
1
The Capability Maturity

Model" for Software'

Mark C. Paulk, Charles V. Weber, and Mary Beth Chrissis
Software Engineering Institute, USA

This chapter provides an overview of the Capability Maturity Model for Software
(CMM VI.1). CMM Vl. l describes the software engineering and management prac-
tices that characterize organizations as their processes for developing and maintain-
ing software mature. This chapter stresses the need for a process maturity framework
to prioritize improvement actions; describes the five maturity levels, key process ar-
eas, and their common features; and discusses future directions for the CMM.

Introduction
In many organizations, software projects are often late and over budget. This state of
affairs is sometimes referred to as the "software crisis." In 1986 the Software
Engineering Institute (SEI), with assistance from the MITRE Corporation, began
developing a process maturity framework that would help organizations improve
their software process; this has evolved into the Capability Maturity Model for
Software (CMM or SW-CMM1) [11, 6, 12].

The SW-CMM presents sets of recommended practices in a number of key process
areas that have been shown to enhance software process capability. It provides
software organizations with guidance on how to gain control of their processes for
developing and maintaining software and how to evolve toward a culture of software
engineering and management excellence. By focusing on a limited set of issues and
working aggressively to address them, an organization can steadily impiove its
organization-wide software process to enable continual and lasting gains in software

SM CMM, Capability Maturity Model, and IDEAL are service marks of Carnegie Mellon University.

f The U.S. Department of Defense sponsored this work.
1 Several CMMs inspired by the CMM for Software have now been developed. To minimize confusion, we
use SW-CMM to identify the original CMM for Software.

4 ELEMENTS OF SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT

process capability.
Setting sensible goals for process improvement requires an understanding of the

difference between immature and mature software organizations. In an immature
software organization, software processes are generally improvised by practitioners
and their management during the course of the project. Even if a software process has
been specified, it is not rigorously followed or enforced. The immature software
organization is reactionary, and managers are usually focused on solving immediate
crises (better known as fire fighting). Schedules and budgets are routinely exceeded
because they are not based on realistic estimates. When hard deadlines are imposed,
product functionality and quality are often compromised to meet the schedule.

In an immature organization, there is no objective basis for judging product
quality or for solving product or process problems. Therefore, product quality is
difficult to predict. Activities intended to enhance quality such as reviews and testing
are often curtailed or eliminated when projects fall behind schedule.

In contrast, a mature software organization possesses an organization-wide ability
for managing software development and maintenance processes. The software process
is accurately communicated to both existing staff and new employees, and work
activities are carried out according to the planned process. The mandated processes
are usable and consistent with the way the work actually gets done. These defined
processes are updated when necessary, and improvements are developed through
controlled pilot-tests and/or cost benefit analyses. Roles and responsibilities within
the defined process are clear throughout the project and across the organization.

In a mature organization, managers monitor the quality of the software products
and the process that produced them. There is an objective, quantitative basis for
judging product quality and analyzing problems with the product and process.
Schedules and budgets are based on historical performance and are realistic; the
expected results for cost, schedule, functionality, and quality of the product are
usually achieved. In general, a disciplined process is consistently followed because all
of the participants understand the value of doing so, and the necessary infrastructure
exists to support the process.

Fundamental Concepts Underlying Process Maturity
A software process can be defined as a set of activities, methods, practices, and
transformations that people use to develop and maintain software and the associated
work products (for instance, project plans, design documents, code, test cases, and
user manuals). As an organization matures, the software process becomes better
defined and more consistently implemented throughout the organization.

Software process capability describes the range of expected results that can be
achieved by following a software process. An organization's software process
capability is one way of predicting the most likely outcome to expect from the next
software project the organization undertakes.

THE CAPABILITY MATURITY MODEL FOR SOFTWARE 5

Software process performance represents the actual results achieved by following a
software process. Thus, software process performance focuses on the results achieved,
while software process capability focuses on results expected.

Software process maturity is the extent to which a specific process is explicitly
defined, managed, measured, controlled, and effective. Maturity implies a potential
for growth in capability and indicates both the richness of an organization's software
process and the consistency with which it is applied in projects throughout the
organization.

As a software organization gains in software process maturity, it institutionalizes
its software process via policies, standards, and organizational structures.
Institutionalization entails building an infrastructure and an organizational culture
that support the methods, practices, and procedures of the business so that they
endure even after those who originally defined them have gone.

