
1
Setting the Scene

T
his chapter introduces requirements engineering (RE) as a specific discipline
in relation to others. It defines the scope of RE and the basic concepts, activities,
actors and artefacts involved in the RE process. In particular, it explains what

requirements there are with respect to other key RE notions such as domain properties
and environment assumptions. Functional and non-functional requirements will be
seen to play specific roles in the RE process. The quality criteria according to which
requirements documents should be elaborated and evaluated will be detailed. We will
also see why a careful elaboration of requirements and assumptions in the early stages
of the software lifecycle is so important, and what obstacles may impinge on good RE
practice.

The chapter also introduces three case studies from which running examples will be taken
throughout the book. These case studies will additionally provide a basis for many exercises
at the end of chapters. They are taken from quite different domains to demonstrate the wide
applicability of the concepts and techniques. Although representative of real-world systems,
the case study descriptions have been simplified to make our examples easily understandable
without significant domain expertise. The first case study is a typical instance of an information
system. The second captures the typical flavour of a system partly controlled by software. The
third raises issues that are typical of distributed collaborative applications and product families.

1.1 What is requirements engineering?
To make sure that a software solution correctly solves a particular problem, we must first
correctly understand and define what problem needs to be solved. This seems common sense
at first sight. However, as we shall see, figuring out what the right problem is can be surprisingly
difficult. We need to discover, understand, formulate, analyse and agree on what problem
should be solved, why such a problem needs to be solved and who should be involved in
the responsibility of solving that problem. Broadly, this is what requirements engineering is all
about.

CO
PYRIG

HTED
 M

ATERIA
L

4 Fundamentals of Requirements Engineering

Item delivered only if paid

World phenomena

Payment notification sent to seller Payment record created in database

The machineThe world

Shared
phenomena Machine phenomena

Figure 1.1 The problem world and the machine solution

1.1.1 The problem world and the machine solution
The problem to be solved arises within some broader context. It is in general rooted in a
complex organizational, technical or physical world. The aim of a software project is to improve
this world by building some machine expected to solve the problem. The machine consists
of software to be developed and installed on some computer platform, possibly together with
some input/output devices.

The problem world and the machine solution have their own phenomena while sharing
others (Jackson, 1995b). The shared phenomena define the interface through which the
machine interacts with the world. The machine monitors some of the shared phenomena while
controlling others in order to implement the requirements.

Figure 1.1 illustrates this for a simple e-commerce world. In this example, the world owns
the phenomena of items being delivered to buyers only once they have been paid; the
machine owns the phenomena of payment records being created in the machine’s database.
The phenomena of payment notifications being sent to sellers are shared, as the machine can
control them whereas the world can monitor them.

Requirements engineering is concerned with the machine’s effect on the surrounding world
and the assumptions we make about that world. As a consequence, it is solely concerned with
world phenomena, including shared ones. Requirements and assumptions have their meaning
in the problem world. In contrast, software design is concerned with machine phenomena.

The system-as-is and the system-to-be
In the system engineering tradition, the word system will be used throughout the book to
denote a set of components interacting with each other to satisfy some global objectives. While
being intrinsically composite, a system can be seen as a whole through the global properties
emerging from component interactions. Such properties include the objectives underpinning
component interactions and laws regulating such interactions.

• Example 1. Consider an e-auction system on the Internet. This system is made up of
components such as sellers, buyers, shipping companies, an independent e-payment
subsystem, e-mail systems, and the software to be developed or extended for inserting
and advertising items, handling bids, billing highest bidders, recording evaluations of
sellers and buyers, securing transactions and so forth. Global properties emerging
from component interactions include the satisfaction of buyers getting wider access to

Setting the Scene 5

interesting items, the satisfaction of sellers getting wider access to potential buyers,
auction rules regulating the system, trustworthiness relationships and so on.

• Example 2. A flight management system includes components such as pilots, air traffic
controllers, on-board and on-ground instruments, the autopilot software to be developed,
an independent collision-avoidance subsystem and so forth. Global properties emerging
from component interactions include the objectives of rapid and safe transportation
of passengers, regulating laws about wind directions, aircraft speed, minimal distance
between aircrafts and so forth.

In a machine-building project, our business as requirements engineers is to investigate the
problem world. This leads us to consider two versions of the same system:

• The system-as-is, the system as it exists before the machine is built into it.

• The system-to-be, the system as it should be when the machine will be built and operated
in it.

