update value to the current
weight change [23]

Aw, kj(p+ 1) = ndok(p+ Dyn ;(p + 1) + alAw, 1;(p) (1.15)

where p is the training pattern index. The weights are then updated
Wokj(p+ 1) = wokj(p) + Aworj(p + 1). (1.16)
Similarly, Sejnowski and Rosenberg [26] proposed a smoothing term,
Awo j(p + 1) = alwek;(p) + (1 — a)dok(p + Dyn,;(p + 1). (1.17)

The smoothing makes it less necessary to scale the learning rate according the weight
update interval

Wo ki (P + 1) = wo k() + NAw, ki (p + 1). (1.18)

The equations for updating of the hidden weights can be similarly derived. The term « is
normally set to around 0.9.

1.3.1.3 The Effect of the Weight Update Interval. It is shown for one neural application
by Paugam-Moisy that less frequent weight updates during training reduces the conver-
gence rate. That is, the decrease in error per training iteration is smaller. The network
classified patterns into three classes. To avoid unstable behavior during training, the learn-
ing rate had to be reduced when the weight update interval was increased. The reason for
this can be explained by network paralysis [21]. Adding weight changes for many training
vectors together may result in large weight change values. This may lead to large weight

6 An exception is learning by epoch, but still there is no bound in the number of training iterations required.

"The error is not constantly decreasing but is oscillating between large and small error values without reaching
convergence.

1.3. ANN MODELS COVERED IN THIS BOOK

values if the learning rate is not reduced. Large weights can lead to large output values to
be input to the nonlinear function. The derivative of the function, which is used for com-
puting the delta error, approaches zero for large values. This results in a very small change
in the weights, and the training can come to a virtual standstill.

A special case of learning by pattern is delayed weight update in which the weights
are updated for pattern p after the forward pass for the next pattern, —p + 1, has been
computed. This method may be used for weight updating when the computation of each
layer is distributed over different processors. The delta weight change values are small
compared to the weights and thus the convergence should be very close to the convergence
of ordinary pattern weight updates.

For some neural application experiments learning by pattern updating results in a
stagnation of the error that does not occur for learning by epoch updating. The quick-
propagation (quickprop) algorithm, proposed by Fahlman [27], is based on learning by
epoch. That s, all training vectors are applied before the new weights are computed. Thus,
training set parallelism can be used in parallel implementation of quickprop without lead-
ing to any reduction in the convergence rate.

The redundancy in large training sets slows down the convergence of learning by
epoch-based algorithms according to Mgller [28]. Accumulating redundant gradient weight
vectors implies redundant computation. This is not a problem if the weights are updated
after each training vector. In fact, redundancy has a positive effect in the beginning of the
training. However, simulations show that a conjugate gradient training algorithm— based
on epoch learning— which is more efficient in the end of training even though there is
redundancy in the training set. Thus, a learning by block approach is proposed, where the
block size varies throughout training. Because the redundancy is dependent on the prob-
lem, the block size has to be selected by estimation. For each iteration the block size that
leads to a confident decrease in the total error of the training set is determined. Simulation
using Nettalk [26] shows that the training starts with a very small block size and ends by
updating weights only two or three times per epoch.

1.3.1.4 Learning Performance. The number of floating point operations used for weight
updating for learning by pattern differs from the number for learning by block/epoch. In
this section, expressions will be derived to show the difference in computation between the
different weight update strategies [29]. The expressions are based on a serial execution of
the training program. On a parallel computer, additional time is used for communication.
The Nettalk application with number of neurons N; = 203, N, = 120, N, = 26, and
P = 5,438 training patterns is used here to illustrate the difference. The Nettalk training
uses the Sejnowski momentum (Equations 1.17 and 1.18) for weight update. The number
of floating point operations used for /bp weight updating is then 6 per weight, leading to a
total number for one training iteration

Flbp -_—6P(N,‘+N0)Nh (1.19)
= 6 x 5,438(203 + 26)120 = 896, 617, 440. (1.20)

CHAPTER 1. INTRODUCTION

For Ibb the number of floating point operations for weight accumulation and updating—
2 and 5, respectively— is found from Equations 1.12, 1.13, 1.17, and 1.18. This leads to a
total floating point operation count of

[P
Fyp = 2P(N; + No)Np +5 ;‘l (Ni—l-No)Nh (1.21)
P
=(2P+5 [;])(N, + N,)Np, (1.22)
4 7
=(2-5,438+5 '15—%)(203 + 26)120 (1.23)
= 208,872,480 + %747, 181, 200. (1.24)

The first expression in Equation 1.21 represents the weight accumulation and the latter
represents weight updating. The number of operations for weight accumulation is less
than for weight update. Thus, if the weights are infrequently updated we get Fjpp, > Fipp.
Figure 1.5 shows the number of floating point operations for weight accumulation and
update for different weight update intervals, p.

