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1.1 Introduction

1. In the following examples we briefly illustrate the problems considered in the book and the
results obtained.

A. A cylindrical mirror is given; its director is an arc of a circle. The mirror is illuminated
by a field with the polarization parallel to the cylinder’s axis. The induced current has the
same direction. For simplicity, we assume that both the field and the current do not depend
on the coordinate in this direction. Can this current generate (at a suitable illumination) the
pattern 1 + cos', or a pattern close to it?

The answer to this question depends on the value of the circle radius a. It is impossible to
generate this pattern or even the one close to it if J0(ka) = 0, where J0 is the Bessel function
and k = !=c is the wave number (! is the frequency). The closest pattern to the given one is
cos'. This result does not depend on the mirror width.

The pattern can bear the stamp of the region in which the current is located. This stamp
cannot be erased by changing the current distribution. If the condition J 0(ka) = 0 holds, then
it is impossible for the pattern generated by the current, located on such a mirror, to be equal
(even approximately) to a pattern, the Fourier series of which contains the constant term. If
ka is not equal to a zero of the function J0, then it is possible to approximate such a pattern or
even realize it, but if ka is close to this zero, then the current generating the pattern must be
very large.

B. A metal screen is a part of a sphere. It is illuminated by an electromagnetic impulse. Is
it possible to verify whether the screen is really a part of a sphere, and to find its radius by the
measured pattern of the scattered field? Both the spatial and time structures of the impulse as
well as the shape of the mirror contour are unknown.

The answer is positive. To do it, the vector pattern generated (at any illumination) by the
current on the screen should be multiplied by a certain weight vector function, and the product
should be integrated over the solid angle 4� and Fourier-transformed over time. If the screen
is a part of a sphere, then at some frequencies the Fourier transform will be equal to zero. The
sphere radius can be calculated by values of these frequencies.

The above examples concerning the parts of cylindrical or spherical surfaces are not exotic.
There are many such surfaces, moreover, in their neighborhood infinite numbers of other
surfaces of this kind exist. This fact makes the study of the problem reasonable.

The shape of the surface, where the currents are located, can be decisive for the approx-
imation not only of any pattern by the patterns of these currents, but it is also relevant to the
fields in the near zone.
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C. A plane is illuminated by a beam incoming from the antenna located in another plane
parallel to the given one. Can some given field be created on it? The answer is positive only
if the field fulfils the condition that some expression, containing this field, equals zero. The
problem is a two-dimensional generalization of the problem on the existence condition for
the field, located on the finite straight-line segment, which creates a given pattern. In both
cases the problem is reduced to a first-kind integral equation. The above condition means that
the pseudo-solution to this equation solves it, that is, the solution exists. In the case of the
one-dimensional problem on the pattern of a linear current, the above condition means that
the given pattern belongs to the class of functions defined by the Paley–Wiener theorem.

2. Using simple reasoning, one can easily explain the impossibility of approximating some
class of patterns from the first example. Let us give such an explanation, emphasizing that it
is not universal – in general, the physical explanation is more complicated.

As in most of the book, we will consider here the two-dimensional scalar formulation,
because it is shorter and more demonstrative. In essence, the three-dimensional vector prob-
lems are not more complicated, but they are much more cumbersome. These problems will be
considered in Chapter 5.

First, we prove that if J0(ka) = 0, then no current on the whole circle r = a generates a
pattern having a constant term in the Fourier series. At this frequency there exists the solution
to the homogeneous Helmholtz equation for the electric field, which equals zero on the circle
and has no singularity inside it. This solution is bu(r; ') = J0(kr). In other words, the circle
is a resonant one.

Consider an auxiliary interior problem on the field bu(r; ') in a hollow metal cylinder of
given radius r = a. At the resonant frequency the eigenoscillation bu(r; ') = J 0(kr) can exist
in such a volume. The current on the walls is proportional to @u=@r and does not depend on
the angle '. This current generates a field equal to zero outside the cylinder. Below we will
use only the fact that the current, independent of the angle ', is not radiating at this frequency.

We return to the problem of the field generated by an arbitrary current on the circle arc.
Starting with the case of the whole circle, expand the current in the Fourier series. Every term
of the series is proportional to cosn' or sinn' (n = 0; 1; :::) and generates the field with the
same angular dependence. But the zero-order term does not generate a field outside the circle,
therefore for r > a such a term is absent in the field expansion of any current as well as in the
pattern.

This result is also valid for any arc of the circle, in spite of the fact that the arc is not a
closed line and, therefore, nonradiating current cannot be induced on it. Assume that some
current on the arc generates a pattern with zero-order term in the Fourier series. Then we can
supply the arc to the whole circle and set the current to be zero on the supplementary arc.
In this way we have constructed the current on the whole circle, generating the pattern with
nonzero constant term. But, as it follows from the above, it is impossible.

