
1 Light rays

1.1 Light rays in human experience

The formation of an image is one of our most fascinating emotional experiences. Even
in ancient times it was realized that our ‘vision’ is the result of rectilinearly propa-
gating light rays, because everybody was aware of the sharp shadows of illuminated
objects. Indeed, rectilinear propagation may be influenced by certain optical instru-
ments, e.g. by mirrors or lenses. Following the successes of Tycho Brahe (1546–1601),
knowledge about geometrical optics made for the consequential design and construc-
tion of magnifiers, microscopes and telescopes. All these instruments serve as aids to
vision. Through their assistance, ‘insights’ have been gained that added to our world
picture of natural science, because they enabled observations of the world of both
micro- and macro-cosmos.

Thus it is not surprising that the

Fig. 1.1: Light rays.

terms and concepts of optics had
tremendous impact on many areas of
natural science. Even such a giant
instrument as the new Large Hadron
Collider (LHC) particle accelerator in
Geneva is basically nothing other than
an admittedly very elaborate micro-
scope, with which we are able to ob-
serve the world of elementary particles
on a subnuclear length scale. Perhaps
as important for the humanities is the
wave theoretical description of optics,
which spun off from the development of
quantum mechanics.

In our human experience, rectilinear
propagation of light rays – in a homo-
geneous medium – stands in the fore-
ground. But it is a rather newer under-
standing that our ability to see pictures
is caused by an optical image in the eye.
Nevertheless, we can understand the formation of an image with the fundamentals of
ray optics. That is why this textbook starts with a chapter on ray optics.
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2 1 Light rays

1.2 Ray optics

When light rays spread spherically into all regions of a homogeneous medium, in gen-
eral we think of an idealized, point-like and isotropic luminous source at their origin.
Usually light sources do not fulfil any of these criteria. Not until we reach a large dis-
tance from the observer may we cut out a nearly parallel beam of rays with an aperture.
Therefore, with an ordinary light source, we have to make a compromise between in-
tensity and parallelism, to achieve a beam with small divergence. Nowadays optical
demonstration experiments are nearly always performed with laser light sources, which
offer a nearly perfectly parallel, intense optical beam to the experimenter.

When the rays of a beam are confined within only a small angle with a common
optical axis, then the mathematical treatment of the propagation of the beam of rays
may be greatly simplified by linearization within the so-called ‘paraxial approxima-
tion’. This situation is met so often in optics that properties such as those of a thin
lens, which go beyond that situation, are called ‘aberrations’.

The direction of propagation of light rays is changed by refraction and reflection.
These are caused by metallic and dielectric interfaces. Ray optics describes their effect
through simple phenomenological rules.

1.3 Reflection

We observe reflection, or mir-

Fig. 1.2: Reflection at a planar mirror.

roring of light rays not only on
smooth metallic surfaces, but also
on glass plates and other dielec-
tric interfaces. Modern mirrors
may have many designs. In ev-
eryday life they mostly consist of
a glass plate coated with a thin
layer of evaporated aluminium.
But if the application involves
laser light, more often dielectric
multilayer mirrors are used; we
will discuss these in more detail
in the chapter on interferometry
(Chapter 5). For ray optics, the
type of design does not play any
role.

1.3.1 Planar mirrors

We know intuitively that at a planar mirror like in Fig. 1.2 the angle of incidence θ1

is identical with the angle of reflection θ2 of the reflected beam,

θ1 = θ2, (1.1)
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and that incident and reflected beams lie within a plane together with the surface nor-
mal. Wave optics finally gives us a more rigid reason for the laws of reflection. Thereby
also details like, for example, the intensity ratios for dielectric reflection (Fig. 1.3) are
explained, which cannot be derived by means of ray optics.

1.4 Refraction

At a planar dielectric surface, like e.g. a glass plate, reflection and transmission occur
concurrently. Thereby the transmitted part of the incident beam is ‘refracted’. Its
change of direction can be described by a single physical quantity, the ‘index of re-
fraction’ (also: refractive index). It is higher in an optically ‘dense’ medium than in a
‘thinner’ one.

In ray optics a general description in terms of these quantities is sufficient to
understand the action of important optical components. But the refractive index plays
a key role in the context of the macroscopic physical properties of dielectric matter
and their influence on the propagation of macroscopic optical waves as well. This
interaction is discussed in more detail in the chapter on light and matter (Chapter 6).

1.4.1 Law of refraction

At the interface between an optical medium ‘1’ with refractive index n1 and a medium
‘2’ with index n2 (Fig. 1.3) Snell’s law of refraction (Willebrord Snell, 1580–1626) is
valid,

n1 sin θ1 = n2 sin θ2, (1.2)

where θ1 and θ2 are called the angle of incidence and

Fig. 1.3: Refraction and reflec-
tion at a dielectric surface.

angle of emergence at the interface. It is a bit artifi-
cial to define two absolute, material-specific refractive
indices, because according to Eq. (1.2) only their ratio
n12 = n1/n2 is determined at first. But considering
the transition from medium ‘1’ into a third material
‘3’ with n13, we realize that, since n23 = n21n13, we
also know the properties of refraction at the transition
from ‘2’ to ‘3’ . We can prove this relation, for exam-
ple by inserting a thin sheet of material ‘3’ between ‘1’
and ‘2’. Finally, fixing the refractive index of vacuum
to nvac = 1 – which is argued within the context of
wave optics – the specific and absolute values for all
dielectric media are determined.

In Tab. 1.1 on p. 9 we collect some physical prop-
erties of selected glasses. The refractive index of most
glasses is close to nglass = 1.5. Under usual atmospheric conditions the refractive index
in air varies between 1.000 02 and 1.000 05. Therefore, using nair = 1, the refraction
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properties of the most important optical interface, i.e. the glass–air interface, may
be described adequately in terms of ray optics. Nevertheless, small deviations and
variations of the refractive index may play an important role in everyday optical phe-
nomena in the atmosphere (for example, fata morgana, p. 6).