The Five Levels of Software Process Maturity

Continual process improvement is based on many small, evolutionary steps, although
revolutionary innovations may be part of a process improvement program. The staged
structure of the SW-CMM is based on principles of product quality espoused by
Walter Shewart, W. Edwards Deming, Joseph Juran, and Philip Crosby. The SW-
CMM provides a framework for organizing these evolutionary steps into five maturity
levels that lay successive foundations for continual process improvement. These five
maturity levels define an ordinal scale for measuring the maturity of an
organization's software process and for evaluating its software process capability. The
levels also help an organization prioritize its improvement efforts.

A maturity level is a well-defined evolutionary plateau toward achieving a mature
software process. Each maturity level comprises a set of process goals that, when
satisfied, stabilize an important component of the software process. Achieving each
level of the maturity framework establishes a higher level of process capability for the
organization.

Organizing the SW-CMM into the five levels shown in Figure 1-1 prioritizes
improvement actions for increasing software process capability. The labeled arrows in
Figure 1-1 indicate the type of process capability being institutionalized by the
organization at each step of the maturity framework.

6 ELEMENTS OF SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT

Continually ^.wm Optimizing 11
Improving f (5) N
process / V . s

Predictable ^ ^ ^ \ M a n a ? ^ d 1

process X [W JJ

Standard, »» I Defined 11
consistent / ^ (3) M
process / k, [X

Disciplined ,**— f Repeatable |
process f [(2) JJ

f Initial]

1 ~ J
Figure 1-1: The five levels of software process maturity.

The five levels can be briefly described as:

1) Initial The software process is characterized as ad hoc, and occasionally even
chaotic. Few processes are defined, and success depends on individual
effort and heroics.

2) Repeatable Basic project management processes are established to track cost,
schedule, and functionality. The necessary process discipline is in place
to repeat earlier successes on projects with similar applications.

3) Defined The software process for both management and engineering activities is
documented, standardized, and integrated into a standard software
process for the organization. Projects use an approved, tailored version
of the organization's standard software process for developing and
maintaining software.

4) Managed Detailed measures of the software process and product quality are col-
lected, analyzed, and used to control the process. Both the software pro-
cess and products are quantitatively understood and controlled.

5) Optimizing Continual process improvement is enabled by quantitative feedback
from the process and from piloting innovative ideas and technologies.

These five levels reflect the fact that the SW-CMM is a model for improving the
capability of software organizations. The priorities in the SW-CMM, as expressed by

THE CAPABILITY MATURITY MODEL FOR SOFTWARE 7

these levels, are not directed at individual projects. A project that is in trouble might
justifiably set its priorities for corrective action differently from those in the SW-
CMM. Its solutions, however, might be of limited value to the rest of the organization,
because other projects might have different problems or because other projects lack
the necessary foundation to take advantage of its solutions. The SW-CMM focuses on
processes that build organizational capability.

Behavioral Characterization of the Maturity Levels

Maturity Levels 2 through 5 can be characterized through the activities performed by
the organization to establish or improve the software process, by activities performed
on each project, and by the resulting process capability across projects. A behavioral
characterization of Level 1 is included to establish a base of comparison for process
improvements at higher maturity levels.

Level 1 - The Initial Level
At the Initial Level, the organization typically does not provide a stable environment
for developing and maintaining software. Over-commitment is a characteristic of
Level 1 organizations, and such organizations frequently have difficulty making
commitments that the staff can meet with an orderly engineering process, resulting
in a series of crises. During a crisis, projects typically abandon planned procedures
and revert to coding and testing. Success depends on having an exceptional manager
and a seasoned and effective software team. Occasionally, capable and forceful
software managers can withstand the pressures to take shortcuts in the software
process; but when they leave the project, their stabilizing influence leaves with them.
Even a strong engineering process cannot overcome the instability created by the
absence of sound management practices.

In spite of this ad hoc, even chaotic, process, Level 1 organizations frequently
develop products that work even though they may exceed the budget and schedule.
Success in Level 1 organizations depends on the competence and heroics of the people
in the organization2 and cannot be repeated unless the same competent individuals
are assigned to the next project. Thus, at Level 1, capability is a characteristic of the
individuals, not of the organization.

Level 2 - The Repeatable Level
At the Repeatable Level, policies for managing a software project and procedures to
implement those policies are established. Planning and managing new projects are

2 Selecting, hiring, developing, and retaining competent people are significant issues for organizations at
all levels of maturity, but they are largely outside the scope of the SW-CMM.

8 ELEMENTS OF SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT

based on experience with similar projects. Establishing basic process management
discipline on a project-by-project basis enhances process capability. Projects
implement effective processes that are defined, documented, practiced, trained,
measured, enforced, and provide a basis for improvement.