In the previous example of an auction world, the system-as-is is a standard auction system
with no support for electronic bidding. The system-to-be is intended to provide such support
in order to make items biddable from anywhere at any time. In a flight management world, the
system-as-is might include some autopilot software with limited capabilities; the system-to-be
would then include autopilot software with extended capabilities. In the former example the
system-to-be is the outcome of a new software project, whereas in the latter example it results
from a software evolution project.

Note that there is always a system-as-is. Consider a project aimed at developing control
software for a MP4 player, for example. The system-as-is is the conventional system allowing
you to listen to your favourite music on a standard hi-fi subsystem. The system-to-be is intended
to mimic the listening conditions of the system-as-is while providing convenient, anywhere and
any-time access to your music.

The software-to-be and its environment
The machine’s software to be developed or modified is just one component of the system-
to-be. We will refer to it as the software-to-be. Other components will in general pertain to
the machine’s surrounding world. They will form the environment of the software-to-be. Such
components may include:

• People or business units playing specific roles according to organizational policies.

• Physical devices operating under specific rules in conformance with physical laws – for
example sensors, actuators, measurement instruments or communication media.

• Legacy, off-the-shelf or foreign software components with which the software-to-be needs
to interact.

6 Fundamentals of Requirements Engineering

As we are concerned with the problem world, we need to consider both the system-as-is, to
understand its objectives, regulating laws, deficiencies and limitations, and the system-to-be,
to elaborate the requirements on the software-to-be accordingly together with assumptions on
the environment.

The systems-to-be-next
If we want to build an evolvable machine in our problem world, we need to anticipate likely
changes at RE time. During software development or after deployment of the system-to-be,
new problems and limitations may arise. New opportunities may emerge as the world keeps
changing. We may then even need to consider more than two system versions and foresee
what the next system versions are likely to be. Beyond the system-as-is and the system-to-be,
there are systems-to-be-next. Requirements evolution management is an important aspect of the
RE process that will be discussed at length in Chapter 6.

Requirements engineering: A preliminary definition
In this setting, we may apprehend requirements engineering more precisely as a coordinated
set of activities for exploring, evaluating, documenting, consolidating, revising and adapting the
objectives, capabilities, qualities, constraints and assumptions that the system-to-be should meet
based on problems raised by the system-as-is and opportunities provided by new technologies.
We will come back to those various activities in Section 1.1.6 and will have a much closer look
at them in subsequent chapters.

1.1.2 Introducing our running case studies
To make the nature of RE more apparent and more concrete, we will consider a variety
of case studies. The following descriptions are intended to set up the context in which our
running examples will be used throughout the book. They will also provide further insights
into the scope and dimensions of the problem world. We should not consider them as problem
statements, but rather as fragmentary material collected from preliminary investigations of the
problem world (perhaps by use of the elicitation techniques discussed in Chapter 2).

Case study 1: Library Management
The University of Wonderland (UWON) wants to convert its library system
into a new system to ensure more effective access to state-of-the-art books,
periodicals and proceedings while reducing operational costs. The current
system consists of multiple unconnected library subsystems, one for each
UWON department. Each department subsystem is responsible for its own
library according to department-specific procedures for book acquisition,
user registration, loan management, bibliographical search and access to
library resources. Such services are essentially manual in most UWON
libraries. They rely on card indexes maintained by library staff according

Setting the Scene 7

to some keyword-based classification scheme. Such schemes are specific
to each department. A few departments are using rudimentary file-based
software written by their members.

Some of the complaints about the current system as reported by univer-
sity authorities, library staff, department members or students include the
following:

• Unnecessary duplicate acquisition, by several departments, of infrequently
accessed copies of books or proceedings that are relevant to more than
one department.

• Unnecessary subscription, by several departments, to expensive journals
that are relevant to more than one department.

• Acquisition of books or proceedings of marginal interest to the university,
which could be borrowed from other universities with which UWON has
an agreement.

• Subscription to journals of marginal interest to the university, which could
be accessed in other universities with which UWON has an agreement.

• Unavailability of requested books, for a variety of reasons such as depart-
ment budget restrictions, excessive borrowing by the same user, lack of
enforcement of rules limiting loan periods, loss or stealing of book copies
and so on.

• Unavailability of journal issues while they are being bound into yearly
volumes.

• Lack of traceability to previous borrowers when books, proceedings or
journal volumes are found to be damaged.

• Inaccuracy of card indexes, e.g. a book is stated as being available
whereas it is not found at the appropriate place in the shelves.

• Bibliographical search restricted to library opening hours.

• Slow, tedious bibliographical search due to manipulation of card indexes.