1.4.2 Total internal reflection

According to Snell’s law, at the interface between a dense medium ‘1’ and a thinner
medium ‘2’ (n1 > n2), the condition (1.2) can only be fulfilled for angles smaller than
the critical angle θc,

θ < θc = sin−1(n2/n1). (1.3)

For θ > θc the incident in-

Fig. 1.4: Total internal reflection at a dielectric sur-
face. The point of reflection of the rays does not lie ex-
actly within the interface, but slightly beyond (the Goos–
Haenchen effect [36, 88]).

tensity is totally reflected at
the interface. We will see
in the chapter on wave op-
tics that light penetrates into
the thinner medium for a dis-
tance of about one wavelength
with the so-called ‘evanescent’
wave, and that the point of
reflection does not lie exactly
at the interface (Fig. 1.4).
The existence of the evanes-
cent wave enables the appli-
cation of the so-called ‘frus-
trated’ total internal reflection,
e.g. for the design of polarizers
(Chapter 3.5.4).

1.5 Fermat’s principle: the optical pathlength

As long as light rays propagate in a homogeneous medium, they seem to follow the
shortest geometric path from the source to a point, making their way in the shortest
possible time. If refraction occurs along this route, then the light ray obviously no
longer moves on the geometrically shortest path.

The French mathematician Pierre de Fermat (1601–1665) postulated in 1658 that
in this case the light ray should obey a minimum principle, moving from the source
to another point along the path that is shortest in time.

For an explanation of this principle, one cannot imagine a better one than that
given by the American physicist Richard P. Feynman (1918–1988), who visualized
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Fermat’s principle with a human example: One may imagine Romeo discovering his
great love Juliet at some distance from the shore of a shallow, leisurely flowing river,
struggling for her life in the water. Without thinking, he runs straight towards his
goal – although he might have saved valuable time if he had taken the longer route,
running the greater part of the distance on dry land, where he would have achieved a
much higher speed than in the water.

Considering this more formally, we determine the time required from the point
of observation to the point of the drowning maiden as a function of the geometric
pathlength. Thereby we find that the shortest time is achieved exactly when a path is
chosen that is refracted at the water–land boundary. It fulfils the refraction law (1.2)
exactly, if we substitute the indices of refraction n1 and n2 by the inverse velocities in
water and on land, i.e.

n1

n2
=

v2

v1
.

According to Fermat’s minimum principle, we have to demand the following. The
propagation velocity of light in a dielectric cn is reduced in comparison with the
velocity in vacuum c by the refractive index n:

cn = c/n.

Now the optical pathlength along a trajectory C, where the refractive index n depends
on the position r, can be defined in general as

Lopt = c

∫
C

ds

c/n(r)
=
∫
C

n(r) ds. (1.4)

With the tangential unit vector et, the path ele-

Fig. 1.5: Fermat’s principle
and refraction at a dielectric
surface.

ment ds = et · dr along the path can be calculated.

Example: Fermat’s principle and refraction
As an example of the use of the integral principle, we
will again consider refraction at a dielectric surface
and therefore vary the length of the optical path be-
tween the points A and B in Fig. 1.5 (rAO = vector
from A to O etc., e1,2 = unit vectors),

Lopt = n1e1 · rAO + n2e2 · rOB,

dLopt = (n1e1 − n2e2) · dr.
Now varying only the distance along the surface (N =
surface normal) and taking into account dr ⊥ N, we
can specify the condition

(n1e1 − n2e2) × N = 0,

which is a vectorial formulation of Snell’s law (1.2) re-
producing it at once.



6 1 Light rays

1.5.1 Inhomogeneous refractive index

In general, the index of refraction of a body is not spatially homogeneous, but has
underlying, continuous, even though small, fluctuations like the material itself, which
affect the propagation of light rays: n = n(r). We observe such fluctuations in, for
example, the flickering of hot air above a flame. From the phenomenon of mirages,
we know that efficient reflection may arise like in the case of grazing incidence at a
glass plate, even though the refractive index decreases only a little bit towards the hot
bottom.

Again using the idea of the integral principle, this case of propagation of a light
ray may also be treated by applying Fermat’s principle. The contribution of a path
element ds to the optical pathlength is dLopt = n ds = net · dr, where et = dr/ds is
the tangential unit vector of the trajectory. On the other hand dLopt = ∇Lopt · dr is
valid in accordance with Eq. (1.4), which yields the relation

net = n
dr
ds

= ∇Lopt and n2 = (∇Lopt)2,

which is known as the eikonal equation in optics. We get the important ray equation
of optics, by differentiating the eikonal equation after the path1,

d

ds

(
n

dr
ds

)
= ∇n. (1.5)

A linear equation may be reproduced for homogeneous materials (∇n = 0) from (1.5)
without difficulty.

Example: Fata morgana
As a short example we will treat reflection at a hot film of air near the ground, which
induces a decrease in air density and thereby a reduction of the refractive index.
(Another example is the propagation of light rays in a gradient waveguide – section
1.7.3.) We may assume in good approximation that for calm air the index of refraction
increases with distance y from the bottom, e.g. n(y) = n0(1−ε e−αy). Since the effect
is small, ε � 1 is valid in general, while the scale length α is of the order α = 1 m−1.
We look at Eq. (1.5) for r = (y(x), x) for all individual components and find for the x
coordinate with constant C

n
dx

ds
= C.

We may use this result as a partial parametric solution for the y coordinate,

d

ds

(
n

dy

ds

)
=

d

dx

(
n

dy

dx

dx

ds

)
dx

ds
=

d

dx

(
C

dy

dx

)
C

n
=

∂n(y)
∂y

.

