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Simple Harmonic Motion

In the physical world there are many examples of things that vibrate or oscillate, i.e.
perform periodic motion. Everyday examples are a swinging pendulum, a plucked
guitar string and a car bouncing up and down on its springs. The most basic form
of periodic motion is called simple harmonic motion (SHM). In this chapter we
develop quantitative descriptions of SHM. We obtain equations for the ways in
which the displacement, velocity and acceleration of a simple harmonic oscillator
vary with time and the ways in which the kinetic and potential energies of the
oscillator vary. To do this we discuss two particularly important examples of SHM:
a mass oscillating at the end of a spring and a swinging pendulum. We then extend
our discussion to electrical circuits and show that the equations that describe the
movement of charge in an oscillating electrical circuit are identical in form to those
that describe, for example, the motion of a mass on the end of a spring. Thus if
we understand one type of harmonic oscillator then we can readily understand
and analyse many other types. The universal importance of SHM is that to a
good approximation many real oscillating systems behave like simple harmonic
oscillators when they undergo oscillations of small amplitude. Consequently, the
elegant mathematical description of the simple harmonic oscillator that we will
develop can be applied to a wide range of physical systems.

1.1 PHYSICAL CHARACTERISTICS OF SIMPLE HARMONIC
OSCILLATORS

Observing the motion of a pendulum can tell us a great deal about the gen-
eral characteristics of SHM. We could make such a pendulum by suspending an
apple from the end of a length of string. When we draw the apple away from its
equilibrium position and release it we see that the apple swings back towards the
equilibrium position. It starts off from rest but steadily picks up speed. We notice
that it overshoots the equilibrium position and does not stop until it reaches the
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2 Simple Harmonic Motion

other extreme of its motion. It then swings back toward the equilibrium position
and eventually arrives back at its initial position. This pattern then repeats with
the apple swinging backwards and forwards periodically . Gravity is the restoring
force that attracts the apple back to its equilibrium position. It is the inertia of
the mass that causes it to overshoot. The apple has kinetic energy because of its
motion. We notice that its velocity is zero when its displacement from the equilib-
rium position is a maximum and so its kinetic energy is also zero at that point. The
apple also has potential energy. When it moves away from the equilibrium position
the apple’s vertical height increases and it gains potential energy. When the apple
passes through the equilibrium position its vertical displacement is zero and so all
of its energy must be kinetic. Thus at the point of zero displacement the velocity
has its maximum value. As the apple swings back and forth there is a continuous
exchange between its potential and kinetic energies. These characteristics of the
pendulum are common to all simple harmonic oscillators: (i) periodic motion; (ii)
an equilibrium position; (iii) a restoring force that is directed towards this equilib-
rium position; (iv) inertia causing overshoot; and (v) a continuous flow of energy
between potential and kinetic. Of course the oscillation of the apple steadily dies
away due to the effects of dissipative forces such as air resistance, but we will
delay the discussion of these effects until Chapter 2.

1.2 A MASS ON A SPRING

1.2.1 A mass on a horizontal spring

Our first example of a simple harmonic oscillator is a mass on a horizontal spring
as shown in Figure 1.1. The mass is attached to one end of the spring while the other
end is held fixed. The equilibrium position corresponds to the unstretched length
of the spring and x is the displacement of the mass from the equilibrium position
along the x-axis. We start with an idealised version of a real physical situation.
It is idealised because the mass is assumed to move on a frictionless surface and
the spring is assumed to be weightless. Furthermore because the motion is in the
horizontal direction, no effects due to gravity are involved. In physics it is quite
usual to start with a simplified version or model because real physical situations are
normally complicated and hard to handle. The simplification makes the problem
tractable so that an initial, idealised solution can be obtained. The complications,
e.g. the effects of friction on the motion of the oscillator, are then added in turn and
at each stage a modified and improved solution is obtained. This process invariably
provides a great deal of physical understanding about the real system and about
the relative importance of the added complications.

x

m

Figure 1.1 A simple harmonic oscillator consisting of a mass m on a horizontal spring.
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Figure 1.2 Variation of displacement x with time t for a mass undergoing SHM.

Experience tells us that if we pull the mass so as to extend the spring and then
release it, the mass will move back and forth in a periodic way. If we plot the
displacement x of the mass with respect to time t we obtain a curve like that
shown in Figure 1.2. The amplitude of the oscillation is A, corresponding to the
maximum excursion of the mass, and we note the initial condition that x = A at
time t = 0. The time for one complete cycle of oscillation is the period T . The
frequency ν is the number of cycles of oscillation per unit time. The relationship
between period and frequency is

ν = 1

T
. (1.1)

The units of frequency are hertz (Hz), where

1 Hz ≡ 1 cycle per second ≡ 1 s−1.

For small displacements the force produced by the spring is described by Hooke’s
law which says that the strength of the force is proportional to the extension (or
compression) of the spring, i.e. F ∝ x where x is the displacement of the mass. The
constant of proportionality is the spring constant k which is defined as the force
per unit displacement. When the spring is extended, i.e. x is positive, the force acts
in the opposite direction to x to pull the mass back to the equilibrium position.
Similarly when the spring is compressed, i.e. x is negative, the force again acts
in the opposite direction to x to push the mass back to the equilibrium position.
This situation is illustrated in Figure 1.3 which shows the direction of the force at
various points of the oscillation. We can therefore write

F = −kx (1.2)

where the minus sign indicates that the force always acts in the opposite direction
to the displacement. All simple harmonic oscillators have forces that act in this
way: (i) the magnitude of the force is directly proportional to the displacement;
and (ii) the force is always directed towards the equilibrium position.



4 Simple Harmonic Motion

system in 
equilibrium

system 
displaced 

from 
equilibrium

x = 0, F = 0

x

m

m

m

F

F

x : negative

x : positive

Figure 1.3 The direction of the force acting on the mass m at various values of displace-
ment x.

The system must also obey Newton’s second law of motion which states that
the force is equal to mass m times acceleration a, i.e. F = ma. We thus obtain the
equation of motion of the mass

F = ma = −kx. (1.3)

Recalling that velocity v and acceleration a are, respectively, the first and second
derivatives of displacement with respect to time, i.e.

a = dv

dt
= d2x

dt2
, (1.4)

we can write Equation (1.3) in the form of the differential equation

m
d2x

dt2
= −kx (1.5)

or

d2x

dt2
= −ω2x (1.6)

where

ω2 = k

m
(1.7)

is a constant. Equation (1.6) is the equation of SHM and all simple harmonic
oscillators have an equation of this form. It is a linear second-order differential
equation; linear because each term is proportional to x or one of its derivatives and
second order because the highest derivative occurring in it is second order. The
reason for writing the constant as ω2 will soon become apparent but we note that
ω2 is equal to the restoring force per unit displacement per unit mass.
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1.2.2 A mass on a vertical spring
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Figure 1.4 An oscillating mass on a vertical spring. (a) The mass at its equilibrium position.
(b) The mass displaced by a distance x from its equilibrium position.