Projects in Level 2 organizations have installed basic software management
controls. Realistic project commitments are made, based on the results observed on
previous projects and on the requirements of the current project. The software
managers for a project track software costs, schedules, and functionality; problems in
meeting commitments are identified when they arise. Software requirements and the
work products developed to satisfy them are baselined, and their integrity is
controlled. Software project standards are defined, and the organization ensures that
they are faithfully followed. The software project works with its subcontractors, if
any, to establish an effective customer-supplier relationship.

Processes may differ among projects in a Level 2 organization. The organizational
requirement for achieving Level 2 is that there are policies that guide the projects in
establishing the appropriate management processes.

The software process capability of Level 2 organizations can be summarized as
"disciplined" because software project planning and tracking are stable and earlier
successes can be repeated. The project's process is under the effective control of a
project management system, following realistic plans based on the performance of
previous projects.

Level 3 - The Defined Level
At the Defined Level, a standard process (or processes) for developing and
maintaining software is documented and used across the organization. This standard
process includes both software engineering and management processes integrated
into a coherent whole. This standard process is referred to throughout the SW-CMM
as the organization's standard software process. Processes established at Level 3 are
used (and changed, as appropriate) to help the software managers and technical staff
perform more effectively. The organization exploits effective software engineering
practices when standardizing its software processes. A group such as a software
engineering process group or SEPG is responsible for the organization's software
process activities. An organization-wide training program is implemented to ensure
that the staff and managers have the knowledge and skills required to perform their
assigned roles.

Projects tailor the organization's standard software process to develop their own
defined software process, which accounts for the unique characteristics of the project.
This tailored process is referred to in the SW-CMM as the project's defined software
process. It is the process used in performing the project's activities. A defined software
process contains a coherent, integrated set of well-defined software engineering and
management processes. A well-defined process includes entry criteria, inputs,
standards and procedures for performing the work, verification mechanisms (such as

THE CAPABILITY MATURITY MODEL FOR SOFTWARE 9

peer reviews), outputs, and exit criteria. Because the software process is well defined,
management has good insight into technical progress on the project.

The software process capability of Level 3 organizations can be summarized as
"standard and consistent" because both software engineering and management
activities are stable and repeatable. Within established product lines, cost, schedule,
and functionality are under control and software quality is tracked. This process
capability is based on a common, organization-wide understanding of the activities,
roles, and responsibilities in a defined software process.

Level 4 - The Managed Level
At the Managed Level, the organization sets quantitative quality goals for both
software products and processes. Productivity, quality, etc. are measured for
important software process activities across all projects as part of an organizational
measurement program. An organization-wide software process database is used to
collect and analyze the data available from the projects' defined software processes.
Software processes are instrumented with well-defined and consistent measurements.
These measurements establish the quantitative foundation for evaluating the
projects' software processes and products.

Projects achieve control over their products and processes by narrowing the
variation in their process performance to fall within acceptable quantitative
boundaries. Meaningful variations in process performance can be distinguished from
random variation (noise), particularly within established product lines. The risks
involved in moving up the learning curve of a new application domain are known and
carefully managed.

The software process capability of Level 4 organizations can be summarized as
being "quantified and predictable" because the process is measured and operates
within quantitative limits. This level of process capability allows an organization to
predict trends in process performance and product quality within the quantitative
bounds of these limits. Because the process is both stable and measured, when some
exceptional circumstance occurs, the "special cause" of the variation can be identified
and addressed. When the pre-defined limits are exceeded, actions are taken to
understand and correct the situation. Software products are of predictably high
quality.

Level 5 - The Optimizing Level
At the Optimizing Level, the entire organization is focused on continual process
improvement. The organization has the means to identify weaknesses and strengthen
the process proactively, with the goals of preventing defects and improving efficiency.
Data on process effectiveness are used to perform cost/benefit analyses of new
technologies and proposed changes to the organization's software process. Innovations

10 ELEMENTS OF SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT

that exploit the best software engineering practices are identified and transferred
throughout the organization.

Software teams in Level 5 organizations analyze defects to determine their causes,
evaluate software processes to prevent known types of defects from recurring, and
disseminate lessons learned throughout the organization.

There is chronic waste, in the form of rework, in any system simply because of
random variation. Organized efforts to remove waste result in changing the system
by addressing "common causes" of inefficiency. While efforts to reduce waste occur at
all maturity levels, it is the focus of Level 5.

The software process capability of Level 5 organizations can be characterized as
"continually improving" because Level 5 organizations are continually striving to
improve the range of their process capability, thereby improving the process
performance of their projects. Improvements occur both by incremental advancements
in the existing process and by innovations using new technologies and methods.
Technology and process improvements are planned and managed as ordinary
business activities.