Learning by block ——
Learning by pattern - - - -

1e+09
8e+08

6e+08

4e+08

2e+08 g

Number of Floating Point Operations

0 1 1 ol
1 10 100 1000
Number of patterns presented between weight updates

FIGURE 1.5. The number of floating point operations for weight accumulation and update for block
updates, Fiyyy, and for pattern updates, Fipp.

The update method learning by epoch uses a smaller number of operations than learn-
ing by pattern if the block size is larger or equals two, that is, u > 2.

Where learning by block/epoch is used, CUPS is given by the number of weight-change
values computed per second. That is, the number of weights updated is excluded when the
CUPS value is calculated. However, the time for weight update is not excluded. Thus,
only the number of weights accumulated per epoch is used for computing the CUPS value,
which is like omitting the second expression in Equation 1.21.

1.3. ANN MODELS COVERED IN THIS BOOK

To measure how well a feed-forward neural network has learned, a separate test set
should be used in addition to the training set. The available vectors should be partitioned
into disjoint sets: learning set and test set. It is preferable that several different test sets are
included. The test set should include a representative selection of patterns; for example,
for pattern classification, the test set should contain vectors from all classes. The network
is trained by the training set and then tested using the test set. The test set or a separate
acceptance set is used as an acceptance set for the network.

Variants of the BP Algorithm. During recent years, several variants of BP learning have
been proposed, such as quick propagation and conjugate gradient method. A comparison
of learning algorithms for feed-forward networks by Nesvik [30] showed that some of the
new algorithms were less sensitive to the selection of the learning parameters.

1.3.2 Hopfield Network

The Hopfield network is a single layer recurrent network that embodies the idea of storing
information as the stable states of a dynamically evolving network configuration. Using an
energy function in terms of the connection weights and outputs of the neurons, Hopfield
showed [31, 32] how such networks can be used to solve specific problems in associative
memory and combinatorial optimization. Two versions of the Hopfield network exist: dis-~
crete and continuous valued. The discrete Hopfield network is used as associative memory,
whereas the continuous Hopfield network is used for combinatorial optimization.

1.3.2.1 Discrete Hopfield Network. In this network the neurons can only have two states
as their output. The on state is represented by +1 and the off state is represented by minus
1. A network with N neurons is shown in Figure 1.6. The state of the network is given
by the vector Y = [y1,...,9i,... ,yn]’, where y; denotes the output of neuron i, which
can only be £1. The output of neuron 7 is given by

N
Yi = sgn(z wijy; — ;) (1.25)
j=1

where sgn is the signum function, w;; is the weight connecting neuron ¢ and j, wy; is
zero, and 8, is a fixed threshold value. If the argument of the signum function is zero, then
the output of neuron ¢ remains unchanged. As an associative network, the operation of
Hopfield network has two phases: the storage phase and the retrieval phase.

1.3.2.2 Storage Phase. 1In this phase the network is trained to memorize the patterns it
has to recall later. These patterns are known as prototype patterns or fundamental memories
of the network. Training the network is a one-shot operation as the connection weights are
directly computed from the following equation:

I & 5y
wij = ; it (1.26)

where 777 and 77} are the i** and j** elements of the prototype pattern n” and m is the
number of prototype patterns the network has to memorize. Once computed, the weights
are kept fixed. Note from Equation 1.26 that weights w;; and w;; are the same. The weight
matrix [W] for the network is thus symmetric.

CHAPTER 1. INTRODUCTION

FIGURE 1.6. A Hopfield Network of N neurons.

