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The Fourier Transform and the Helix

The Fourier transform is a common tool in physics, engineering, and statistics.
Examples of Fourier transformations are

¢ Avoltage or current that varies with time into its frequency spectrum;
¢ The illumination function of an antenna into its pattern in sine space;
¢ The probability density function in statistics into the characteristic function.

The use of the Fourier transform has been introduced into a number of disci-
plines independently and unfortunately each uses its own convention. Other than
finding spectra, antenna patterns, and so on, the Fourier transforms of functions
are added or multiplied and then undergo an inverse Fourier transform to produce
the required results as in other forms of operational mathematics.

1.1
Fourier Transform Conventions

The conventions in physics, electrical engineering, and statistics are often different
and vary from country to country [1].

1.1.1
Fourier Transforms in Physics

As the fundamental unit of angle is the radian and of frequency radians/second, the
Fourier transform used in physics and given in mathematics programs (such as
Maple) uses the minus omega convention, —w, given by

F(o) = / £(t) exp(—iot) dt (1)
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Where F(w) is the Fourier transform with variable w;
f(t) is a time function with variable ¢;
and  iisv/-1

The inverse transform used here is given by

+00
£y =L / F(o) exp(+-iot) do )

This convention will not be used further in this book.

1.1.2
Fourier Transform in Electrical Engineering

Electrical engineers measure frequency in cycles or rotations per second (Hz) so
that o is replaced by 2xf to give Fourier transforms using the —f convention. The
Fourier transform which connects, among others, waveforms and their spectra can
be given by [1, p. 381, 4, p. 27]

+0o0

FF) = [ ) exp(—janfy 3

where F(f) is the Fourier transform with variable f;
f(t) is a time function with variable t;
and jisv-1

The inverse transform used here is given by
+00
(0= [ ) explrion) &f “
—00
Notice that this convention that is used in all chapters, except for Chapter 6, has

the convenient property the Fourier transform of the Fourier transform returns the
original function. The 1/27 in (2) is the result of the fact that df = dw/2s.

1.1.3
Fourier Transform in Statistics

In statistics the following form for the Fourier transform to obtain the characteristic
function is used to be consistent with other statistics texts in Chapter 6. This conven-
tion is called the +omega convention in this book.
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+00

c(E) = / p(x) exp(-+itx) dx )

—00

where C(§) is the characteristic function with variable &;
p(%) is a probability density function with variable x;
and  iis /1.
The inverse transform used here is given by

p) =k [ Clo) exp(-iz) a ©

1.2
The Fourier Transform and the Helical Functions

The Fourier transform used by electrical engineers contains the helical function
exp(—j 2mft) that interacts with the f(t) function. The function exp(+j 2mnfi) is
shown in Figure 1.1.

Figure 1.1 The helix Texp(j 27ft).

The coordinates in Figure 1.1 have been chosen to give positive upwards and to
the right when looking from the side (in this case a cosine wave) or from the top (in
this case a sine wave). Notice that this waveform is balanced, the vector traces a cir-
cle, and rotates in the direction called in electrical engineering positive phase
sequence. The helix in the Fourier transform in (3) has a negative phase sequence.

The function f(t) can be also a spatial spiral, so that the Fourier transform in
mathematics, engineering, and statistics becomes much easier to understand. The
Fourier transform is described in engineering form in Chapter 3, and later chapters,
and its use in statistics in Chapter 6.

The helix of radius A can be given by A exp(j 2mtff), in polar coordinates as A/2mft,
or may be expressed in Cartesian coordinates as

3
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x = Asin2naft
y = Acos2mnfi (7)

where A is the amplitude (voltage or current);
x is the horizontal component;
y is the vertical component;
fis the frequency, Hz;
tis time in seconds;
and  jisv/—1.

Pure helices occur in spiral springs and the position of a point on a rotating shaft
when plotted in three dimensions against time. This form of illustration may be
extended to other phenomena that occur in the distribution of electrical power or
signals where the cross-section is not purely circular, examples are

¢ The most common occurrence of a helical waveform is in the three-phase
power distribution used to distribute electricity throughout the world. The
voltages and currents in balanced three-phase electrical power circuits at a
fixed frequency, typically 50, 60, or 400 Hz may be represented by a single
rotating vector and is also true for any electrical system with more than two
phases. The phase angle, ¢, between the voltage and current vectors allows
the load factor, cos ¢ to be calculated. The load factor is the ratio of the real
power used to the product of voltage and current. When the voltages and cur-
rents are not equal the rotating vector no longer traces a circle and symmetri-
cal component theory is used (see Section 2.2). This is also true for radar and
sonar echo signals (Section 1.3).

e The modulation of (notional) carrier waves by two-phase quadrature ampli-
tude modulation (QAM) waveforms in communications and echo signals
received by radar and sonar from moving objects (Sections 1.3 to 1.5). The
vector representation of the waveform does not have a constant radius the
form is called in this book a spatial spiral.

e Circularly polarised waves (Section 1.7)

¢ Noise, discussed in Section 1.8, has the form of a random spatial spiral.

These waveforms are not able to be displayed on a normal oscilloscope, though
those from the individual phases may be. The use of helices to represent these and
alternating waveforms gives a physical explanation to the helical function in the
Fourier transform and allows their explanation to technicians.

The spatial spiral forms, their appearance in the physical world, calculation
methods, and the relationships to alternating functions are described in Chapter 2.