• Inaccurate search results, due to poor classification of books, journals or
proceedings within departments.

• Incomplete or ineffective search results, due to relevant books, journals
or proceedings being indexed in other UWON department libraries, or
unavailable at UWON.

The new UWON library system should address such problems through
a software-based solution integrating all department libraries. The new
system should interoperate with library systems from partner universities.

8 Fundamentals of Requirements Engineering

It should provide interactive online facilities for book acquisition, user
registration, loan management, bibliographical search and book reservation.
Access to such facilities should be restricted to specific user categories,
according to authorization rules specific to each facility.

The new system should take advantage of opportunities provided by
new technologies. In particular, it should support subscriptions to e-journals,
provide access to foreign digital libraries (under specific conditions), support
e-mail communication between staff and users, enable bibliographical search
from anywhere at any time, and provide a Web-based interface for book
e-seller comparison, selection, and order submission.

Case study 2: Train Control
Traffic at Wonderland airport (WAX) has increased drastically over the past
few years. The increase in the number of companies and flights calls for the
building of new terminals. The increase in the number of passengers calls for
a new transportation system between all terminals, and between the main
terminal and Wonderland City. The current bus transportation system has
reached its limits in terms of transportation capacity and quality of service.
Buses are slow and often late due to traffic jams; passengers need to stand
in long queues, sometimes for an unacceptably long time, which may cause
them to miss flight connections, and so on.

The government of Wonderland has decided to replace bus transportation
by a train-based system. The envisaged system is aimed at increasing
transportation capacity, speed and quality of service. The decision is also
motivated by recent regulations for reducing greenhouse gas production.

Preliminary investigations suggest that software-controlled movement
of trains will allow for better punctuality, higher frequency and better
information to passengers.

A consortium has been set up to undertake this project. It brings together
government representatives, airport authorities, Wonderland Railways and
the engineering company selected to implement the project. The latter is
subcontracting the software part of it to a software house.

In the new system, all terminals will be interconnected through an
underground circular, one-track railway. The main terminal and city terminal
will be interconnected by a two-track line (one for each direction). The main
terminal also has parking tracks for inactive trains, servicing and so on. Each
track is divided into track segments of a fixed size called blocks. Each
terminal holds one block called a station block. Each block is equipped with

Setting the Scene 9

an entry signal (or ‘virtual gate’) and multiple sensors to detect the presence
of trains, identify trains and their speed and so on.

The envisioned software is expected to control the acceleration of trains,
the opening of train doors, the block signals and the display of information
about the current/next station on information panels inside trains. The
railway company would also like to reduce operational costs. A fully
automated, driverless option is envisaged as an alternative to the standard
option. In this standard option, train drivers have to follow recommendations
issued by the software and respond to regular stimuli issued by the software
to check driver responsiveness. The driverless option is currently being
discussed with the unions.

Various concerns about the new system have already emerged at this
preliminary stage:

• In order to ensure rapid transportation of passengers, trains should run
fast, without unnecessary delays, and at high frequency, during rush hours
at least.

• In order to guarantee safe transportation of passengers, the probability
of accidents must fall below the threshold imposed by safety regulations.
In particular, the distance between two trains following each other must
always be sufficient to prevent the back train from hitting the front train in
case the latter stops suddenly. The speed of a train on a particular block
may never exceed the limit associated with that block. Trains may never
enter a block whose entry signal is set to ‘stop’. Train doors must always
be kept closed while a train is moving.

• In order to ensure comfortable transportation, trains should acceler-
ate/decelerate smoothly. Passengers at a station should be informed in
time about trains arriving. Passengers inside a train should be informed in
time that the train is departing, which companies are being served by the
next stop and so on.

Case study 3: Meeting Scheduling∗
With the advent of globalization, companies and organizations are increas-
ingly distributed over multiple sites and countries. Wonderland Software

∗ Source: Adapted from S. Fickas, A. Finkelstein, M. Feather and A. Van Lamsweerde, 1997, with kind permission of Springer Science
and Business Media.

10 Fundamentals of Requirements Engineering

Services (WSS) has identified a large potential market for meeting-scheduling
software that would exploit Internet-based communication technologies.
Scheduling meetings with busy people is generally a nightmare. It is
hard to find a date and a place that suit everyone’s constraints; meeting
organizers need to pester people to get their availability; other people are
unnecessarily inconvenienced by messages that do not concern them; when
the meeting is scheduled some constraints have changed in the meantime;
new scheduling cycles need to be repeated when no date/location is found
in a reasonably short period; and so forth. As a result, meetings tend to be
organized poorly and late; important people sometimes do not show up;
and there is a significant, unnecessary overhead in the scheduling process.