The direct proof of the above statement is elementary for this example. If C is a circle
arc of radius a and j(�) is a current, located on C, then the pattern generated by j(s) is (with
accuracy to a nonessential factor)

f(') =

Z
C

eika cos('��) j(�)d�: (1.1)
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The constant term in the Fourier series for the pattern is (with the same accuracy)

2�Z
0

f(')d' = 2�J0(ka)

Z
C

j(#)d#: (1.2)

If J0(ka) = 0, then the zeroth term in the series for f(') is absent. This property does not
depend on both the current and the length of arc C. If C is the whole circle, then this proves
once more that, at the resonance, any current on the walls creates a field which does not have
the zeroth Fourier term. However, the multiplier J0(ka) is factored out for the circle arc as
well.

3. Let us state the problem in more specific terms, but still without aspiring to an exact
formulation. Consider the current j(s) located on the given line C (s is the coordinate on C).
It generates the pattern

f(') =

Z
C

K(s; ') j(s)ds: (1.3)

The form of a smooth kernelK in (1.3) is not important here. (In the three-dimensional vector
case, the line C should be replaced by a surface, K – by a functional matrix, and so on.)

In the antenna synthesis theory, equation (1.3) is considered as the integral equation on the
current j(s). We are interested in the problem on the existence of a solution to this equation
or to an equation in which f(') is replaced by another function close to f(') in the quadratic
metric. The current j(s) should have a finite norm. First of all, we will investigate how the
existence of a solution to this equation depends on the line C.

For the validity of most of the results obtained below, it is not necessary for the norm
of j(s) to be finite. Moreover, it is acceptable that the current may have singularities and
j j(s)j2 may not be integrable. It is only significant that the current should be integrable itself,
so that the integral on the right side of expression (2.6) exists (see below). This condition
is fulfilled also for the current at the border of a semi-plane (for both polarizations), and for
j(s) � Æ(s � s0), that is, for the approximation, usually used in the antenna array theory.
However, for simplicity (particularly in Chapter 4), we will require jj(s)j 2 to be integrable.

There exist such lines, for which equation (1.3) has no solution, and (what is important) the
equation, in which f(') is replaced by a function close to it, has no solution, either. To obtain
the solvable equation, we should change f(') by a finite value. In terms of functional analysis
this means that the complete set of currents j(s) generates a noncomplete set of patterns f(').
It turns out, that line C possesses this property, if there exists a solution to the homogenous
Helmholtz equation, equal to zero on C. In the above example “A” this solution is J 0(kr).
The investigation of such a solution turns out to be a very efficient method for solving the
problem of approximability and the related ones.

The most important result is that there are “many” such lines and surfaces, and “many”
patterns f('), for which equation (1.3) has no solution even if f(') is replaced by any func-
tion “close” to it. Therefore, the effect of nonapproximability and its consequences deserves
a detailed analysis. We will explain below, what “many” and “close” mean .
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1.2 Subject and Method of Investigation

1. In the first five chapters of the book, some properties of electromagnetic fields, it is three-
dimensional vector problems are investigated. Almost all of the questions we are interested in
are solved for these fields in much the same way as for the scalar ones. However, the equation
itself as well as the material explanation and result formulations are, of course, much simpler
in the scalar case. Therefore, the exposition will mainly be given for the scalar fields and,
as a rule, for the two-dimensional ones. Transferring the methods and results to the three-
dimensional case is almost always trivial; see Chapter 5.

Only one condition is nontrivial while transferring the results to the three-dimensional
vector fields. It is connected with the fact that surfaces orthogonal to a given vector field
A(x; y; z) do not always exist. Such surfaces exist only in the case, when

ArotA = 0: (1.4)

There is no similar condition for existence of zero surfaces or zero lines in scalar fields. The
methods developed in the book contain the construction procedure of such zero lines for some
cases. While transferring the methods from u(x; y) to A(x; y; z) (1.4) should be taken into
account.

Thus, almost all the material in the book is related to properties of a scalar function of
two variables. It will be denoted by u(x; y) or u(r; ') depending on the coordinate system, in
which the problem is investigated.

The monochromatic fields with time dependence e i!t are considered. Instead of the fre-
quency !, the wave number k = !=c is involved in the formulas, and this number is called
the frequency (c is the light velocity). We will consider the fields generated by the currents
distributed on the surfaces.

This condition does not relate to the material of Chapter 6 where quasi-plane fields are
investigated. They do not satisfy the condition (1.18) (see below). They are “generated” by
some other fields (not by currents). We return to this question at the end of the subsection.

For the two-dimensional case, the line current (the current distributed along a line) is an
analog of the surface one. It is more convenient to introduce the current, not as the right-hand
side of the Helmholtz equation, but as the discontinuity of the function u or its derivative on
the line.