1.3.2.3 Retrieval Phase. In this phase the network is presented with a pattern that dif-
fers from the prototype patterns. Usually it is an incomplete or noisy version of one of
the prototype patterns. The state of the network then evolves according to the following
difference equation:

Y(k+1)=sgn(WY(k)—0O) (1.27)

where Y is the output vector and W is the symmetric weight matrix. The vector © =
[61,...,0;,...,0n]T is the threshold vector and % is the iteration index. Starting with
the input pattern vector, the outputs are updated recursively according to Equation 1.27
until the network settles to a stable state. The updating of the outputs could be syn-
chronous or asynchronous. In synchronous updating, the outputs for all neurons— that
is, yi(k +1); ¢ =1,... , N— are computed simultaneously at each iteration index. This
is also called the parallel mode of operation. In asynchronous updating, y;(k + 1); i =
1,..., N are computed sequentially in some random order. In an iteration, if neurons are
selected randomly one by one and their outputs are computed sequentially, then it is known
as simple asynchronous updating. If groups of neurons are selected randomly and updated
synchronously within the group and sequentially between groups, then it is called general
asynchronous dynamics. Note that in simple asynchronous dynamics the neuron updating
is always sequential and random whereas in general asynchronous dynamics neuron up-
dating is parallel within a group and serial between groups. However, all neurons must be
updated once in each iteration. If the neurons are updated according to the simple asyn-
chronous dynamics, then the Hopfield network will always converge to a stable state. If
the neurons are updated synchronously then the network will always converge to a stable
state or a limit cycle of length 2 or less [33].

1.3.2.4 Energy Function. Hopfield used an energy function to prove convergence of the
network when simple asynchronous updating is used for the network outputs. The energy

1.3. ANN MODELS COVERED IN THIS BOOK

function E(k), assuming the threshold vector (@) to be zero, is given by

E(k) = ——;- > wijyi(k)y; (k). (1.28)

i=1 j=1

As the network evolves according to the dynamics of Equation 1.27, the energy E(k) can
only decrease or stay unchanged at each update. This is because the change AFE (k) due to
a change in the output y; can only be zero or negative [33]. Eventually the network will
converge to a (local) minimum energy state because E is bounded from below. The local
minimum points in the energy landscape correspond to the prototype patterns stored in the
storage phase. The maximum number of patterns a Hopfield network of N neurons can
store is approximately equal to 0.15N [31].

1.3.2.5 Continuous Hopfield Network. The continuous version of the Hopfield network
is obtained from the discrete version by replacing the signum function by a sigmoid func-
tion in equation 1.25. The neuron outputs are then continuous in the range 0 to 1 and the
outputs of all neurons are updated simultaneously and continuously. Because the outputs
are continuous valued and they change continuously, the dynamics of the network can be
described by a set of simultaneous nonlinear differential equations as [32]

_dy; .
Tt =it f(Zw”yj i=1,...,N (1.29)
j=1

where 7; is a time constant and f(.) is the sigmoid function. Because the weight matrix
is symmetric, the solution y;(t) to the previous equations will always converge to a fixed
point as guaranteed by the Cohen-Grossberg theorem [34].

The behavior of the network can then be shown to minimize an energy function as in
the case of discrete Hopfield network. Hopfield (1984) used the energy function

:““Z Zwmyz Yj +Z/ f 1(y)dy

i=1 j=1

and showed that ‘(f < 0 for all ¢. It is this property of the Hopfield network that makes it
suitable for solving problems in optimization. If a combinatorial optimization problem can
be expressed as minimizing an energy function, then a Hopfield network can be used to find
the optimal (or suboptimal) solution for that problem. The real difficulty is in mapping the
objective function of the optimization problem subject to various constraints into a single
energy function. Once the energy function is found, then the weights of the network can be
found by relating the terms of the energy function to those of the general form. Hopfield
and Tank [35] showed how a continuous Hopfield network can be used to solve the classic

Traveling Salesman Problem for 10 cities.

1.3.3 Multilayer Recurrent Networks

Single-layer recurrent networks, such as the Hopfield network, with symmetric connection
weights, are guaranteed to converge to stable states and, hence, are not suitable for learning
temporal sequences of patterns. If the connection weight matrix in a recurrent network is
made assymetric, then the resulting network can converge to stable states or exhibit limit
cycles or chaos. Such networks can be used for generating, recognizing, and storing tem-
poral sequences of patterns with applications in speech recognition, time series prediction,

CHAPTER I. INTRODUCTION

identification and control of nonlinear dynamic systems, and so on. [36]. The dynamics
of assymetric recurrent networks have been studied widely and many training algorithms,
which are modified forms of backpropagation, have been proposed [37-42]. The real-
time recurrent learning algorithm by Williams and Zipser [41] is perhaps the most popular
among these because of its ability to train the network on-line as the input patterns are
presented sequentially in time.