Meetings are typically scheduled as follows. A meeting initiator informs
potential participants about the need for a meeting and specifies a date range
within which the meeting should take place, asking people to return their
availability constraints within that time interval. Constraints are typically
expressed as two sets: an exclusion set specifying dates within the date
range when the participant could not attend, and an optional preference set
specifying dates within the date range on which the participant would prefer
the meeting to take place (a date may refer to a full day or a period in a day).
In some cases, the initiator may also ask participants who will play an active
role in the meeting for specific requirements regarding the meeting room
(e.g. projector, laptop, network connection, videoconferencing facilities
etc.). ‘Important’ participants may optionally be asked to state preferences
for meeting locations.

The scheduled meeting date should belong to the stated date range and
to none of the exclusion sets; it should ideally belong to as many preference
sets as possible. The meeting venue should ideally fit the preferences of
important participants. A date conflict occurs when no date can be found
outside all exclusion sets. A room conflict occurs when no room can
be found, at any date outside all exclusion sets, which meets the room
requirements. Conflicts can be resolved in several ways: the initiator may
extend the date range, some participants may remove dates from their
exclusion set, or some participants may decline the invitation to attend. A
new scheduling cycle may thus be required in case of conflict.

The envisioned meeting scheduler software should reflect as closely as
possible the way meetings are typically managed. It should be useable by
administrative staff and provide major improvements in several respects:

• Average participant attendance should increase thanks to the selection
of meeting dates and locations that are the most convenient to potential
participants.

Setting the Scene 11

• Meetings should be scheduled as quickly as possible once they are
initiated.

• Meeting dates and locations should be notified as quickly as possible to all
potential participants once they are scheduled. In all cases, there should
be sufficient time between notification and the meeting date.

• The organizational overhead should be kept as low as possible on
the initiator’s side. In particular, the meeting scheduler should support
all required interactions with participants, for example to communicate
requests, get replies (even from participants not reacting promptly), assist
in negotiation and conflict-resolution processes, and inform participants
on request about the state of the scheduling process.

• The amount of interaction with potential participants for meeting schedul-
ing, in number and length of messages, should be kept as small as
possible.

The new meeting scheduler must be able to handle multiple meeting requests
in parallel. Meeting requests can be competing by overlapping in time or
space. Concurrency must thus be managed under physical constraints; a
person may not be at two different places at the same time, and a meeting
room may not be allocated to more than one meeting at a time.

To allow as much flexibility as possible, dynamic replanning of meetings
should be supported. On the one hand, participants should be allowed to
modify their exclusion set, preference set and/or preferred location until the
meeting is scheduled. On the other hand, exceptional constraints should be
accommodated after a meeting is scheduled, such as the need to schedule
an urgent, more important meeting. The original meeting date or location
may then need to be changed; sometimes it may even be cancelled. In all
cases some way of replanning should be set up.

The system should be flexible enough to accommodate different data
formats (e.g. date or address formats) and evolving data (e.g. the set of
concerned participants may vary during the scheduling process, and the
address at which a participant can be reached may change).

There are also security concerns to be taken into account, such as the
following:

• Meeting initiation should be restricted to authorized personnel.

• Confidentiality rules should be enforced, for instance a non-privileged
participant should not be aware of constraints stated by other participants,
or of other meetings to which the latter are invited.

12 Fundamentals of Requirements Engineering

Rather than a single product, WSS is thinking of a product family. The
customization space should cover the following variations:

• Professional meetings, private meetings.

• Single-site meetings, meetings where the target site needs to be determined
as well, electronic meetings.

• Regular meetings (e.g. for a university course), occasional meetings.

• Single-level meetings or multi-level meetings where the importance of a
person attending a specific meeting is higher or lower with respect to
other meetings.

• Single-level participation or multi-level participation where the importance
of a meeting getting a specific attendee is higher or lower with respect to
other attendees.

• Single-level participants or multi-level participants where some partic-
ipants are hierarchically more important than others (regardless of a
specific meeting) or have less flexibility in changing their constraints.

• Variations on what participating in a meeting means, e.g. full attendance,
partial attendance, participation through delegation.

• Variations on what constraints are about, e.g. no preference set, unordered
preferences, ordered preferences, date availability dependent on meeting
location.