1Thereby we apply d/ds = et · ∇ and

d

ds
∇L = (et · ∇)∇L =

1

n
(∇L · ∇)∇L =

1

2n
∇(∇L)2 =

1

2n
∇n2.
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The constant may be chosen to be C = 1, because it is only scaling the x coordinate.
Since 2n ∂n/∂y = ∂n2/∂y and n2 � n2

0(1 − 2ε e−αy), we get for ε � 1

d2y(x)
dx2

=
1
2

∂

∂y
n2(y) = n2

0εα e−αy.

This equation can be solved by fundamental methods and it is convenient to write the
solution in the form

y = y0 +
1
α

ln [cosh2(κ(x − x0))]
κ(x−x0)�1→ y0 +

2κ

α
(x − x0).

y

xn(y)

y

n00
(x0,y0)

Fig. 1.6: Profile of the refractive index and optical path for a fata morgana.

For large distances from the point of reflection at x = x0 we find straight propagation
as expected. The maximum angle φ = arctan(2κ/α), where reflection is still possible,
is defined by κ ≤ n0α(ε/2)1/2. As in Fig. 1.6 the observer registers two images – one
of them is upside down and corresponds to a mirror image. The curvature of the light
rays declines quickly with increasing distance from the bottom and therefore may be
neglected for the ‘upper’ line of sight. At (x0, y0) a ‘virtual’ point of reflection may be
defined.

1.6 Prisms

The technically important rectangular reflection is achieved with an angle of incidence
of θi = 45◦. For ordinary glasses (n � 1.5), this is above the angle of total internal
reflection θc = sin−1 1.5 = 42◦. Glass prisms are therefore often used as simple
optical elements, which are applied for beam deflection. More complicated prisms are
realized in many designs for multiple reflections, where they have advantages over the
corresponding mirror combinations due to their minor losses and more compact and
robust designs.
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∆�
Fig. 1.7: Reflection or 90◦ prism. This prism is used for rectangular beam deflection. It may
also be used for the design of a retroreflector, whereby an optical delay ∆t = ∆�/c is realized
by simple adjustment.

Often used designs are the Porro prism and the retroreflector (Fig. 1.8) – other
names for the latter are ‘corner cube reflector’, ‘cat’s eye’ or ‘triple mirror’. The Porro
prism and its variants are applied for example in telescopes to create upright images.
The retroreflector not only plays an important role in optical distance measurement
techniques and interferometry, but also enables functioning of security reflectors - cast
in plastics - in vehicles.

We may also regard cylindrical

Fig. 1.8: The Porro prism (left) is combined out
of two rectangular prisms, which rotate the image
plane of an object such that in combination with
lenses one gets an upright image. The retrore-
flector (right) throws back every light ray indepen-
dently of its angle of incidence, but causing a par-
allel shift.

glass rods as a variant of prims where
total internal reflection plays an im-
portant role. In such a rod (see
Fig. 1.11) a light ray is reflected back
from the surface to the interior again
and again, without changing its path
angle relative to the rod axis. Such
fibre rods are used, for example, to
guide light from a source towards a
photodetector. In miniaturized form
they are applied as waveguides in
optical telecommunications. Their
properties will be discussed in the sec-
tion on beam propagation in waveg-
uides (Section 1.7) and later on in the
chapter on wave optics (Chapter 3.3)

in more detail.

1.6.1 Dispersion

Prisms played a historical role in the spectral decomposition of white light into its
constituents. The refractive index and thus also the angle of deflection δ in Fig. 1.9
actually depend on the wavelength, n = n(λ), and therefore light rays of different
colours are deflected with different angles. Under normal dispersion blue wavelengths
are refracted more strongly than red, n(λblue) > n(λred).
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n
δθ

α

red
yellow

blue

Fig. 1.9: Refraction and dispersion at a symmetrical prism. The index of refraction n can
be calculated from the minimum angle of deflection δ = δmin in a simple manner.

Refractive index and dispersion are very important technical quantities for the
application of optical materials. The refractive index is tabulated in manufacturers’
data sheets for various wavelengths, and (numerous different) empirical formulae are
used for the wavelength dependence. The constants from Tab. 1.1 are valid for the
formula which is also called Sellmeier equation:

n2 = 1 +
B1λ

2

λ2 − C1
+

B2λ
2

λ2 − C2
+

B3λ
2

λ2 − C3
(λ in µm). (1.6)

Tab. 1.1: Optical properties of selected glasses.

Name Boron crown Heavy flint glass Barium crown Flint glass

Abbreviation BK7 SF11 LaSF N9 BaK 1 F 2

Abbé number A 64.17 25.76 32.17 57.55 36.37

Refractive index n for selected wavelengths

λ = 486.1 nm 1.5224 1.8065 1.8690 1.5794 1.6321

λ = 587.6 nm 1.5168 1.7847 1.8503 1.5725 1.6200

λ = 656.3 nm 1.5143 1.7760 1.8426 1.5695 1.6150

Dispersion constants of refractive index (see Eq. 1.6)

B1

B2

B3

C1

C2

C3

1.0396

0.2379

1.0105

0.0060

0.0200

103.56

1.7385

0.3112

1.1749

0.0136

0.0616

121.92

1.9789

0.3204

1.9290

0.0119

0.0528

166.26

1.1237

0.3093

0.8815

0.0064

0.0222

107.30

1.3453

0.2091

0.9374

0.0100

0.0470

111.89

Density ρ (g cm−3)

2.51 4.74 4.44 3.19 3.61

Expansion coefficient ∆�/� (−30 to +70◦C) ×106

7.1 6.1 7.4 7.6 8.2

Strain birefringence: typically 10 nmcm−1.

Homogeneity of the refractive index from melt to melt: δn/n = ±1 × 10−4.
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By geometrical considerations we find that the angle of deflection δ in Fig. 1.9
depends not only on the angle of incidence θ but also on the aperture angle α of the
symmetrical prism and of course on the index of refraction, n,

δ = α − θ + arcsin
[
cos α sin θ − sin(α

√
n2 − sin2 θ )

]
,

δmin = α − 2θsymm.

