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The foundations of Bayesian
inference

In this chapter I elaborate on the overview of Bayesian statistical inference provided in
the introduction. I begin by reviewing the fundamental role of probability in statistical
inference. In the Bayesian approach, probability is usually interpreted in subjective terms,
as a formal, mathematically rigorous characterization of beliefs. I distinguish the subjec-
tive notion of probability from the classical, objective or frequentist approach, before
stating Bayes Theorem in the various forms it is used in statistical settings. I then review
how Bayesian data analysis is actually done. At a high level of abstraction, Bayesian
data analysis is extremely simple, following the same, basic recipe: via Bayes Rule, we
use the data to update prior beliefs about unknowns. Of course, there is much to be said
on the implementation of this procedure in any specific application, and these details
are the subjects of later chapters. The discussion in this chapter deals with some general
issues. For instance, how does Bayesian inference differ from classical inference? Where
do priors come from? What is the result of a Bayesian analysis, and how does one report
those results? How does hypothesis testing work in the Bayesian approach? What kinds
of considerations motivate model specification in the Bayesian approach?

1.1 What is probability?

As a formal, mathematical matter, the question ‘what is probability?’ is utterly uncon-
troversial. The following axioms, known as the Kolmogorov (1933) axioms, constitute
the conventional, modern, mathematical defintion of probability, which I reproduce here
(with measure-theoretic details omitted; see the Appendix for a more rigorous set of
definitions). If � is a set of events, and P(A) is a function that assigns real numbers to
events A ⊂ �, then P(A) is a probability measure if

1. P(A) ≥ 0, ∀A ⊂ � (probabilities are non-negative)
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4 THE FOUNDATIONS OF BAYESIAN INFERENCE

2. P(�) = 1 (probabilities sum to one)

3. If A and B are disjoint events, then P(A ∪ B) = P(A) + P(B) (the joint proba-
bility of disjoint events is the sum of the probabilities of the events).

On these axioms rests virtually all of contemporary statistics, including Bayesian statistics.
This said, one of the ways in which Bayesian statistics differs from classical statistics
is in the interpretation of probability. The very idea that probability is a concept open
to interpretation might strike you as odd. Indeed, Kolmogorov himself ruled out any
questions regarding the interpretation of probabilities:

The theory of probability, as a mathematical discipline, can and should be
developed from axioms in exactly the same way as Geometry and Alge-
bra. This means that after we have defined the elements to be studied and
their basic relations, and have stated the axioms by which these relations are
to be governed, all further exposition must be based exclusively on these
axioms, independent of the usual concrete meaning of these elements and
their relations (Kolmogorov 1956, 1).

Nonetheless, for anyone actually deploying probability in a real-world application, Kol-
mogorov’s insistence on a content-free definition of probability is quite unhelpful. As
Leamer (1978, 24) points out:

These axioms apply in many circumstances in which no one would use the
word probability. For example, your arm may contain 10 percent of the weight
of your body, but it is unlikely that you would report that the probability of
your arm is .1.

Thus, for better or worse, probability is open to interpretation, and has been for
a long time. Differences in interpretation continue to be controversial (although less
so now than, say, 30 years ago), are critical to the distinction between Bayesian and
non-Bayesian statistics, and so no book-length treatment of Bayesian statistics can ignore
it. Most thorough, historical treatments of probability identify at least four interpretations
of probability (e.g., Galavotti 2005). For our purposes, the most important distinction is
between probability as it was probably (!) taught to you in your first statistics class, and
probability as interpreted by most Bayesian statisticians.

1.1.1 Probability in classical statistics

In classical statistics probability is often understood as a property of the phenomenon
being studied: for instance, the probability that a tossed coin will come up heads is
a characteristic of the coin. Thus, by tossing the coin many times under more or less
identical conditions, and noting the result of each toss, we can estimate the probability
of a head, with the precision of the estimate monotonically increasing with the number
of tosses. In this view, probability is the limit of a long-run, relative frequency; i.e. if A

is an event of interest (e.g. the coin lands heads up) then

Pr(A) = lim
n→∞

m

n
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is the probabilty of A, where m is the number of times we observe the event A and n

is the number of repetitions. Given this definition of probability, we can understand why
classicial statistics is sometimes referred to as

1. frequentist , in the sense that it rests on a definition of probability as the long-run
relative frequency of an event;

2. objectivist , in the sense that probabilities are characteristics of objects or things
(e.g. the staples of introductory statistics, such as cards, dice, coins, roulette
wheels); this position will be contrasted with a subjectivist interpretation of prob-
ability.

One of the strongest statements of the frequentist position comes from Richard von
Mises:

we may say at once that, up to the present time [1928], no one has suc-
ceeded in developing a complete theory of probability without, sooner or
later, introducing probability by means of the relative frequencies in long
sequences.

Further,

The rational concept of probability, which is the only basis of probability
calculus, applies only to problems in which either the same event repeats
itself again and again, or a great number of uniform elements are involved at
the same time . . . [In] order to apply the theory of probability we must have a
practically unlimited sequence of observations (quoted in Barnett 1999, 76).

As we shall see, alternative views long pre-date von Mises’ 1928 statement and it
is indeed possible to apply the theory of probability without a ‘practically unlimited’
sequence of observations. This is just as well, since many statistical analyses in the
social sciences are conducted without von Mises’ ‘practically unlimited’ sequence of
observations.

1.1.2 Subjective probability

Most introductions to statistics are replete with examples from games of chance, and
the naı̈ve view of the history of statistics is that interest in games of chance spurred
the development of probability (e.g. Todhunter 1865), and, in particular, the frequentist
interpretation of probability. That is, for simple games of chance it is feasible to enumerate
the set of possible outcomes, and hence generate statements of the likelihood of particular
outcomes in relative frequency terms (e.g. the ‘probability’ of throwing a seven with
two dice, an important quantity in craps). But historians of science stress that at least
two notions of probability were under development from the late 1600s onwards: the
objectivist view described above, and a subjectivist view. According to Ian Hacking, the
former is ‘statistical, concerning itself with stochastic laws of chance processes’, while
the other notion is ‘epistemological, dedicated to assessing reasonable degrees of belief
in propositions’ (Hacking 1975, 12).
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As an example of the latter, consider Locke’s Essay Concerning Human Understand-
ing (1698). Book IV, Chapter XV of the Essay is titled ‘On Probability’, in which Locke
notes that ‘most of the propositions we think, reason, discourse – nay, act upon, are such
that we cannot have undoubted knowledge of their truth.’ Moreover, there are ‘degrees’
of belief, ‘from the very neighborhourhood of certainty and demonstration, quite down to
improbability and unlikeliness, even to the confines of impossibility’. For Locke, ‘Prob-
ability is likeliness to be true’, a definition in which (repeated) games of chance play no
part.

The idea that one might hold different degrees of belief over different propositions has
a long lineage, and was apparent in the theory of proof in Roman and canon law, in which
judges were directed to employ an ‘arithmetic of proof’, assigning different weights to
various pieces of evidence, and to draw distinctions between ‘complete proofs’ or ‘half
proofs’ (Daston 1988, 42–43). Scholars became interested in making these notions more
rigorous, with Leibniz perhaps the first to make the connection between the qualitative
use of probabilistic reasoning in jurisprudence with the mathematical treatments being
generated by Pascal, Huygens, and others.

Perhaps the most important and clearest statement linking this form of jurisprudential
‘reasoning under uncertainty’ to ‘probability’ is Jakob Bernoulli’s posthumous Ars con-
jectandi (1713). In addition to developing the theorem now known as the weak law of
large numbers, in Part IV of the Ars conjectandi Bernoulli declares that ‘Probability is
degree of certainty and differs from absolute certainty as the part differs from the whole’,
it being unequivocal that the ‘certainty’ referred to is a state of mind, but, critically, (1)
varied from person to person (depending on one’s knowledge and experience) and (2)
was quantifiable. For example, for Bernoulli, a probability of 1.0 was an absolute cer-
tainty, a ‘moral certainty’ was nearly equal to the whole certainty (e.g., 999/1000, and so
a morally impossible event has only 1 − 999/1000 = 1/1000 certainty), and so on, with
events having ‘very little part of certainty’ still nonetheless being possible.

In the early-to-mid twentieth century, the competition between the frequentist and
subjectivist interpretations intensified, in no small measure reflecting the competition
between Bayesian statistics and the then newer, frequentist statistics being championed
by R. A. Fisher. Venn (1866) and later von Mises (1957) made a strong case for a
frequentist approach, apparently in reaction to ‘a growing preoccupation with subjective
views of probability’ (Barnett 1999, 76). During this period, both the objective/frequentist
and subjective interpretations of probability were formalized in modern, mathemati-
cal terms – von Mises formalizing the frequentist approach, and Ramsey (1931) and
de Finetti (1974, 1975) providing the formal links between subjective probability and
decisions and actions.

Ramsey and de Finetti, working independently, showed that subjective probability is
not just any set of subjective beliefs, but beliefs that conform to the axioms of probability.
The Ramsey-de Finetti Theorem states that if p1, p2, . . . are a set of betting quotients on
hypotheses h1, h2, . . . , then if the pj do not satisfy the probability axioms, there exists
a betting strategy and a set of stakes such that whoever follows this betting strategy will
lose a finite sum whatever the truth values of the hypotheses turn out to be (e.g. Howson
and Urbach 1993, 79). This theorem is also known as the Dutch Book Theorem, a Dutch
book being a bet (or a series of bets) in which the bettor is guaranteed to lose.

In de Finetti’s terminology, subjective probabilities that fail to conform to the axioms
of probability are incoherent or inconsistent . Thus, subjective probabilities are whatever



SUBJECTIVE PROBABILITY IN BAYESIAN STATISTICS 7

a particular person believes, provided they satisfy the axioms of probability. In particular,
the Dutch book results extend to the case of conditional probabilities , meaning that if
I do not update my subjective beliefs in light of new information (data) in a manner
consistent with the probability axioms, and you can convince me to gamble with you,
you have the opportunity to take advantage of my irrationality, and are guaranteed to
profit at my expense. That is, while probability may be subjective, Bayes Rule governs
how rational people should update subjective beliefs.

1.2 Subjective probability in Bayesian statistics

Of course, it should come as no suprise that the subjectivist view is almost exclu-
sively adopted by Bayesians. To see this, recall the proverbial coin tossing experiment of
introductory statistics. And further, recall the goal of Bayesian statistics: to update proba-
bilities in light of evidence, via Bayes’ Theorem. But which probabilities? The objective
sense (probability as a characteristic of the coin) or the subjective sense (probability
as degree of belief)? Well, almost surely we do not mean that the coin is chang-
ing; it is conceivable that the act of flipping and observing the coin is changing the
tendency of the coin to come up heads when tossed, but unless we are particularly
violent coin-tossers this kind of physical transformation of the coin is of an infintisi-
mal magnitude. Indeed, if this occured then both frequentist and Bayesian inference
gets complicated (multiple coin flips no longer constitute an independent and identi-
cally distributed sequence of random events). No, the probability being updated here can
only be a subjective probability, the observer’s degree of belief about the coin com-
ing up heads, which may change while observing a sequence of coin flips, via Bayes’
Theorem.

Bayesian probability statements are thus about states of mind over states of the
world, and not about states of the world per se. Indeed, whatever one believes about
determinism or chance in social processes, the meaningful uncertainty is that which
resides in our brains, upon which we will base decisions and actions. Again,
consider tossing a coin. As Emile Borel apparently remarked to de Finetti, one
can guess the outcome of the toss while the coin is still in the air and its move-
ment is perfectly determined, or even after the coin has landed but before one
reviews the result; that is, subjective uncertainty obtains irrespective of ‘objective
uncertainty (however conceived)’ (de Finetti 1980b, 201). Indeed, in one of the more
memorable and strongest statements of the subjectivist position, de Finetti writes

PROBABILITY DOES NOT EXIST

The abandonment of superstitious beliefs about...Fairies and Witches was an
essential step along the road to scientific thinking. Probability, too, if regarded
as something endowed with some kind of objective existence, is not less a
misleading misconception, an illusory attempt to exteriorize or materialize
our true probabilistic beliefs. In investigating the reasonableness of our own
modes of thought and behaviour under uncertainty, all we require, and all that
we are reasonably entitled to, is consistency among these beliefs, and their
reasonable relation to any kind of relevant objective data (‘relevant’ in as
much as subjectively deemed to be so). This is Probability Theory (de Finetti
1974, 1975, x).
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The use of subjective probability also means that Bayesians can report probabilities
without a ‘practically unlimited’ sequence of observations. For instance, a subjectivist
can attach probabilities to the proposition ‘Andrew Jackson was the eighth president of
the United States’ (e.g. Leamer 1978, 25), reflecting his or her degree of belief in the
proposition. Contrast the frequentist position, in which probability is defined as the limit
of a relative frequency. What is the frequentist probability of the truth of the propo-
sition ‘Jackson was the eighth president’? Since there is only one relevant experiment
for this problem, the frequentist probability is either zero (if Jackson was not the eighth
president) or one (if Jackson was the eighth president). Non-trivial frequentist probabili-
ties, it seems, are reserved for phenomena that are standardized and repeatable (e.g. the
exemplars of introductory statistics such as coin tossing and cards, or, perhaps, random
sampling in survey research). Even greater difficulties for the frequentist position arise
when considering events that have not yet occured, e.g.