If we suspend a mass from a vertical spring, as shown in Figure 1.4, we have
gravity also acting on the mass. When the mass is initially attached to the spring,
the length of the spring increases by an amount �l. Taking displacements in the
downward direction as positive, the resultant force on the mass is equal to the
gravitational force minus the force exerted upwards by the spring, i.e. the resultant
force is given by mg − k�l. The resultant force is equal to zero when the mass is
at its equilibrium position. Hence

k�l = mg.

When the mass is displaced downwards by an amount x, the resultant force is
given by

F = m
d2x

dt2
= mg − k(�l + x) = mg − k�l − kx

i.e.

m
d2x

dt2
= −kx. (1.8)

Perhaps not surprisingly, this result is identical to the equation of motion (1.5) of the
horizontal spring: we simply need to measure displacements from the equilibrium
position of the mass.

1.2.3 Displacement, velocity and acceleration in simple harmonic motion

To describe the harmonic oscillator, we need expressions for the displacement,
velocity and acceleration as functions of time: x(t), v(t) and a(t). These can be
obtained by solving Equation (1.6) using standard mathematical methods. However,
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we will use our physical intuition to deduce them from the observed behaviour of
a mass on a spring.

y

0
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y = cos q

y = sin q

π 2π 3π 4π
q (rad)

Figure 1.5 The functions y = cos θ and y = sin θ plotted over two complete cycles.

Observing the periodic motion shown in Figure 1.2, we look for a function x(t)

that also repeats periodically. Periodic functions that are familiar to us are sin θ and
cos θ . These are reproduced in Figure 1.5 over two complete cycles. Both functions
repeat every time the angle θ changes by 2π. We can notice that the two functions
are identical except for a shift of π/2 along the θ axis. We also note the initial
condition that the displacement x of the mass equals A at t = 0. Comparison of the
actual motion with the mathematical functions in Figure 1.5 suggests the choice of
a cosine function for x(t). We write it as

x = A cos

(
2πt

T

)
(1.9)

which has the correct form in that (2πt/T ) is an angle (in radians) that goes from
0 to 2π as t goes from 0 to T , and so repeats with the correct period. Moreover
x equals A at t = 0 which matches the initial condition. We also require that
x = A cos (2πt/T ) is a solution to our differential equation (1.6). We define

ω = 2π

T
(1.10)

where ω is the angular frequency of the oscillator, with units of rad s−1, to obtain

x = A cos ωt. (1.11)

Then

dx

dt
= v = −ωA sin ωt, (1.12)

and

d2x

dt2
= a = −ω2A cos ωt = −ω2x. (1.13)
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So, the function x = A cos ωt is a solution of Equation (1.6) and correctly describes
the physical situation. The reason for writing the constant as ω2 in Equation (1.6)
is now apparent: the constant is equal to the square of the angular frequency of
oscillation. We have also obtained expressions for the velocity v and acceleration
a of the mass as functions of time. All three functions are plotted in Figure 1.6.
Since they relate to different physical quantities, namely displacement, velocity and
acceleration, they are plotted on separate sets of axes, although the time axes are
aligned with respect to each other.

t

v

x

a

t

t

turning points

(a)

(b)

(c)

x = A cos wt

v = −Aw sin wt

a = −Aw2 cos wt

Figure 1.6 (a) The displacement x, (b) the velocity v and (c) the acceleration a of a mass
undergoing SHM as a function of time t . The time axes of the three graphs are aligned.

Figure 1.6 shows that the behaviour of the three functions (1.11)–(1.13) agree
with our observations. For example, when the displacement of the mass is great-
est, which occurs at the turning points of the motion (x = ±A), the velocity is
zero. However, the velocity is at a maximum when the mass passes through its
equilibrium position, i.e. x = 0. Looked at in a different way, we can see that
the maximum in the velocity curve occurs before the maximum in the displace-
ment curve by one quarter of a period which corresponds to an angle of π/2.
We can understand at which points the maxima and minima of the acceleration
occur by recalling that acceleration is directly proportional to the force. The force
is maximum at the turning points of the motion but is of opposite sign to the
displacement. The acceleration does indeed follow this same pattern, as is readily
seen in Figure 1.6.

1.2.4 General solutions for simple harmonic motion and the phase angle φ

In the example above, we had the particular situation where the mass was released
from rest with an initial displacement A, i.e. x equals A at t = 0. For the more



8 Simple Harmonic Motion

t

x

A

0

A cos wt A cos (wt + f)

f/w

Figure 1.7 General solution for displacement x in SHM showing the phase angle φ, where
x = A cos(ωt + φ).

general case, the motion of the oscillator will give rise to a displacement curve
like that shown by the solid curve in Figure 1.7, where the displacement and
velocity of the mass have arbitrary values at t = 0. This solid curve looks like the
cosine function x = A cos ωt , that is shown by the dotted curve, but it is displaced
horizontally to the left of it by a time interval φ/ω = φT/2π. The solid curve is
described by

x = A cos(ωt + φ) (1.14)

where again A is the amplitude of the oscillation and φ is called the phase angle
which has units of radians. [Note that changing ωt to (ωt − φ) would shift the curve
to the right in Figure 1.7.] Equation (1.14) is also a solution of the equation of
motion of the mass, Equation (1.6), as the reader can readily verify. In fact Equation
(1.14) is the general solution of Equation (1.6). We can state here a property of
second-order differential equations that they always contain two arbitrary constants.
In this case A and φ are the two constants which are determined from the initial
conditions, i.e. from the position and velocity of the mass at time t = 0.

We can cast the general solution, Equation (1.14), in the alternative form

x = a cos ωt + b sin ωt, (1.15)

where a and b are now the two constants. Equations (1.14) and (1.15) are entirely
equivalent as we can show in the following way. Since

A cos(ωt + φ) = A cos ωt cos φ − A sin ωt sin φ (1.16)

and cos φ and sin φ have constant values, we can rewrite the right-hand side of this
equation as

a cos ωt + b sin ωt,

where
a = A cos φ and b = −A sin φ. (1.17)

We see that if we add sine and cosine curves of the same angular frequency ω,
we obtain another cosine (or corresponding sine curve) of angular frequency ω.
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This is illustrated in Figure 1.8 where we plot A cos ωt and A sin ωt , and also
(A cos ωt + A sin ωt) which is equal to

√
2A cos(ωt − π/4). As the motion of a

simple harmonic oscillator is described by sines and cosines it is called harmonic
and because there is only a single frequency involved, it is called simple harmonic.

t

A

t

x

x

A cos wt  

A sin wt

√2 A

π
4

A cos wt + A sin wt
= √2A cos (wt –   )π

4

Figure 1.8 The addition of sine and cosine curves with the same angular frequency ω. The
resultant curve also has angular frequency ω.