The minimum deflection angle δmin is achieved for symmetrical transit through the
prism and enables a precise determination of the refractive index. The final result is
expressed straightforwardly by the quantities α and δmin,

n =
sin [(α + δmin)/2]

sin (α/2)
.

For quantitative estimation of the dispersive power K of glasses, the Abbe number
A may be used. This relates the refractive index at a yellow wavelength (at λ =
587.6 nm, the D line of helium) to the change of the refractive index, estimated from
the difference of the refractive indices at a blue (λ = 486.1 nm, Fraunhofer line F of
hydrogen) and a red wavelength (λ = 656.3 nm, Fraunhofer line C of hydrogen),

A = K−1 =
nD − 1
nF − nC

.

According to the above, a large Abbe number means weak dispersion, and a small
Abbe number means strong dispersion. The Abbe number is also important when
correcting chromatic aberrations (see Chapter 4.5.3).

The index of refraction describes the interaction of light with matter, and we will
come to realize that it is a complex quantity, which describes not only the properties
of dispersion but also those of absorption as well. Furthermore, it is the task of a
microscopic description of matter to determine the dynamic polarizability and thus to
establish the connection to a macroscopic description.

1.7 Light rays in waveguides

The transmission of messages via light signals is a very convenient method that has a
very long history of application. For example, in the 19th century, mechanical pointers
were mounted onto high towers and were observed with telescopes to realize transmis-
sion lines of many hundreds of miles. An example of a historic relay station from
the 400 mile Berlin-Cologne-Coblenz transmission line is shown in Fig.1.10. Basically,
in-air transmission is also performed nowadays, but with laser light. But it is always
affected by its scattering properties even at small distances, because turbulence, dust
and rain can easily inhibit the propagation of a free laser beam.

Ideas for guiding optical waves have been in existence for a very long time. In
analogy to microwave techniques, for example, at first hollow tubes made of copper
were applied, but their attenuation is too large for transmission over long distances.
Later on periodical lens systems have been used for the same purpose, but due to high
losses and small mechanical flexibility they also failed.
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The striking breakthrough

Fig. 1.10: Historic station No. 51 of the Berlin–
Cologne–Coblenz optic-mechanical ‘sight’ transmission
line on the tower of the St. Pantaleon church, Cologne.
Picture from Weiger (1840).

happened to ‘optical telecom-
munication’ through the devel-
opment of low-loss waveguides,
which are nothing other than
elements for guiding light rays.
They can be distributed like
electrical cables, provided that
adequate transmitters and re-
ceivers are available. With
overseas cables, significantly
shorter signal transit times and
thus higher comfort for phone
calls can be achieved than via
geostationary satellites, where
there is always a short but un-
pleasant and unnatural break
between question and answer.

Therefore, propagation of
light rays in dielectric waveg-
uides is an important chapter
in modern optics. Some basics
may yet be understood by the
methods of ray optics.

1.7.1 Ray optics in waveguides

Total internal reflection in an optically thick medium provides the fundamental phys-
ical phenomenon for guiding light rays within a dielectric medium. Owing to this
effect, for example, in cylindrical homogeneous glass fibres, rays whose angle with the
cylinder axis stays smaller than the angle of total internal reflection θc are guided from
one end to the other. Guiding of light rays in a homogeneous glass cylinder is affected
by any distortion of the surface, and a protective cladding could even suppress total
internal reflection.

Therefore, various concepts have been developed, where the optical waves are
guided in the centre of a waveguide through variation of the index of refraction. These
waveguides may be surrounded by cladding and entrenched like electrical cables.

We will present the two most important types. Step-index fibres consist of two
homogeneous cylinders with different refractive indices (Fig. 1.11). To achieve beam
guiding, the higher index of refraction must be in the cladding. Gradient-index fibres
with continuously changing (in good approximation, parabolic) refractive index are
more sophisticated to manufacture, but they have technical advantages like, for exam-
ple, a smaller group velocity dispersion.
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Fig. 1.11: Profiles of the refractive index and ray path in optical waveguides. Upper: waveg-
uide with homogeneous refractive index. Centre: waveguide with stepped profile of refrac-
tive index (step-index fibre). Lower: waveguide with continuous profile of refractive index
(gradient-index fibre).

Excursion: Manufacturing waveguides

1600 oC 2000 oC 2000 oC

1. SiCl4 + BCl3

+ O2

SiO2:B3O3 2�����

Si02

2. SiCl4 + GeCl4

SiO

Fig. 1.12: Manufacturing of waveguides. The preform is manufactured with appropriate
materials with distinct indices of refraction, which are deposited on the inner walls of a quartz
tube by a chemical reaction.

The starting material is an ordinary tube made of quartz glass. It rotates on a lathe and is

blown through on the inside by a gas mixture (chlorides like highly purified SiCl4, GeCl4,

etc.). A oxyhydrogen burner heats a small zone of only a few inches up to about 1600◦C,

in which the desired materials are deposited as oxides on the inner walls (chemical vapour

deposition, CVD). Thus by multiple repetition a refractive index profile is established, before

the tube is melted at about 2000◦C to a massive glass rod of about 10mm diameter, a

so-called preform. In the last step a fibre pulling machine extracts the glass fibre out of a

crucible with viscous material. Typical cross-sections are 50 and 125 µm, which are coated

with a cladding for protection.

1.7.2 Step-index fibres

The principle of total internal reflection is applied in step-index fibres (Fig. 1.13),
which consist of a core with refractive index n1 and a cladding with n2 < n1. The
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relative difference in the index of refraction

∆ =
n1 − n2

n1
(1.7)

is not more than 1–2%, and the light rays are only guided if the angle α towards the
fibre axis is shallow enough to fulfil the condition for total internal reflection.

For example, for quartz glass (n2 =

Fig. 1.13: Critical angle in a step-index fibre.