• What is the probability that the Democrats win a majority of seats in the House of
Representatives at the next Congressional elections?

• What is the probability of a terrorist attack in the United States in the next five
years?

• What is the probability that over the course of my life, someone I know will be
incarcerated?

All of these are perfectly legitimate and interesting social-scientific questions, but for
which the objectivist/frequentist position apparently offers no helpful answer.

With this distinction between objective and subjective probability firmly in mind, we
now consider how Bayes Theorem tells us how we should rationally update subjective,
probabilistic beliefs in light of evidence.

1.3 Bayes theorem, discrete case

Bayes Theorem itself is uncontroversial: it is merely an accounting identity that follows
from the axioms of probability discussed above, plus the following additional definition:

Definition 1.1 (Conditional probability). Let A and B be events with P(B) > 0. Then the
conditional probability of A given B is

P(A|B) = P(A ∩ B)

P (B)
= P(A, B)

P (B)
.

Although conditional probability is presented here (and in most sources) merely as a
definition, it need not be. de Finetti (1980a) shows how coherence requires that conditional
probabilities behave as given in Definition 1.1, in work first published in 1937. The
thought experiment is as follows: consider selling a bet at price P(A) · S, that pays S

if event A occurs, but is annulled if event B does not occur, with A ⊆ B. Then unless
your conditional probability P(A|B) conforms to the definition above, someone could
collect arbitrarily large winnings from you via their choice of the stakes S; Leamer (1978,
39–40) provides a simple retelling of de Finetti’s argument.
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Conditional probability is derived from more elementary axioms (rather than presented
as a definition) in the work of Bernardo and Smith (1994, ch. 2). Some authors work
with a set of probability axioms that are explicitly conditional, consistent with the notion
that there are no such things as unconditional beliefs over parameters; e.g. Press (2003,
ch. 2) adopts the conditional axiomization of probability due to Rényi (1970) and see
also the treatment in Lee (2004, ch. 1).

The following two useful results are also implied by the probability axioms, plus the
definition of conditional probability:

Proposition 1.1 (Multiplication rule)

P(A ∩ B) = P(A, B) = P(A|B)P (B) = P(B|A)P (A)

Proposition 1.2 (Law of total probability)

P(B) = P(A ∩ B) + P(∼ A ∩ B)

= P(B|A)P (A) + P(B| ∼ A)P (∼ A)

Bayes Theorem can now be stated, following immediately from the definition of condi-
tional probability:

Proposition 1.3 (Bayes Theorem). If A and B are events with P(B) > 0, then

P(A|B) = P(B|A)P (A)

P (B)

Proof. By proposition 1.1 P(A,B) = P(B|A)P (A). Substitute into the definition of the
conditional probability of P(A|B) given in Definition 1.1. �

Bayes Theorem is much more than an interesting result from probability theory, as the
following re-statement makes clear. Let H denote a hypothesis and E evidence (data),
then we have

Pr(H |E) = Pr(E ∩ H)

Pr(E)
= Pr(E|H)Pr(H)

Pr(E)

provided Pr(E) > 0. In this version of Bayes Theorem, Pr(H |E) is the probability of H

after obtaining E, and Pr(H) is the prior probability of H before considering E. The
conditional probability on the left-hand side of the theorem, Pr(H |E), is usually referred
to as the posterior probability of H . Bayes Theorem thus supplies a solution to the
general problem of inference or induction (e.g. Hacking 2001), providing a mechanism
for learning about the plausibility of a hypothesis H from data E.

In this vein, Bayes Theorem is sometimes referred to as the rule of inverse probability ,
since it shows how a conditional probability B given A can be ‘inverted’ to yield the
conditional probability A given B. This usage dates back to Laplace (e.g. see Stigler
1986b), and remained current up until the popularization of frequentist methods in the
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early twentieth century – and, importantly, criticism of the Bayesian approach by R. A.
Fisher (Zabell 1989a).

I now state another version of Bayes Theorem, that is actually more typical of the
way the result is applied in social-science settings.

Proposition 1.4 (Bayes Theorem, multiple discrete events). Let H1,H2, . . . Hk be mutu-
ally exclusive and exhaustive hypotheses, with P(Hj ) > 0 ∀j = 1, . . . , k, and let E be
evidence with P(E)> 0. Then, for i = 1, . . . , k,

P(Hi |E) = P(Hi)P (E|Hi)∑k
j=1 P(Hj )P (E|Hj)

.

Proof. Using the definition of conditional probability, P(Hi |E) = P(Hi, E)/P (E).
But, again using the definition of conditional probability, P(Hi,E) = P(Hi)P (E|Hi).
Similarly, P(E) = ∑k

j=1 P(Hj )P (E|Hj), by the law of total probability (proposition
1.2). �

� Example 1.1

Drug testing. Elite athletes are routinely tested for the presence of banned
performance-enhacing drugs. Suppose one such test has a false negative rate of .05
and a false positive rate of .10. Prior work suggests that about 3 % of the subject pool
uses a particular prohibited drug. Let HU denote the hypothesis ‘the subject uses the
prohibited substance’; let H∼U denote the contrary hypothesis. Suppose a subject is
drawn randomly from the subject pool for testing, and returns a positive test, and denote
this event as E. What is the posterior probability that the subject uses the substance?
Via Bayes Theorem in Proposition 1.4,

P(HU |E) = P(HU)P (E|HU)∑
i∈{U,∼U } P(Hi)P (E|Hi)

= .03 × .95

(.03 × .95) + (.97 × .10)

= .0285

.0285 + .097

≈ .23

That is, in light of (1) the positive test result (the evidence, E), (2) what is known about
the sensitivity of the test, P(E|HU), and (3) the specificity of the test, 1 − P(E|H∼U), we
revise our beliefs about the probability that the subject is using the prohibited substance
from the baseline or prior belief of P(HU) = .03 to P(HU |E) = .23. Note that this
posterior probability is still substantially below .5, the point at which we would say it is
more likely than not that the subject is using the prohibited substance.
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� Example 1.2

Classifying Congressional districts. The United States House of Representatives con-
sists of 435 Congressional districts. Even a casual, visual inspection of district level
election results suggests that there are J = 3 ‘clumps’ or classes of districts: Republican
seats (Ti = 1), Democratic seats (Ti = 2), and a small cluster of extremely Democratic
seats (Ti = 3); see Figure 6.6 in Example 6.8. Let yi be the proportion of the two-party
vote won by the Democratic candidate for Congress in district i, and λj be the propor-
tion of districts in class j (i.e.

∑J
j=1 λj = 1). We will assume that the distribution of the

yi within each of the J = 3 classes is well approximated by a normal distribution, i.e.
yi |(Ti = j) ∼ N(μj , σ

2
j ).

Analysis of data from the 2000 U.S. Congressional elections (n = 371 contested
districts) suggests the following values for μj , σj and λj (to two decimal places, see
Example 6.8 for details):

Class μj σj λj

1. Republican .35 .08 .49
2. Democratic .66 .10 .46
3. Extremely Democratic .90 .03 .05

By Bayes Theorem (as stated in Proposition 1.4), the probability that district i belongs
to class j is

P(Ti = j |yi) = P(Ti = j) · P(yi |Ti = j)

J∑
k=1

[
P(Ti = k) · P(yi |Ti = k)

]

= λj · φ([yi − μj ]/σj )

J∑
k=1

[
λk · φ([yi − μk]/σk)

] (1.1)

where φ(y; μ, σ) is the normal probability density function (see Definition B.30).
In 2000, California’s 15th congressional district was largely comprised of Silicon

Valley suburbs, at the southern end of the San Francisco Bay Area, and some of the
wealthy, neighboring suburban communities running up into the Santa Cruz mountains.
The incumbent, Republican Tom Campbell, had been re-elected in 1998 with over 61 %
of the two-party vote, but vacated the seat in order to run for the US Senate: according
to the Almanac of American Politics (Barone, Cohen and Ujifusa 2002, 198),

the authorities at Stanford Law School had told him [Campbell] he would
lose tenure if he stayed in Congress, so instead of winning another term in
the House as he could easily have done, he decided to gamble and win either
the Senate or Stanford. Predictably, Stanford won.

In the parlance of American politics, CA-15 was an ‘open seat’ in 2000. An interesting
question is the extent to which Campbell’s incumbency advantage had been depressing
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Democratic vote share. With no incumbent contesting the seat in 2000, it is arguable that
the 2000 election would provide a better gauge of the district’s type. The Democratic
candidate, Mike Honda, won with 56 % of the two-party vote. So, given that yi = .56,
to which class of congressional district should we assign CA-15? An answer is given by
substituting the estimates given in the above table into the version of Bayes Theorem
given in Equation 1.1: to two decimal places we have

P(Ti = 1|yi = .56) =
.49 × φ([.56 − .35]/.07)

.49 × φ([.56 − .35]/.08) + .46 × φ([.56 − .66]/.10) + .05 × φ([.56 − .90]/.03)

= .49 × .11

(.49 × .11) + (.46 × 2.46) + (.05 × 9.7 × 10−27)

= .05

1.18
= .04

P(Ti = 2|yi = .56) = .46 × 2.46

1.18
= .96

P(Ti = 3|yi = .56) = .05 × 9.7 × 10−27

1.18
≈ 0
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Figure 1.1 Posterior probability of class membership, Congressional districts. The prob-
ability that CA-15 (yi = .56) belongs to the ‘Democratic’ class is .96.
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That is, the posterior probability that CA-15 belongs to the ‘Democratic’ class is .96. Note
that the result in CA-15, yi = .56 lies a long way from the ‘extremely Democratic’ class
(μ3 = .90, σ3 = .03) and so the probability of assigning CA-15 to that class is virtually
zero.

This calculation can be repeated for any plausible value of yi , and hence over any
range of plausible values for yi , showing how posterior classification probabilities change
as a function of yi . Figure 1.1 presents a graph of the posterior probability of membership
in each of three classes of congressional district, as Democratic congressional vote share
ranges over the values observed in the 2000 election. We will return to this example in
Chapter 5.

1.4 Bayes theorem, continuous parameter

In most analyses in the social sciences, we want to learn about a continuous parameter,
rather than the discrete parameters considered in the discussion thus far. Examples include
the mean of a continuous variable, a proportion (a continuous parameter on the unit
interval), a correlation, or a regression coefficient. In general, let the unknown parameter
be θ and denote the data available for analysis as y = (y1, . . . , yn)

′. In the case of
continuous parameters, beliefs about the parameter are represented as probability density
functions or pdfs (see Definition B.12); we denote the prior pdf as p(θ) and the posterior
pdf as p(θ |y).

Then, Bayes Theorem for a continuous parameter is as follows:

Proposition 1.5 (Bayes Theorem, continuous parameter).

p(θ |y) = p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

Proof. By the multiplication rule of probability (Proposition 1.1),

p(θ, y) = p(θ |y)p(y) = p(y|θ)p(θ), (1.2)

where all these densities are assumed to exist and have the properties p(z) > 0 and∫
p(z)dz = 1 (i.e. are proper probability densities, see Definitions B.12 and B.13). The

result follows by re-arranging the quantities in Equation 1.2 and noting that p(y) =∫
p(y, θ)dθ = ∫

p(y|θ)p(θ)dθ . �

Bayes Theorem for continuous parameters is more commonly expressed as follows,
perhaps the most important formula in this book:

p(θ |y) ∝ p(y|θ)p(θ), (1.3)

where the constant of proportionality is[∫
p(y|θ)p(θ)dθ

]−1
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i.e. ensuring that the posterior density integrates to one, as a proper probability density
must (again, see Definitions B.12 and B.13).

The first term on the right hand side of Equation 1.3 is the likelihood function (see
Definition B.16), the probability density of the data y, considered as a function of θ . Thus,
we can state this version of Bayes Theorem in words, providing the ‘Bayesian mantra’,

the posterior is proportional to the prior times the likelihood .

This formulation of Bayes Rule highlights a particularly elegant feature of the Bayesian
approach, showing how the likelihood function p(y|θ) can be ‘inverted’ to generate a
probability statement about θ , given data y.

Figure 1.2 shows the Bayesian mantra at work for a simple, single-parameter problem:
the success probability, θ ∈ [0, 1], underlying a binomial process, an example which we
will return to in detail in Chapter 2. Each panel shows a combination of a prior, a like-
lihood, and a posterior distribution (with the likelihood re-normalized to be comparable
to the prior and posterior densities).