1.3.3.1 Real-Time Recurrent Learning. Inreal-time recurrent learning (RTRL) the weights
can be incremented on-line or at the end of the whole input sequence. Because on-line up-
dating is possible, the RTRL algorithm can deal with input sequences of arbitrary length
and does not require memory proportional to the length of input sequence. The cost func-
tion to be minimized is given by Fio;(to,ts)

tf.f

Eot(to,ts) = Z Z By ()] (1.30)

Lto

where t = tg, ... ,t; is the time domain of interest. Ej(t) is the error for neuron £ at time
t and is the difference between the desired output di (¢) and the actual output yy(¢) of the
neuron k at time ¢. If no desired output is specified for neuron £ at time ¢, then Ej (¢) will
be set to zero.

Ei(t) = di(t) —yr(t) if dg(t) is defined,
0 otherwise.

Gradient descent is used to adjust the weights of the network. The gradient of E; o (to,ty)
separates in time

o Euallorty) = 3 ——Z[EL () +... 42 o LUK

Therefore, the total weight increment for any weight becomes the sum of the weight in-
crements calculated at times o, t1, ... ,ty. The weights can be updated at the end of the
sequence att = ty, but a better procedure is to keep updating them at each time step o, t1
and so on. The resulting algorithm is called the real-time recurrent learning because the
weights are updated in real time as the input sequence is presented. The method avoids the
need for large storage requirement of long input sequences and works especially well if the
learning rate is small.

1.3.4 Adaptive Resonance Theory (ART) Networks

One of the interesting properties of the human brain is its ability to learn new facts con-
tinually without forgetting previously learned facts. It is thus flexible (plastic) enough to
learn new facts yet rigid (stable) enough to keep irrelevant facts from washing away the old
facts. An artificial neural network trying to exhibit this property should have a high degree
of stability with respect to what has been learned, yet it should be adaptive enough to learn
new facts on a continuous basis. However, it is not easy for an ANN to have both a high de-
gree of stability and plasticity as these two characteristics conflict. Grossberg calls this the
stability-plasticity dilemma, and the ART networks (ART1, ART2, ARTMAP) were de-
veloped by Carpenter and Grossberg [43—46] in an attempt to solve this stability-plasticity
problem. The simplest form of ART network is the ART1 network, which is designed to
work for binary (0/1) inputs only. Extension of ART1 to handle both binary and continuous

1.3. ANN MODELS COVERED IN THIS BOOK

valued inputs is achieved in ART2. Both ART1 and ART?2 are unsupervised competitive
learning networks. ARTMAP is a modification of ART2 and is a supervised competitive
learning network.

The ART1 network consists of an input layer and an output layer that are fully con-
nected to each other. An input pattern vector X is applied and the output neuron that has
the largest net input is picked as the winner; that is, if the winning neuron is 7, then

w,-X S W;- X
B+ Zjwir ~ B+ Xjwji

forall i (1.31)

where W, and W, are the weight vectors of the output neurons r and ¢, respectively, and
the symbol “-” means scalar product. 3 is a small positive constant and w;, and wj; are
the jth component of W, and W; respectively. Note that dividing by ¥ ;w;, and Xjw;
normalizes the weight vectors W, and W; and f is included merely to break the ties in
selecting the winner.

The weight vector W, of the winning neuron is then tested for its similarity with the
input pattern X . The similarity measure (s,) for the weight vector W, is computed as the
ratio of the number of 1s overlapping in X and W, to the total number of 1s in X. If
sy > p, where p is a threshold called the “vigilance” parameter, then W, is considered to
be sufficiently similar to X. If W, is sufficiently similar to X, then resonance is said to
occur between the input and output and the resonating output neuron becomes a “commit-
ted” neuron. The weight vector of the resonating neuron r is then moved closer to X by
changing to zeros the 1s in W, for which the corresponding components in X are zeros.