There is an important difference between the constants A and φ in the gen-
eral solution for SHM given in Equation (1.14) and the angular frequency ω.
The constants are determined by the initial conditions of the motion. However,
the angular frequency of oscillation ω is determined only by the properties of
the oscillator: the oscillator has a natural frequency of oscillation that is inde-
pendent of the way in which we start the motion. This is reflected in the fact
that the SHM equation, Equation (1.6), already contains ω which therefore has
nothing to do with any particular solutions of the equation. This has important
practical applications. It means, for example, that the period of a pendulum clock
is independent of the amplitude of the pendulum so that it keeps time to a high
degree of accuracy.1 It means that the pitch of a note from a piano does not
depend on how hard you strike the keys. For the example of the mass on a
spring, ω = √

k/m. This expression tells us that the angular frequency becomes
lower as the mass increases and becomes higher as the spring constant increases.

Worked example

In the example of a mass on a horizontal spring (cf. Figure 1.1) m has a value
of 0.80 kg and the spring constant k is 180 N m−1. At time t = 0 the mass
is observed to be 0.04 m further from the wall than the equilibrium position
and is moving away from the wall with a velocity of 0.50 m s−1. Obtain an

1 This assumes that the pendulum is operating as an ideal harmonic oscillator which is a good approx-
imation for oscillations of small amplitude.
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expression for the displacement of the mass in the form x = A (cos ωt + φ),
obtaining numerical values for A, ω and φ.

Solution
The angular frequency ω depends only on the oscillator parameters k and m,
and not on the initial conditions. Substituting their values gives

ω =
√

k/m = 15.0 rad s−1

To find the amplitude A: From x = A cos(ωt + φ) we obtain

v = −Aω sin(ωt + φ).

Substituting the initial values (i.e. at time t = 0), of x and v into these equations
gives

0.04 = A cos φ, 0.50 = −15A sin φ.

From cos2 φ + sin2 φ = 1, we obtain A = 0.052 m.
To find the phase angle φ: Substituting the value for A leads to two equations
for φ:

cos φ = 0.04/0.052, giving φ = 39.8◦ or 320◦,

sin φ = −0.50/(15 × 0.052), giving φ = −39.8◦ or 320◦.

Since φ must satisfy both equations, it must have the value φ = 320◦.
The angular frequency ω is given in rad s−1. To convert φ to radians:

φ = (π/180) × 320 rad = 5.59 rad. Hence, x = 0.052 cos(15t + 5.59) m.

1.2.5 The energy of a simple harmonic oscillator

Consideration of the energy of a system is a powerful tool in solving physical
problems. For one thing, scalar rather than vector quantities are involved which
usually simplifies the analysis. For the example of a mass on a spring, (Figure 1.1),
the mass has kinetic energy K and potential energy U . The kinetic energy is due
to the motion and is given by K = 1

2mv2. The potential energy U is the energy
stored in the spring and is equal to the work done in extending or compressing it,
i.e. ‘force times distance’. The work done on the spring, extending it from x ′ to
x ′ + dx ′, is kx ′dx ′. Hence the work done extending it from its unstretched length
by an amount x, i.e. its potential energy when extended by this amount, is

U =
∫ x

0
kx ′dx ′ = 1

2
kx2. (1.18)

Similarly, when the spring is compressed by an amount x the stored energy is again
equal to 1

2kx2.
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Conservation of energy for the harmonic oscillator follows from Newton’s second
law, Equation (1.5). In terms of the velocity v, this becomes

m
dv

dt
= −kx.

Multiplying this equation by dx = vdt gives

mvdv = −kxdx

and since d(x2) = 2xdx and d(v2) = 2vdv, we obtain

d

(
1

2
mv2

)
= −d

(
1

2
kx2

)
.

Integrating this equation gives

1

2
mv2 + 1

2
kx2 = constant,

where the right-hand term is a constant of integration. The two terms on the
left-hand side of this equation are just the kinetic energy K and the potential
energy U of the oscillator. It follows that the constant on the right-hand side is the
total energy E of the oscillator, i.e. we have derived conservation of energy for
this case:

E = K + U = 1

2
mv2 + 1

2
kx2 (1.19)

Equation (1.19) enables us to calculate the energy E of the harmonic oscillator for
any solution of the oscillator. If we take the general solution x = A cos(ωt + φ),
we obtain the velocity

v = dx

dt
= −ωA sin(ωt + φ) (1.20)

and the potential and kinetic energies

U = 1

2
kx2 = 1

2
kA2 cos2(ωt + φ) (1.21)

K = 1

2
mv2 = 1

2
mω2A2 sin2(ωt + φ) = 1

2
kA2 sin2(ωt + φ) (1.22)

where we substituted ω2 = k/m. Hence the total energy E is given by

E = K + U = 1

2
kA2[sin2(ωt + φ) + cos2(ωt + φ)]

= 1

2
kA2. (1.23)
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Equation (1.23) shows that the energy of a harmonic oscillator is proportional
to the square of the amplitude of the oscillation: the more we initially extend
the spring the more potential energy we store in it. The first line of Equation
(1.23) also shows that the energy of the system flows between kinetic and
potential energies although the total energy remains constant. This is illustrated
in Figure 1.9, which shows the variation of the potential and kinetic energies
with time. We have taken φ = 0 in this figure. We can also plot the kinetic
and potential energies as functions of the displacement x. The potential energy
U = 1

2kx2 is a parabola in x as shown in Figure 1.10. We do not need to work
out the equivalent expression for the variation in kinetic energy since this must be
equal to (E − 1

2kx2) and is also shown in the figure.

t

E
ne

rg
y

0

E = K + U = constant

K =    mv21
2

U =   kx21
2

Figure 1.9 The variations of kinetic energy K and potential energy U with time t for a
simple harmonic oscillator. The total energy of the oscillator E is the sum of the kinetic
and potential energies and remains constant with time.
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U =    kx2

E = constant

(E –     kx2)

1
2

1
2

−A +A

Figure 1.10 The variation of kinetic energy K and potential energy U with displacement
x for a simple harmonic oscillator.

1.2.6 The physics of small vibrations

A mass on a spring is an example of a system in stable equilibrium. When the
mass moves away from its equilibrium position the restoring force pulls or pushes
it back. We found that the potential energy of a mass on a spring is proportional
to x2 so that the potential energy curve has the shape of a parabola given by
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U(x) = 1
2kx2 (cf. Figure 1.10). This curve has a minimum when x = 0, which

corresponds to the unstretched length of the spring. The movement of the mass is
constrained by the spring and the mass is said to be confined in a potential well.
The parabolic shape of this potential well gives rise to SHM. Any system that is in
stable equilibrium will oscillate if it is displaced from its equilibrium state. We may
think of a marble in a round-bottomed bowl. When the marble is pushed to one
side it rolls back and forth in the bowl. The universal importance of the harmonic
oscillator is that nearly all the potential wells we encounter in physical situations
have a shape that is parabolic when we are sufficiently close to the equilibrium
position. Thus, most oscillating systems will oscillate with SHM when the amplitude
of oscillation is small as we shall prove in a moment. This situation is illustrated in
Figure 1.11, which shows as a solid line the potential energy of a simple pendulum
as a function of the angular displacement θ . (We will discuss the example of the
simple pendulum in detail in Section 1.3.) Superimposed on it as a dotted line is
a parabolic-shaped potential well, i.e. proportional to θ2. Close to the equilibrium
position (θ = 0), the two curves lie on top of each other. So long as the amplitude
of oscillation falls within the range where the two curves coincide the pendulum
will execute SHM.