The first two panels in the top row of Figure 1.2 have a uniform prior, θ ∼ Unif(0, 1),
and so the prior is absorbed into the constant of proportionality, resulting in a posterior
density over θ that is proportional to the likelihood; given the normalization of the
likelihood I use in Figure 1.2, the posterior and the likelihood graphically coincide. In
these cases, the mode of the posterior density is also that value of θ that maximizes the
likelihood function. For the special case considered in Figure 1.2, the prior distribution
θ ∼ Unif(0, 1) corresponds to an uninformative prior over θ , the kind of prior we might
specify when we have no prior information about the value of θ , and hence no way to
a priori prefer one set of values for θ over any other. Of course, there is another way
to interpret this result: from a Bayesian perspective, likelihood based analyses of data
assume prior ignorance, although seldom is this assumption made explicit, even if it were
plausible. In the examples we encounter in later chapters, we shall see circumstances in
which prior ignorance is plausible, and cases in which it is not. We will also consider
the priors that generate ‘the usual answer’ for well-known problems (e.g. estimating a
mean, a correlation, regression coefficients, etc.).

Posterior densities as precision-weighted combination of prior information
and likelihood

The other panels in Figure 1.2 display how Bayesian inference works with more or less
informative priors for θ . In the top left of Figure 1.2 we see what happens when the prior
and the likelihood more or less coincide. In this case, the likelihood is a little less diffuse
than the prior, but the prior and the likelihood have the same mode. Application of Bayes
Theorem in this instance yields a posterior distribution that has the same mode as the
prior and the likelihood, but is more precise (less diffuse) than both the prior and the
likelihood. In the other panels of Figure 1.2, this pattern is more or less repeated, except
that the mode of the prior and the likelihood are not equal. In these cases, the mode of
the posterior distribution lies between the mode of the prior distribution and the mode of
the likelihood. Specifically, the mean of the posterior distribution is a precision-weighted
average of the prior and the likelihood, a feature that we will see repeatedly in this book, a
consequence of working with so-called conjugate priors in the exponential family, which
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Figure 1.2 Priors, likelihoods and posterior densities. Each panel shows a prior density,
a likelihood, and a posterior density over a parameter θ ∈ [0, 1]. In the top two panels
on the left the posterior and the likelihood coincide, since the prior is uniform over the
parameter space.

we define in the next section. Many standard statistical models are in the exponential
family (but not all), for which conjugate priors are convenient ways of mathematically
representing prior beliefs over parameters, and make Bayesian analysis mathematically
and computationally quite simple.

1.4.1 Conjugate priors

Since conjugacy is such an important concept in Bayesian statistics, it is worth pausing
to sketch a definition:

Definition 1.2 Suppose a prior density p(θ) belongs to a class of parametric of densities,
F. Then the prior density is said to be conjugate with respect to a likelihood p(y|θ) if the
posterior density p(θ |y) is also in F.
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Of course, this definition rests on the unstated definition of a ‘class of parametric
densities’, and so is not as complete as one would prefer, but a thorough explanation
involves more technical detail than is warranted for now. Examples are perhaps the best
way to illustrate the simplicity that conjugacy brings to a Bayesian analysis. And to this
end, all the examples in Chapter 2 use priors that are conjugate with respect to their
respective likelihoods.

In particular, the examples in Figure 1.2 show the results of a Bayesian analysis of
binomial data (n independent realizations of a binary process, also known as Bernoulli
trials, such as coin flipping), for which the unknown parameter is θ ∈ [0, 1], the proba-
bility of a ‘success’ on any given trial. For the likelihood function formed with binomial
data, any Beta density (see Definition B.28) over θ is a conjugate prior: that is, if prior
beliefs about θ can be represented as a Beta density, then after those beliefs have been
updated (via Bayes Rule) in light of the binomial data, posterior beliefs about θ are also
characterized by a Beta density. In Section 2.1 we consider the Bayesian analysis of
binomial data in considerable detail.

For now, one of the important features of conjugacy is the one that appears graphi-
cally in Figure 1.2: for a wide class of problems (i.e. when conjugacy holds), Bayesian
statistical inference is equivalent to combining information, marrying the information in
the prior with the information in the data, with the relative contributions of prior and data
to the posterior being proportional to their respective precisions. That is, Bayesian analy-
sis with conjugate priors over a parameter θ is equivalent to taking a precision-weighted
average of prior information about θ and the information in the data about θ .

Thus, when prior beliefs about θ are ‘vague’, ‘diffuse’, or, in the limit, uninformative,
the posterior density will be dominated by the likelihood (i.e. the data contains much more
information than the prior about the parameters); e.g. the lower left panel of Figure 1.2.
In the limiting case of an uninformative prior, the only information about the parameter
is that in the data, and the posterior has the same shape as the likelihood function. When
prior information is available, the posterior incorporates it, and rationally, in the sense
of being consistent with the laws of probability via Bayes Theorem. In fact, when prior
beliefs are quite precise relative to the data, it is possible that the likelihood is largely
ignored, and the posterior distribution will look almost exactly like the prior, as it should
in such a case; e.g. see the lower right panel of Figure 1.2. In the limiting case of a
degenerate, infinitely-precise, ‘spike prior’ (all prior probability concentrated on a point),
the data are completely ignored, and the posterior is also a degenerate ‘spike’ distribution.
Should you hold such a dogmatic prior, no amount of data will ever result in you changing
your mind about the issue.

1.4.2 Bayesian updating with irregular priors

Figure 1.3 displays a series of prior and posterior densities for less standard cases, where
the prior densities are not simple unimodal densities. In each instance, Bayes Rule applies
as usual, with the posterior density being proportional to the prior density times the
likelihood, and appropriately normalized such that the posterior density encloses an area
equal to one. In the left-hand series of panels, the prior has a two modes, with the left
mode more dominant than the right mode. The likelihood is substantially less dispersed
than the prior, and attains a maximum at a point with low prior probability. The resulting
posterior density clearly represents the merger of prior and likelihood: with a mode just
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Figure 1.3 Priors, likelihoods and posterior densities for non-standard cases. Each
column of panels shows the way Bayes Rule combines prior information (top) with infor-
mation in the data (characterized by the likelihood, center) to yield a posterior density
(lower panels).

to the left of the mode of the likelihood function, and a smaller mode just to the right of
the mode of the likelihood function. The middle column of panels in Figure 1.3 shows a
symmetric case: the prior is bimodal but symmetric around a trough corresponding to the
mode of the likelihood function, resulting in a bimodal posterior distribution, but with
modes shrunk towards the mode of the likelihood. In this case, the information in the
data about θ combines with the prior information to reduce the depth of the trough in the
prior density, and to give substantially less weight to the outlying values of θ that receive
high prior probability. In the right-hand column of Figure 1.3 an extremely flamboyant
prior distribution (but one that is nonetheless symmetric about its mean) combines with
the skewed likelihood to produce the trimodal posterior density, with the posterior modes
located in regions with relatively high likelihood. Although this prior (and posterior) are
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somewhat fanciful (in the sense that it is hard to imagine those densities corresponding
to beliefs over a parameter), the central idea remains the same: Bayes Rule governs the
mapping from prior to posterior through the data. Implementing Bayes Rule may be
difficult when the prior is not conjugate to the likelihood, but, as we shall see, this is
where modern computational tools are particularly helpful (see Chapter 3).

1.4.3 Cromwell’s Rule

Note also that via Bayes Rule, if a particular region of the parameter space has zero prior
probability, then it also has zero posterior probability. This feature of Bayesian updating
has been dubbed ‘Cromwell’s Rule’ by Lindley (1985). After the English deposed, tried
and executed Charles I in 1649, the Scots invited Charles’ son, Charles II, to become king.
The English regarded this as a hostile act, and Oliver Cromwell led an army north. Prior
to the outbreak of hostilities, Cromwell wrote to the synod of the Church of Scotland,
‘I beseech you, in the bowels of Christ, consider it possible that you are mistaken’. The
relevance of Cromwell’s plea to the Scots for our purposes comes from noting that a prior
that assigns zero probability to a hypothesis can never be revised; likewise, a hypothesis
with prior weight of 1.0 can never be refuted.

The operation of Cromwell’s Rule is particularly clear in the left-hand column of
panels in Figure 1.4: the prior for θ is a uniform distribution over the left half of the
support of the likelihood, and zero everywhere else. The resulting posterior assigns zero
probability to values of θ assigned zero prior probability, and since the prior is uniform
elsewhere, the posterior is a re-scaled version of the likelihood in this region of non-zero
prior probability, where the re-scaling follows from the constraint that the area under
the posterior distribution is one. The middle column of panels in Figure 1.4 shows a
prior that has positive probability over all values of θ that has non-zero likelihood, and
a discontinuity in the middle of the parameter space, with the left-half of the parameter
space supporting having half as much probability mass as the right-half. The resulting
posterior has a discontinuity at the point where the prior does, but since the prior is
otherwise uniform, the posterior inherits the shape of the likelihood on either side of
the discontinuity, subject to the constraint (implied by the prior) that the posterior has
twice as much probability mass to the right of the discontinuity than to the left, and
integrates to one. The right-hand column of Figure 1.4 shows a more elaborate prior, a
step function over the parameter space, decreasing to the right. The resulting posterior
has discontinuities at the discontinuities in the prior, and some that are quite abrupt,
depending on the conflict between the prior and likelihood in any particular segment of
the prior.

The point here is that posterior distributions can sometimes look quite unusual,
depending on the form of the prior and the likelihood for a particular problem. The
fact that a posterior distribution may have a peculiar shape is of no great concern in
a Bayesian analysis: provided one is updating prior beliefs via Bayes Rule, all is well.
Unusual looking posterior distributions might suggest that one’s prior distribution was
poorly specified, but, as a general rule, one should be extremely wary of engaging this
kind of procedure. Bayes Rule is a procedure for generating posterior distributions over
parameters in light of data. Although one can always re-run a Bayesian analysis with
different priors (and indeed, this is usually a good idea), Bayesian procedures should not
be used to hunt for priors that generate the most pleasing looking posterior distribution,



BAYES THEOREM, CONTINUOUS PARAMETER 19

Prior

Likelihood

Posterior

Prior

Likelihood

Posterior

Prior

Likelihood

Posterior

Figure 1.4 Discontinuous prior and posterior densities. Each column of panels shows
the way Bayes Rule combines prior information (top) with information in the data (char-
acterized by the likelihood, center) to yield a posterior density (lower panels). The dotted
lines indicate discontinuities.

given a particular data set and likelihood. Indeed, such a practice would amount to an
inversion of the Bayesian approach: i.e. if the researcher has strong ideas as to what
values of θ are more likely than others, aside from the information in the data, then
that auxiliary information should be considered a prior, with Bayes Rule providing a
procedure for rationally combining that auxiliary information with the information in the
data.

1.4.4 Bayesian updating as information accumulation

Bayesian procedures are often equivalent to combining the information in one set of data
with another set of data. In fact, if prior beliefs represent the result of a previous data
analysis (or perhaps many previous data analyses), then Bayesian analysis is equivalent
to pooling information. This is a particularly compelling feature of Bayesian analysis, and
one that takes on special significance when working with cojugate priors. In these cases,
Bayesian procedures accumulate information in the sense that the posterior distribution
is more precise than either the prior distribution or the likelihood alone. Further, as
the amount of data increases, say through repeated applications of the data generation
process, the posterior precision will continue to increase, eventually overwhelming any
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non-degenerate prior; the upshot is that analysts with different (non-degenerate) prior
beliefs over a parameter will eventually find their beliefs coinciding, provided they (1)
see enough data and (2) update their beliefs using Bayes Theorem (Blackwell and Dubins
1962). In this way Bayesian analysis has been proclaimed as a model for scientific practice
(e.g. Howson and Urbach 1993; Press 2003) acknowledging that while reasonable people
may differ (at least prior to seeing data), our views will tend to converge as scientific
knowledge accumulates, provided we update our views rationally, consistent with the
laws of probability (i.e. via Bayes Theorem).

� Example 1.3

Drug testing, Example 1.1, continued. Suppose that the randomly selected subject
is someone you know personally, and you strongly suspect that she does not use the pro-
hibited substance. Your prior over the hypothesis that she uses the prohibited substance is
P(HU) = 1/1000. I have no special knowledge regarding the athlete, and use the baseline
prior P(HU) = .03. After the positive test result, my posterior belief is P(HU |E) = .23,
while yours is

P(HU |E) = P(HU)P (E|HU)∑
i∈{U,∼U } P(Hi)P (E|Hi)

= .001 × .95

(.001 × .95) + (.999 × .10)

= .00095

.000095 + .0999
≈ .009

A second test is performed. Now, our posteriors from the first test become the priors
with respect to the second test. Again, the subject tests positive, which we denote as the
event E′. My beliefs are revised as follows:

P(HU |E′) = .23 × .95

(.23 × .95) + (.77 × .10)

= .2185

.2185 + .077
= .74,

while your beliefs are updated to

P(HU |E′) = .009 × .95

(.009 × .95) + (.991 × .10)

= .00855

.00855 + .0991
≈ .079.