Process Capability and the Prediction of Performance

An organization's software process maturity helps to predict a project's ability to meet
its objectives. Projects in Level 1 organizations experience wide variations in
achieving cost, schedule, functionality, and quality targets. Figure 1-2 illustrates the
kinds of improvements expected in predictability, control, and effectiveness in the
form of a probability density for the likely performance of a particular project with
respect to targets, such as cycle time, cost, and quality.

The first improvement expected as an organization matures is in predictability. As
maturity increases, the difference between targeted results and actual results
decreases across projects. For instance, Level 1 organizations often miss their
originally scheduled delivery dates by a wide margin, whereas higher maturity level
organizations should be able to meet targeted dates with increased accuracy.

The second improvement is in control. As maturity increases, the variability of
actual results around targeted results decreases. For instance, in Level 1 organization
delivery dates for projects of similar size are unpredictable and vary widely. Similar
projects in a higher maturity level organization, however, will be delivered within a
smaller range.

The third improvement is in effectiveness. Targeted results improve as the
maturity of the organization increases. That is, as a software organization matures,
costs decrease, development time becomes shorter, and productivity and quality
increase. In a Level 1 organization, development time can be quite long because of the
amount of rework that must be performed to correct mistakes. In contrast, higher
maturity level organizations have increased process effectiveness and reduced costly
rework, allowing development time to be shortened.

The improvements in predicting a project's results represented in Figure 1-2

THE CAPABILITY MATURITY MODEL FOR SOFTWARE 1 7

assume that the software project's outcomes become more predictable as noise, often
in the form of rework, is removed from the software process. Unprecedented systems
complicate the picture since new technologies and applications lower the process
capability by increasing variability. Even in the case of unprecedented systems, the
management and engineering practices characteristic of more mature organizations
help to identify and address problems earlier than for less mature organizations. In
some cases a mature process means that "failed" projects are identified early in the
software life cycle and investment in a lost cause is minimized.

The documented case studies of software process improvement indicate that there
are significant improvements in both quality and productivity as a result of the
improvement effort [5, 9]. The return on investment seems to typically be in the 4:1 to
8:1 range for successful process improvement efforts, with increases in productivity
ranging from 9-67 percent and decreases in cycle time ranging from 15-23 percent
reported [5],

Summarizing the Key Process Areas
The SW-CMM is a framework representing a path of improvements recommended for
software organizations that want to increase their software process capability. The
intent is that the SW-CMM is at a sufficient level of abstraction that it does not
unduly constrain how the software process is implemented by an organization. The
SW-CMM describes what we would normally expect in a software process, regardless
of how the process is implemented.

Each maturity level, with the exception of Level 1, has been decomposed into
constituent parts. The decomposition of each maturity level ranges from abstract
summaries of each level down to their operational definition in the key practices.
Each maturity level is composed of several key process areas, which indicate where
an organization should focus to improve its software process. Each key process area is
organized into five sections called common features. The common features specify the
key practices that, when collectively addressed, accomplish the goals of the key
process area. The common features are commitment to perform, ability to perform,
activities performed, measurement and analysis, and verifying implementation.

Each key process area identifies a cluster of related activities that, when performed
collectively, achieve a set of goals considered important for enhancing process
capability. The key process areas have been defined to reside at a single maturity
level as shown in Figure 1-3. The path to achieving the goals of a key process area
may differ across projects based on differences in application domains or
environments. Nevertheless, all the goals of a key process area must be achieved for
the organization to satisfy that key process area.

12 ELEMENTS OF SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT

j_f ^ AN Performance continually
Jg I)± improves in Level 5
•g J % organizations.

*| / f^
Time/$/... I

>» M Based on quantitative
S f^^ understanding of process
« / 5 anc* P roduct» performance
o / g, continues to improve in
°- / {*s^^-—^^___ ^-eve '4 organizations.

______ |

^ 3 With well-defined processes,
S /^z: performance improves in
_§ / ti v L e v e ' 3 organizations.

H / Î — _
Time/$/...

.$* 2 Plans based on past
5 ^*- + performance are more
6 y^ Ŝ Nv realistic in Level 2
2 j f o» x^^^ organizations.

Time/$/...

t 1
2 z Schedule and cost targets
S "S y^ ^ - ^ ^ a re typically overrun by
S ^ p ^ \ ^ ^ Level 1 organizations.

Time/$/... |

Figure 1-2: Process capability as indicated by maturity level.

THE CAPABILITY MATURITY MODEL FOR SOFTWARE 13

Figure 1-3: The key process areas by maturity level.

The adjective "key" implies that there are process areas (and processes) that are
not key to achieving a maturity level. The SW-CMM does not describe in detail all the
process areas that are involved with developing and maintaining software. Certain
process areas have been identified as key determiners of process capability, and these
are the ones described in the SW-CMM.