U (q) ∝ q2

potential energy curve 
of a simple pendulum

U

q

Figure 1.11 The solid curve represents the potential energy U of a simple pendulum as a
function of its angular displacement θ . The dotted line represents the potential energy U(θ)

of a simple harmonic oscillator for which the potential energy is proportional to θ2. For
small angular amplitudes, where the two curves overlap, a simple pendulum behaves as a
simple harmonic oscillator.

We can see the above result mathematically using Taylor’s theorem which says
that any function f (x) which is continuous and possesses derivatives of all orders
at x = a can be expanded in a power series in (x − a) in the neighbourhood of the
point x = a, i.e.

f (x) = f (a) + (x − a)

1!

(
df

dx

)
x=a

+ (x − a)2

2!

(
d2f

dx2

)
x=a

+ · · · (1.24)

where the derivatives df/dx, etc., are evaluated at x = a. (In practice all the poten-
tial wells that we encounter in physical situations can be described by functions
that can be expanded in this way.) We see that Taylor’s theorem gives the value
of a function f (x) in terms of the value of the function at x = a and the values of
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the first and higher derivatives of x evaluated at x = a. If we expand f (x) about
x = 0, we have

f (x) = f (0) + x

(
df

dx

)
x=0

+ x2

2

(
d2f

dx2

)
x=0

+ · · ·

In the case of a general potential well U(x), we expand about the equilibrium
position x = 0 to obtain

U(x) = U(0) + x

(
dU

dx

)
x=0

+ x2

2

(
d2U

dx2

)
x=0

+ · · · (1.25)

The first term U(0) is a constant and has no physical significance in the sense
that we can measure potential energy with respect to any position and indeed we
can choose it to be equal to zero. The first derivative of U with respect to x is
zero because the curve is a minimum at x = 0. The second derivative of U with
respect to x, evaluated at x = 0, will be a constant. Thus if we retain only the first
non-zero term in the expansion, which is a good approximation so long as x is
small, we have

U(x) = x2

2

(
d2U

dx2

)
x=0

(1.26)

This is indeed the form of the potential energy for the mass on a spring with
d2U/dx2 playing the role of the spring constant. Then the force close to the equi-
librium position takes the general form

F = −dU

dx
= −x

(
d2U

dx2

)
x=0

(1.27)

The force is directly proportional to x and acts in the opposite direction which is
our familiar result for the simple harmonic oscillator.

The fact that a vibrating system will behave like a simple harmonic oscillator
when its amplitude of vibration is small means that our physical world is filled with
examples of SHM. To illustrate this diversity Table 1.1 gives examples of a variety
of physical systems that can oscillate and their associated periods of oscillation.
These examples occur in both classical and quantum mechanics. Clearly the more
massive the system, the greater is the period of oscillation. For the case of a
vibrating tuning fork, we can tell that the ends of the fork are oscillating at a single
frequency because we hear a pure note that we can use to tune musical instruments.
A plucked guitar string will also oscillate and indeed musical instruments provide a
wealth of examples of SHM. These oscillations, however, will in general be more
complicated than that of the tuning fork but even here these complex oscillations
are a superposition of SHMs as we shall see in Chapter 6. The balance wheel of a
mechanical clock, the sloshing of water in a lake and the swaying of a sky scraper
in the wind provide further examples of classical oscillators.
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TABLE 1.1 Examples of systems that can oscillate
and the associated periods of oscillation.

System Period (s)

Sloshing of water in a lake ∼102 − 104

Large bridges and buildings ∼1 − 10
A clock pendulum or balance wheel ∼1
String instruments ∼10−3 − 10−2

Piezoelectric crystals ∼10−6

Molecular vibrations ∼10−15

A good example of SHM in the microscopic world is provided by the vibrations
of the atoms in a crystal. The forces between the atoms result in the regular lattice
structure of the crystal. Furthermore, when an atom is slightly displaced from its
equilibrium position it is subject to a net restoring force. The shape of the resultant
potential well approximates to a parabola for small amplitudes of vibration. Thus
when the atoms vibrate they do so with SHM. Einstein used a simple harmonic
oscillator model of a crystal to explain the observed variation of heat capacity with
temperature (see also Mandl,2 Section 6.2). He assumed that the atoms were har-
monic oscillators that vibrate independently of each other but with the same angular
frequency and he used a quantum mechanical description of these oscillators. As
we have seen, in classical mechanics the energy of an oscillator is proportional
to the square of the amplitude and can take any value, i.e. the energy is continu-
ous. A fundamental result of quantum mechanics is that the energy of a harmonic
oscillator is quantised, i.e. only a discrete set of energies is possible. Einstein’s
quantum model predicted that the specific heat of a crystal, such as diamond, goes
to zero as the temperature of the crystal decreases, unlike the classical result that
the specific heat is independent of temperature. Experiment shows that the specific
heat of diamond does indeed go to zero at low temperatures.

Another example of SHM in quantum physics is provided by the vibrations of
the two nuclei of a hydrogen molecule. The solid curve in Figure 1.12 represents
the potential energy U of the hydrogen molecule as a function of the separation r

between the nuclei, where we have taken the potential energy to be zero at infinite
separation. This potential energy is due to the Coulomb interaction of the electrons
and nuclei and the quantum behaviour of the electrons. The curve exhibits a min-
imum at ro = 0.74 × 10−10 m. At small separation (r → 0) the potential energy
tends to infinity, representing the strong repulsion between the nuclei. The nuclei
perform oscillations about the equilibrium separation. The dotted line in Figure 1.12
shows the parabolic form of the potential energy of a harmonic oscillator, centred
at the equilibrium seperation ro. For small amplitudes of oscillation (i.e. when the
nuclei are not too highly excited) the vibrations occur within the range where the
two curves coincide. Again, according to quantum mechanics, only a discrete set
of vibrational energies is possible. For a simple harmonic oscillator with angular
frequency ω the only allowed values of the energy are 1

2 �ω, 3
2�ω, 5

2�ω, . . . , where

2 Statistical Physics, F. Mandl, Second Edition, 1988, John Wiley & Sons, Ltd.
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r

r

U(r) = k (r – ro)2

equilibrium 
separation, ro

U

Figure 1.12 The solid curve represents the variation of potential energy of a hydrogen
molecule as a function of the separation of the two hydrogen nuclei. The dotted curve
represents the potential energy of a simple harmonic oscillator centred on the equilibrium
separation ro of the two nuclei.

� is Planck’s constant divided by 2π. The observed vibrational line spectra of
molecules correspond to transitions between these energy levels with the emission
of electromagnetic radiation that typically lies in the infrared part of the electro-
magnetic spectrum. These spectra provide valuable information about the properties
of the molecule such as the strength of the molecular bond.

Worked example

The H2 molecule has a vibrational frequency ν of 1.32 × 1014 Hz. Calculate
the strength of the molecular bond, i.e. the ‘spring constant’, assuming that the
molecule can be modelled as a simple harmonic oscillator.