The field u(x; y) satisfies the homogenous Helmholtz equation

�u+ k2u = 0 (1.5)

and one of two following conditions on a line C :

[u] = 0;

�
@u

@N

�
= j; (1.6a)

[u] = j;

�
@u

@N

�
= 0; (1.6b)

where � is the two-dimensional Laplace operator:
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@'2
; (1.7)

[u] is the difference between the values of u on the sides of C, from and to which the normal
N is directed.

The function u(r; ') satisfies the Sommerfeld radiation condition at infinity (i.e. at r !
1)

u(r; ') = f(')
e�ikrp
kr

+O
h
(kr)�

3
2

i
: (1.8)

Here f(') is a radiation pattern. Field u(r; ') is completely defined by equation (1.5), the
given current j(s) of the form (1.6a) or (1.6b) and condition (1.8) at infinity. The function
f(') in (1.8) is not a given one, it should be determined after the field u(r; ') is found. The
field u(r; ') is complex, because any real field cannot have asymptotics as in (1.8). In the
general case the function f(') is also complex.

2. Let us explain the physical sense of the currents in (1.6). The two-dimensional scalar
problem of the electrodynamics appears, when either the electrical or magnetic field has only
one component (more exactly, when Ex = Ey = Hz � 0 or Hx = Hy = Ez � 0), and the
fields do not depend on the z-coordinate: @=@z � 0.

In this book, the first of these cases is considered, namely, the case, when Ex = Ey =

Hz � 0 and the fields do not depend on z. The scalar function u(x; y) is Ez, two other com-
ponents of the electric field equal zero identically. The derivative @u=@N jC is the component
of the magnetic field, tangential to the line C. The expression [@u=@N ] is the jump of the
magnetic field, or, what is the same, the z-component of the electric current. The electric
current located on the line C is denoted in (1.6a) by j. The jump [u] of the function u on C is
the tangent to C component of the magnetic current j (m). One can write (1.6) in the form

�
@u

@N

�
= j; [u] = j(m): (1.9)

While referring to j (e)z and j(m)
z we omit the lower and upper indices z and (e), respec-

tively. Nonessential factors are omitted in (1.9), too: in fact, the currents j and j (m) are not
equal, but only proportional to the jumps of u and @u=@N , correspondingly.

There is another way to introduce the scalar function. One can consider a three-dimensional
vector field with Ez � 0 and @=@z � 0. Then Hz depends only on x and y and it can be used
as the above scalar function u. We will not use this approach in the book.

3. No special or very complicated mathematical methods are used for investigation of
the problems, considered. Properties of solutions to equation (1.5) are investigated by the
usual methods applied in typical diffraction problems. No diffraction problems themselves
are considered in the book.

The functions considered below may have singularities – discontinuities and poles. Cur-
rents are given in the form of discontinuity of the functions or their normal derivatives. The
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existence or absence of singularities in the whole domain or in any part of it is very important
in all the constructions below. This importance is connected with the wide use of the Green
formulaZ

L

�
u1
@u2

@N
� u2

@u1

@N

�
ds = 0 (1.10)

for two solutions u1(x; y) and u2(x; y) to equation (1.5). This formula is valid only if both
functions have no singularity inside the closed line (contour) L.

All the lines mentioned below (either closed or not) are smooth or have only a finite num-
ber of angular points. We also assume that all the contours satisfy the conditions, necessary
for the existence of a solution to the interior Dirichlet (u is zero on the contour) or Neumann
(@u=@N is zero on the contour) problems. At some frequencies the homogeneous problem for
equation (1.5) with the corresponding boundary condition on C is supposed to have nonzero
solutions.

The variational technique is also widely applied. Two variational methods are used most
often. The first one is the Lagrangian multipliers method. It reduces the problem on a condi-
tional extremum to the problem on an unconditional one. The second one is the Ritz method
reducing the problem on the extremum of the two bilinear functionals ratio to an algebraic
equation, involving equating some determinant to zero.

In some sections, the terms of functional analysis, such as: operators, completeness of the
function set and so on, are used. However, only two theorems are referred to in the book. The
first is the theorem on completeness of eigenfunctions of the self-adjoint integral operators;
the second is on the tendency of eigenvalues of such operators to zero as the order number
increases. In the problems on fields, generated in the free space by currents on surfaces, the
nonself-adjoint operators are paramount. Some simple properties of these operators are briefly
formulated as they are used in the book. The theory of analytical properties of solutions to the
Helmholtz equation (or the Maxwell system) and functional analysis, are used simultaneously.
This makes it possible to obtain some results in a simple and clear way.

The functional analysis formalism is used a little (mainly for shortness) in Chapter 4. The
pseudo-solutions to the first kind equations, that is, the functions which minimize the mean
square difference between the given function and the calculated one, are investigated. The
solution to such an equation exists if and only if this minimal difference is zero.