The key process areas are the "requirements" for achieving a maturity level. To
achieve a maturity level, the key process areas for that level and the lower levels
must be satisfied (or not applicable, such as Software Subcontract Management when
there are no subcontractors).

The specific practices to be executed in each key process area will evolve as the
organization achieves higher levels of process maturity. For instance, many of the

5 Continual Defect Prevention
Optimizing process Technology Change Management

improvement Process Change Management

4 Product and Quantitative Process Management
Managed process quality Software Quality Management

3 Engineering Organization Process Focus
Defined processes and Organization Process Definition

organizational Training Program
support Integrated Software Management

Software Product Engineering
Intergroup Coordination
Peer Reviews

2
 f . , Project Requirements Management

Repeatable management Software Project Planning
processes Software Project Tracking & Oversight

Software Subcontract Management
Software Quality Assurance
Software Configuration Management

. ?.. . Competent people and heroics
initial

14 ELEMENTS OF SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT

project estimating capabilities described in the Software Project Planning key process
area at Level 2 evolve to take advantage of the organization's software process assets
available at Level 3, as described in Integrated Software Management.

The key process areas at Level 2 focus on the software project's concerns related to
establishing basic project management controls:

• Requirements Management: Establish a common understanding between
the customer and the software project of the customer's requirements
that will be addressed by the software project. This agreement with the
customer is the basis for planning and managing the software project.

• Software Project Planning: Establish reasonable plans for performing the
software engineering and for managing the software project. These plans
are the necessary foundation for managing the software project.

• Software Project Tracking and Oversight: Establish adequate visibility
into actual progress so that management can take effective actions when
the software project's performance deviates significantly from the soft-
ware plans.

• Software Subcontract Management: Select qualified software subcontrac-
tors and manage them effectively.

• Software Quality Assurance: Provide management with appropriate visi-
bility into the process being used by the software project and of the prod-
ucts being built.

• Software Configuration Management: Establish and maintain the integ-
rity of the products of the software project throughout the project's soft-
ware life cycle.

The key process areas at Level 3 address both project and organizational issues, as
the organization establishes an infrastructure that institutionalizes effective software
engineering and management processes across all projects:

• Organization Process Focus: Establish the organizational responsibility
for software process activities that improve the organization's overall
software process capability.

• Organization Process Definition: Develop and maintain a usable set of
software process assets that improve process performance across the
projects and provides a basis for defining meaningful data for quantita-
tive process management. These assets provide a stable foundation that
can be institutionalized via mechanisms such as training.

• Training Program: Develop the skills and knowledge of individuals so
that they can perform their roles effectively and efficiently. Training is
an organizational responsibility, but the software projects should identify
their needed skills and provide the necessary training when the project's
needs are unique.

THE CAPABILITY MATURITY MODEL FOR SOFTWARE 15

• Integrated Software Management: Integrate the software engineering
and management activities into a coherent, defined software process that
is tailored from the organization's standard software process and related
process assets. This tailoring is based on the business environment and
technical needs of the project.

• Software Product Engineering: Consistently perform a well-defined engi-
neering process that integrates all the software engineering activities to
produce correct, consistent software products effectively and efficiently.
Software Product Engineering describes the technical activities of the
project, for instance, requirements analysis, design, code, and test.

• Inter group Coordination: Establish a means for the software engineering
group to participate actively with the other engineering groups so the
project is better able to satisfy the customer's needs effectively and effi-
ciently.

• Peer Reviews: Remove defects from the software work products early and
efficiently. An important corollary effect is to develop a better under-
standing of the software work products and of the defects that can be
prevented. The peer review is an important and effective engineering
method that can be implemented via inspections, structured walk-
throughs, or a number of other collegial review methods.

The key process areas at Level 4 focus on establishing a quantitative
understanding of both the software process and the software work products being
built:

• Quantitative Process Management: Control process performance of the
software project quantitatively. Software process performance represents
the actual results achieved from following a software process. The focus
is on identifying special causes of variation within a measurably stable
process and correcting, as appropriate, the circumstances that drove the
transient variation to occur.

• Software Quality Management: Develop a quantitative understanding of
the quality of the project's software products and achieve specific quality
goals.

The key process areas at Level 5 cover the issues that both the organization and
the projects must address to implement continual and measurable software process
improvement:

• Defect Prevention: Identify the causes of defects and prevent them from
recurring. The software project analyzes defects, identifies their causes,
and changes its defined software process.

• Technology Change Management: Identify beneficial new technologies
(such as tools, methods, and processes) and transfer them into the or-

76 ELEMENTS OF SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT

ganization in an orderly manner. The focus of Technology Change Man-
agement is on performing innovation efficiently in an ever-changing
world.