If W, is not sufficiently similar to X (that is, s, < p), then the winning neuron r is
“disabled” or withdrawn from the competition. A new winner is then found using Equation
1.31 from among the output neurons that are not disabled and is tested for resonance with
the input vector X . If the input vector does not resonate with any of the output neurons,
then an “uncommitted” output neuron is picked (even though it did not resonate) and its
weight vector made equal to the input vector to provide resonance with the input. If none of
the output neurons resonate with the input vector and no uncommitted output neurons are
left, then the input pattern is rejected implying that the network has reached its capacity.
The ART1 network runs entirely autonomously without needing any external control or
sequencing signals and the architecture is entirely parallel.

1.3.5 Self-Organizing Map (SOM) Networks

The SOM network [47] is a simplified model of the feature-to-local region mapping done
in the human brain. The basic idea is that inputs that are close to each other according
to some metric in the input space should be mapped to output neurons that are spatially
close together. This is known as topology preservation and is an important aspect of fea-
ture mapping in the brain. The architecture of SOM network consists of a two-dimensional
array of neurons with each neuron connected to all input nodes. Further, all the neurons
also have lateral connections to each other. The strength of lateral connections follow a
“Mexican-Hat” function [48]. By involving a neighborhood function to achieve the effect
of the Mexican-Hat lateral interactions, Kohonen devised a SOM network in which no
lateral connections exist. Figure 1.7 shows the basic architecture of Kohonen’s SOM net-
work. There are n input units and the weight connecting input units to the output neuron ¢
is denoted by the vector ;. When an input pattern X is applied, each output neuron com-
putes the Euclidean distance between the input vector and the weight vector of that neuron.
Competitive learning rule is then used and the neuron whose weight vector is closest to the

CHAPTER 1. INTRODUCTION

X1 X2||lan

FIGURE 1.7. Kohonen’s SOM network.

input vector is chosen as the winner; that is, if the winning neuron is r, then

X — W,

= min ||.X — W;|| for all 4. (1.32)

The network learns by changing appreciably the weights of the winning neuron and its
neighbors by dragging their weight vectors toward the input pattern X, whereas those far
away from the winning neurons experience little change to their weights. This is how the
topology preservation is achieved. The weight update equation is given by

Wrew = Wl 4 o N(i,r) (X — W;) for all 4. (1.33)

The function N (i,7) is called the neighborhood function, and its value is 1 fori = r
and falls off as the distance between the neurons r and ¢ increases. « is the learning rate.
The range of N (7, r) and the value of « are reduced gradually as learning progresses. A
common choice for N (i,) is

N(i,r) = exp (=||d; — d,|[*/(207)) (1.34)

where d; and d, are vectors indicating the positions of neurons i, r, and o is a width pa-
rameter that controls the range of N (¢,7) and is gradually decreased as learning proceeds.

1.3.6 Processor Topologies and Hardware Platforms

This book deals with parallel mapping of the ANN models described in Section 1.3 on
various hardware platforms and processor topologies. Details of the hardware platforms,
topologies, and the mapping scheme employed are described in the appropriate chapters.
Table 1.1 presents an overview.

1.3. ANN MODELS COVERED IN THIS BOOK

ANN Model Processor Topology | Hardware Details

Multilayer Two-Dimensional Fujitsu AP1000 (MIMD)

Feed-Forward | Torus (Chapter 7)

Network Ring DSPs—MUSIC Machine (MIMD)

(Chapter 10)

Ring Transputers

BP Learning (Heterogeneous MIMD)

(Chapters 3 and 4)

Two-Dimensional DREAM Machine (SIMD)
Lattice (Chapter 9)
Vector Spert-II Machine
Microprocessor (Chapter 11)

Hopfield Toroidal Lattice Transputers (MIMD)

Network and Planar Lattice (Chapter 8)
Two-Dimensional DREAM Machine (SIMD)
Lattice (Chapter 9)

Recurrent Ring Transputers (MIMD)

BP Network (Chapter 5)

Adaptive

Resonance Ring Transputers (MIMD)

Theory (Chapter 6)

Network

Self- Vector Spert-II Machine

Organizing Microprocessor (Chapter 11)

Map

(SOM)

TABLE 1.1. ANN Models and their parallel implementations.