1.45 at λ = 1.55µm), whose core index
of refraction has been enhanced by GeO2

doping up to n1 = n2 + 0.015, according
to θc = sin−1(n2/n1) one finds the crit-
ical angle θc = 81.8◦. The complemen-
tary beam angle relative to the fibre axis,
αG = 90◦ − θc, can be approximated by

αG � sin αG �
√

2∆, (1.8)

since n2/n1 = 1 − ∆, and thus is set in
relation to ∆, which yields α ≤ 8.2◦ for
this case.

When light rays cross the axis of a fibre, propagation takes place in a cut plane,
which is called the meridional plane. Skewed rays pass through the axis and are guided
on a polygon around the circle. It can be shown that the rays must confine an angle
α < αG with the z axis to be guided by total internal reflection.

Numerical aperture of an optical fibre

To guide a light ray in an optical fibre, the angle of incidence at the incoupler must be
chosen small enough. The maximum aperture angle θa of the acceptance cone can be
calculated according to the refraction law, sin θa = n1 sin αG = n1 cos θc. The sine of
the aperture angle is called the numerical aperture (NA). According to Eq. (1.8) and
cos θc �

√
2∆ it can be related with the physical parameters of the optical fibre,

NA = n1

√
2∆. (1.9)

This yields, for example, NA = 0.21 for the quartz glass fibre mentioned above, which
is a useful and typical value for standard waveguides.

Propagation velocity

Light within the core of the waveguide propagates along the trajectory with a velocity
v(r(z)) = c/n(r(z)). Along the z axis the beam propagates with a reduced velocity,
〈vz〉 = v cos α, which can be calculated for small angles α(z) to the z axis according
to

〈vz〉 � c

n1

(
1 − 1

2
α2

)
. (1.10)

In Chapter 3.3 on the wave theory of light, we will see that the propagation velocity
is identical with the group velocity.
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1.7.3 Gradient-index fibres

Beam guiding can also be performed by means of a gradient-index fibre (GRIN), where
the quadratic variation of the index of refraction is important. To determine the
curvature of a light ray induced by the refractive index, we apply the ray equation
(1.5). This is greatly simplified in the paraxial approximation (ds � dz) and for a
cylindrically symmetric fibre,

d2r

dz2
=

1
n

dn

dr
.

A parabolic profile of the refractive index with a difference of the refractive index
of ∆ = (n1 − n2)/n1,

n(r≤a) = n1

[
1 − ∆

( r

a

)2
]

and n(r>a) = n2, (1.11)

decreases from the maximum value n1 at r = 0 to n2 at r = a. One ends up with the
equation of motion of a harmonic oscillator,

d2r

dz2
+

2∆
a2

r = 0,

and realizes immediately that the light ray performs oscillatory motion about the z
axis. The period is

Λ =
2πa√
2∆

, (1.12)

and a light ray is described with a wavenumber K = 2π/Λ according to

r(z) = r0 sin(2πz/Λ).

The maximum elongation allowed is r0 = a, because otherwise the beam loses its
guiding. Thereby also the maximum angle αG =

√
2∆ for crossing the axis occurs. It

is identical with the critical angle for total internal reflection in a step-index fibre and
yields also the same relation to the numerical aperture (Eq. (1.9)). As in the case of
a step-index fibre, the propagation velocity of the light ray is of interest. Using the
approximation eq. (1.10) we calculate the average velocity during an oscillation period
with tanα � α = dr(z)/dz,

〈vz〉 =
〈

c cos α(r(z))
n(r(z))

〉
=

c

n1

〈
1 − ∆(r0/a)2 cos2(Kz)
1 − ∆(r0/a)2 sin2(Kz)

〉
,

and find after a short conversion the remarkable result

〈vz〉 =
c

n1

[
1 −
(

∆
2

)2(
α

αG

)2
]

,

which actually means that, because ∆ � 1, the propagation velocity within a gradient-
index fibre depends much less on the angle α than that within a step-index fibre. As we
will see, this circumstance plays an important role for signal propagation in waveguides
(see Chapter 3.3).
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1.8 Lenses and curved mirrors

The formation of an image plays a major role in optics, and lenses and curved mirrors
are essential parts in optical devices. First we will discuss the effect of these compo-
nents on the propagation of rays; owing to its great importance we have dedicated an
extra chapter (Chapter 4) to the formation of images.

1.8.1 Lenses

We define an ideal lens as an optical element that merges all rays of a point-like source
into one point again. An image where all possible object points are transferred into
image points is called a stigmatic image (from the Greek: stigma, point). The source
may even be far away and illuminate the lens with a parallel bundle of rays. In this
case the point of merger is called the focal point or focus. In Fig. 1.14, we consider a
beam of parallel rays that passes through the lens and is merged in the focal point.
According to Fermat’s principle, the optical pathlength must be equal for all possible
paths, which means that they are independent from the distance of a partial beam
from the axis. Then the propagation of light must be delayed most on the symmetry
axis of the lens and less and less at the outer areas!

Fig. 1.14: Upper: Stigmatic lens imaging. All rays starting at object point P are merged
again at image point P′. The light rays are delayed more near the axis of the lens body than
in the outermost areas, so that all rays make the same optical pathlength to the image point.
A lens may be figured as a combination of several prisms. Lower: A parallel beam of rays
originating from a source at infinite distance is focused at the focal point at focal distance f .

For a simplified analysis, we neglect the thickness of the lens body, consider the
geometrical increase of the pathlength from the lens to the focal point at a distance f
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and expand the term as a function of distance r from the axis,

	(r) =
√

f2 + r2 � f

(
1 +

r2

2f2

)
. (1.13)

To compensate for the quadratic increase of the optical pathlength 	(r), the delay by
the path within the lens glass – i.e. the thickness – must also vary quadratically. This
is actually the condition for spherical surfaces, which have been shown to be extremely
successful for convergent lenses! The result is the same with much more mathematical
effort, if one explores the properties of refraction at a lens surface assuming that a lens
is constructed of many thin prisms (Fig. 1.14). In the chapter on lens aberrations, we
will deal with the question of which criteria should be important for the choice of a
planar convex or biconvex lens.