All the material below is within the capacity of the layman in mathematics. In view of this
the intermediate derivations are replaced by their descriptions where possible. As a rule, the
technique used is trivial for mathematicians. However, the fact that an interesting branch of
mathematical physics with unsolved problems, simple by formulation but still complicated by
nature exists, may be of interest to them.

4. There are not many references to publications in the text. The general statement of
the problem, denoted in the book title, and some essential results, were given in the papers
published in 1988–2003. There are not references to all these papers in the book. The for-
mulas and methods of diffraction theory used below are described, for instance, in [2]. Some
formulations of functional analysis are in [3]. The formulas for special functions can be found
in the reference book [4].
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1.3 Realizability, Approximability, Amplitude
Approximability

1. In the book some properties of a function f(') are investigated. This function is determined
by the current j(s) and line C using (1.3). It is the radiation pattern of the field generated by
this current. For brevity we will often use a term “the pattern generated by the line C ” for the
function f('). Current j(s) is an arbitrary function of the coordinate s on C. As a rule, we
only assume that it has a finite norm N defined by

N2 =

Z
C

j j(s)j2 ds: (1.11)

The typical formulation of our problem is the following. Given a function F (') (in gen-
eral, complex) with finite norm; for definiteness, we will usually put

2�Z
0

jF (')j2 d' = 1: (1.12)

Can F (') be a radiation pattern generated by the lineC? If not, does a function, close toF ('),
exist, which can be generated by C? Otherwise, does a current j(s) on C exist, connected
with the function F (') or with that, close to it, by formula (1.3)?

The following four cases can occur.
1. Realizability: equality (1.3) (replacing f(') by F (')), treated as an integral equation

on j(s), has a solution with finite norm. It means there exists a current j(s) generating the
pattern f(') equal to F ('); more specifically,

2�Z
0

jF (')� f(')j2 d' = 0: (1.13)

2. Approximability: for any given Æ > 0, a current j(s) exists, such that the pattern f('),
generated by it, fulfils the condition :

2�Z
0

jF (')� f(')j2 d' � Æ2: (1.14)

The realizability can be considered as a special case of approximability. It occurs when
the above condition is valid for Æ = 0, too. Any function realizable by a line C is also
approximable by it. If the function is not approximable, then it is not realizable, either.

3. Amplitude approximability: for any given Æ > 0, a current j(s) and a real function (a
phase)  (') exist, such that

2�Z
0

���F (')e�i (') � f(')
���2 d' � Æ2: (1.15)
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The approximability is a special case of the amplitude approximability, when (1.15) is valid
for  (') � 0.

4. Amplitude nonapproximability: the amplitude of any pattern generated by the line C is
not close to jF (')j.

The nonapproximability of a given function F (') means that the distance between any
pattern generated by the line C and the given function F (') (see below (1.32)) is finite. The
amplitude nonapproximability means that the finite distance is between any pattern generated
by the line C and an arbitrary function with amplitude jF (')j.

If the function F (') is realizable, then the integral equationZ
C

K('; s)j(s)ds = F (') (1.16)

has a solution with a finite norm. We do not mention the last statement. If the function F (')
is approximable, then for any Æ > 0 there exists the function eF (') satisfying the condition

2�Z
0

���F (')� eF (')���2 d' � Æ2; (1.17)

so that the equationZ
C

K('; s)j(s) = eF (') (1.18)

has a solution. If the function F (') is amplitude approximable, then for any Æ > 0 there exist
the phase  (') and the function eF (') satisfying the condition

2�Z
0

���F (')e�i (') � eF (')���2 d' � Æ2; (1.19)

so that equation (1.18) has a solution.
Below we will use the shortened expressions: “the function is realizable by the line C”,

“...is approximable by C”, “...is amplitude approximable by C”, omitting the words: “...by
the patterns of currents with finite norm, located on along the line C”.

2. The problem of realizability is not the subject of this book. Only a few results of
this topic will be needed below. We will use the technique [5], based on the analysis of the
convergence rate (with respect to n) of the Fourier series

F (') =

1X
n=0

An cos(n') (1.20)

of the function F ('), the realizability of which is investigated, (see also Section 3.3, Subsec-
tion 7). In a similar way to many other cases, the terms with sin(n') are omitted in (1.20) for
simplicity. The realizability depends on the existence and value of the limit

a0 =
2

ek
lim
n!1

(n n

p
jAnj); e = 2:718::: (1.21)
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Strictly speaking, the term lim should be used in (1.21) instead of lim, but this fact is not
essential here. The value of a0 does not depend on the norm of function F ('), because
lim
n!1

n

p
jcj = 1 for any given c 6= 0.

If the limit (1.21) does not exist (i.e., a0 =1), then the function F (') is not realizable by
patterns of any currents, wherever they are located. The example is the �-function, its Fourier
coefficients An diminish as slowly as 1=n and it is not realizable by any line.