References

[1] H. Drucker and Y. Le Cun, “Improving generalization performance using double
backpropagation,” IEEE Transactions on Neural Networks, vol. 3, no. 6, pp. 991—
997, 1992.

[2] Y. Le Cun, et. al., “Backpropagation applied to handwritten zip code recognition,”
Neural Computation, vol. 1, no. 4, pp. 541-551, 1989.

[3]1 A. Waibel, “Consonant recognition by modular construction of large phonetic
time-delay neural networks,” Advances in Neural Information Processing Systems,
pp- 215-223, 1989.

[4] C.J. Sheng Ma and J. Farmer, “An efficient EM-based training algorithm for feedfor-
ward neural networks,” Neural Networks, vol. 10, no. 2, pp. 243-256, 1997.

[5]1 P. B. S. Osowski and M. Stodolski, “Fast second order learning algorithms for
feedforward neural networks and its applications,” Neural Networks, vol. 9, no. 9,
pp. 15831596, 1996.

[6] R. W. Means, “High speed parallel hardware performance issues,” in IEEE Interna-
tional Conference on Neural Networks (ICNN’94) (S. K. Rogers, ed.), pp. 10-16,
June 28-July 2 1994.

[7]1 L. E. Atlas and Y. Suzuki, “Digital systems for artificial neural networks,” IEEE
Circuits and Devices Magazine, pp. 20-24, Nov. 1989.

[8] P. Treleven, Neurocomputers. Research Note 89/8, Department of Computer Science,
University College London, January 1989.

[9] J. G. Solheim, The RENNS approach to neural computing. PhD thesis, Norwegian
Institute of Technology, In preparation.

[10] L. A. Crowl, “How to measure, present and compare parallel performance,” /EEE
Parallel & Distributed Technology, vol. 2, no. 1, pp. 9-25, 1994.

[11] L. Utne, Design of a reconfigurable neurocomputer Performance analysis by imple-
mentation of recurrent associative memories. PhD thesis, Norwegian Institute of
Technology, 1995. ISBN 82-7119-793-2.

[12] P. Ienne, “Quantitative comparison of architectures for digital neuro-computers,” in
Proc. of IEEE Int. Conference on Neural Networks, pp. 1987-1990, 1993.

[13] K. Asanovic, J. Beck, J. Feldman, N. Morgan, and J.Wawrzynek, “Designing a con-
nectionist network supercomputer,” International Journal of Neural Systems, vol. 4,

pp- 317-326, December 1993. ISSN: 0129-0657.

21

REFERENCES

2
[N

[14] K. Hwang and F. A. Briggs, Computer architecture and parallel processing.
McGraw-Hill Book Company, 5th ed., 1989.

[15] N.Morgan, et. al., “The ring array processor (RAP): A multiprocessing peripheral for
connectionist applications,” Journal of Parallel and Distributed Computing, vol. 14,
1992. Special Issue on Neural Networks.

[16] M. E. Azema-Barac, A generic strategy for mapping neural network models on
transputer-based machines, pp. 244-249. 10S Press, 1992. In: Transputing in Nu-
merical and neural network applications, G.L. Reijns and J. Luo, Eds.

[17] D. B. Davidson, “A parallel processing tutorial,” IEEE Antennas and Propagation
Society Magazine, pp. 619, April 1990.

[18] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programma-
bility. McGraw-Hill, Inc., 1993.

[19] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas imminent in nervous
activity,” in Neurocomputing: Foundations and research (Anderson and Rosenberg,
eds.), ch. 2, pp. 18-28, The MIT Press, 1988. Reprint of the “Bulletin of Mathemati-
cal Biophysics”, 1943.

[20] R. F, Principles of Neurodynamics. Spartan Books, New York, 1962.

[21] P. D. Wasserman, Neural Computing — Theory and Practice. Van Nostrand Reinhold,
1989.

[22] M. Minsky and S. Papert, Perceptrons. The MIT Press, 1969.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representation
by error propagation,” in Parallel Distributed Processing, vol. 1, pp. 318-362, The
MIT Press, 1986.

[24] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Englewood Cliffs, N.J.:
Prentice-Hall, 1985.

[25] H. Paugam-Moisy, “Parallel neural computing based on neural network duplicating,”
in Parallel algorithms for digital image processing, computer vision and neural net-
works (1. Pitas, ed.), ch. 10, pp. 305-340, John Wiley & Sons, 1993.

