Chapter 1

What is Real-Time

Processing?

Consider a software system in which the inputs represent digital data from
hardware such as imaging devices or other software system’s and the outputs
are digital data that control external hardware such as displays. The time
between the presentation of a set of inputs and the appearance of all the
associated outputs is called the response time. A real-time system is
one that must satisfy explicit bounded response time constraints to avoid
failure. Equivalently, a real-time system is one whose logical correctness is
based both on the correctness of the outputs and their timeliness. Notice that
response times of, for example, microseconds are not needed to characterize a
real-time system — it simply must have response times that are constrained
and thus predictable. In fact, the misconception that real-time systems
must be “fast” is because in most instances, the deadlines are on the order
of microseconds. But the timeliness constraints or deadlines are generally a
reflection of the underlying physical process being controlled. For example,
in image processing involving screen update for viewing continuous motion,
the deadlines are on the order of 30 microseconds. In practical situations, the
main difference between real-time and non-real-time systems is an emphasis
on response time prediction and its reduction.

Upon reflection, one realizes that every system can be made to conform to
the real-time definition simply be setting deadlines (arbitrary or otherwise).
For example, a one-time image filtration algorithm for medical imaging,
which might not be regarded as real-time, really is real-time if the procedure
is related to an illness in which diagnosis and treatment have some realistic

1



2 CHAPTER 1. WHAT IS REAL-TIME PROCESSING?

deadline. Because all systems can be made to look as if they were real-time,
we refine the definition somewhat in terms of the system’s tolerance to missed
deadlines. For example, hard real-time systems are those where failure
to meet even one deadline results in total system failure. In firm real-time
systems some fixed small number of deadlines can be missed without total
system failure. Finally, in soft real-time systems missing deadlines leads
to performance degradation but not failure. Unless otherwise noted, when
we say “real-time” throughout this tutorial, we mean hard real-time.

Another common misconception is that the study of real-time processing
is really a non-issue because hardware is always getting faster. By throwing
faster hardware at the problem deadlines can always be met. However, as we
just stated, unless one can predict performance and hence bound response
times, one can never be satisfied that deadlines are always being achieved.
Moreover, faster hardware is not always available or suitable for certain
applications.

Some feel that real-time performance is easy to achieve. As we hope to
show in this tutorial, that is not always so, largely because most hardware
and programming languages are not suitable for real-time demands.

1.1 Characteristics of Real-Time Systems

Real-time systems are often reactive and/or embedded systems. Reactive
systems are those in which functionality is driven by ongoing, sporadic
interaction with their environment, such as in virtual reality. Embedded
systems generally do not have a generalized operating system interface and
are used explicitly to control specialized hardware devices. For example,
many imaging systems that reside in special hardware platforms, such as
virtual reality, multimedia, and medical imaging, are embedded.

An important concept in real-time systems is the notion of an event,
that is, any occurrence that results in a change in the sequential flow of
program execution. Events can be divided into two categories: synchronous
and asynchronous. Synchronous events are those that occur at predictable
times such as execution of a conditional branch instruction or hardware trap.
Asynchronous events occur at unpredictable points in the flow-of-control
and are usually caused by external sources such as a clock signal. Both types
of events can be signaled to the CPU by hardware signals.

There is an inherent delay between when an interrupt occurs and when
the CPU begins reacting to it called the interrupt latency. Interrupt



1.2. SCHEDULING ISSUES 3

latency is due to both hardware and software factors. Interrupts may oc-
cur periodically (at fixed rates), aperiodically, or both. Tasks driven by
interrupts that occur aperiodically are called sporadic tasks. Systems where
interrupts occur only at fixed frequencies are called fixed rate systems and
those with interrupts occurring sporadically are called sporadic systems.
For example, many imaging systems involve updating a display at from 20 to
40 times per second. A fixed rate task of, say, 30 hertz might be assigned to
perform the image update. On the other hand, a target acquisition algorithm
may run only when a candidate target image is on hand.