Solution
In previous cases, we considered a mass vibrating at one end of a spring
while the other end of the spring was connected to a rigid wall. Now we
have two nuclei vibrating against each other, which we model as two equal
masses connected by a spring. We can solve this new situation by realising
that there is no translation of the molecule during the vibration, i.e. the centre
of mass of the molecule does not move. Thus as one hydrogen nucleus moves
in one direction by a distance x the other must move in the opposite direction
by the same amount and of course both vibrate at the same frequency. The
total extension is 2x and the tension in the ‘spring’ is equal to 2kx where k

represents the ‘spring constant’ or bond strength. The equation of motion of
each nucleus of mass m is then given by

m
d2x

dt2
= −2kx

or
m

2

d2x

dt2
= −kx. (1.28)
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This equation is analogous to Equation (1.5) where m has been replaced by m/2
which is called the reduced mass of the system. The classical angular frequency
of vibration ω of the molecule is then equal to

√
2k/m. The frequency of

vibration ν = 1/T = ω/2π and m = 1.67 × 10−27 kg. Therefore

k = 4π2ν2 m

2
= 4π2(1.32 × 1014)21.67 × 10−27

2
= 574 N m−1.

1.3 THE PENDULUM

1.3.1 The simple pendulum

Timing the oscillations of a pendulum has been used for centuries to measure
time accurately. The simple pendulum is the idealised form that consists of a point
mass m suspended from a massless rigid rod of length l, as illustrated in Figure 1.13.
For an angular displacement θ , the displacement of the mass along the arc of the
circle of length l is lθ . Hence the angular velocity along the arc is ldθ/dt and the
angular acceleration is ld2θ/dt2. At a displacement θ there is a tangential force on
the mass acting along the arc that is equal to −mg sin θ , where as usual the minus
sign indicates that it is a restoring force. Hence by Newton’s second law we obtain

d2θ

dt2
= −g

l
sin θ. (1.29)

m

l

mg

mg sin q

θ

Figure 1.13 The simple pendulum of mass m and length l.

This equation does not have the same form as the equation of SHM, Equation (1.6),
as we have sin θ on the right-hand side instead of θ . However we can expand sin θ
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in a power series in θ :

sin θ = θ − θ3

3!
+ θ5

5!
+ · · · . (1.30)

y

0 0.4 0.8 1.2 1.6 2.0
q (rad)

y = q y = sin q

Figure 1.14 A comparison of the functions y = θ and y = sin θ plotted against θ .

For small angular deflections the second and higher terms are much smaller than
the first term. For example, if θ is equal to 0.1 rad (5.7◦), which is typical for
a pendulum clock, then the second term is only 0.17% of the first term and the
higher terms are much smaller still. We can see this directly by plotting the functions
y = sin θ and y = θ on the same set of axes, as shown in Figure 1.14. The two
curves are indistinguishable for values of θ below about 1

4 rad (∼15◦). Thus for
small values of θ , we need retain only the first term in the expansion (1.30) and
replace sin θ with θ (in radians) to give

d2θ

dt2
= −g

l
θ. (1.31)

This is the equation of SHM with ω = √
g/l and T = 2π

√
l/g, and we can imme-

diately write down an expression for the angular displacement θ of the pendulum:

θ = θ0 cos(ωt + φ) (1.32)

where θ0 is the angular amplitude of oscillation. The period is independent of
amplitude for oscillations of small amplitude and this is why the pendulum is
so useful as an accurate time keeper. The period does, however, depend on the
acceleration due to gravity and so measuring the period of a pendulum provides a
way of determining the value of g. (In practice real pendulums do not have their
mass concentrated at a point as in the simple pendulum as will be described in
Section 1.3.3. So for an accurate determination of g a more sophisticated pendulum
has been developed called the compound pendulum .) We finally note that for l =
1.00 m and for a value of g = 9.87 m s−2, the period of a simple pendulum is
equal to 2π

√
1.00/9.87 = 2.00 s and indeed the second was originally defined as

equal to one half the period of a 1 m simple pendulum.
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1.3.2 The energy of a simple pendulum

We can also analyse the motion of the simple pendulum by considering its
kinetic and potential energies. The geometry of the simple pendulum is shown in
Figure 1.15. (The horizontal distance x = l sin θ is not exactly the same as the
distance along the arc, which is equal to lθ . However, since sin θ 	 θ for small θ ,
the difference is negligible.) From the geometry we have

l2 = (l − y)2 + x2 (1.33)

which gives

2ly = y2 + x2. (1.34)

l
q

x

y

l–y

Figure 1.15 The geometry of the simple pendulum.

For small displacements of the pendulum, i.e. x 
 l, it follows that y 
 x, so that
the term y2 can be neglected and we can write,

y = x2

2l
. (1.35)

As the mass is displaced from its equilibrium position its vertical height increases
and it gains potential energy. This gain in potential energy is equal to mgy =
mgx2/2l. The total energy of the system E is given by the sum of the kinetic and
potential energies:

E = K + U = 1

2
mv2 + 1

2

mgx2

l
. (1.36)

At the turning point of the motion, when x equals A, the velocity v is zero giving

E = 1

2

mgA2

l
. (1.37)

From conservation of energy, it follows that

mgA2

l
= mv2 + mgx2

l
(1.38)
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is true for all times. We can use Equation (1.38) to obtain expressions for velocity
v and displacement x:

v = dx

dt
=

√
g(A2 − x2)

l
. (1.39)

This expression describes how the velocity changes with the displacement x in
SHM in contrast to Equation (1.12) which describes how the velocity changes with
time t . Since v = dx/dt we have

∫
dx√

A2 − x2
=

√
g

l

∫
dt . (1.40)

The integral on the left-hand side can be evaluated using the substitution x =
A sin θ , giving

sin−1
( x

A

)
=

√
g

l
t + φ, (1.41)

where φ is the constant of integration, and

x = A sin

(√
g

l
t + φ

)
. (1.42)

Equation (1.42) describes SHM with ω = √
g/l and T = 2π

√
l/g as before.

At this point we note the similarity in the expressions for the total energy of the
two examples of SHM that we have considered.

For the mass on a spring: E = 1

2
mv2 + 1

2
kx2. (1.43a)

For the simple pendulum: E = 1

2
mv2 + 1

2

mg

l
x2. (1.43b)

Both expressions have the form: E = 1

2
αv2 + 1

2
βx2, (1.43c)

where α and β are constants. It is a universal characteristic of simple harmonic
oscillators that their total energy can be written as the sum of two parts, one
involving the (velocity)2 and the other the (displacement)2. Just as md2x/dt2 =
−kx, Equation (1.5), is the signature of SHM in terms of forces, Equation (1.43) is
the signature of SHM in terms of energies. If we obtain either of these equations in
the analysis of a system then we know we have SHM. We stress that the equations
are the same for all simple harmonic oscillators: only the labels for the physical
quantities change. We do not need to repeat the analysis again: we can simply
take over the results already obtained. The constant α corresponds to the inertia of
the system through which it can store kinetic energy. The constant β corresponds
to the restoring force per unit displacement through which the system can store
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potential energy. When we differentiate the conservation of energy equation for
SHM, Equation (1.43c), with respect to time we obtain

dE

dt
= αv

dv

dt
+ βx

dx

dt
= 0

giving
d2x

dt2
= −β

α
x.