If ka0 is a finite number, then the realizability of F (') by the lineC depends on the mutual
location of the line C and the circle of radius a0 with its centre at the coordinate origin. The
functionF (') is not realizable by any line lying wholly inside this circle, but it is realizable by
any closed nonresonant (with respect to the Dirichlet boundary condition) contour, encircling
the circle. If a0 = 0; then F (') is realizable by any closed nonresonant contour containing the
coordinate origin, and it is not realizable by any unclosed line. For the pattern of any current
located on a nonclosed line, a0 6= 0 (see [5]). We do not analyze all the possible mutual
locations of the line C and the circle here. Notice only that the closed contours realize a much
wider class of patterns, than do the unclosed ones. As it will be shown later in the book, this
is valid for the approximability problem, too.

As an example, consider the function (not normalized by (1.12))

F (') = e�A sin2('=2): (1.22)

Its Fourier coefficients decrease as In (A=2), where In is the modified Bessel function. It is
asymptotically (at n ! 1) equal to (eA=2)

n
n�n, so that (1.21) yields: a0 = A=k. Any

circle of the radius greater than A=k, or any contour, encircling this circle can realize the
function (1.22). Any line, located inside the circle does not realize it. The narrower a pattern,
the larger must be the contour which can realize it. The width of the pattern (1.22) is about
A�1=2.

It is significant for comparison of the notions of realizability and approximability, that the
first one is defined by the behavior ofAn at large n according to (1.21). Therefore, the number
ka0 may be altered in an arbitrary way, by altering the function F (') as little as desired. For
example, if we truncate the series (1.20) at large n, we almost do not affect the function F ('),

but the value ka0 is zero. Otherwise, if we add the function
1P
n=N

�
1=n2

�
cos(n') to F (');

then, at a large N , it will be altered by an arbitrary small value, but the Fourier series will
converge so slowly that the limit (1.21) will not exist (a0 =1 ), that means the new function
will not be realizable by any line.

The realizability is a “gentle” property, the approximability is a more “rough” one. The
nonapproximable function should be finitely altered to become an approximable one and vice
versa. This statement will be justified below. It will be shown that if this alteration is small (al-
though it is finite according to the approximability definition), then the difference between the
presence and absence of the approximability will also be small. This corresponds to physical
intuition.

3. Below, we often deal with the situation when all the patterns f('), realizable by the
line C, possess the property:

I = 0; (1.23)
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where

I =

2�Z
0

f(')F̂ �(')d': (1.24)

Here F̂ (') is a function, determined by the line C only. It has a finite norm and, by default, is
normalized by the condition

2�Z
0

���F̂ (')���2 d' = 1: (1.25)

The function F̂ (') and its connection with the line C are very significant for the problems
considered in the book.

If the condition (1.23) is fulfilled, then the functions F (') exist, which cannot be approx-
imated by the line C. We often use this relation between the property (1.23) of the line C and
the nonapproximability.

Let us give an elementary proof of this known fact. Suppose that for some function F ('),
the integral

b =

2�Z
0

F (')F̂ �(')d' (1.26)

does not equal zero. Consider the integral

2�Z
0

[F (')� f(')] F̂ �(')d': (1.27)

According to (1.26) and (1.23), the first summand in (1.27) equals b, and the second one equals
zero, so that the integral equals b. Applying the Cauchy inequalityZ b

a

j�(x)j2dx
Z b

a

j�(x)j2dx �
�����
Z b

a

�(x)�(x)dx

�����
2

; (1.28)

which is valid for any square integrable functions �(x), �(x), to (1.27) gives

2�Z
0

jF (')� f(')j2 d' �
2�Z
0

���F̂ (')���2 d' � jbj2: (1.29)

The second factor in (1.29) equals one by (1.25), and for any function f(') generated by C
we have

2�Z
0

jF (')� f(')j2 d' � jbj2 : (1.30)
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That is the condition of nonapproximability of the function F (') by the line C.
The inverse statement is also valid. If the inequality (1.30) holds for any functionF (') and

any pattern f('), then it is also valid for F (') = f('), where f(') is a function generated
by C, and (1.30) yields b = 0, that is, the condition (1.23).