Another characteristic of a robust real-time system is that it is deter-
ministic. A system is said to be deterministic if for each possible state,
and each set of inputs, a unique set of outputs and the next state of the sys-
tem can be determined. In particular, a certain kind of determinism called
event determinism means that the next state and outputs of the system
are known for each set of inputs that trigger events. Thus, a system that is
deterministic is event deterministic. While it would be difficult for a system
to be deterministic only for those inputs that trigger events, this is plausible
and so event determinism may not imply determinism. We are, however,
only interested in pure deterministic systems. Finally, if in a deterministic
system the response time for each set of outputs is known, then the system
also exhibits temporal determinism. Each of these previous definitions
of determinism implies that the system must have a finite number of states.
This is a reasonable assumption to make in a digital computer system where
all inputs are digitized to within a finite range. For any physical system
there are certain states under which the system is considered to be “out of
control” and the software controlling such a system must avoid these states.
For example, in certain guidance systems for robots or aircraft, rapid rota-
tion through a 180° pitch angle can cause a physical loss of gyro control.
The software must be able to foresee and prepare for this situation or risk
losing control. One side benefit of designing deterministic systems is that
one can guarantee that the system can respond at any time, and in the case
of temporally deterministic systems, when they will respond. This reinforces
the association of control with real-time systems.

1.2 Scheduling Issues

Although we are not concerned with scheduling issues in this tutorial, a few
terms should be mentioned for future reference. Real-time operating sys-



4 CHAPTER 1. WHAT IS REAL-TIME PROCESSING?

tems need to provide for either multitasking or multiprocessing (or both).
In multitasking, the operating system must provide sufficient functionality
to allow multiple programs to run on a single processor so that the illusion
of simultaneity is created. This functionality includes scheduling, intertask
communication and synchronization, and memory management. In mul-
tiprocessing operating systems, more than one processor is available to
provide for simultaneity. Although multitasking may take place within any
given processor, the main challenges are in process assignment, interproces-
sor synchronization and communication, and memory management. We will
discuss some of these issues shortly, and in subsequent chapters.

There are several kinds of single processor multitasking approaches. In
round-robin systems, each task is assigned a fixed time quantum in which
to execute. A clock is used to initiate an interrupt at a rate corresponding to
the time quantum. Each task executes until it completes or its time quantum
expires as indicated by the clock interrupt. When a task’s time quantum
expires, a snapshot of the machine must be saved so that the task can be
resumed later. Such schemes are used when all tasks must be equitably
scheduled.

A higher priority task is said to preempt a lower priority task if it inter-
rupts the lower priority task, that is, a lower priority task is running when
the higher priority task signals that it is about to begin. Such schemes are
used when certain processes are more critical than others. For example, in
avionics systems, an imaging process may be preempted to allow a weapons
control process to run. As with the round-robin system, a snapshot of the
machine must be saved so that the lower priority task can be resumed when
the higher priority task has finished.

Systems that use preemption schemes instead of round-robin or first-
come-first-serve scheduling are called preemptive priority systems. The
priorities assigned to each interrupt are based on the urgency of the task
associated with that interrupt. Preemptive priority schemes have the asso-
ciated problem of hogging of resources by higher priority tasks. In this case,
the lower priority tasks are said to be facing starvation. There are other,
non-preemptive, priority scheduling schemes, but these are of less interest
to us.

Prioritized interrupts can be either fixed priority or dynamic priority.
Fixed priority systems are less flexible in that the task priorities cannot
be changed once the system is implemented. Dynamic priority systems
can allow the priorities of tasks to change during program execution — a
feature that is particularly important in threat management systems. In



1.3. REAL-TIME DESIGN ISSUES 5

a special class of fixed-rate preemptive priority interrupt driven systems
called rate-monotonic systems, priorities are assigned so that the higher
the execution frequency, the higher the priority. This scheme is common in
embedded applications, particularly avionics systems.

Hybrid systems include those with interrupts occurring at both fixed
rates and sporadically. The sporadic interrupts may represent a critical
error that requires immediate attention and thus have highest priority. This
type of system is also common in embedded applications. Another type
of mixed system found in commercial operating systems is a combination
of round-robin and preemptive systems. Here tasks of higher priority can
always preempt those of lower priority; however, if two or more tasks of the
same priority are ready to run, then they run in round-robin fashion.