1.8.2 Concave mirrors

Among curved mirrors, concave or parabolic

R

f=R/2

Parabolic
Mirror

Fig. 1.15: Path of rays for a concave
mirror. For near-axis incident light,
spherical mirrors are used.

mirrors play the most important role. They are
very well known from huge astronomical tele-
scopes (see Chapter 4), because we entered the
fascinating world of the cosmos with their aid.
But they are used much more often in laser res-
onators (Chapter 5.6).

Taking into account the tangential plane at
the intercept of the surface normal at the lens
surface, we can transfer the conditions of planar
reflection to curved mirror surfaces. Concave
mirrors mostly have axial symmetry, and the
effect on a parallel beam of rays within one cut
plane is visualized in Fig. 1.15.

The reflected partial rays meet at the focal point or focus on the mirror axis, as
they do in the case of a lens. It is known from geometry that the reflection points must
then lie on a parabola. Near the axis, parabolic mirrors may in good approximation be
substituted by spherical mirrors, which are much easier to manufacture. On the left-
hand side of Fig. 1.16 the geometrical elements are shown, out of which the dependence
of the focal length (defined here by the intersection point with the optical axis) on the
axis distance y0 of a parallel incident beam may be calculated,

f = R − R

2 cos α
� R

2

[
1 − 1

2

(y0

R

)2

+ · · ·
]

.

In general we neglect the quadratic correction, which causes an aperture error and
is investigated in more detail in Chapter 4.5.2.

In laser resonators a situation often occurs in which spherical mirrors are simulta-
neously used as deflection mirrors, e.g. in the ‘bowtie resonator’ in Fig. 7.35. Then the
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Fig. 1.16: Focusing an incident beam that is parallel to (left) and oblique to (centre: top
view; right: side view) the optical axis.

focal width of the rays within the ray plane (fx) and within the plane perpendicular
to that one (fy) will differ from f0 = R/2,

fx =
R

2 cosα
=

f0

cos α
and fy =

R cos α

2
= f0 cos α.

The geometrical situations in the top view (Fig. 1.16, centre) are easy to see. In the
side view one looks at the projection onto a plane perpendicular to the direction of
emergence. The projections of the radius and focal length are reduced to R cos α and
f cos α, respectively. The difference between the two planes occurring here is called
astigmatic aberration and sometimes can be compensated by simple means (see for
example p. 126).

1.9 Matrix optics

As a result of its rectilinear propagation, a free light ray may be treated like a straight
line. In optics, systems with axial symmetry are especially important, and an individ-
ual light ray may be described sufficiently well by the distance from and angle to the
axis (Fig. 1.17). If the system is not rotationally symmetric, for example after passing
through a cylindrical lens, then we can deal with two independent contributions in the
x and y directions with the same method.

The modification of the beam di-

Fig. 1.17: Key variables of an optical ray for
simple translation.

rection by optical components – mir-
rors, lenses, dielectric surfaces – is de-
scribed by a trigonometric and there-
fore not always simple relation. For
near-axis rays, these functions can of-
ten be linearized, and thus the math-
ematical treatment is simplified enor-
mously. This becomes obvious, for ex-
ample, for a linearized form of the law
of refraction (1.2):

n1θ1 = n2θ2. (1.14)
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Here we have made use of this approximation already with the application of
Fermat’s principle for ideal lenses. Near-axis rays allow the application of spherical
surfaces for lenses, which are much easier to manufacture than mathematical ideal
surfaces. Furthermore, ideal systems are only ‘ideal’ for selected ray systems, otherwise
they suffer from image aberrations like other systems.

When treating the modification of a light ray by optical elements in this approx-
imation by linear transformation, matrices are a convenient mathematical tool for
calculating the fundamental properties of optical systems. The development of this
method made for the denomination matrix optics. The introduction of transformation
matrices for ray optics may be visualized very easily, but they achieved striking impor-
tance, because they do not change their form when treating near-axis rays according
to wave optics (see section 2.3.2). Furthermore this formalism is also applicable for
other types of optics like ‘electron optics’, or the even more general ‘particle optics’.

1.9.1 Paraxial approximation

Let us consider the propagation of a light ray at a small angle α to the z axis. The
beam is fully determined by the distance r from the z axis and the slope r′ = tan α.
Within the so-called paraxial approximation, we now linearize the tangent of the angle
and substitute it by its argument, r′ � α, and then merge r with r′ to end up with a
vector r = (r, α). At the start a light ray may have a distance to the axis and a slope
of r1 = (r1, α1). Having passed a distance d along the z axis, then

r2 = r1 + α1d,

α2 = α1,

holds. One may use 2 × 2 matrices to write the translation clearly,

r2 = Tr1 =
(

1 d

0 1

)
r1. (1.15)

A bit more complicated is the modification by a refracting optical surface. For that
purpose we look at the situation of Fig. 1.18, where two optical media with refractive
indices n1 and n2 are separated by a spherical interface with radius R. If the radius
vector subtends an angle φ with the z axis, then the light ray is obviously incident on
the surface at an angle θ1 = α1 + φ and is related to the angle of emergence by the
law of refraction.

In paraxial approximation according to Eq. (1.2), n1θ1 � n2θ2 and φ � r1/R is
valid, and one finds

n1

(
α1 +

r1

R

)
= n2

(
α2 +

r2

R

)
.

The linearized relations may be described easily by the refraction matrix B,(
r2

α2

)
= B

(
r1

α1

)
=
(

1 0
(n1 − n2)/n2R n1/n2

)(
r1

α1

)
. (1.16)
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Fig. 1.18: Modification of a light ray at curved refracting surfaces.

1.9.2 ABCD matrices

The most important optical elements may be specified by their transformations, also
called ABCD matrices,(

r2

α2

)
=
(

A B

C D

)(
r1

α1

)
, (1.17)

which we collect in Tab. 1.2 for look-up purposes and will be presented in the following
in more detail.