4. Sometimes for the sake of brevity we will use the terms of functional analysis. However,
we really do not need its technique. In these terms, condition (1.23) appears as the following:
the set of functions f(') is not complete, although it is generated by the integral operator (1.3)
acting over the complete set of currents. There exist functions of the orthogonal complement.
The above function F̂ (') is an element of the space of these functions. It is orthogonal to all
the functions f(') of the form (1.3) . The orthogonality means that the integral (1.23) (the
inner product of functions f(') and F̂ (')) equals zero. The inner product of two functions
A(') and B(') is the integral:

(A;B) =

2�Z
0

A(')B�(')d': (1.31)

In particular, (A;A) = kAk2 is the squared norm ofA. The distance betweenA(') andB(')
is introduced as8<:

2�Z
0

jA(')�B(')j2 d'
9=;

1=2

: (1.32)

According to (1.23) and (1.30), the function is nonapproximable, if it is not orthogonal to
F̂ ('). For instance, the function F̂ (') itself is nonapproximable as well. The orthogonality
of some function F (') to F̂ (') is the necessary condition for F (') to be approximable. It is
clear that this condition is not fulfilled for an arbitrary function. If there is only one function
of the orthogonal complement for the given line C, then the above condition is also sufficient.

Let us give an obvious geometric illustration modelling the space of functions by the space
of three-dimensional vectors. Then (1.31) is the usual scalar product of two vectors ~A and ~B,
and (1.32) is the length of the straight-line segment connecting the end points of these vectors
if their origins coincide.

The condition (1.23) means that all the vectors f(') lie in the plane orthogonal to F̂ (').
Only vectors lying in this plane are approximable. If the vector F (') does not lie in this plane,
then from comparison of (1.32) with (1.30) it follows: the distance from the end point of the
vector to the plane, that is, the distance between F (') and the vector f('), closest to it, is
equal to jbj. The statement “if the condition (1.23) is fulfilled, then almost all functions are
nonapproximable” in terms of this illustration only, means that the dimension of the plane is
less than the dimension of the whole space. The function f('), closest to F ('), lying in the
plane, orthogonal to F̂ ('), is the projection of F (') onto the plane and equals F (')�bF̂ (').
In Chapter 4 we will obtain this result without referring to the three-dimensional illustration.

5. The orthogonal complement of functions f(') may contain not only one function
F̂ ('), but also a set of linear independent functions F̂p('). In this case the three-dimensional
illustration cannot be used. As we will see in Section 2.2, the number of functions F̂p(') can
even be infinite.
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Give an obvious generalization of the formula (1.30) for this case. Let all the patterns
f(') satisfy the conditions

Ip = 0; p = 1; 2; :::; P; (1.33)

where

Ip = (f; F̂p): (1.34)

Orthogonalize the linear independent functions F̂p(') and normalize them to unity, so that

(F̂p; F̂q) = Æpq ; (1.35)

where Æpq is the Kronecker symbol ( Æpq = 0 for p 6= q, Æpp = 1 ).
Combine the expression, analogous to (1.27) 

F � f;

PX
p=1

bpF̂p

!
; (1.36)

where

bp = (F; F̂p): (1.37)

Applying the Cauchy inequality (1.28) to (1.36) with � = F � f , � =
PP
p=1

bpF̂p and using

(1.35), we have�����
 
F � f;

PX
p=1

bpF̂p

!�����
2

� kF � fk2
PX
p=1

jbpj2 : (1.38)

On the other hand, using (1.33) and (1.37) yields 
F � f;

PX
p=1

bpF̂p

!
=

PX
p=1

jbpj2 ; (1.39)

which together with (1.38) gives

2�Z
0

jF (')� f(')j2 d' �
PX
p=1

jbpj2 : (1.40)

This is a generalization of the formula (1.30).
If there are only P linearly independent functions of the orthogonal complement, that is if

there are not other functions to which all the patterns, generated by the line C, are orthogonal,
then the equalities

bp = 0; p = 1; 2; :::; P (1.41)

are not only the necessary conditions for the function F (') to be approximable, but they are
also the sufficient ones.
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1.4 Outline of the Book

1. One of the purposes of the book is to investigate some properties of the fields generated by
surface currents. The simplest two-dimensional model is mainly considered, which is based
on the scalar Helmholtz equation with currents, located on a line. The property consists in the
following: there are “many” lines such that the fields generated by them cannot approximate
“many” functions themselves, as well as all functions close to them. This property is widely
investigated throughout the book.

Such specific lines are zero lines of a real solution to the Helmholtz equation. As a matter
of fact, this property is elementary, but it allows us to find and effectively investigate the above
lines (surfaces). Even if a line is close to a specific one, very large currents are required for
the approximation of almost all fields. The antenna surface should not be close to a specific
one (see, however, Subsection 2.2.6).

The second purpose is to investigate the two-dimensional Fourier transformation: the main
instrument for consideration of the fields in the form of a long narrow beam.

2. In Chapter 2 the approximability of the patterns (i.e., the fields at infinity) is analyzed.
Different real fields, their zero lines, as well as prohibitions to the approximation connected
with them, are under analysis. For some lines the prohibitions are so strict that many functions
with a given amplitude and free phase cannot even be approximated by the fields of currents
on these lines.