A concept often used as a measurement of real-time system performance
is time-loading or CPU utilization, which is a measure of the percentage
of non-idle processing. A system is said to be time-overloaded if it is 100%
or more time-loaded. Time-overloading occurs in interrupt driven systems
when higher priority interrupt-driven tasks execute too frequently to allow
lower priority tasks to finish on time. Systems that are time-overloaded are
unstable and exhibit missed deadlines and unpredictable response times.

1.3 Real-Time Design Issues

Why study real-time systems? The design and implementation of real-time
systems requires the careful consideration of a variety of issues, many of
which we will address in subsequent pages. Among the tasks facing the
real-time system designer are:

1. Selection of hardware and software and the appropriate mix needed
for a cost-effective solution.

2. The decision to take advantage of a commercial real-time operating
system or to design a special operating system.

3. Prediction and measurement of CPU utilization and achieving a safe
but efficient level of utilization.

4. Selection of an appropriate software language for system development.

5. Maximizing system fault tolerance and reliability through careful de-
sign and rigorous testing.



6 CHAPTER 1. WHAT IS REAL-TIME PROCESSING?

Utilization% | Zone Type Application Types
0-25 overkill various

26 — 50 very safe various

51 — 68 safe various

69 theoretical limit | various

70 - 99 dangerous embedded systems
100+ overload stressed systems

Table 1.1: CPU Utilization Zones.

6. Design and administration of tests and selection of test and develop-
ment equipment.

Addressing these issues for large or even modest projects can present a stag-
gering task.

For example, consider the evaluation of CPU utilization. Table 1.1 shows
some CPU utilization ranges and subjective assessments of them. Thus,
while it might be desirable to underutilize a processor for the sake of future
expansion, in the near term, the additional cost of the high-powered pro-
cessor may not be justified. Utilization factors in the 26%—50% range are
generally considered safe — the likelihood of missing deadlines for most sys-
tems is low (yes, even at very low utilization rates, deadlines can be missed).
Arbitrarily, we designate the 51%—68% range as “safe,” while approximately
70% is the theoretical limit for all preemptive priority systems. Beyond 70%
there is a high risk of missing deadlines, and of course CPU utilization above
100% is potentially disastrous.

Table 1.2 lists some other problem issues in real-time system design along
with possible solutions and their potential drawback. We list them here sim-
ply to show the scope of the real-time design problem — in this tutorial we
are concerned primarily with the prediction and reduction of CPU utiliza-
tion, and optimal performance. The references list sources that discuss other
issues.

1.4 What Is Real-Time Image Processing?

Real-time image processing differs from “ordinary” image processing in that
the logical correctness of the system requires not only correct but also timely



1.4. WHAT IS REAL-TIME IMAGE PROCESSING? 7

Problem Solution(s) Possible Drawback

System modeling and dataflow diagrams cannot depict control

design flow

Suitable programming Ada poor and unpredictable

languages performance

Kernel selection commercial products | poor and unpredictable
performance

Intertask communication | mailboxes, queues degrade performance

Intertask synchronization | semaphores deadlock

Memory management dynamic allocation fragmentation,
degraded performance

Testing test everything not feasible

Table 1.2: Some real-time problems, possible solutions, and potential draw-
backs.

outputs; that is, semantic validity entails not only functional correctness,
but also deadline satisfaction. Because of its nature, there are both sup-
ports for and obstacles to real-time image processing. On the positive
side, many imaging applications are well-suited for parallelization and hence
faster, parallel architectures. Furthermore, many imaging applications can
be constructed without using language constructs that destroy determin-
ism. Moreover, special real-time imaging architectures are available or can
theoretically be constructed.

On the down side, many imaging applications are time critical and are
computationally intensive or data intensive. And as will be discussed, there
are no standard programming languages available for real-time image pro-
cessing. Finally, real-time processing science itself is still struggling to pro-
duce usable results, especially for parallel processing machines. To illustrate
some of these issues, we now characterize two real-time image processing
systems.