Comparing this with Equation (1.6), it follows that the angular frequency of oscil-
lation ω is equal to

√
β/α.

Worked example

A marble of radius r rolls back and forth without slipping in a spherical dish of
radius R. Use energy considerations to show that the motion is simple harmonic
for small displacements of the marble from its equilibrium position and deduce
an expression for the period of the oscillations. The moment of inertia I of a
solid sphere of mass m about an axis through its centre is equal to 2

5mr2.

Solution
The equilibrium and displaced positions of the marble are shown in Figure 1.16,
where the arrows indicate the rotation of the marble when it rotates through
an angle φ. If the marble were rotating through an angle φ on a flat surface
it would roll a distance rφ. However on a spherical surface as in Figure 1.16,
it rolls a distance l along the arc of radius R given by l = r(φ + θ). Since
l = Rθ ,

φ = (R − r)

r
θ and

dφ

dt
= (R − r)

r

(
dθ

dt

)
.

r

R

l

f q

q

Figure 1.16 A marble of radius r that rolls back and forth without slipping in a
spherical dish of radius R.

The total kinetic energy of the marble, as it moves along the surface of the
dish, is equal to the kinetic energy of the translational motion of its centre of
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mass plus the kinetic energy of its rotational motion about the centre of mass.
Hence

K = 1

2
mv2 + 1

2
I

(
dφ

dt

)2

.

The translational kinetic energy is given by

1

2
mv2 = 1

2
m(R − r)2

(
dθ

dt

)2

.

Therefore,

K = 1

2
m

(
7

5

)
(R − r)2

(
dθ

dt

)2

where we have substituted for I . The potential energy is

U = mg(R − r)(1 − cos θ) = 1

2
mg(R − r)θ2

for small θ . Thus

E = 1

2
m

(
7

5

)
(R − r)2

(
dθ

dt

)2

+ 1

2
mg(R − r)θ2.

This has the general form of the energy equation (1.43c) of a harmonic oscil-
lator

E = 1

2
α

(
dθ

dt

)2

+ 1

2
βθ2

where now θ represents the displacement coordinate. Hence

ω =
√

β

α
=

√
5g

7(R − r)
and T = 2π

√
7(R − r)

5g
.

This example would be much more difficult to solve from force considerations.

1.3.3 The physical pendulum

In a physical pendulum the mass is not concentrated at a point as in the simple
pendulum, but is distributed over the whole body. It is thus more representative
of real pendulums. An example of a physical pendulum is shown in Figure 1.17.
It consists of a uniform rod of length l that pivots about a horizontal axis at its
upper end. This is a rotating system where the pendulum rotates about its point
of suspension. For a rotating system, Newton’s second law for linear systems,
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mg

mg sinq

l

rod pivots about 
one end

centre 
of 

mass

q

Figure 1.17 A rod that pivots about one of its ends, which is an example of a physical
pendulum.

md2x/dt2 = F , becomes

I
d2θ

dt2
= τ (1.44)

where I is the moment of inertia of the body about its axis of rotation and τ is the
applied torque. The moment of inertia of a uniform rod of length l about an end
is equal to 1

3ml2 and its centre of mass is located at its mid point. The resultant
torque τ on the rod when it is displaced through an angle θ is given by the product
of the torque arm 1

2 l and the component of the force normal to the torque arm
(mg sin θ ), i.e.

τ =
(

1

2
l

)
× (−mg sin θ).

Hence we obtain

1

3
ml2 d2θ

dt2
= −1

2
mgl sin θ (1.45)

giving

d2θ

dt2
= −3g

2l
sin θ. (1.46)

Again we can use the small-angle approximation to obtain

d2θ

dt2
= −3g

2l
θ. (1.47)

This is SHM with ω = √
3g/2l and T = 2π

√
2l/3g.
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In a simple model we can describe the walking pace of a person in terms of a
physical pendulum. We model the human leg as a solid rod that pivots from the
hip. Furthermore, when we walk we do so at a comfortable pace that coincides
with the natural period of oscillation of the leg. If we assume a value of 0.8 m for
l, the length of the leg, then its natural period is ∼1.5 s. One complete period of
the swinging leg corresponds to two strides. Try this yourself. If the length of a
stride is, say, 1 m then we would walk at a speed of approximately 2/1.5 m s−1

which corresponds to 4.8 km h−1 or about 3 mph which is in good agreement with
reality.

1.3.4 Numerical solution of simple harmonic motion3

When solving the equation of motion for an oscillating pendulum we made use of
the small-angle approximation, sin θ 	 θ when θ is small. This made the equation
of motion much easier to solve. However an alternative way, without resorting to
the small-angle approximation, is to solve the equation numerically. The essential
idea is that if we know the position and velocity of the mass at time t and we know
the force acting on it then we can use this knowledge to obtain good estimates of
these parameters at time (t + δt). We then repeat this process, step by step, over
the full period of the oscillation to trace out the displacement of the mass with
time. We can make these calculations as accurate as we like by making the time
interval δt sufficiently small. To demonstrate this approach we apply it to the simple
pendulum. Figure 1.18 shows a simple pendulum and the angular position of the
mass at three instants of time each separated by δt , i.e. at t , (t + δt) and (t + 2δt).
Using the notation θ̇ (t) and θ̈ (t) for dθ(t)/dt and d2θ(t)/dt2, respectively, we can
write the equation of motion of the mass, Equation (1.29),

θ̈ (t) = −g

l
sin θ(t). (1.48)

(t+dt)

q(t)
q(t+dt)
q(t+2dt)

(t)

(t+2dt)

Figure 1.18 A simple pendulum showing the position of the mass at three instants of time
separated by time interval δt .

3 This section may be omitted as it is not required later in the book.
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If the angular position of the mass is θ(t) at time t , then its position at time (t + δt)
will be different by an amount equal to the angular velocity of the mass times the
time interval δt (cf. the familiar expression x = vt for linear motion). We might
be tempted to use θ̇ (t) for this angular velocity. However, as we know, the angular
velocity varies during the time δt . A better estimate for the angular velocity is its
average value between the times t and (t + δt), i.e. θ̇ (t + δt/2). Thus to a good
approximation we have

θ(t + δt) = θ(t) + δt × θ̇ (t + δt/2). (1.49)

In a similar way we can relate the angular velocities of the mass at times separated
by time δt , i.e. the new velocity will be different from the old value by an amount
equal to δt × θ̈ (t), where θ̈ (t) is the angular acceleration (cf. the familiar expression
v = u + at for linear motion). The acceleration also varies with time and so again
we will use its average value during the time interval δt . For the evaluation of
θ̇ (t + δt/2) this translates to

θ̇ (t + δt/2) = θ̇ (t − δt/2) + δt × θ̈ (t) (1.50)

where θ̈ (t) is the average value of the angular acceleration between the times
(t − δt/2) and (t + δt/2) which we know from Equation (1.48). For the first step
of this calculation we need the value of the angular velocity at time t = δt/2. For
this particular case we use the expression

θ̇ (δt/2) = (δt/2) × θ̈ (0). (1.51)

Armed with these expressions for angular position, velocity and acceleration we
can trace the angular displacement of the mass step by step.