At this point, I am reasonably confident that the subject is using the prohibited substance,
while you still attach reasonably low probability to that hypothesis. After a 3rd positive
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test your beliefs update to .45, and mine to .96. After a 4th positive test your beliefs
update to .88 and mine to .996, and after a 5th test, your beliefs update to .99 and mine to
.9996. That is, given this stream of evidence, common knowledge as to the properties of
the test, and the fact that we are both rationally updating our beliefs via Bayes Theorem,
our beliefs are converging.

In this case, given the stream of postitive test results, our posterior probabilities
regarding the truth of HU are asymptotically approaching 1.0, albeit mine more quickly
than yours, given the low a priori probability you attached to HU . Note that with my
prior, I required just two consecutive positive test results to revise my beliefs to the
point where I considered it more likely than not that the subject is using the prohibited
substance, whereas you, with a much more skeptical prior, required four consecutive
postive tests.

It should also be noted that the specific pattern of results obtained in this case depend
on the properties of the test. Tests with higher sensitivity and specificity would see our
beliefs be revised more dramatically given the sequence of positive test results. Indeed,
this is the objective of the design of diagnostic tests of various sorts: given a prior
P(HU), what levels of sensitivity and specificity are required such that after just one or
two positive tests, P(HU |E) exceeds a critical threshold where an action is justified. See
Exercise 1.2.

1.5 Parameters as random variables, beliefs
as distributions

One of the critical ways in which Bayesian statistical inference differs from frequen-
tist inference is immediately apparent from Equation 1.3 and the examples shown in
Figure 1.2: the result of a Bayesian analysis, the posterior density p(θ |y) is just that, a
probability density. Given a subjectivist interpretation of probabilty that most Bayesians
adopt, the ‘randomness’ summarized by the posterior density is a reflection of the
researcher’s uncertainty over θ , conditional on having observed data y.

Contrast the frequentist approach, in which θ is not random, but a fixed (but unknown)
property of a population from which we randomly sample data y. Repeated applications
of the sampling process, if undertaken, would yield different y, and different sample
based estimates of θ , denoted θ̂ = θ̂ (y), this notation reminding us that estimates of
parameters are functions of data. In the frequentist scheme, the θ̂ (y) vary randomly
across data sets (or would, if repeated sampling was undertaken), while the parameter θ

is a constant feature of the population from which data sets are drawn. The distribution
of values of θ̂ that would result from repeated application of the sampling process is
called the sampling distribution , and is the basis of inference in the frequentist approach;
the standard deviation of the sampling distribution of θ̂ is the standard error of θ̂ , which
plays a key role in frequentist inference.

The Bayesian approach does not rely on how θ̂ might vary over repeated applications
of random sampling. Instead, Bayesian procedures center on a simple question: “what
should I believe about θ in light of the data available for analysis, y?” The quantity θ̂ (y)

has no special, intrinsic status in the Bayesian approach: as we shall see with specific
examples in Chapter 2, a least squares or maximum likelihood estimate of θ is a feature
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of the data that is usually helpful in computing the posterior distribution for θ . And,
under some special circumstances, a least squares or maximum likelihood estimate of θ ,
θ̂ (y), will correspond to a Bayes estimate of θ (see Section 1.6.1). But the critical point
to grasp is that in the Bayesian approach, the roles of θ and θ̂ are reversed relative to
their roles in classical, frequentist inference: θ is random, in the sense that the researcher
is uncertain about its value, while θ̂ is fixed, a feature of the data at hand.

1.6 Communicating the results of a Bayesian analysis

In a Bayesian analysis, all relevant information about θ after having analyzed the data
is represented by the posterior density, p(θ |y). An important and interesting decision for
the Bayesian researcher is how to communicate posterior beliefs about θ .

In a world where journal space was less scarce than it is, researchers could simply pro-
vide pictures of posterior distributions: e.g. density plots or histograms, as in Figure 1.2.
Graphs are an extremely efficient way of presenting information, and, in the specific case
of probability distributions, let the researcher and readers see the location, dispersion and
shape of the distribution, immediately gauging what regions of the parameter space are
more plausible than others, if any. This visualization strategy works well when θ is a
scalar, but quickly becomes more problematic when working with multiple parameters,
and so the posterior density is a multivariate distribution: i.e. we have

p(θ|y) = p(θ1, . . . , θk|y) ∝ p(θ)p(y|θ) (1.4)

Direct visualization is no longer feasible once k > 2: density plots or histograms have
two-dimensional counterparts (e.g. contour or image plots, used throughout this book, and
perspective plots), but we simply run out of dimensions at this point. As the dimension
of the parameter vector increases, we can graphically present one or two dimensional
slices of the posterior density. For problems with lots of parameters, this means that we
may have lots of pictures to present, consuming more journal space than even the most
sympathetic editor may be able to provide.

Thus, for models with lots of parameters, graphical presentation of the posterior
density may not be feasible, at least not for all parameters. In these cases, numerical
summaries of the posterior density (or the marginal posterior densities specific to par-
ticular parameters) are more feasible. Moreover, for most standard models, and if the
researcher’s prior beliefs have been expressed with conjugate priors, the analytic form
of the posterior is known (indeed, as we shall see, this is precisely the attraction of con-
jugate priors!). This means that for these standard cases, almost any interesting feature
of the posterior can be computed directly: e.g., the mean, the mode, the standard devia-
tion, or particular quantiles. For non-standard models, and/or for models where the priors
are not congujate, modern computational power lets us deploy Monte Carlo methods to
compute these features of posterior densities; see Chapter 3. Finally, it should be noted
that with large sample sizes, provided the prior is not degenerate, the posterior densities
are usually well approximated by normal densities, for which it is straightforward to
compute numerical summaries (see Section 1.7). In this section I review proposals for
summarizing posterior densities.
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1.6.1 Bayesian point estimation

If a Bayesian point estimate is required – reducing the information in the posterior distri-
bution to a single number – this can be done, although some regard the attempt to reduce
a posterior distribution to a single number as misguided and ad hoc. For instance,

While it [is] easy to demonstrate examples for which there can be no satis-
factory point estimate, yet the idea is very strong among people in general
and some statisticians in particular that there is a need for such a quantity.
To the idea that people like to have a single number we answer that usually
they shouldn’t get it. Most people know they live in a statistical world and
common parlance is full of words implying uncertainty. As in the case of
weather forecasts, statements about uncertain quantities ought to be made in
terms which reflect that uncertainty as nearly as possible (Box and Tiao 1973,
309–10).

This said, it is convenient to report a point estimate when communicating the results of a
Bayesian analysis, and, so long as information summarizing the dispersion of the posterior
distribution is also provided (see Section 1.6.2, below), a Bayesian point estimate is quite
a useful quantity to report.

The choice of which point summary of the posterior distribution to report can be
rationalized by drawing on (Bayesian) decision theory. Although we are interested in the
specific problem of choosing a single-number summary of a posterior distribution, the
question of how to make rational choices under conditions of uncertainty is quite general,
and we begin with a definition of loss:

Definition 1.3 (Loss Function). Let � be a set of possible states of nature θ , and let
a ∈ A be actions availble to the researcher. Then define l(θ, a) as the loss to the researcher
from taking action a when the state of nature is θ .

Recall that in the Bayesian approach, the researcher’s beliefs about plausible values
for θ are represented with a probability density function (or a probability mass function,
if θ take discrete values), and, in particular, after looking at data y, beliefs about θ are
represented by the posterior density p(θ |y). Generically, let p(θ) be a probability density
over θ , which in turn induces a density over losses. Averaging the losses over beliefs
about θ yields the Bayesian expected loss (Berger 1985, 8):

Definition 1.4 (Bayesian expected loss). If p(θ) is the probability density for θ ∈ � at
the time of decision making, the Bayesian expected loss of an action a is

�(p(θ), a) = E[l(θ, a)] =
∫

�

l(θ, a)p(θ)dθ.

A special case is where the density p in Definition 1.4 is a posterior density:

Definition 1.5 (Posterior expected loss). Given a posterior density for θ , p(θ |y), the
posterior expected loss of an action a is �(p(θ |y), a) = ∫

�
l(θ, a)p(θ |y)dθ .
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A Bayesian rule for choosing among actions A is to select a ∈ A so to minimize
posterior expected loss. In the specific context of point estimation, the decision problem
is to choose a Bayes estimate, θ̃ , and so actions a ∈ A now index feasible values for
θ̃ ∈ �. The problem now is that since there are plausibly many different loss functions
one might adopt, there are plausibly many Bayesian point estimates one might choose to
report. If the chosen loss function is convex, then the corresponding Bayes estimate is
unique (DeGroot and Rao 1963), so the choice of what Bayes estimate to report usually
amounts to what (convex) loss function to adopt. We briefly consider some well-studied
cases.

Definition 1.6 (Quadratic loss). If θ ∈ � is a parameter of interest, and θ̃ is an estimate
of θ , then l(θ, θ̃ ) = (θ − θ̃ )2 is the quadratic loss arising from the use of the estimate θ̃

instead of θ .

With quadratic loss, we obtain the following useful result:

Proposition 1.6 (Posterior mean as a Bayes estimate under quadratic loss). Under
quadratic loss the Bayes estimate of θ is the mean of the posterior density, i.e.
θ̃ = E(θ |y) = ∫

�
θp(θ |y)dθ .

Proof. Quadratic loss (Definition 1.6) implies that the posterior expected loss is

�(θ, θ̃) =
∫

�

(θ − θ̃ )2p(θ |y)dθ.

and we seek to minimize this expression with respect to θ̃ . Expanding the quadratic
yields

�(θ, θ̃) =
∫

�

θ2p(θ |y)dθ + θ̃2
∫

�

p(θ |y)dθ − 2θ̃

∫
�

θp(θ |y)dθ

=
∫

�

θ2p(θ |y)dθ + θ̃2 − 2θ̃E(θ |y),

Differentiate with respect to θ̃ , noting that the first term does not involve θ̃ . Then set the
derivative to zero and solve for θ̃ to establish the result. �

This result also holds for the case of performing inference with respect to a param-
eter vector θ = (θ1, . . . , θK)′. In this more general case, we define a multidimensional
quadratic loss function as follows:

Definition 1.7 (Multidimensional quadratic loss). If θ ∈ R
K is a parameter, and θ̃ is an

estimate of θ, then the (multidimensional) quadratic loss is l(θ, θ̃) = (θ − θ̃)′Q(θ − θ̃)

where Q is a positive definite matrix.

Proposition 1.7 (Multidimensional posterior mean as Bayes estimate). Under quadratic
loss (Definition 1.7), the posterior mean E(θ|y) = ∫

�
θp(θ|y)dθ is the Bayes estimate

of θ.



COMMUNICATING THE RESULTS OF A BAYESIAN ANALYSIS 25

Proof. The posterior expected loss is �(θ, θ̃) = ∫
�

(θ − θ̃)′Q(θ − θ̃)p(θ|y)dθ. Differen-
tiating with respect to θ̃ yields 2Q

∫
�

(θ − θ̃)p(θ|y)dθ. Setting the derivative to zero
and re-arranging yields

∫
�

(θ − θ̃)p(θ|y)dθ = 0 or
∫
�

θp(θ|y)dθ = ∫
�

θ̃p(θ|y)dθ. The
left-hand side of this expression is just the mean of the posterior density, E(θ|y), and so
E(θ|y) = ∫

�
θ̃p(θ|y)dθ = θ̃

∫
�

p(θ|y)dθ = θ̃. �

Remark. This result holds irrespective of the specific weighting matrix Q, provided Q is
positive definite.

The mean of the posterior distribution is a popular choice among researchers seeking
to quickly communicate features of the posterior distribution that results from a Bayesian
data analysis; we now understand the conditions under which this is a rational point
summary of one’s beliefs over θ . Specifically, Proposition 1.6 rationalizes the choice of
the mean of the posterior density as a Bayes estimate.

Of course, other loss functions rationalize other point summaries. Consider linear loss,
possibly asymmetric around θ :

Definition 1.8 (Linear loss). If θ ∈ � is a parameter, and θ̃ is a point estimate of θ , then
the linear loss function is

l(θ, θ̃ ) =
{

k0(θ − θ̃ ) if θ̃ < θ

k1(θ̃ − θ) if θ ≤ θ̃

Loss in absolute value results when k0 = k1 = 1, a special case of a class of sym-
metric, linear loss functions (i.e. k0 = k1). Asymmetric linear loss results when k0 �= k1.

Proposition 1.8 (Bayes estimates under linear loss). Under linear loss (definition 1.8),
the Bayes estimate of θ is the k1/(k0 + k1) quantile of p(θ |y), the θ̃ such that P(θ ≤ θ̃ ) =
k0/(k0 + k1).

Proof. Following Bernardo and Smith (1994, 256), we seek the θ̃ that minimizes

�(θ, θ̃) =
∫

�

l(θ, θ̃)p(θ |y)dθ = k0

∫
{θ̃<θ}

(θ − θ̃ )p(θ |y)dθ + k1

∫
{θ≤θ̃}

(θ̃ − θ)p(θ |y)dθ.