• Process Change Management: Continually improves the software proc-
esses used in the organization with the intent of improving software
quality, increasing productivity, and decreasing the cycle time for prod-
uct development.

Goals summarize the key practices of a key process area and can be used to
determine whether an organization or project has effectively implemented the key
process area. The goals signify the scope, boundaries, and intent of each key process
area. Satisfaction of a key process area is determined by achievement of the goals.

Key practices describe the activities and infrastructure that contribute most to the
effective implementation and institutionalization of the key process area. Each key
practice consists of a single sentence, usually followed by a more detailed description,
which may include examples and elaboration. These key practices, also referred to as
the top-level key practices, state the fundamental policies, procedures, and activities
for the key process area. The components of the detailed description are frequently
referred to as subpractices. The key practices describe "what11 is to be done, but they
should not be interpreted as mandating "how" the goals should be achieved.
Alternative practices may accomplish the goals of the key process area. The key
practices should be interpreted rationally to judge whether the goals of the key
process area are effectively, although perhaps differently, achieved.

The IDEAL Approach to Software Process Improvement
Effective software process improvement, whether based on the SW-CMM or some
other model, occurs in a systematic fashion [14]. The SEI has developed the IDEAL
model, shown in Figure 1-4, to depict the activities of an improvement program based
on the SW-CMM [10]. It consists of five phases:

I Initiating (the improvement program)
D Diagnosing (the current state of practice)
E Establishing (the plans for the improvement program)
A Acting (on the plans and recommended improvements)
L Leveraging (the lessons learned and the business results of the improvement

effort)
The Initiating phase establishes the business reasons for undertaking a software

process improvement effort. It identifies high-level concerns in the organization that
can be the stimulus for addressing various aspects of quality improvement.
Communication of these concerns and business perspectives is needed during the
Initiating phase in order to gain visible executive buy-in and sponsorship at this very
early part of the improvement effort.

Figure 1-4: The SEI's IDEAL approach to software process improvement.

The Diagnosing phase is used to build a common understanding of the current
processes of the organization, especially the strengths and weaknesses of those
current processes. It will also help identify priorities for improving your software
processes. This diagnosis is based on the SW-CMM (or one of the other CMMs).

The Establishing phase finalizes the strategy and supporting plans for the
software process improvement program. It sets the direction and guidance for the
next three to five years, including strategic and tactical plans for software process
improvement.

The Acting phase takes action to effect changes in organizational systems that
result in improvements in these systems. These improvements are made in an orderly
manner and in ways that will cause them to be sustained over time. Techniques used
to support and institutionalize change include defining software processes and
measurements, pilot testing, and installing new processes and measurements
throughout the organization. The SW-CMM provides guidance for the improvement
actions in its informative components: the key practices and their subpractices and
examples.

The Leveraging phase completes the process improvement cycle. Lessons learned
from the pilot projects and improvement efforts are documented and analyzed in
order to improve the process improvement program for the future. The business needs

THE CAPABILITY MATURITY MODEL FOR SOFTWARE 17

Learning

yS0^ \ &AietyzB / ^sv.

>Vw ŷ Rsvise \ y P ^ ! ? >w ActinciX/^r^—Va \ m
>v sT ^ v Ran& \

^v ^ " - ^ ^ ^ ^ ^ ^v EXBOJB \
, \ Riots \

Sdmiusfbr SetOtxtext / Establish 7 \ \
irmmuwTw* &feteblish InprowBniBrt [I Ran,B©cUe,
irrprowemert Sponsorship Irtrastacture I 1 &Track I

\ Zlretellatfon /

Initiating V5̂ ?* \ /^^^^^-7
\Characteri2B \ . >^*jjij»a«vi» /

\LWreni ^/^ "̂sŝ _^r Ar«nnTfl!OT« / 7
\ Db—iiM v ^ ^̂ f̂ĉ *̂*̂ "̂ v "coon icon© / /

V3*"^, ^ \ a M /A
\ X ^ Ftecomrendtetions / \ Han Actions X / /

_. . N . PhaseReaJts / &Rwiiies \ V S ^ /
Dagnosing \ ^ ^ ^ / ^\^S

^ — — tsaBlishing

18 ELEMENTS OF SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT

that were determined at the beginning of the cycle are revisited to see if they have
been met. Sponsorship for the program is revisited and renewed for the next software
process improvement cycle.

The Continuing Evolution of the SW-CMM
The SW-CMM is a living document; Version 2 is currently under development. A
number of major changes were proposed for SW-CMM V2 [15].