We proceed by building up a table of consecutive values of θ(t), θ̇(t) and θ̈ (t).
As an example we chose the length of the simple pendulum to give T = 2.0 s and
ω = π. We also chose a time interval δt of 0.02 s (equal to one hundredth of the
period) and an angular amplitude θ0 of 0.10 rad (5.7◦). The values obtained in the
first 10 steps of the calculation are shown in Table 1.2 and were obtained using
a hand calculator. For comparison the final column of Table 1.2 shows the values
obtained from the analytic solution θ(t) = θ0 cos ωt . We see that the numerically
calculated values of the displacement are in agreement with the analytic values up to
the third significant figure. These two sets of values for a complete period of oscil-
lation are plotted in Figure 1.19 and show the familiar variation of displacement
with time. The solid curve corresponds to the values of displacement obtained from
the analytic solution θ(t) = θ0 cos ωt , while the dots (•) correspond to the numeri-
cally computed values. The agreement is so good that the dots lie exactly on top of
the analytic curve. These results demonstrate that the small-angle approximation
is valid in this case and that the numerical method gives accurate results.

This numerical method allows us to explore what happens for large-amplitude
oscillations where the small angle approximation is no longer valid. Figure 1.20
shows the results for a very large angular amplitude of 1.0 rad (57◦) which were
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TABLE 1.2 Computed values of angular displacement, velocity and acceleration of a
simple pendulum. The last column on the right shows the values obtained from the

analytic solution.

Time (s) Angular displacement, Angular acceleration, Angular velocity, θ(t) = 0.1 cos πt

θ(t) (rad) θ̈ (t) (rad s−2) θ̇ (t) (rad s−1) (rad)

0.00 0.1000 −0.985 −0.0099 0.1000
0.02 0.0998 −0.983 −0.0295 0.0998
0.04 0.0992 −0.978 −0.0491 0.0992
0.06 0.0982 −0.968 −0.0685 0.0982
0.08 0.0968 −0.954 −0.0876 0.0969
0.10 0.0950 −0.937 −0.106 0.0951
0.12 0.0929 −0.915 −0.124 0.0930
0.14 0.0904 −0.891 −0.142 0.0905
0.16 0.0876 −0.863 −0.159 0.0876

time (s)

0 0.5 1.0 1.5 2.0

0

+0.1

−0.1

q (rad)

Figure 1.19 The angular displacement θ , plotted against time, for a simple pendulum with
a small amplitude of oscillation; θ0 = 0.1 rad. The solid curve corresponds to the values
of displacement obtained from the analytic solution θ(t) = θ0 cos ωt , while the dots (•)
correspond to the numerically computed values. The agreement is so good that the computed
values lie on top of the analytical curve.

q (rad)

0 0.5 1.0 1.5

time (s)

2.0

0

+0.1

−0.1

2.5

Figure 1.20 The angular displacement θ , plotted against time, of a simple pendulum for
a large amplitude of oscillation; θ0 = 1.0 rad. The solid curve corresponds to the values of
displacement obtained from the solution θ(t) = θ0 cos ωt , while the dotted curve is obtained
from the numerically computed results. For large-amplitude oscillations the period of the
pendulum is no longer independent of amplitude and increases with amplitude.
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obtained using a spreadsheet program. The solid curve corresponds to the values
of displacement obtained from the solution θ(t) = θ0 cos ωt while the dotted curve
is the one obtained from the numerically computed values. There is a significant
difference between the two curves: the actual angular displacement of the mass,
which is given by the numerical values, no longer closely matches the analytic
solution. In particular the time period for the actual oscillations has increased to a
value of 2.13 s: an increase of 6.5%. We see that for large-amplitude oscillations the
period of the pendulum is no longer independent of amplitude and that it increases
with amplitude.

1.4 OSCILLATIONS IN ELECTRICAL CIRCUITS: SIMILARITIES
IN PHYSICS

In this section we consider oscillations in an electrical circuit. What we find is
that these oscillations are described by a differential equation that is identical in
form to Equation (1.6) and so has an identical solution: only the physical quantities
associated with the differential equation are different. This illustrates that when we
understand one physical situation we can understand many others. It also means that
we can simulate one system by another and in this way build analogue computers,
i.e. we can build an electrical circuit consisting of resistors, capacitors and inductors
that will exactly simulate the operation of a mechanical system.

1.4.1 The LC circuit

The simplest example of an oscillating electrical circuit consists of an inductor L

and capacitor C connected together in series with a switch as shown in Figure 1.21.

L

I

C
+q

–q

Figure 1.21 An electrical oscillator consisting of an inductor L and a capacitor C connected
in series.

As usual we start with an idealised situation where we assume that the resistance
in the circuit is negligible. This is analogous to the assumption for mechanical
systems that there are no frictional forces present. Initially, the switch is open and
the capacitor is charged to voltage VC . The charge q on the capacitor is given
by q = VCC where C is the capacitance. When the switch is closed the charge
begins to flow through the inductor and a current I = dq/dt flows in the circuit.
This is a time-varying current and produces a voltage across the inductor given
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by VL = LdI/dt . We can analyse the LC circuit using Kirchhoff’s law , which
states that ‘the sum of the voltages around the circuit is zero’, i.e. VC + VL = 0.
Therefore

q

C
+ L

dI

dt
= 0 (1.52)

giving

q

C
+ L

d2q

dt2
= 0 (1.53)

and

d2q

dt2
= − 1

LC
q. (1.54)

This equation describes how the charge on a plate of the capacitor varies with time.
It is of the same form as Equation (1.6) and represents SHM. The frequency of the
oscillation is given directly by, ω = √

1/LC. Since we have the initial condition
that the charge on the capacitor has its maximum value at t = 0, then the solution
to Equation (1.54) is q = q0 cos ωt , where q0 is the initial charge on the capacitor.
The variation of charge q with respect to t is shown in Figure 1.22 and is analogous
to the way the displacement of a mass on a spring varies with time.

t0

q

Figure 1.22 The variation of charge q with time on the capacitor in a series LC circuit.
The charge oscillates in time in an analogous way to the displacement of a mass oscillating
at the end of a spring.

We can also consider the energy of this electrical oscillator. The energy stored
in a capacitor charged to voltage VC is equal to 1

2CV 2
C . This is electrostatic energy.

The energy stored in an inductor is equal to 1
2LI 2 and this is magnetic energy.

Thus the total energy in the circuit is given by

E = 1

2
LI 2 + 1

2
CV 2

C (1.55)

or

E = 1

2
LI 2 + 1

2

q2

C
. (1.56)
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For these electrical oscillations the charge flows between the plates of the capac-
itor and through the inductor, so that there is a continuous exchange between
electrostatic and magnetic energy.