Differentiating this expression with respect to θ̃ and setting the result to zero yields

k0

∫
{θ̃<θ}

p(θ |y)dθ = k1

∫
{θ≤θ̃}

p(θ |y)dθ

Adding k0

∫
{θ≤θ̃}

p(θ |y)dθ to both sides yields k0 = (k0 + k1)

∫
{θ≤θ̃}

p(θ |y)dθ and so

re-arranging yields
∫

{θ<θ̃}
p(θ |y)dθ = k0/(k0 + k1). �

Note that with symmetric linear loss, we obtain the median of the posterior density
as the Bayes estimate. Asymmetric loss functions imply using quantiles other than the
median.
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� Example 1.4

Graduate Admissions. A professor reviews applications to a Ph.D. program. The
professor assumes that each applicant i ∈ {1, . . . , n} possesses ability θi . After reviewing
the applicants’ files (i.e. encountering data, or y), the professors’s beliefs regarding each
θi can be represented as a distribution p(θi |y). The professor’s loss function is asymmet-
ric, since the professor has determined that it is 2.5 times as costly to overestimate an
applicant’s ability than it is to underestimate ability: i.e.

�(θ, θ̃) =
{

θ − θ̃ if θ > θ̃

2.5(θ̃ − θ) if θ ≤ θ̃

Ability is measured on an arbitrary scale, normalized to have mean zero and standard devi-
ation one across the applicant pool. Suppose that for applicant i, p(θi |y) ≈ N(1.8, 0.42),
while for applicant j , p(θj |y) ≈ N(2.0, 1.02); i.e. there is considerably greater posterior
uncertainty as to the ability of applicant j . Given the professors’s loss function, the Bayes
estimate of θi is the 1/(1 + 2.5) = .286 quantile of the N(1.8, 0.42) posterior density, or
1.57; for applicant j , the Bayes estimate is the .286 quantile of a N(2.0, 1.02) density, or
1.43. Thus, although E(θj |y) >E(θi |y), the greater uncertainty associated with applicant
j , when coupled with the asymmetric loss function, results in the professor assigning a
higher Bayes estimate to applicant j than to applicant i (i.e. θ̃i < θ̃j ).

1.6.2 Credible regions

Bayes estimates are an attempt to summarize beliefs over θ with a single number, pro-
viding a rational, best guess as to the value of θ . But Bayes estimates do not convey
information as to the researcher’s uncertainty over θ , and indeed, this is why many
Bayesian statisticians find Bayes estimates fundamentally unsatisfactory. To communi-
cate a summary of prior or posterior uncertainty over θ , it is necessary to somehow
summarize information about the location and shape of the prior or posterior distribu-
tion, p(θ). In particular, what is the set or region of more plausible values for θ? More
formally, what is the region C ⊆ � that supports proportion α of the probability under
p(θ)? Such a region is called a credible region:

Definition 1.9 (Credible region). A region C ⊆ � such that
∫

C

p(θ)dθ = 1 − α, 0 ≤
α ≤ 1 is a 100(1 − α)% credible region for θ .

For single-parameter problems (i.e. � ⊆ R), if C is not a set of disjoint intervals, then
C is a credible interval.

If p(θ) is a (prior/posterior) density, then C is a (prior/posterior) credible region.

There is trivially only one 100 % credible region, the entire support of p(θ). But
non-trivial credible regions may not be unique. For example, suppose θ ∼ N(0, 1): it
is obvious that there is no unique 100(1 − α)% credible region for any α ∈ (0, 1): any
interval spanning 100(1 − α) percentiles will be such an interval. A solution to this
problem comes from restricting attention to credible regions that have certain desirable
properties, including minimum volume (or, for a one dimensional parameter problem,
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minimum length) in the set of credible regions induced by a given choice of α, for a
specific p(θ). This kind of optimal credible region is called a highest probability density
region , sometimes referred to as a HPD region or a ‘HDR’. The following definition of
a HPD region is standard and appears in many places in the literature, e.g. Box and Tiao
(1973, 123) or Bernardo and Smith (1994, 260):

Definition 1.10 (Highest probability density interval). A region C ⊆ � is a 100(1 − α)%
highest probability density region for θ under p(θ) if

1. P(θ ∈ C) = 1 − α

2. P(θ1) ≥ P(θ2), ∀ θ1 ∈ C, θ2 �∈ C

A 100(1 − α)% HPD region for a symmetric, unimodal density is obviously unique
and symmetric around the mode. In fact, if p(θ) is a univariate normal density, a HPD
is the same as a interval around the mean:

� Example 1.5

Suppose p(θ) ≡ N(a, b2). Then a 100(1 − α)% HPD region is the interval

(a − |zα|b, a + |zα|b)

where zα is the α quantile of the standard normal density. With α = .05, |zα| ≈ 1.96,
and a 95 % HPD corresponds to a 95 % interval; see Figure 1.5.

N(0,1) χ2 4 df

0 2 4 6 8 10

25% 75%

−2 −1 0 1 2

Figure 1.5 95 % HPD intervals for standard normal (left panel) and χ2
4 densities.

Note that the correspondence between intervals and HPD intervals does not hold for
non-symmetric densities, as we demonstrate with a simple example.

� Example 1.6

The right panel of Figure 1.5 shows a χ2 density with 4 degrees of freedom, and its
50 % HPD interval. Notice that the 50 % HPD interval is more concentrated around the
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mode of the density, and has shorter length than the interval based on the 25th to 75th
percentiles of the density.

As the next two examples demonstrate, (1) the HPD need not be a connected set, but
a collection of disjoint intervals (say, if p(θ) is not unimodal), and (2) the HPD need not
be unique.

� Example 1.7

Extreme missingness in bivariate normal data. Consider the data in Table 1.1, where
two variables (y1 and y2) are observed subject to a pattern of severe missingness, but
are otherwise assumed to be distributed bivariate normal each with mean zero, and an
unknown covariance matrix. These manufactured data have been repeatedly analyzed to
investigate the properties of algorithms for handling missing data (e.g. Murray 1977;
Tanner and Wong 1987).

Table 1.1 Twelve observations from a bivariate normal distribution.

y1: 1 1 −1 −1 2 2 −2 −2 NA NA NA NA
y2: 1 −1 1 −1 NA NA NA NA 2 2 −2 −2

Given the missing data pattern, what should we conclude about the correlation ρ

between y1 and y2? For this particular example, with an uninformative prior for the
covariance matrix of Y = (y1, y2), the posterior density for ρ is bimodal, as shown in
Figure 1.6. The shaded areas represent half of the posterior density for ρ; the intervals
supporting the shaded areas together constitute a 50 % HPD region for ρ, and are the
disjoint intervals (−.914, −.602) and (.602, .914). We return to this example in more
detail in Examples 5.11 and 6.6.

Correlation Coefficient

−1.0 −0.5 0.0 0.5 1.0

Figure 1.6 Bimodal posterior density for a correlation coefficient, and 50 % HPD.
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� Example 1.8

Non-unique HDRs. Suppose θ ∼ Uniform(0, 1). Then any HPD region of content α

is not unique, ∀ 0 < α < 1. See Figure 1.7. The shaded regions are both supported by
25 % HPDs, as are any other intervals of width .25 we might care to draw.

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.7 Uniform density and (non-unique) 25 % HPDs.

For higher dimensional problems, the HPD is a region in a parameter space and
numerical approximations and/or simulation may be required to compute it. For some
simple cases, such as multiple regression analysis with conjugate priors, although the pos-
terior distribution is multivariate, it has a well known form for which it is straightforward
to compute HPDs; see Proposition 2.13.

1.7 Asymptotic properties of posterior distributions

As we have seen, Bayes Rule tells us how we ought to revise our prior beliefs in light
of data. In Section 1.4 we saw that as the precision of one’s prior beliefs tends to zero,
posterior beliefs are increasingly dominated by the data (through the likelihood). This
also occurs as the data set ‘gets larger’: subject to an exception to be noted below, for
a given prior, as the size of the data set being analyzed grows without bound, the usual
result is that the resulting sequence of posterior densities collapses to a spike on the true
values of the parameters in the model under consideration.

Of course, some Bayesians find such thinking odd: in a Bayesian analysis, we con-
dition on the data at hand, updating beliefs via Bayes Rule. Unlike frequentist inference,
Bayesian inference does not rest on the repeated sampling and/or asymptotic properties
of the statistical procedures being used. Many Bayesians consider asking what would
happen as one’s data set gets infinitely large as an interesting mathematical exercise, but
not particularly relevant to the inferential task at hand. This view holds that provided we
update our beliefs via Bayes Rule in light of this data set, and with a model/likelihood
appropriate to the data at hand (not a trivial matter), we are behaving rationally, and the
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repeated sampling or asymptotic properties of our inferences are second order concerns.
Some Bayesians even go further, arguing that models and parameters have no objective,
exterior reality, but are mathematical fictions we conjure so as to help us make probabil-
ity assignments over data (we explore this ‘subjectivist’ position further in §1.9), and so
questions such as consistency are moot.

My own position – echoing that of Diaconis and Freedman (1986a, 11) – is that even
subjectivist Bayesians ought to consider asymptotic properties of Bayes estimates, since
if Bayesian inference is to be a model of scientific practice, we should be able to establish
the convergence of (initially disparate) opinions as relevant evidence accumulates.

So what can we say about Bayesian inferences, asymptotically? The key idea here
is that subject to some regularity conditions, as the data set grows without bound, the
posterior density is increasingly dominated by the contribution from the data through
the likelihood function, and the standard asymptotic properties of maximum likelihood
estimators apply to the posterior density. These properties include

• consistency, at least in the sense that the posterior density is increasingly concen-
trated around the true parameter value as n → ∞; or, in the additional sense of
Bayes point estimators of θ (Section 1.6.1) being consistent;

• asymptotic normality, i.e. p(θ |y) tends to a normal distribution as n → ∞.

There is a large literature establishing the conditions under which frequentist and
Bayesian procedures coincide, at least asymptotically. These results are too technical to be
reviewed in any detail in this text; see, for instance, Bernardo and Smith (1994, ch. 5) for
statements of necessary regularity conditions and proofs of the main results and references
to the literature. Diaconis and Freedman (1986a,b) provide some counter-examples to the
consistency results; the ‘incidental parameters’ problem (Neyman and Scott 1948) is
one such counter-example which we briefly return to in Section 9.1.2. I provide a brief
illustration of ‘Bayesian consistency’ with two examples, below, and sketch a proof of a
‘Bayesian central limit theorem’ in the Appendix.

Bayesian consistency works as follows. Suppose the true value of θ is θ∗. Then
provided the prior distribution p(θ) does not place zero probability mass on θ∗ (say, for
a discrete parameter), or on a neigborhood of θ∗ (say, for a continuous parameter), then
as n → ∞, the posterior will be increasingly dominated by the contribution from the
likelihood, which, under suitable regularity conditions, tends to a spike on θ∗.

Figures 1.8 and 1.9 graphically demonstrate the Bayesian version of consistency as
described above. In each case, the prior is held constant as the sample size increases,
leading to a progressively tighter correspondence between the posterior and the likelihood.
Even with modest amounts of data, the multimodality of the priors are being overwhelmed
by the information in the data, and the likelihood and posterior are collapsing to a spike
on θ∗.

Although the scale used in Figures 1.8 and 1.9 doesn’t make it clear, the likelihoods
and posterior in the Figures are also tending to normal distributions: re-scaling by the
usual

√
n would make this clear. The fact that posterior densities start to take on a

normal shape as n → ∞ is particularly helpful. The normal is an extremely well-studied
distribution, and completely characterized by its first two moments. This can drastically
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Figure 1.8 Sequence of posterior densities (1). The prior remains fixed across the
sequence, as sample size increases and θ∗ is held constant. In this example, n = 6,
30, 90, 450 across the four columns in the figure.

simplify the Bayesian computation of the posterior density and features of the posterior
density, such as quantiles and highest posterior density estimates, especially when θ has
many components.

1.8 Bayesian hypothesis testing

The posterior density of θ also provides the information necessary to test hypotheses
about θ . At the outset, it is worth stressing that Bayesian hypothesis testing and frequentist
hypothesis testing differ starkly. The most common hypothesis test of classical statistics,
H0 : θ = 0, is untestable in the Bayesian approach if θ is a continuous parameter; to
see this, note that if a continuous parameter θ ∈ � ⊆ R has the posterior distribution
p(θ |y), then a ‘point null’ hypothesis such as H0 : θ = c has zero probability, since c

is a one-point set with measure zero (see Definition B.3). This difficulty also afflicts
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Figure 1.9 Sequence of posterior distributions (2). The prior remains fixed across the
sequence, as sample size increases and θ∗ is held constant. In this example, n = 6, 30,
150, 1500 across the four columns in the figure.

hypothesis testing in the frequentist world: with respect to a continuous parameter, all
point null hypotheses are false, as the researcher would eventually discover if they were
to successively test a point null hypothesis at a pre-specified, non-zero significance level,
with increasing amounts of data (a fact that is typically ignored in introductory statis-
tics classes). By concentrating attention on the posterior density, p(θ |y), the Bayesian
approach helps to make clear the logical deficiencies of point null hypothesis testing.
Thus, at least for continuous parameters, we don’t test point null hypotheses in the
Bayesian approach, and for that matter nor should a frequentist.