The existence of prohibitions to the approximation can be used for obtaining some infor-
mation about the shape of a metallic body, if the scattered pattern is known but the incident
field is unknown. This information can have the form of a probable statement. It is assumed
that the incident field is unknown. In particular, if the measured pattern cannot be approxi-
mated by the patterns of currents, located on a specific surface, then the surface of the scatterer
cannot be close to it.

3. The prohibitions to approximation exist not only for the patterns; they relate also to
fields in the near zone (near fields). The questions connected with this problem are investi-
gated in Chapter 3. In general, the prohibitions to the near field are stronger than to the field at
infinity. They grow slowly while going away from the current. Similarly to the previous case,
the problem is reduced to construction of a real field and determination of its zero lines.

If the Helmholtz equation has a solution, which equals zero on the given line, then the
prohibition relates only to the part of the plane where the solution has no singularities. If the
solution is analytical in the whole plane, then the prohibition relates to both the near field and
the pattern. If singularities exist, then prohibitions relate only to the near field; any pattern
can be approximated by currents on the line. When singularities exist at infinity only, then the
prohibitions relate to the near field.

For this reason the problem of the analytical extension of the eigenoscillation field in the
resonant domain outwards from its boundary is very important. The field should be real and
continuous together with its normal derivative on the boundary. One should find the conditions
for such an extension to be realizable in the case when singularities are absent, as well as to
develop the method to locate these singularities, when they exist. This problem is not solved
with the practically acceptable efficiency even in the two-dimensional scalar case. In the
chapter several simple examples are given, when the singularities appear in a finite part of the
plane, at infinity, or when they do not appear at all.
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4. The concept of approximability is a generalization of the concept of realizability. The
optimal current synthesis is a generalization of approximability. Even in the case, when a
given pattern is approximable, it can require a very large current. It is often possible to alter
the pattern finitely but a little, so that the new pattern can be realized by an essentially smaller
current. The problem of finding the patterns, close to the given one but generated by currents
with small norm, is considered in Chapter 4.

This problem is solved by using the known technique of generalized functions of the dou-
ble orthogonality. This technique deals with two orthogonal sets of functions, mutually con-
nected: the set of currents and the set of patterns. A current described by a function of the first
set, generates the pattern described by an appropriate function of the second one.

Some closed line can have the two following properties. The first is to be the specific line.
That means, there exists a pattern, which cannot be generated by a current located on the line.
The second property consists in the existence of a current on the line (closed), which does not
generate a field outside it. The usage of the function sets mentioned allows us to understand
the connection between these properties. It results that they are independent, but mutually
symmetrical in some sense.

In the last section of the chapter we give an expression for a lower bound of the norm of
a current approximating a given pattern. To determine this estimation, it is not necessary to
calculate preliminary the current. This bound can be calculated exactly as a result of some
passing to the limit.

Each specific line has an influence on the norm of currents located on the nonspecific ones
close to it. The mentioned estimation gives a value of this influence. The current norm is
inversely proportional to a value having a meaning of the distance between the given line and
the specific one near to it. To approximate almost any pattern, the current located on the line
nearby a specific one should have a large norm. This statement is still more related to the
approximation of fields in the near zone. It is in accordance with our physical intuition.

5. In Chapter 5 the results of the previous chapters are transferred to the case of three-
dimensional vector fields satisfying the Maxwell equations. The transference is trivial almost
everywhere. The first and second electrodynamic problems are formulated instead of the
Dirichlet and Neumann ones; the Lorentz lemma is used instead of the Green formula, and so
on. Section 5.1, devoted to this transference, is very short. The detailed exposition of results
and intermediate derivations in the vector form are cumbersome but in fact do not provide
anything new in the understanding of the nonapproximability phenomenon and the related
prohibitions.

Section 5.2 is devoted to the essential difference between the three-dimensional vector
problems and the related scalar ones (two- or three-dimensional). The auxiliary real field
connected with a specific surface in the vector case is restricted by some conditions, which
have no analogy in the scalar case. Some results, which are obvious or easy to prove in
the scalar case, are formulated in the vector one only as probable hypothesis. That is the
first effect caused by this difference. The second one is the limitation of the practical use of
results obtained, in the problems, in which the vector nature of the field is essential. However,
the general behavior of the nonapproximability phenomenon and the related problem of the
optimal current synthesis differs a little in the scalar and vector cases.

6. In Chapter 6 the theory of long narrow beams of electromagnetic waves is consid-
ered. Such beams are supposed to be applied for transmitting the power from the orbiting
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solar power stations to the Earth. The beams are created by large plane antennas; they pre-
serve a quasi-plane structure at a long distance, that is, on the receiving antenna (rectenna).
With an accuracy to simple phase factors, the field in the rectenna plane is described by two-
dimensional Fourier transformation of the field on the antenna. The field distributions on the
antenna are determined, which provide either maximum of the power transmission coefficient
or the maximal closeness of the field in the rectenna plane to an “ideal” one. The first demand
reduces the problem to a homogeneous equation for the field on the antenna; the second one is
fulfilled if the field on the antenna is the pseudo-solution to some first-kind integral equation.