Multimedia

Multimedia computing generally involves microcomputer systems equipped



8 CHAPTER 1. WHAT IS REAL-TIME PROCESSING?

with high-resolution graphics, CD-ROM drives, mice, high-performance sound
cards, and multitasking operating systems that support these devices. Com-
mercial applications for multimedia computing are largely found in educa-
tion, sales, and marketing.

Multimedia applications involve concurrent programs and processors,
shared peripherals, and the important notion that synchronization is at least
as important as timeliness. For example in multimedia applications, it is
clear that audio speech output must be synchronized with the image of a
person speaking (this problem, we argue, can in fact be addressed in the
hardware, operating system, and language implementation). Other, possi-
bly more difficult real-time synchronization problems exist, however. Two
notable instances are video dithering and compression.

Video dithering is used to extend the available color subset by careful
arrangement /rearrangement of available colors at high speed. For example,
point dithering operations, which act on a pixel without regard to its neigh-
bors, add appropriate noise to the pixel color value before it is quantized.
Cluster dithering adds patterns of noise via masks to neighborhoods of pix-
els before quantization. In either case, if high-speed motion video is being
supported, the dithering rates need to be properly synchronized with respect
to lighting, video hardware performance, and visual perception cues. Work
on synchronized dithering algorithms is still nonexistent.

A well-known example of dithering is the construction of composite colors
from the basic red, green, blue colors (RGB) in television sets and earlier
graphics displays. Here, judicious activation of the appropriate pixel colors
during a preset time interval creates the perception of many more colors than
just the basic three. Similarly, in black-and-white television sets, dithering
has allowed for the perception of numerous shades of gray in addition to the
basic white and black.

A second problem in multimedia systems involves real-time compression.
For most multimedia systems, large amounts of data need to be stored and
retrieved at fast rates. Often hardware boards are used, but frequently
software algorithms are most cost-effective. In either case, most of the algo-
rithms are proprietary. Of the well-known, nonproprietary algorithms, such
as Huffman encoding or block truncation coding, the latter is deterministic
while the former is not. An important consideration in constructing deter-
ministic, predictable and synchronized multimedia systems is whether the
proprietary compression algorithms are deterministic. In multimedia sys-
tems, we need to implement these types of compression algorithms on-the-fly
and synchronously.



1.4. WHAT IS REAL-TIME IMAGE PROCESSING? 9

Virtual Reality

Virtual reality systems are complex computer simulations involving visual,
audio, tactile, and other feedback to entice a person’s perceptual mechanisms
into believing they are actually in an artificial world. While virtual reality
has obvious applications in combat simulation and training, its most promis-
ing applications are civilian, including exercise and recreation, physical re-
habilitation and therapy, occupational training, and psychological diagnosis
training.

For example, instead of pedaling an exercise bicycle inside an ordinary
gym, a user could don a head-mounted display with head-tracking, plug in
earphones, and have the impression of riding down a country road, replete
with chirping birds, bumpy roads, and sun in his or her eyes. A physical ther-
apist, wearing the same helmet-type display, could see computer-generated
muscles, bones, and tendons superimposed on the body of a patient, changing
with bodily movement. Construction workers learning to build skyscrapers
can safely practice techniques in a virtual reality simulator. Psychologists
can diagnose and/or cure patients of such phobias as vertigo, claustrophobia,
and so forth, without exposing the patients to actual physical danger.

There are many other applications for virtual reality in medicine, en-
tertainment, and so forth, and recent books, movies, and television pro-
grams have popularized this technology. These versions of the technology,
however, ignore the substrate of this technology: underlying these appli-
cations are complex distributed computer control systems involving state-
of-the-art electronics, software, and algorithms, and requiring sophisticated
design techniques to ensure efficacy and reliability. In virtual reality, just as
in multimedia, synchronization-type problems exist. For example, in virtual
reality-type flight simulators, even a slight skew in the synchronization of
a pilot’s commands and the resultant display update (e.g., a turn is made)
can cause nausea. Similarly, huge amounts of data need to be stored and
retrieved quickly to simulate artificial environments. Hence real-time com-
pression problems are of great interest to virtual reality specialists.