1.4.2 Similarities in physics

We note the similarities between the equations for the mechanical and electrical
cases

m
d2x

dt2
= −kx, L

d2q

dt2
= − 1

C
q (1.57a)

and

E = 1

2
m

(
dx

dt

)2

+ 1

2
kx2, E = 1

2
L

(
dq

dt

)2

+ 1

2

q2

C
, (1.57b)

where we have written dx/dt for the velocity v and dq/dt for the current I , in
order to bring out more sharply the similarity of the two cases. In both cases we
have the identical forms

α
d2Z

dt2
= −βZ, E = 1

2
α

(
dZ

dt

)2

+ 1

2
βZ2, (1.58)

where α and β are constants and Z = Z(t) is the oscillating quantity (see also
Equations 1.43). In the mechanical case Z stands for the displacement x, and in
the electrical case for the charge q. Thus all we have learned about mechanical
oscillators can be carried over to electrical oscillators. Moreover we can see a direct
correspondence between the two sets of physical quantities involved:

• q takes the place of x;
• L takes the place of m;
• 1/C takes the place of k.

For example, the inductance L is the electrical analogue of mechanical inertia m.
These analogies enable us to build an electrical circuit that exactly mimics the
operation of a mechanical system. This is useful because in the development of a
mechanical system it is much easier to change, for example, the value of a capacitor
in the analogue circuit than to manufacture a new mechanical component.

PROBLEMS 1

1.1 A mass of 0.50 kg hangs from a light spring and executes SHM so that its position x
is given by x = A cos ωt . It is found that the mass completes 20 cycles of oscillation
in 80 s. (a) Determine (i) the period of the oscillations, (ii) the angular frequency of
the oscillations and (iii) the spring constant k. (b) Using a value of A = 2 mm, make
sketches of the variations with time t of the displacement, velocity and acceleration of
the mass.
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1.2 The ends of a tuning fork oscillate at a frequency of 440 Hz with an amplitude of
0.50 mm. Determine (a) the maximum velocity and (b) the maximum acceleration of
the ends.

1.3 A platform oscillates in the vertical direction with SHM. Its amplitude of oscillation
is 0.20 m. What is the maximum frequency (Hz) of oscillation for a mass placed on
the platform to remain in contact with the platform? (Assume g = 9.81 m s−2.)

1.4 A mass executes SHM at the end of a light spring. (a) What fraction of the total
energy of the system is potential and what fraction is kinetic at the instant when the
displacement of the mass is equal to half the amplitude? (b) If the maximum amplitude
of the oscillations is doubled, what will be the change in (i) the total energy of the
system, (ii) the maximum velocity of the mass and (iii) the maximum acceleration of
the mass. Will the period of oscillation change?

1.5 A mass of 0.75 kg is attached to one end of a horizontal spring of spring constant
400 N m−1. The other end of the spring is attached to a rigid wall. The mass is pushed
so that at time t = 0 it is 4.0 cm closer to the wall than the equilibrium position and
is travelling towards the wall with a velocity of 0.50 m s−1. (a) Determine the total
energy of the oscillating system. (b) Obtain an expression for the displacement of the
mass in the form x = A cos(ωt + φ) m, giving numerical values for A, ω and φ.

1.6
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The figure shows three systems of a mass m suspended by light springs that all have the
same spring constant k. Show that the frequencies of oscillation for the three systems
are in the ratio ωa : ωb : ωc = √

2 : 1 :
√

1/2.

1.7 A test tube is weighted by some lead shot and floats upright in a liquid of density
ρ. When slightly displaced from its equilibrium position and released, the test tube
oscillates with SHM. (a) Show that the angular frequency of the oscillations is equal
to

√
Aρg/m where g is the acceleration due to gravity, A is the cross-sectional area

of the test tube and m is its mass. (b) Show that the potential energy of the system
is equal to 1

2 Aρgx2 where x is the displacement from equilibrium. Hence give an
expression for the total energy of the oscillating system in terms of the instantaneous
displacement and velocity of the test tube.

1.8 We might assume that the period of a simple pendulum depends on the mass m, the
length l of the string and g the acceleration due to gravity, i.e. T ∝ mαlβgγ , where α,
β and γ are constants. Consider the dimensions of the quantities involved to deduce
the values of α, β and γ and hence show T ∝ √

l/g.

1.9 A simple pendulum has a length of 0.75 m. The pendulum mass is displaced hor-
izontally from its equilibrium position by a distance of 5.0 mm and then released.
Calculate (a) the maximum speed of the mass and (b) the time it takes to reach this
speed. (Assume g = 9.81 m s−2.)
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1.10

k

q

The figure shows a thin uniform rod of mass M and length 2L that is pivoted without
friction about an axis through its mid point. A horizontal light spring of spring constant
k is attached to the lower end of the rod. The spring is at its equilibrium length when the
angle θ with respect to the vertical is zero. Show that for oscillations of small amplitude,
the rod will undergo SHM with a period of 2π

√
M/3k. The moment of inertia of the

rod about its mid point is ML2/3. (Assume the small angle approximations: sin θ 	 θ
and cos θ 	 1.)

1.11 The potential energy U(x) between two atoms in a diatomic molecule can be expressed
approximately by

U(x) = − a

x6
+ b

x12

where x is the separation of the atoms and a and b are constants. (a) Obtain an
expression for the force between the two atoms and hence show that the equilibrium
separation xo of the atoms is equal to (2b/a)1/6. (b) Show that the system will oscillate
with SHM when slightly displaced from equilibrium with a frequency equal to

√
k/m,

where m is the reduced mass and k = 36a(a/2b)4/3.

1.12 A mass M oscillates at the end of a spring that has spring constant k and finite mass
m. (a) Show that the total energy E of the system for oscillations of small amplitude
is given by

E = 1

2
(M + m/3)v2 + 1

2
kx2

where v and x are the velocity and displacement of the mass M , respectively. (Hint:
To find the kinetic energy of the spring, consider it to be divided into infinitesimal
elements of length dl and find the total kinetic energy of these elements, assuming
that the mass of the spring is evenly distributed along its length. The total energy E
of the system is the sum of the kinetic energies of the spring and the mass M and
the potential energy of the extended spring.) (b) Hence show that the frequency of the
oscillations is equal to

√
k/(M + m/3).

1.13 A particle oscillates with amplitude A in a one-dimensional potential U(x) that is
symmetric about x = 0, i.e. U(x) = U(−x). (a) Show, from energy considerations,
that the velocity v of the particle at displacement x from the equilibrium position
(x = 0), is given by

v =
√

2[U(A) − U(x)]/m.

(b) Hence show that the period of oscillation T is given by

T = 4
√

m

2U(A)

∫ A

0

dx√
[1 − U(x)/U(A)]

.
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(c) If the potential U(x) is given by

U(x) = αxn

where α is a constant and n = 2, 4, 6, . . . , obtain the dependence of the period T on
the amplitude A for different values of n = 2, 4, . . . . (Hint: Introduce the new variable
of integration ξ = x/A in the above expression for the period T .)