Architecture and Templates

We received change requests:
• for key process areas to span maturity levels
• to incorporate a description of process evolution
• to provide a finer granularity of process rating

As part of our participation in SPICE (see Chapter 3), we investigated alternatives
that would systematically address these requests [7, 13]. The SW-CMM V2 focuses on
the vital few issues that enable process improvement with its staged architecture. The
continuous architecture used by SPICE and the Systems Engineering CMM [1]
provides another useful perspective. The continuous perspective describes the
evolution of processes and provides greater flexibility and finer granularity in rating
processes. Both the staged and continuous perspectives have value, and they are
conceptually compatible.

Our solution is to make the relationships between the two perspectives explicit.
SW-CMM V2 will remain a staged model, but it will also explicitly state relationships
to the continuous architecture, which will be published as an appendix. Templates for
the key process areas will directly correspond to generic practices in the continuous
architecture.

Version 2 will use templates more extensively and consistently than Version 1.
The templates will systematically change as appropriate at each maturity level to
capture the levels' institutionalization.

A goal will be added to each key process area to capture the institutionalization of
the process. This goal will be stated as <Do X> according to a <maturity level>
process. The <maturity level> process captures institutionalization concepts such as
documenting, training, tailoring, etc., as appropriate for the maturity level. For
example, "perform software project planning according to a repeatable process" will
capture planning, polices, resources, responsibilities, training, etc., that are part of
institutionalizing a repeatable process for planning.

This plan to add a goal to each key process area has the following advantages:
• It clarifies that institutionalization is a critical part of achieving a key

process area. The key practices in the institutionalization common fea-

THE CAPABILITY MATURITY MODEL FOR SOFTWARE 19

tures (commitment, ability, measurement, verification) will map directly
to this goal.

• It separates institutionalization and implementation for purposes of rat-
ing key process areas. The separation of concerns simplifies some ap-
praisal rating decisions.

• It supports the strategy of mapping to a continuous perspective of soft-
ware process maturity. Processes evolve, even though key process areas
reside at a single maturity level.

Active Versus Passive Voice

Active voice is easier to read and understand than passive voice. However, the use of
active voice may imply that a key process area is a collection of steps in a process. A
key process area describes some of the crucial attributes of what a process is, not how
the process should be implemented. Practices will be rewritten in active voice. This
means changing every key practice in VI. 1, even though this change will not
materially affect the intent.

Supplier Management

At Level 2, Software Subcontract Management will be expanded to include off-the-
shelf and customer-supplied software. The new name of the key process area will be
Software Supplier Management.

Risk Management

Users have suggested that risk management is a vital element of modern project
management that is inadequately addressed in the current SW-CMM Vl.l. This was
the most controversial change proposed for Version 2. At Level 3, the SEI prototyped
a Software Risk Management key process area as part of our leadership role in
extending software process improvement and in updating the SW-CMM to reflect
current best practice. The final decision, however, was to add a goal on risk
management in Integrated Software Management.

Product Line Engineering

Users have suggested that reuse, while it may be irrelevant for some organizations, is
an important advancement in the software industry. Research also suggests a strong
correlation between higher maturity levels and systematic reuse (or product lines) [2].
Product line engineering, systematic reuse, reengineering, and aligning with strategic
business goals will be addressed at Level 4.

20 ELEMENTS OF SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT

Split Quantitative Process Management
Quantitative Process Management will be split into two key process areas at Level 4.
Statistical Process Management, will address quantitative process control. The other
key process area, Organization Process Performance, will focus on the organizational
aspects of establishing quantitative expectations for process capability.

Integrating CIMMs

The success of the Software CMM has inspired the development of a number of other
capability maturity models [8], addressing topics such as systems engineering [1],
people issues [3], and software acquisition [4]. Integrating these models effectively
and efficiently during appraisals and for process improvement can be challenging.
SW-CMM v2 will satisfy a set of CMM integration criteria planned for release in
August 1997.

Version 2 Plans
The software community is reviewing drafts of Version 2, and the Software CMM
Advisory Board and Change Control Board will consider whether these changes are
appropriate for release in Version 2.0.

Information on the drafts of SW-CMM v2 and related work is available on the
CMM Correspondence Group Web page:

• http:/1www.seucmu.edu/technology/CMM/cg.html
and the SW-CMM v2 Web page:

• http: 11 www.sei.cmu.edu I technology I CMM I CMM. v2.html
Version 2.0 and Version 1.1 of the Software CMM will both be supported during a

transition period that will end with the release of Version 2.1, a minor upgrade
planned for 1999.