According to Fig. 1.18 the effect of a lens on a light ray is characterized by a
refraction B at the entrance, a translation T in the glass and one further refraction
B′ at the exit. Now the matrix method shows its strength, because the effect of a lens
can easily be expressed as a product L = B′TB of three operations,(

r2

α2

)
= L
(

r1

α1

)
= B′TB

(
r1

α1

)
. (1.18)

Before we discuss the lens and some more examples in detail, we have to fix some
conventions, which in general are used in matrix optics:

1. The ray direction goes from left to right in the positive direction of the z axis.

2. The radius of a convex surface is positive, R > 0, and that of a concave surface is
negative, R < 0.

3. The slope is positive when the beam moves away from the axis, and negative when
it moves towards the axis.

4. An object distance or image distance is positive (negative) when lying in front of
(behind) the optical element.

5. Object distances are defined to be positive (negative) above (below) the z axis.

6. Reflective optics is treated by flipping the ray path after every element.
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Tab. 1.2: Important ABCD matrices.

Translation

Refraction
(planar surface)

Refraction
(curved surface)

Lenses
Curved Mirrors
(focal length f)

Optical Fiber
GRIN

(length �)

(   )1 d
0 1

(     )1 0
0 n1/n2

(      )1 0
n1n1-n2

n2R n2

(     )1 0
1-1/f

(          )cos K�

-Ksin K� cos K�

K-1sin K�

z�

Operation ABCD-Matrix

n1 n2

n1 n2

K=2π/Λ

R

1.9.3 Lenses in air

Now we will explicitly calculate the lens matrix L according to eq. (1.18) and we take
into account the index of refraction nair = 1 in Eqs. (1.15) and (1.16). The expression

L =


 1 − n − 1

n
d
R

d
n

(n − 1)
[

1
R′ − 1

R − d(n − 1)2

RR′n

]
1 + n − 1

n
d
R′




makes a complicated and not very convenient expression at first sight. Though it
may allow the treatment of very thick lenses, by far the most important are the
predominantly used ‘thin’ lenses, whose thickness d is small compared to the radii of
curvature R, R′ of the surfaces. With d/R, d/R′ � 1 or by direct multiplication B′B,
we find the much simpler form

L �
(

1 0
(n − 1)

(
1
R′ − 1

R

)
1

)

and introduce the symbol D for the refractive power in the lensmaker’s equation ,

D = −(n − 1)
(

1
R′ −

1
R

)
=

1
f

. (1.19)
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Thus the ABCD matrix for thin lenses becomes very simple

L =
(

1 0
−D 1

)
=

(
1 0

− 1
f 1

)
, (1.20)

where the sign is chosen such that convergent lenses have a positive refractive power.
The refractive power is identical with the inverse focal length, D = 1/f . The refractive
power D is measured in units of dioptres (1 dpt = 1 m−1).
To support the interpretation of

g b

G B

Fig. 1.19: Point image formation with a lens.

Eq. (1.20), we consider a bundle of
rays that originates from a point
source G on the z axis (Fig. 1.19).
Such a bundle of rays can be de-
scribed at a distance g from the
source according to(

r

α

)
= α

(
g

1

)
. (1.21)

We calculate the effect of the lens in
the form

L
(

r

α

)
= α

(
g

1 − g/f

)
= α′

( −b

1

)
. (1.22)

The lens transforms the incident bundle of rays into a new bundle, which again
has the form (1.21). It converges for α′ < 0 to the axis, crosses it at a distance b > 0
(convention 4) behind the lens, and creates there an image of the point source. If
b < 0, then the virtual image of the point source lies in front of the lens and the lens
has the properties of a dispersive lens.

By comparison of coefficients, we obtain the relation between object distance g and
image distance b from Eq. (1.22) for lens imaging:

1
f

=
1
g

+
1
b
. (1.23)

This equation is the known basis for optical imaging. We refer to this topic again in
Chapter 4 in more detail.

Example: ABCD matrix of an imaging system
For imaging by an arbitrary ABCD system, we must claim that a bundle of rays
(r1, α1) is again merged at a point at a certain distance d = d1 + d2:(

r2

α2

)
=
(

1 d1

0 1

)(
A B

C D

)(
1 d2

0 1

)(
r1

α1

)
.

For stigmatic imaging r2 must be independent of α1 and by calculation one finds the
condition d1D + d2A + d1d2C + B = 0, which for B = 0 can be fulfilled by suitable
choice of d1 and d2, even if C < 0. Thus the ABCD matrix takes exactly the form
that we know already from lenses and lens systems.
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1.9.4 Lens systems

The matrix method enables us to explore the effect of a system consisting of two
lenses with focal lengths f1 and f2 at a distance d. We multiply the ABCD matrices
according to Eqs. (1.20) and (1.15) and get the matrix M of the system

M = L2TL1 =
(

1 0
−1/f2 1

)(
1 d

0 1

)(
1 0

−1/f1 1

)

=


 1 − d

f1
d

−
(

1
f2

+ 1
f1

− d
f1f2

)
1 − d

f2


 .

(1.24)

The system of two lenses substitutes a single lens with focal length given by
1
f

=
1
f2

+
1
f1

− d

f1f2
. (1.25)

We consider the following two interesting extreme cases.

(i) d � f1,2: Two lenses that are mounted directly next to each other, with no
space between them, add their refractive powers, M � L2L1 with D = D1 + D2.
This circumstance is used for example when adjusting eyeglasses, when refractive
powers are combined until the required correction is found. Obviously a biconvex
lens can be constructed out of two planar convex lenses, expecting that the focal
length of the system is divided by two.

(ii) d = f1 + f2: If the focal points coincide, a telescope is realized. A parallel bundle
of rays with radius r1 is widened or collimated into a new bundle of parallel
rays with a new diameter (f2/f1)r1. The refractive power of the system vanishes
according to eq. (1.25), D = 0. Such systems are called afocal.