Instead, suppose we have a continuous parameter θ ∈ R, then two, exculsive, exhaus-
tive and non-trivial (non-point) hypotheses are H0 : θ < c and the alternative hypothesis
H1 : θ ≥ c. Posterior probabilities for these hypotheses are defined as follows:

Pr(H0|y) = Pr(θ < c|y) =
∫ c

−∞
p(θ |y)dθ
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and

Pr(H1|y) = Pr(θ ≥ c|y) =
∫ ∞

c

p(θ |y)dθ.

For standard models, where conjugate priors have been deployed, these posterior proba-
bilities are straightforward to compute; in other cases, modern computing power means
Monte Carlo methods can be deployed to assess these probabilities, as we will see in
Chapter 3.

The posterior probability of a hypothesis is something that only makes sense in a
Bayesian framework. There is no such corresponding quantity in a frequentist framework,
although this is how a frequentist p-value is often misinterpreted. For a frequentist, θ

is a fixed but unknown number, and so hypotheses about θ are either true or false, and
Pr(H0|y) = 1 if H0 is true, and zero if it is not. As such, for a frequentist, the falsity or
truth of a hypothesis does not depend on the data, and so a quantity such as Pr(H0|y)

is meaningless. In contrast, for the Bayesian, θ is not fixed, but subject to (subjective
prior/posterior) uncertainty, and so too is H0, and so the posterior probability Pr(H0|y) is
quite useful. Indeed, one might argue that those types of posterior probability statement
are exactly what one wants from a data analysis, letting us make statements of the sort
‘how plausible is hypothesis H0 in light of these data?’ A frequentist p-value answers
a different question: ‘how frequently would I observe a result at least as extreme as the
one obtained if H0 were true?’, which is a statement about the plausibility of the data
given the hypothesis. Turning this assessment into an assessment about the hypothesis
requires another step in the frequentist chain of reasoning (e.g. conclude H0 is false if
the p-value falls below some preset level). Contrast the Bayesian procedure, which lets
us assess the plausibility of H0 directly. A long line of papers contrasts p-values with
Bayesian posterior probabilities, arguing (as I have here) that many analysts interpret the
former as the latter, but that these two quantities can often be very different from one
another; especially helpful papers on this score include Dickey (1977), Berger and Sellke
(1987) and Berger (2003).

The following example provides a demonstration of Bayesian hypothesis testing using
data from a survey. To help understand how Bayesian and frequentist approaches to
hypothesis testing differ, a frequentist analysis is also provided.

� Example 1.9

Attitudes towards abortion. Agresti and Finlay (1997, 133) report that in the 1994
General Social Survey, 1934 respondents were asked

Please tell me whether or not you think it should be possible for a pregnant
woman to obtain a legal abortion if the woman wants it for any reason.

Of the 1934 respondents, 895 reported ‘yes’ and 1039 said ‘no’. Let θ be the unknown
population proportion of respondents who agree with the proposition in the survey item,
that a pregnant woman should be able to obtain an abortion if the woman wants it for
any reason. The question of interest is whether a majority of the population supports the
proposition in the survey item.
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Frequentist approach. The survey estimate of θ is θ̂ = 895/1934 ≈ .46, the approxi-
mation coming via rounding to two significant digits. Although the underlying data are
binomial (independent Bernoulli trials), with this large sample, the normal distribution
provides an excellent approximation to the frequentist sampling distribution of θ̂ ; bino-
mial data are considered in detail in Chapter 2. Suppose interest focuses on whether the
unknown population proportion θ = .5. A typical frequentist approach to this question
is to test the null hypothesis H0 : θ = .5 against all other alternatives HA : θ �= .5, or a
one-sided alternative HB : θ > .5. We would then ask how unlikely it is that one would
see the value of θ̂ actually obtained, or an even more extreme value if H0 were true, by
centering the sampling distribution of θ̂ at the hypothesized value. The standard deviation
of the normal sampling distribution (the standard error of θ̂ ) under H0 is

se(θ̂H0) =
√

θH0(1 − θH0)

n
=

√
.50 × (1 − .50)

1934
≈ .011.

The realized value of θ̂ is (.5 − .46)/.011 ≈ 3.64 standard errors away from the hypoth-
esized value. Under a normal distribution, this an extremely rare event. Over repeated
applications of random sampling, only a small proportion of estimates of θ will lie 3.64
or more standard errors away from the hypothesized mean of the sampling distribution.
This proportion is

2 ×
∫ ∞

3.64
φ(z)dz = 2 × [1 − �(3.64)] ≈ .00028,

where φ(·) and �(·) are the normal pdf and cdfs, respectively. Given this result, most (fre-
quentist) analysts would reject the null hypothesis in favor of either alternative hypothesis,
reporting the p-values for H0 against HA as .00028 and for H0 against HB as .00014.

Bayesian approach. The unknown parameter is θ ∈ [0, 1] and suppose we bring little
or no prior information to the analysis. In such a case, we know that the posterior
density has the same shape as the likelihood, which with the large sample used here is
well approximated by a normal density (the details of Bayesian estimation and inference
for a sample proportion are presented in Chapter 2), specifically, a normal distribution
centered on the maximum likelihood estimate of .46 with standard deviation .011; i.e.
p(θ |y) ≈ N(.46, .0112) and inferences about θ are based on this distribution. We note
immediately that most of the posterior probability mass lies below .5, suggesting that the
hypothesis θ > .5 is not well-supported by the data. In fact, the posterior probability of
this hypothesis is

Pr(θ > .5|y) =
∫ ∞

.5
p(θ |y)dθ =

∫ ∞

.5
φ

(
θ − .46

.011

)
dθ = .00014.

That is, there is an apparent symmetry between the frequentist and Bayesian answers:
in both instances, the ‘answer’ involved computing the same tail area probability of a
normal distribution, with the probability of H0 under the Bayesian posterior distribution
corresponding with the p-value in the frequentist test of H0 against the one-sided alter-
native HB ; see Figure 1.10. But this similarity really is only superficial. The Bayesian
probability is a statement about the researcher’s beliefs about θ , obtained via application
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Figure 1.10 Posterior density contrasted with sampling distribution under H0 : θ = .5,
for Example 1.9. The top right panel shows the posterior density in the neighbor-
hood of θ = .5, with the shaded region corresponding to the posterior probability
p(θ > .5|y) = ∫ ∞

.5 p(θ |y)dθ = .00014. The lower right panel shows the sampling dis-
tribution in the neighborhood of θ̂ = .46, with the shaded region corresponding to the
proportion of times one would observe θ̂ ≤ .46 if H0 : θ = .5 were true, corresponding
to .00014 of the area under the sampling distribution.

of Bayes Rule, and is Pr(H0|y), obtained by computing the appropriate integral of the
posterior distribution p(θ |y). The frequentist p-value is obtained via a slightly more
complex route, and has a quite different interpretation than the Bayesian posterior proba-
bility, since it conditions on the null hypothesis; i.e. the sampling distribution is f (θ̂ |H0)

and the p-value for H0 against the one-sided alternative, the proportion of θ̂ < .46 we
would see under repeated sampling, with the sampling distribution given by the null
hypothesis.
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1.8.1 Model choice

Applying Bayes Rule produces a posterior density, f (θ |y), not a point estimate or a
binary decision about a hypothesis. Nonetheless, in many settings the goal of statistical
analysis is to inform a discrete decision problem, such as choosing the ‘best model’ from
a class of models for a given data set. We now consider Bayesian procedures for making
such a choice.

Let Mi index models under consideration for data y. What may distinguish the models
are parameter restrictions of various kinds. A typical example in the social sciences is
when sets of predictors are entered or dropped from different regression-type models for
y; if j indexes candidate predictors, then dropping xj from a regression corresponds to
imposing the parameter restriction βj = 0. Alternatively, the models under consideration
may not nest or overlap. For example, consider situations where different theories suggest
disjoint sets of predictors for some outcome y. In this case two candidate models M1

and M2 may have no predictors in common.
Consider a closed set of models, M = {M1, . . . ,MJ }; i.e. the researcher is interested

in choosing among a distinct number of models, rather than the (harder) problem of
choosing a model from an infinite set of possible models. In the Bayesian approach,
the researcher has prior beliefs as to which model is correct, which are formulated as
prior probabilities, denoted P(Mi) with i indexing the set of models M. The goal of a
Bayesian analysis is to produce posterior probabilities for each model, P(Mi |y), and to
inform the choice of a particular model. This posterior probability comes via application
of Bayes Rule for multiple discrete events, which we encounted earlier as Proposition 1.4.
In the specific context of model choice, we have

P(Mi |y) = P(Mi)p(y|Mi)∑J
j=1 P(Mj)p(y|Mj)

. (1.5)

The expression p(y|Mi) is the marginal likelihood , given by the identity

P(y|Mi) =
∫

�i

p(y|θi, Mi)p(θi)dθi (1.6)

i.e. averaging the likelihood for y under Mi over the prior for the parameters θi of Mi .
As we have seen in the discussion of Bayes estimates, the mapping from a researcher’s

posterior distribution to a particular decision depends on the researcher’s loss function.
To simplify the model choice problem, suppose that one of the models in M is the ‘best
model’, M∗, and the researcher possesses the following simple loss function

l(Mi, M
∗) =

{
0 if Mi = M∗
1 if Mi �= M∗

For each model, P([Mi �= M∗]|y) = 1 − P(Mi |y), and so the expected posterior loss of
choosing model i is 1 − P(Mi |y). Thus, the loss minimizing choice is to choose the
model with highest posterior probability.

� Example 1.10

Attitudes towards abortion, Example 1.9, continued. The likelihood for these data
is approximated by a normal distribution with mean .46 and standard deviation .011. We
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consider the following hypotheses: H0 : .5 ≤ θ ≤ 1 and H1 : 0 ≤ θ < .5, which generate
priors

p0(θ0) ≡ Uniform(.5, 1) =
{

2 if .5 ≤ θ0 ≤ 1
0 otherwise

and

p1(θ1) ≡ Uniform(0, .5) =
{

2 if 0 ≤ θ1 < .5
0 otherwise

respectively. We are a priori neutral between the two hypotheses, setting P(H0) = P(H1)

to 1/2. Now, under H0, the marginal likelihood is

p(y|H0) =
∫ 1

.5
p(y|H0, θ0)p0(θ0)dθ0 = 2

∫ 1

.5
p(y|H0, θ0)dθ0

= 2

(
�

(
1 − .46

.011

)
− �

(
.5 − .46

.011

))
= .00028

Under H1, the marginal likelihood is

p(y|H1) =
∫ .5

0
p(y|H1, θ1)p1(θ1)dθ1 = 2

∫ .5

0
p(y|H1, θ1)dθ1

= 2

(
�

(
.5 − .46

.011

)
− �

(−.46

.011

))
= 2.

Thus, via Equation 1.5:

P(H0|y) =
1
2 × .00028

( 1
2 × .00028) + ( 1

2 × 2)
= .00014

.00014 + 1
= .00014

P(H1|y) = 1

.00014 + 1
= .99986

indicating that H1 is much more plausible than H0.

1.8.2 Bayes factors

For any pairwise comparison of models or hypotheses, we can also rely on a quantity
known as the Bayes factor. Before seeing the data, the prior odds of M1 over M0 are
p(M1)/p(M0), and after seeing the data we have the posterior odds p(M1|y)/p(M0|y).
The ratio of these two sets of odds is the Bayes factor:

Definition 1.11 (Bayes Factor). Given data y and two models M0 and M1, the Bayes
factor

B10 = p(y|M1)

p(y|M0)
=

{
p(M1|y)

p(M0|y)

}/{
p(M1)

p(M0)

}
(1.7)

is a summary of the evidence for M1 against M0 provided by the data.
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The Bayes factor provides a measure of whether the data have altered the odds on
M1 relative to M0. For instance, B10 > 1 indicates that M1 is now more plausible relative
to M0 than it was a priori .