1.3
Radar and Sonar Echo Signals

The waves from radio-frequency transmitters are scattered or reflected by objects
they meet. The phase of the waves entering a receiver contain fine distance informa-
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tion for the length of the path between transmitter and receiver. In a radar, a coher-
ent oscillator (COHO) is used as a common phase reference for both transmitter
and receiver so that differences in phase may be measured. If the scatterer moves
towards the radar, the phase angle will decrease with time so that vector detection
will give rise to a vector rotating at the Doppler frequency. For a receding scatterer
the phase of the vector rotates in the opposite sense, the negative phase sequence.
The filtering of such signals is the basis of the rejection of ground echoes that clutter
up the radar displays and would overload the equipment that extracts aircraft
echoes, for example. Radar (and sonar) echo signals contain a combination of back-
ground echo signals and echo signals from approaching and receding objects, that
is a direct voltage component and components with both phase sequences. The
method of symmetrical components is discussed in Chapter 2.

1.4
Colour Television Signals

The NTSC and PAL colour television systems use quadrature or Cartesian modula-
tion to modulate the two colour difference signals (R-Y and B-Y) onto a common
subcarrier. The reference phase is given by the colour burst signal that occurs after
the end of each line synchronisation pulse and this is used to keep the subcarrier
oscillator at the correct phase. The quadrature outputs of this oscillator are used in
the two synchronous detectors to recover the two colour difference signals.

1.5
Modulation and Demodulation

Signal vectors must be represented as two separate signals (normally considered to
be voltages) representing the two coordinate systems: Cartesian or polar (each
branch of electrical engineering uses different terminology that has changed with
time, hence the use of basic English here [2]). Both vector modulation and demodu-
lation may be carried out in terms of these coordinates and are shown in Figures 1.2
and 1.3 [3].

The two phase and amplitude modulation stages in Figure 1.2 may take place in
any order since the two processes are linear without any suppression of signals.

1.6
Communications

Digital communications over normal telephone lines is limited to approximately
1200 signal changes per second. To increase the amount of information transferred
in each element, a number of types of element must be used that carry more than
one bit. Examples are
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X component or |
signal
|_><J Carrier Phase Amplitude
oscillator modulator  modulator
Carror cos 2mft Output
oscillator G— —— ‘ @ H H
sin 2mrft Output * *

»—@+ Phase Amplitude
y component or signal signal
Q signal

(a) Cartesian or quadrature amplitude modulator (QAM) (b) Polar modulator

Figure 1.2 Vector modulators.
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Figure 1.3 Vector demodulators or detectors.

(a) Four state (b) Eight state (c) Sixteen state

Figure 1.4 Signal space or constellation diagrams.

e  Phase modulation with more than two states
¢ Quadrature amplitude modulation (QAM).

In Figure 1.4(a), the four states may be obtained by phase modulation alone.
Amplitude and phase modulation are needed in parts (b) and (c ) in Figure 1.4. The
dots in the state diagram represent the states and the circles around them represent
the combined tolerances in the modulation, transmission, and demodulation pro-
cesses.
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(a) Waveform with 4 states (b) Waveform with 8 states (c) Waveform with 16 states

Figure 1.5 The complex waveforms for the four, eight, and sixteen states in Figure 1.4.

The complex waveforms for modulating signals using these states are shown in
Figure 1.5. The four-state modulation uses simple phase modulation and the shape
of the complex waveform is a box. With more states the complex modulation and
when random characters are transmitted, the waveform becomes more like equally
distributed noise.

1.7
Circularly Polarised Waves

Circularly polarised electromagnetic waves are generated when either the electric or
magnetic component has its phase delayed by 90 degrees. These waves are used in
microwave communications to avoid polarisation alignment and radar to reduce
rain echoes.

1.8
Noise

The transformation from a recognisable modulation to a complex waveform similar
to noise can be heard when logging onto an Internet provider as the protocol tries

Real, in phase, or | axis 3 3

-2
-3
Imaginary,
quadrature,
or Q axis
Noise sample
number or time

Figure 1.6 Gaussian noise samples demodulated from a
(notional) carrier. [Source: Meikle, H.D., Modern Radar Systems,
Artech House, Norwood, Massachusetts, 2001]
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higher and higher transmission speeds. In contrast to communication systems
where each state is equally likely, Gaussian noise is normally (Gaussian) distributed
in the two Cartesian coordinates and looks like the shaggy bottlebrush in Figure 1.6.
Complex noise waveforms are discussed in Chapter 7.

1.9
Other Forms of the Fourier Transform

The Fourier transform in —f notation, discussed in Chapter 3, is the continuous Fou-
rier transform with the limits of integration being from the beginning to the end of
time. In real life time is limited and the finite transform is introduced in Chapter 4
together with the discrete Fourier transform for sampled waveforms that lend them-
selves to manipulation by digital logic and computers.

Erdélyi [4] and others describe the Fourier sine and cosine transforms that, being
flat functions, are not treated further. The transforms are

Fourier sine transform =

N
El

]f(x) sin(xy) dx
0

Fourier cosine transform — —L— / f(x) cos dx
L [ 1 cose)
0

Notice that both these transforms are one-sided, the limits for integration are
from zero to infinity, in contrast to the exponential transforms elsewhere in this
book.

The sampling of signals over finite times, shorter than the length of the signal,
puts an unwanted modulation on the transform giving repetition and extra sidelobes
and these effects are described in Chapter 4. Chapter 5 shows ways of reducing the
sidelobes. Chapter 6 shows the Fourier transforms of probability distribution func-
tions used in statistics in three dimensions. Statistical signals and noise are treated
in Chapter 7.
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