A thin lens is one of the oldest optical instruments, and thin lenses may have
many different designs due to their various applications. But since lens aberrations
are of major interest, we will dedicate a specific chapter to the various designs (Chap-
ter 4.5.1).

1.9.5 Periodic lens systems

Fig. 1.20: Periodic lens system and equivalence to a two-mirror resonator.

Periodic lens systems had already been analysed in early times to realize optical light
transmission lines. For such an application it is important that a light ray does not
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leave the system even after long distances. We consider a periodic variant of the lens
system with focal lengths f1 and f2 at a distance d. For that purpose we add one
more identical translation to the transformation matrix from Eq. (1.24), which yields
a system equivalent to a system of two concave mirrors (Fig. 1.20):(

A B

C D

)
=
(

1 0
−1/f2 1

)(
1 d

0 1

)(
1 0

−1/f1 1

)(
1 d

0 1

)

=
(

1 d

−1/f2 1 − d/f2

)(
1 d

−1/f1 1 − d/f1

)
.

Now for n-fold application the individual element will cause total transformation(
An Bn

Cn Dn

)
=
(

A B

C D

)n

.

-1

0

1

2

4

-1 0 1 2 3 4

d/r2 r 1
=r 2

d=r1+r2

1

2

3

1

planar parallel

2

confocal

3

concentric

3

d/r1

Fig. 1.21: Stability diagram for lenses and optical resonators according to the condition
(1.27). Stable resonator configurations are within the hatched area. The dashed lines indicate
the positions of confocal resonators, d = (r1 + r2)/2. Symmetric planar parallel, confocal and
concentric resonators are at the positions circled 1, 2 and 3.

Introducing

cosΘ =
1
2
(A + D) = 2

(
1 − d

2f1

)(
1 − d

2f2

)
− 1, (1.26)
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this matrix can be evaluated algebraically. Thus one calculates(
A B

C D

)n

=
1

sin Θ

(
A sinnΘ − sin (n − 1)Θ B sin nΘ

C sin nΘ D sin nΘ − sin (n − 1)Θ

)
.

The angle Θ must remain real, to avoid the matrix coefficients increasing to infinity.
Otherwise the light ray would actually leave the lens system. Thus from the properties
of the cosine function,

−1 ≤ cosΘ ≤ 1,

and in combination with Eq. (1.26) we get

0 ≤
(

1 − d

2f1

)(
1 − d

2f2

)
≤ 1. (1.27)

This result defines a stability criterion for the application of a waveguide consisting of
lens systems, and the corresponding important stability diagram is shown in Fig. 1.21.
We will deal with this in more detail later on, because multiple reflection between con-
cave mirrors of an optical resonator can be described in this way as well (Chapter 5.6).

1.9.6 ABCD matrices for waveguides

According to Section 1.7 and with the aid of the wavenumber constant K = 2π/Λ
(Eq. (1.12)) a simple ABCD matrix for the transformation of a ray by a graded-index
fibre of length 	 can be specified:

G =
(

cos K	 K−1 sin K	

−K sin K	 cos K	

)
. (1.28)

With short pieces of fibre (K	 < π/4) also thin lenses can be realized, and it can be
shown that the focal point lies at f = K−1 cotK	. These components are called GRIN
lenses.

1.10 Ray optics and particle optics

Traditional optics, which deals with light rays and is the topic of this textbook, was
conceptually in every respect a role model for ‘particle optics’, which started around
the year 1900 with the exploration of electron beams and radioactive rays. Since ray
optics describes the propagation of light rays, it is convenient to look for analogies in
the trajectories of particles. We will see in the chapter on coherence and interferometry
(Chapter 5) that the wave aspects of particle beams are widely coined in terms of the
ideas of optics as well.

To re-establish the analogy explicitly, we refer to considerations about Fermat’s
principle (p. 4), because there a relation between the velocity of light and the index
of refraction is described. This relation is particularly simple if a particle moves in a
conservative potential (potential energy Epot(r)), like for example an electron in an
electric field. As a result of energy conservation,

Ekin(r) + Epot(r) = Etot,
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we can immediately infer from Ekin = mv2/2 that

v(r) =

√
2
m

[Etot − Epot(r)],

if the particles do not move too fast and we can adopt classical Newtonian mechanics
(in a particle accelerator, the special theory of relativity has to be applied.).

We can define an effective relative index of refraction by

v(r1)
v(r2)

=
neff(r2)
neff(r1)

=

√
[Etot − Epot(r2)]√
[Etot − Epot(r1)]

.

Fig. 1.22: Lenses for particle optics. Upper: So-called ‘single lens’ for electron optics with
equipotential surfaces qU [81]. The potential is created by symmetric positioning of three
conducting electrodes, the two outer ones lying on the same potential. Lower: Magnetic lens
for atom optics with equipotential surfaces |µ ·B| [53]. An axial magnetic hexapole is formed
out of circle segments, which are manufactured from a homogeneously magnetized permanent
magnet (e.g. NdFeB or SmCo). The strength of the magnetic field rises as a square function
of the radial distance.

As in the case of light, it must satisfy an additional condition, to be defined absolutely.
For example, we may claim that neff = 1 for Epot = 0. But then it is obvious that
neff depends extremely on the velocity outside of the potential – particle optics has
properties that are very much chromatic! The fundamental reason for this difference
is the different relation between kinetic energy E and momentum p for light and for
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particles having mass, which is also called the dispersion relation:

Light E = pc,

Particles E = p2/2m.

In charged particle beams a narrow velocity distribution can be created by acceleration,
which makes the difference not very pronounced. But the broadness of the velocity
distribution in thermal beams of neutral atoms induces significant problems. Indeed,
this velocity distribution can be manipulated by so-called supersonic jets or by laser
cooling (see Chapter 11.6) in such a way that even ‘atom optics’ can be established
[53]. We present some important devices of electron and atom optics in Fig. 1.22.