The Bayes factor plays something of an analagous role to a likelihood ratio. In fact,
twice the logarithm of B10 is on the same scale as the deviance and likelihood ratio
test statistics for model comparisons. For cases where the models are labelled by point
restrictions on θ , the Bayes factor is a likelihood ratio. However, unlike the likelihood
ratio test statistic, in the Bayesian context there is no reference to a sampling distribution
with which to assess the particular statistic obtained in the present sample. In the Bayesian
approach, all inferences are made conditional on the data at hand (not with reference to
what might happen over repeated applications of random sampling). Thus, the Bayes
factor has to be interpreted as a summary measure of the information in the data about
the relative plausibility of models or hypotheses, rather than offering a formulaic way to
choose between those model or hypotheses. Jeffreys (1961) suggests the following scale
for interpreting the Bayes factor:

B10 2 log B10 Evidence for M1

<1 <0 negative (support M0)
1 to 3 0 to 2 barely worth mentioning

3 to 12 2 to 5 positive
12 to 150 5 to 10 strong

>150 >10 very strong

Good (1988) summarizes the history of the Bayes factor, which long predates likelihood
ratio as a model comparison tool.

� Example 1.11

Attitudes towards abortion, Example 1.9, continued. We computed the marginal
likelihoods under the two hypotheses in Example 1.10, which we now use to compute
the Bayes factor,

B10 = p(y|H1)

p(y|H0)
= 2

.00028
= 7142,

again indicating that the data strongly favor H1 over H0.

1.9 From subjective beliefs to parameters and models

Ealier in this chapter I introduced Bayes Theorem with some simple examples. But in
so doing I have brushed over some important details. In particular, the examples are all
parametric (as are almost all statistical models in the social sciences), in the sense that
the probability distribution of the data is written as a function of an unknown parameter
θ (a scalar or vector). This approach to statisical inference – expressing the joint density
of the data as a function of a relatively small number of unknown parameters – will be
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familiar to many readers, and may not warrant justification or elaboration. But given the
subjectivist approach adopted here the question of how and why parameters and models
enter the picture is not idle.

Recall that in the subjectivist approach championed by de Finetti (and adopted here),
the idea that probability is a property of a coin, a die, or any other object under study,
is regarded as metaphysical nonsense. All that is real is the data at hand. We may also
possess knowledge (or at least beliefs) about how the data were generated. For instance,
are the data real at all, or are they output of a computer simulation? Were the data
produced via an experiment with random assignment to treatment and control groups, by
random sampling from a specific population, or are the data a complete enumeration of a
population? But everything else is a more or less convenient fiction created in the mind
of the researcher including parameters and models .

To help grasp the issue a little more clearly, consider the following example. A
coin is flipped n times. The possible set of outcomes is S = {{H, T }1 × . . . × {H,T }n},
with cardinality 2n. Assigning probabilities over the elements of S is a difficult task,
if only because for any moderate to large value of n, 2n is a large number. Almost
instinctively, we start falling back on familar ways to simplify the problem. For example,
reaching back to our introductory statistics classes, we would probably inquire ‘are the
coin flips independent?’ If satisfied that the coin flips are independent, we would then
fit a binomial model to the data, modeling the r flips coming up heads as a function of
a ‘heads’ probability θ , given the n flips. In a Bayesian analysis we would also have a
prior density p(θ) as part of the model, and we would report the posterior density over
p(θ |r, n) as the result of the analysis.

I now show that this procedure – using parameteric models to simplify data
analysis – can be justified by recourse to a deeper principle called exchangeability . In
particular, if data are ‘infinitely exchangeable’, then a Bayesian approach to modeling
the data is not only possible or desirable, but is actually implied by exchangeability.
That is, prior distributions over parameters are not merely a ‘Bayesian addition’ to an
otherwise classical analysis, but necessarily arise when one believes that the data are
exchangeable. This is the key insight of one of the most important theorems in Bayesian
statistics – de Finetti’s Representation Theorem – which we will also encounter below.

1.9.1 Exchangeability

We begin with a definition:

Definition 1.12 (Finite exchangeability). The random quantities y1, . . . , yn are finitely
exchangeable if their joint probability density (or mass function, for discrete y),

p(y1, . . . , yn) = p(yz(1), . . . , yz(n))

for all permutations z of the indices of the yi , {1, . . . , n}.

Remark. An infinite sequence of random quantities y1, y2, . . . is infinitely exchangeable if
every finite subsequence is finitely exchangeable.

Exchangeability is thus equivalent to the condition that the joint density of the data
y remains the same under any re-ordering or re-labeling of the indices of the data.
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Similarly, exchangeability is often interpreted as the Bayesian version of the ‘iid assump-
tion’ that underlies much statistical modeling, where ‘iid’ stands for ‘independently and
identically distributed’. In fact, if data are exchangeable they are conditionally iid, where
the conditioning is usually on a parameter, θ (but contrast Problem 1.8). Indeed, this is
one of the critical implications of de Finetti’s Representation Theorem.

As we shall now see, de Finetti’s Thorem shows that beliefs about data being infinitely
exchangeable imply a belief about the data having ‘something in common’, a ‘similiarity’
or ‘equivalence’ (de Finetti’s original term) such that I can swap yi for yj in the sequence
without changing my beliefs that either yi or yj will be one or zero (i.e. there is nothing
special about yi having the label i, or appearing in the i-th position in the sequence).
That is, under exchangeability, two sequences, each with the same length n, and the same
proportion of ones, would be assigned the same probability. As Diaconis and Freedman
(1980a) point out: ‘only the number of ones in the . . . trials matters, not the location of
the ones’.

de Finetti’s Thoerem takes this implication a step further, showing that if I believe
the data are infinitely exchangeable, then it is as if there is a parameter θ that drives
a stochastic model generating the data, and a density over θ that doesn’t depend on
the data. This density is interpretable as a prior density, since it characterizes beliefs
about θ that are not conditioned on the data. That is, the existence of a prior density
over a parameter is a result of de Finetti’s Representation Theorem, rather than an
assumption.

We now state this remarkable theorem, referring interested readers elsewhere for a
proof.

Proposition 1.9 (de Finetti Representation Theorem, binary case). If y1, y2, . . . is an
infinitely exchangeable sequence, with yi ∈ {0, 1}, ∀ i = 1, 2, . . . , then there exists a prob-
ability density function P such that the joint probability mass function for n realizations
of yi , p(y1, . . . , yn) can be represented as follows,

P(y1, . . . , yn) =
∫ 1

0

n∏
i=1

θyi (1 − θ)1−yi dF (θ)

where F(θ) is the limiting distribution of θ , i.e.

F(θ) = lim
n→∞ P(n−1

n∑
i=1

yi ≤ θ).

Proof. See de Finetti (1931; 1937), Heath and Sudderth (1976). �

Remark. Hewitt and Savage (1955) proved the uniqueness of the representation.

Since this theorem is so important to the subjectivist, Bayesian approach adopted here,
we pause to examine it in some detail. First, consider the object on the left-hand side
of the equality in the proposition. Given that yi ∈ {0, 1}, P(y1, . . . , yn) is an assignment
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of probabilities to all 2n possible realizations of y = (y1, . . . , yn). It is daunting to con-
sider allocating probabilities to all 2n realizations, but an implication of de Finetti’s
Representation Theorem is that we don’t have to. The proposition shows that probability
assignments to y1, . . . , yn (a finite subset of an infinitely exchangeable sequence) can be
made in terms of a single parameter θ , interpretable as the limiting value of the proportion
of ones in the infinite, exchangeable sequence y1, y2, . . . . This is extraordinarily conve-
nient, since under exchangeability, the parameter θ can become the object of statistical
modeling, rather than much more cumbersome object P(y1, . . . , yn). Thus, in the sub-
jectivist approach, parameters feature in statistical modeling not necessarily because they
are ‘real’ features of the world, but because they are part of a convenient, mathematical
representation of probability assignments over data.

Perhaps more surprisingly, di Finetti’s Representation Theorem also implies the exis-
tence of a prior probability density over θ , F(θ), in the sense that it is a density over
θ that does not depend on the data. If F(θ) in Proposition 1.9 is absolutely continuous,
then we obtain the probability density function for θ , p(θ) = dF (θ)/dθ . In this case, the
identity in the proposition can be re-written as

P(y1, . . . , yn) =
∫ 1

0

n∏
i=1

θyi (1 − θ)1−yip(θ)dθ. (1.8)

We recognize the first term on the right-hand-side of equation 1.8 as the likelihood for
a series of Bernoulli trials, distributed independently conditional on a parameter θ , i.e.
under independence conditional on θ ,

L(θ; y) ≡ f (y|θ) =
n∏

i=1

f (yi |θ)

where

f (yi |θ) =
{

θ = θyi if yi = 1
(1 − θ) = (1 − θ)1−yi if yi = 0

The second term in Equation 1.8, p(θ), is a prior density for θ , The integration in
equation 1.8 is how we obtain the marginal density for y, as a weighted average of
the likelihoods implied by different values of θ ∈ [0, 1], where the prior density p(θ)

supplies the weights.
That is, a simple assumption such as (infinite) exchangeability implies the existence

of a parameter θ and a prior over θ , and hence a justification for adopting a Bayesian
approach to inference:

This [de Finetti’s Representation Theorem] is one of the most beautiful and
important results in modern statistics. Beautiful, because it is so general and
yet so simple. Important, because exchangeable sequences arise so often in
practice. If there are, and we are sure there will be, readers who find p(θ)

distasteful, remember it is only as distasteful as exchangeability; and is that
unreasonable? (Lindley and Phillips 1976, 115)
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1.9.2 Implications and extensions of de Finetti’s Representation
Theorem

The parameter θ considered in Proposition 1.9 is recognizable as a success probability
for independent Bernoulli trials. But other parameters and models can be considered.
A simple example comes from switching our focus from the individual zeros and ones
to S = ∑n

i=1 yi , the number of ones in the sequence y = (y1, . . . , yn), with possible
values s ∈ {0, 1, . . . , n}. Since there are

(
n

s

)
ways of obtaining S = s successes in n

trials, de Finetti’s Representation Theorem implies that probability assignments for S

represented as

Pr(S = s) =
(

n

s

)∫ 1

0
θs(1 − θ)n−sdF (θ).

where F(θ) = limn→∞ Pr(n−1S ≤ θ) is the limiting probability distribution function for
θ . Put differently, conditional on θ and n (the number of trials), the number of successes
S is distributed following the binomial probability point mass function.

A general form of de Finneti’s Representation Theorem exists, and here I re-state a
relatively simple version of the general form, due to Smith (1984, 252):

Proposition 1.10 (Representation Theorem for Real-Valued Random Quantities). If
yn = (y1, . . . .yn) are realizations from an infinitely exchangeable sequence, with
−∞ < yi < ∞ and with probability measure P , then there exists a probability measure
μ over F, the space of all distribution functions on R such that the joint distribution
function of yn has the representation

P(y1, . . . , yn) =
∫
F

n∏
i=1

F(yi)dμ(F )

where

μ(F ) = lim
n→∞ P(Fn)

and where Fn is the empirical distribution function for y i.e.

Fn(y) = n−1[I (y1 ≤ y) + I (y2 ≤ y) + . . . + I (yn ≤ y)]

where I (·) is an indicator function evaluating to one if its argument is true and zero
otherwise.

Proof. See de Finetti (1937; 1938). The result is a special case of the more abstract
situation considered by Hewitt and Savage (1955) and Diaconis and Freedman
(1980b). �

Note for this general case that the Representation Theorem implies a nonparametric,
or, equivalently, a infinitely-dimensional parametric model. That is, the Fn in Proposition
1.10 is the unknown distribution function for y, a series of asymptotically-diminishing
step functions over the range of y. Conditional on this distribution, it is as if we have
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independent data. The distribution μ is equivalent to a prior over what Fn would look
like in a large sample.

Thus, the general version of de Finetti’s Representation Theorem is only so helpful,
at least as a practical matter. What typically happens is that the infinite-dimensional Fn

is approximated with a distribution indexed by a finite parameter vector θ; e.g., consider
θ = (μ, σ 2), the mean and variance of a normal density, respectively. Note the paramet-
ric, modeling assumptions being made here. This said, the use of particular parameteric
models is not completely ad hoc. There is much work outlining the conditions under
which exchangeability plus particular invariance assumptions imply particular parame-
teric models (e.g., under what conditions does a belief of exchangeability over real-valued
quantities justify a normal model, under what conditions does a belief of exchangeability
over positive, integer-valued random quantities justify a geometric model, and so on).
Bernardo and Smith (1994, §4.4) provide a summary of these results.

1.9.3 Finite exchangeability

Note that both Propositions 1.9 and 1.10 rest on an assumption of infinite exchangeabil-
ity: i.e. that the (finite) data at hand are part of a infinite, exchangeable sequence. de
Finetti type theorems do not hold for finitely exchangeable data; see Diaconis (1977) for
some simple but powerful examples. This seems problematic, especially in social science
settings, where it is often not at all clear that data can be considered to be a subset of an
infinite, exchangeable sequence. Happily, finitely exchangeable sequences can be shown
to be approximations of infinitely exchangeable sequences, and so de Finetti type results
hold approximately for finitely exchangeable sequences. Diaconis and Freedman (1980b)
bound the error induced by this approximation for the general case, in the sense that
the de Finneti type representation for P(yn) under finite exchangeability differs from the
representation obtained under an assumption of infinite exchangeability by a factor that is
smaller than a constant times 1/n. Thus, for large n, the ‘distortion’ induced by assuming
infinite exchangeability is vanishingly small. A precise definition of this ‘distortion’ and
sharp bounds for specific cases are reported in Diaconis and Freedman (1981), Diaconis,
Eaton and Lauritzen (1992), and Wood (1992).