[26] T. J. Sejnowski and C. R. Rosenberg, “Parallel networks that learn to pronounce
English text,” Complex Systems, vol. 1, pp. 145-168, 1987.

[27] S. Fahiman, “Faster-learning variations on back-propagation,” in Proc. of the 1988
Connectionist Models Summer School, Carnegie-Mellom University, 1988.

[28] M. Mgller, “Supervised learning on large redundant training sets,” Int. Journal of
Neural Systems, vol. 4, no. 1, pp. 15-25, 1993. World Scientific Publishing Company.

[29] J. Torresen, Parallelization of Backpropagation Training for Feed-Forward Neural
Nerworks. PhD thesis, Norwegian University of Science and Technology, 1996. ISBN
82-7119-906-4.

[30] G. O. Nesvik, An empirical study of selected learning algorithms for feed-forward
neural networks. PhD thesis, Norwegian Institute of Technology, 1993. ISBN 82-
7119-548-4.

REFERENCES

[31] J. Hopfield, “Neural networks and physical systems with emergent collective compu-
tational abilities,” in Proceedings of National Academy of Science, vol. 79, (USA),
pp. 2554-2558, 1982.

[32] J. Hopfield, “Neurons with graded response have collective computations properties
like those of two-state neurons,” in Proceedings of National Academy of Science,
vol. 81, (USA), pp. 3088-3092, 1984.

[33] S. Haykin, Neural Networks: A Comprehensive Foundation. New York: MacMillan
College Publishing Co, 1994.

[34] M. Cohen and S. Grossberg, “Absolute stability of global pattern information and par-
allel memory storage by competitive neural networks,” IEEE transaction of Systems,
Man and Cybernetics, vol. 13, pp. 815-826, 1983.

[35] J. J. Hopfield and D. W. Tank, “Neural computations of decisions in optimzation
problems,” Biological Cybernetics, vol. 52, pp. 141-152, 1985.

[36] D. Patterson, Artificial Neural Networks, Theory and Aplications. Prentice Hall,
1995.

[37] F. Pineda, “Generalization of backpropagation to recurrent neural networks,” Phys.
rev. Letters, vol. 59, pp. 2229-2232, 1987.

[38] L. Almedia, “Backpropagation in non-feedforward networks,” in Neural Computing
Architecture (1. Aleksander, ed.), pp. 74-91, North Oxford Academic, London, 1989.

[39] P. Werbos, “Generalization of backpropagtion with application to a recurrent gas mar-
ket model,” Neural Networks, vol. 1, pp. 339-356, 1988.

[40] A. Robison and F. Fallside, “Static and dynamic error propagation networks with
applications to speech coding,” in Neural Information Processing Systems (D. Z. An-
derson, ed.), pp. 632-641, American Institute of Physics, New York, 1988.

[41] R. J. Williams and D. Zipser, “A learning algorithm for continually learning fully
recurrent neural networks,” Neural Computations, vol. 1, pp. 270-280, 1989.

[42] B. Pearlmutter, “Learning state space trajectories in recurrent neural networks,” Neu-
ral Computations, vol. 1, pp. 263-269, 1989.

[43] G. Carpenter and S. Grossberg, “A massively parallel architecture for a self-
organizing neural pattern recognition machine,” Computer Vision, Graphics and Im-
age Processing, vol. 37, pp. 54-115, 1987.

[44] G. Carpenter and S. Grossberg, “ART2: Self-organizing of stable category recogni-
tion codes for analog input patterns,” Applied Optics, vol. 26, pp. 4919-4930, 1987.

[45] G. Carpenter and S. Grossberg, “The ART of adaptive pattern recognition by self-
organizing neural networks,” IEEE Computer, vol. 21, pp. 77-88, March 1988.

[46] G. Carpenter and S. Grossberg, Pattern Recognition by Self-organizing Neural Net-
works. MIT Press, Cambridge, Mass, 1991.

[47] T. Kohonen, Self-Organization and Associative Memory. Springer-Verlag, Berlin,
3rd ed., 1989.

[48] A. K. J.Hertz and R. Palmer, Introduction to the Theory of Neural Computation.
Addison Wesley, Reading, MA, 1991.