Conclusion
To quote George Box, "All models are wrong; some models are useful." The SW-CMM
represents a "common sense engineering" approach to software process improvement.
The maturity levels, key process areas, common features, and key practices have been
extensively discussed and reviewed within the software community. While the SW-
CMM is not perfect, it does represent a broad consensus of the software community
and is a useful tool for guiding software process improvement efforts.

The SW-CMM provides a conceptual structure for improving the management and
development of software products in a disciplined and consistent way. It does not
guarantee that software products will be successfully built or that all problems in
software engineering will be adequately resolved. However, current reports from

THE CAPABILITY MATURITY MODEL FOR SOFTWARE 21

CMM-based improvement programs indicate that its use improves the likelihood that
a software organization will achieve its cost, quality, and productivity goals.

For further information regarding the SW-CMM and its associated products,
including training on the SW-CMM and how to perform software process assessments
and software capability evaluations, contact:

SEI Customer Relations
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-5800
Internet: customer-relations@sei.cmu.edu

The SEI Web page is:
http:/ / www.sei.cmu.edu/.

For information specifically on the SW-CMM, see:
http: 11 www.sei.cmu.edu I technology ICMM. html.

References
1. Bate, R., Kuhn, D., Wells, C, et al., A Systems Engineering Capability Maturity

Model, Version 1.1, CMU/SEI-95-MM-003, Carnegie Mellon University, Software
Engineering Institute, November 1995.

2. Besselman, J. and Rifkin, S., "Exploiting the Synergism Between Product Line
Focus and Software Maturity," Proceedings of the 1995 Acquisition Research
Symposium, Washington, D.C., pp. 95-107.

3. Curtis, B., Hefley, W.E., and Miller, S., People Capability Maturity Model,
CMU/SEI-95-MM-02, Carnegie Mellon University, Software Engineering
Institute, September 1995.

4. Ferguson, J., Cooper, J., et al., Software Acquisition Capability Maturity Model
(SA-CMM), Version 1.01, CMU/SEI-96-TR-020, Carnegie Mellon University,
Software Engineering Institute, December 1996.

5. Herbsleb, J., Carleton, A., et al., Benefits of CMM-Based Software Process
Improvement: Initial Results, CMU/SEI-94-TR-13, Carnegie Mellon University,
Software Engineering Institute, August 1994.

6. Humphrey, W. S., Managing the Software Process, Addison-Wesley, Reading,
MA, 1989.

7. Konrad, M. D., Paulk, M. C, and Graydon, A. W., "An Overview of SPICE's
Model for Process Management," Proceedings of the Fifth International
Conference on Software Quality, Austin, TX, 23-26 October 1995, pp. 291-301.

8. Konrad, M., Chrissis, M.B., Ferguson, J., Garcia, S., Hefley, B., Kitson, D., and

22 ELEMENTS OF SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT

Paulk, M., "Capability Maturity Modeling at the SEI," Software Process:
Improvement and Practice, Vol. 2, Issue 1, March 1996, pp. 21-34.

9. Lawlis, P. K, Flowe, R. M., and Thordahl, J. B., "A Correlational Study of the
CMM and Software Development Performance, Crosstalk: The Journal of
Defense Software Engineering, Vol. 8, No. 9, September 1995, pp. 21-25.

10. McFeeley, B., IDEAL: A User's Guide for Software Process Improvement,
CMU/SEI-96-HB-001, Carnegie Mellon University, Software Engineering
Institute, February 1996.

11. Carnegie Mellon University, Software Engineering Institute (Principal
Contributors and Editors: Paulk, M.C., Weber, C.V., Curtis, B., and Chrissis,
M.B.), The Capability Maturity Model: Guidelines for Improving the Software
Process, ISBN 0-201-54664-7, Addison-Wesley Publishing Company, Reading,
MA, 1995.

12. Paulk, M.C., "The Evolution of the SEFs Capability Maturity Model for
Software," Software Process: Improvement and Practice, Vol. 1, Pilot Issue,
Spring 1995, pp. 3-15.

13. Paulk, M.C., Konrad, M.D., and Garcia, S.M., "CMM Versus SPICE
Architectures," Software Process Newsletter, IEEE Computer Society Technical
Council on Software Engineering, No. 3, Spring 1995, pp. 7-11.

14. Paulk, M. C , "Effective CMM-Based Process Improvement," Proceedings of the
6th International Conference on Software Quality, Ottawa, Canada, 28-31
October 1996, pp. 226-237.

15. Paulk, M.C., Garcia, S.M., Chrissis, M.B., and Hayes, W., "SW-CMM V2:
Feedback on Proposed Changes," Software Process Newsletter, IEEE Computer
Society Technical Council on Software Engineering, No. 7, Fall 1996, pp. 5-10.