Still, n can be quite small in social science settings, and exchangeability judgements
themselves may not be enough to justify parameteric modeling. In these cases models arise
not so much as a consequence of having exchangeable data via de Finetti’s Representation
Theorem, but exist in the mind of the researcher prior to the analysis. This is perfectly
fine, and indeed, corresponds to the way many social scientists go about their business:
we look for data sets to tests theories and models, rather than (as may happen more often
in statistics) we look for models to fit to the data we’ve been given to analyze. That is,
one can (and ought!) to adopt a Bayesian approach even in the absence of exchangeable
data; the point here is that models and prior densities are necessarily implied by accepting
that one’s data is exchangeable.

1.9.4 Exchangeability and prediction

Exchangeability also makes clear the close connections between prediction and Bayes
Rule, and between parameters and observables. Consider tossing a coin n times with
the outcomes, y, infinitely exchangeable. Arbitrarily, let yi = 1 for a head. We observe
r heads out of n tosses. Then we consider the next toss of the coin, with the outcome
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denoted ỹ, conditional on the observed sequence of r heads in n flips, y. The probability
density (or mass function) we form over this future outcome ỹ is known as the posterior
predictive density (or mass function). In this case,

P(ỹ = 1|y) = P(ỹ = 1, y)

P (y)

and, by exchangeability,

=
∫ 1

0 θr+ỹ (1 − θ)n+1−r−ỹp(θ)dθ∫ 1
0 θr(1 − θ)n−rp(θ)dθ

=
∫ 1

0 θ ỹ(1 − θ)1−ỹ θ r (1 − θ)n−rp(θ)dθ∫ 1
0 θr (1 − θ)n−rp(θ)dθ

=
∫ 1

0 θ ỹ(1 − θ)1−ỹL(θ; y)p(θ)dθ∫ 1
0 L(θ; y)p(θ)dθ

,

since up to a constant multiplicative factor (that will cancel across numerator and denom-
inator) L(θ; y) = θr(1 − θ)n−r . But, by Bayes Rule (Proposition 1.5),

p(θ |y) = L(θ; y)p(θ)∫ 1
0 L(θ; y)p(θ)dθ

and so P(ỹ = 1|y) = ∫ 1
0 θ ỹ(1 − θ)1−ỹp(θ |y)dθ = ∫ 1

0 θp(θ |y)dθ = E(θ |y). That is,
under exchangeability (and via Bayes Rule), beliefs about the outcome of the next
realization of the binary sequence corresponds to beliefs about the parameter θ . It is
provocative to note that θ need not corresponds to anything in the physical world;
indeed, the parameter θ may well be nothing more than a convenient fiction we conjure
up to make a prediction problem tractable. The general point here is that we will rely
on this property of modeling under exchangeability quite frequently, with parameters
providing an especially useful way to summarize beliefs not only about the data at hand,
but future realizations of the (exchangeable) data.

1.9.5 Conditional exchangeability and multiparameter models

Once again, consider the simple case in Proposition 1.9, where y = (y1, . . . , yn) is a
sequence of zeros and ones. In this case, without any other information about the data,
exchangeability seems quite plausible. That is, probability assignments over the data con-
form to the form given in Proposition 1.9, in which the data are considered independent
Bernoulli trials, conditional on the parameter θ , and p(θ) is a prior density over θ .

But consider a different situation. What if instead of (canonical) coin flips, we had
asked survey respondents if they had ever engaged in political protest, for instance, a
street demonstration. The data are coded yi = 1 if survey respondent i responds ‘Yes’
and 0 otherwise. But we also know that the data come from J different countries: let
j = 1, . . . , J index the countries covered by the survey, and let Ci = j if respondent i

is in country j . Suppose for a moment that the country information is given to us only
in the most minimal form: a set of integers, i.e. Ci ∈ {1, . . . , J }. That is, we know that
the data come from different countries, but that is all.
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Even with this little amount of extra information I suspect most social scientists
would not consider the entire sequence of data y = (y1, . . . , yn)

′ as exchangeable, since
there are good reasons to suspect levels of political protest vary considerably by country.
We would want to condition any assignment of a zero or a one to yi on the country
label of case i, Ci . Within any given country, and absent any other information, the
data might be considered exchangeable. Data with this feature are referred to as par-
tially exchangeable or conditionally exchangeable (e.g. Linley and Novick 1981). In this
example, exchangeability within each country implies that each country’s data can be
modeled via country-specific, Bernoulli models: i.e. for j = 1, . . . , J ,

yi |Ci = j ∼ Bernoulli(θj ) (likelihoods)
θj ∼ pj (θj ) (priors)

or, equivalently, since the data are exchangeable within a country, we can model the
number of respondents reporting engaging in political protest in a particular country rj

via a binomial model, conditional on θj and the number of respondents in that country nj :

rj |θj , nj ∼ Binomial(θj ; nj ) (likelihood)
θj ∼ pj(θj ) (priors)

1.9.6 Exchangeability of parameters: hierarchical modeling

The hypothetical multi-country example just considered takes a step in the direction of
‘hierarchical models’. That is, idea of exchangeability applies not just to data, but to
parameters as well: i.e. note the deliberate use of the general term ‘random quantities’
rather than ‘data’ in Propositions 1.9 and 1.10).

Consider the example again. We know that data span J different countries. But that is
all we know. Under these conditions, the θj can be considered exchangeable: i.e. absent
any information to distinguish the countries from one another, the probability assignment
p(θ1, . . . , θJ ) is invariant to any change of the labels of the countries (see Definition
1.12). Put simply, the country labels j do not meaningfully distinguish the countries
with respect to their corresponding θj . In this case, de Finetti’s Representation Theorem
implies that the joint density of the θj has the representation

p(θ) = p(θ1, . . . , θJ ) =
∫ m∏

j=1

p(θj |ν)p(ν)dν (1.9)

where ν is a hyperparameter . That is, under exchangeability at the level of countries, it
is as if we have the following two-stage or hierarchical prior structure over the θj :

θj |ν ∼ p(θj |ν) (hierarchical model for θj )
ν ∼ p(ν) (prior for hyperparameter ν)

For the example under consideration – modeling country-specific proportions – we might
employ the following choices for the various densities:

rj |θj , nj ∼ Binomial(θj ; nj )

θj |ν ∼ Beta(α, β)
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α ∼ Exponential(2)

β ∼ Exponential(2)

with ν = (α, β) the hyperparameters for this problem. Details on the specific densities
come later: e.g. in Chapter 2 we discuss models for proportions in some detail, and a
hierarchical model for binomial data is considered in Example 7.9. At this stage, the key
point is that exchangeability is a concept that applies not only to data, but to parameters
as well.

We conclude this brief introduction to hierarchical modeling with an additional exten-
sion. If we possess more information about the countries other than case labels, then
exchangeability might well be no longer plausible. Information that survey respondents
were located in different countries prompted us to revise a belief of exchangeability for
them; similarly, information allowing us to distinguish countries from one another might
lead us to revisit the exchangeability judgement over the θj parameters. In particular,
suppose we have variables at the country level, xj , measuring factors such as the extent
to which the country’s constitution guarantees rights to assembly and freedom of expres-
sion, and the repressiveness of the current regime. In this case, exchangeability might
hold conditional on a unique combination of those country-level predictors. A statistical
model that exploits the information in xj might be the following multi-level hierarchical
model:

rj |θj , nj ∼ Binomial(θj ; nj )

zj = log

(
θj

1 − θj

)

zj |xj ∼ N(xjβ, σ 2)

β|σ 2 ∼ N(b, σ 2B)

σ 2 ∼ Inverse-Gamma

(
ν

2
,

ν0σ
2
0

2

)
.

Again, details on the specific models and densities deployed here come in later chapters;
Example 7.10 provides a detailed consideration of a multi-level model. The key idea is
that the information in xj enters as the independent variables in a regression model for
zj , the log-odds of each country’s θj . In this way contextual information about country
j is incorporated into a model for the survey responses. These types of exchangeabil-
ity judgements will play an important role in the discussion of hierarchical models in
Chapter 7.

1.10 Historical note

Bayes Theorem is named for the Reverend Thomas Bayes, who died in 1761. The result
that we now refer to as Bayes Theorem appeared in an essay attributed to Bayes and
communicated to the Royal Society after Bayes death by his friend, Richard Price (Bayes
1763). This famous essay has been republished many times since (e.g. Bayes 1958).

Several authors have noted that there is some doubt that Bayes actually discovered
the theorem named for him; see, for instance, Stigler (1999, Ch 14) and the references
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in Fienberg (2006). Nor is it clear that Bayes himself was a ‘Bayesian’ in the sense that
we use the term today (e.g. Stigler 1982).

The subject of Bayes Essay towards solving a problem in the doctrine of chances was
what we would today recognize as a binomial problem: given x successes in n indepen-
dent binary trials, what should we infer about π , the underlying probability of success?
Bayes himself studied the binomial problem with a uniform prior. In 1774 Laplace (appar-
ently unaware of Bayes work) stated Bayes theorem in its more general form, and also
considered non-uniform priors (Laplace 1774). Laplace’s article popularized what would
later become known as ‘Bayesian’ statistics. Perhaps because of Laplace’s work on the
subject, Bayes’ essay itself ‘was ignored until after 1780 and played no important role
in scientific debate until the twentieth century’ (Stigler 1986b, 361). Additional histor-
ical detail can be found in Bernardo and Smith (1994, ch. 1), and Stigler (1986a, ch.
3). We return to the relatively simple statistical problem considered by Bayes (drawing
inferences given binomial data) in Chapter 2.

The adjective ‘Bayesian’ did not enter the statistical vernacular until the 20th century.
Fienberg (2006) reviews the ‘neo-Bayesian revival’ of the 20th century, and, via a review
by Edwards (2004), traces the first use of ‘Bayesian’ as an adjective to Fisher (1950),
in an introduction to a paper originally written in 1921. Unsurprisingly, Fisher’s use of
the term was not flattering, since he was at pains to contrast his approach to statistical
inference from the subjectivism he disliked in the Bayesian approach. In contrast with
Fisher’s pejorative use of the term, Fienberg (2006) provides a detailed exposition of
how Bayesians themselves came to adopt the ‘Bayesian’ moniker in the 20th century.

Problems

1.1 Consider a cross-national study of economic development, where the data comprise
all OECD countries in 2000. A researcher argues that while these data are the pop-
ulation of OECD countries in 2000, they are nonetheless a random sample from the
histories of these countries. Discuss.

1.2 Consider the drug testing problem given in Example 1.1. Consider the false negative
rate and the false positive rate of the drug test as two variables.

1. Construct a grid of hypothetical values for these two variables. At each point on
the grid, compute the posterior probability of HU , the hypothesis ‘the subject uses
the prohibited substance’ given the prior on this hypothesis of P(Hu) = .03 and a
postitive test result. Use a graphical technique such as a contour plot or an image
plot to summarize the results.

2. What values for the two error rates of the test give rise to a posterior probability
on HU that exceeds 0.5?

3. Repeat this exercise, but now considering a run of 3 positive tests: what values of
the test error rates give rise to a posterior probability for HU in excess of 0.95?

1.3 Suppose p(θ) ≡ χ2
2 . Compute a 50 % highest density region for θ . Compare this

region with the inter-quartile range of p(θ).
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1.4 Consider a density p(θ). Under what conditions can a HDR for θ of content α be
determined by simply noting the (1 − α)/2 and 1 − (1 − α)/2 quantiles of p(θ)?
That is, what must be true about p(θ) so as to let us compute a HDR this way?

1.5 Consider Example 1.4. Repeat the analysis in the example assuming that it is (a)
two times and (b) five times as costly to overestimate applicant ability than it is to
underestimate ability.

1.6 A poll of 500 adults in the United States taken in the Spring of 2008 finds that just
29 % of respondents approve of the way that George W. Bush is handling his job as
president.

1. Report the posterior probabilities of H0 : θ > .33 and H1 : θ < .33. The thresh-
old θ = .33 has some politically interest, say, if we assume that (up to a rough
approximation) the electorate is evenly partitioned into Democrat, Independent,
and Republican identifiers.

2. Report a Bayes factor for H0 vs H1. Comment briefly on your finding.

3. Contrast how a frequentist approach would distinguish between these two hypothe-
ses.

1.7 Consider the poll data in the previous question. Suppose you had the following
uniform prior for θ , θ ∼ Unif(.4, .6). What is your posterior density, given the polling
data?

1.8 Is exchangeability merely a Bayesian way of saying ‘iid’? That is, establish whether
statistical independence is a necessary and sufficient condition for exchangeability.
In particular, can you come up with an example where exchangeability holds, but
independence does not?