In this problem the pseudo-solution differs from the identical zero. Note that the pseudo-
solution technique is not expedient to be applied in Chapters 2-5, because in the most inter-
esting case, when the surface is specific, that is, when the orthogonal complement functions
exist, the pseudo-solution to the appropriate integral equation can be equal to zero (“If an op-
erator gives rise to a noncomplete set of functions, then the kernel of the adjoint operator is
nonempty”).

The question of the antenna shape is of special interest in the beam problem. A hypothesis
that the optimal shape is circular or elliptical is well founded (but not proved!).

7. The diffraction (scattering) problems on the nontransparent bodies (metallic ones or
with impedance boundaries) as well as on the partially transparent obstacles or walls have
been investigated for a long time. The key works in the mathematical theory of the patterns
(far fields) completeness are [6], [7], [8]. This theory is explained in detail in the book [9]. In
particular, it is shown there that some properties of the diffracted (scattered) field depend on
the interior domain even for bodies with nontransparent boundaries, i.e. when the field does
not penetrate into this domain. At its eigenfrequencies the space of the radiation patterns can
be noncomplete, namely, at arbitrary incident field the pattern does not contain some elements
of a complete set of the angle functions. This takes place in the case, when there exists an
auxiliary field (the so-called Herglotz wave function) analytical in the whole space, which
satisfies the Helmholtz equation (the Maxwell ones in the vector case) and equals zero on the
scatterer boundary.

The material given in the book is closely related to the above problem. However, our
aim is more to explain what physical sense these specific properties have and in which way
they can show themselves in the practical problems, than to obtain some new mathematical
properties of the scattered fields.

No diffraction problem is considered here. Common to the problems is the fact that the
induced current is allocated on the surface and the volume currents do not arise. The scattered
field is a field of the induced (surface) currents. The properties of the surface currents are
investigated in the book without connection with the way in which these currents arise. This
problem statement is based on the fact that the noncompleteness of the pattern set is not
connected with any property of the surface currents.

The above noncompleteness is not obligatorily connected with the existence of the reso-
nance of the interior domain. This property is also inherent in the fields scattered on nonclosed
shells (screens), because these fields are also created by the surface currents at the diffraction
on the screens; the auxiliary field mentioned above exists at all frequencies “almost always”.
Just the existence of such an auxiliary field is the necessary and sufficient condition for the
noncompleteness of the scattered patterns set (see [9, Theorem 6.32] ). Of course, for the non-
transparent bodies or closed shells the auxiliary field exists at resonant frequencies only. Great
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attention is paid in the book to the structure of the orthogonal complement function set. The
connection of these functions with the auxiliary field is stated. The situation is investigated in
detail, when there are many such functions, for instance, when the set of them is countable.

The analogous properties of the patterns created by the magnetic currents are stated. The
currents of both types together create the complete set of patterns.

All the results related to the patterns are valid (even in a reinforced form) for the near
fields. The noncompleteness of the set of scattered patterns can be used for the reconstruction
of the scatterer shape and position.

As a consequence of the nonapproximability phenomenon, the problem of the optimal
current synthesis arises. It is solved using the eigenfunctions of iterated operators (see[10],
[11]). This technique allows to state the symmetry between two independent properties of
the surface: the noncompleteness of the fields of surface currents and the existence of the
nonradiating surface currents (i.e., those connected with the eigenoscillations of the interior
volume).

The book is based on the material partially published by the author and his colleagues in
a series of papers [5], [12]-[29].

8. In the Appendix some questions related to the optimal current synthesis at the given
amplitude pattern are considered. In general, the pattern is supposed to be nonapproximable,
and the problem is formulated in the variational form. The appropriate Lagrange-Euler equa-
tion is nonlinear, it has many solutions describing all stationary points of the functional. The
solutions bifurcate as the antenna size (or the frequency) increases. In the particular case of
the linear antenna, with an appropriate metric in the functional space of the patterns, expres-
sion (1.3) becomes the Fourier transformation. The problem is close to the so-called phase
problem and can be considered as a modification of it.

In this case the solutions to the mentioned nonlinear equation can be expressed in an
explicit form, with a finite number of unknown complex parameters. The parameters are
determined from a system of transcendental equations. This allows to investigate the equation
completely including the calculation of all its branching points. The case of the discrete
Fourier transformation describing the equidistant antenna array, is also considered.

All theoretical results are reinforced by numerical ones.
The nonlinear equations considered in the Appendix are also interesting from the math-

ematical point of view, not only owing to their connection with the Fourier transformation
theory, but also as representatives of an unstudied class of nonlinear integral equations of the
Hammerstein type.