• Parameterizability on explicit conflict-resolution rules that are tunable by
the client, e.g. ‘best meeting dates and locations should be determined
by considering participants with higher importance first’, ‘in case of
date conflict the scheduler will propose a person of lower importance to
withdraw from the meeting’, ‘in case of date conflict the meeting scheduler
will propose a participant to withdraw from another meeting of lower
importance’, ‘a date within some exclusion set will be considered if the
corresponding participant has high flexibility’.

• Mono-lingual, multi-lingual communication with participants.

• Variations on additional features such as support for elaborating the
meeting agenda or the meeting minutes.

1.1.3 The WHY, WHAT and WHO dimensions of requirements engineering
The preceding case-study descriptions give us a preliminary idea of the wide range of issues
we need to consider in the RE process.

Setting the Scene 13

As noted before, the investigation of the problem world leads us to consider two versions of
the system. The system-as-is has problems, deficiencies and limitations. For example, money is
wasted in the UWON library system-as-is by the acquisition of duplicate or rarely used resources;
access to bibliographical search facilities is severely limited in both time and location. In the
WAX transportation system-as-is, flight connections are missed due to slow bus transportation
and poor information to passengers. In the meeting scheduling system-as-is, meeting initiators
are overloaded and meeting dates are not chosen well enough, which sometimes results in
poor meeting attendance.

The system-to-be is intended to address those problems based on technology opportunities.
It will do so only if the software-to-be and the organizational and physical components defining
the environment are able to cooperate effectively. In the UWON library system-to-be, the new
software has to cooperate effectively with environmental components such as patrons, staff,
anti-theft devices, digital libraries and external library systems. In the WAX train system-to-
be, the train-control software has to operate in conjunction with environmental components
such as track sensors, train actuators, passengers, information panel devices and so forth.
In the meeting scheduling system-to-be, the scheduler software has to cooperate effectively
with environmental components such as meeting initiators and participants, e-mail systems,
e-agenda managers, the communications network and so on. In the end, what really matters is
the satisfactory working of the software–environment pair.

The problem world may thus be structured along three dimensions. We need to figure out
why a system-to-be is needed, what needs must be addressed by it, and who in this system
will take part in fulfilling such needs (see Figure 1.2).

The WHY dimension
The contextual reasons for a new version of a system must be made explicit in terms of
objectives to be satisfied by it. Such objectives must be identified with regard to the limitations
of the system-as-is and the opportunities to be exploited. This requires some careful analysis.
What are those objectives precisely? What are their ramifications? How do they interact? How
do they align with business objectives?

Objectives

System-to-beSystem-as-is

Problems,
opportunities,

domain knowledge

Services,
constraints,
assumptions

Satisfy

Assigned to

WHY?

WHAT?

WHO? Software-to-be Existing softwareDevicesPeople

Environment

Figure 1.2 Three dimensions of requirements engineering

14 Fundamentals of Requirements Engineering

As we will see more thoroughly in subsequent chapters, such analysis along the WHY
dimension is generally far from simple.

Acquiring domain knowledge We need to get a thorough understanding of the domain in
which the problem world is rooted. This domain might be quite complex in terms of concepts,
regulating laws, procedures and terminology. If you are not sufficiently convinced by the
complexity of library management or meeting scheduling, think of domains such as air traffic
control, proton therapy, power plants or stock exchanges. (Chapter 2 will present techniques
to help us acquire domain knowledge.)

Evaluating alternative options in the problem world There can be alternative ways of
satisfying the same identified objective. We need to assess the pros and cons of such alternatives
in order to select the most preferable one. (Chapters 3 and 16 will present techniques to support
this task.)

• Example: Library management. We could satisfy the objective of extensive coverage of
the literature through a non-selective journal subscription policy or, alternatively, through
access to digital libraries. The two alternatives need to be evaluated in relation to their
pros and cons.

• Example: Train control. We could satisfy the objective of avoiding train collisions by
ensuring that there will never be two trains on the same block or, alternatively, by
ensuring that trains on the same block will always be separated by some worst-case
stopping distance. The pros and cons of each alternative must be assessed carefully.

• Example: Meeting scheduling. The objective of knowing the time constraints of invited
participants could be satisfied by asking them their constraints via e-mail or, alternatively,
by accessing their electronic agenda directly.

Evaluating technology opportunities We also need to acquire a thorough understanding of
the oppportunities provided by technologies emerging in the domain under consideration,
together with their implications and risks. For example, what are the strengths, implications
and risks associated with digital libraries, driverless trains or e-agendas?

Handling conflicts The objectives that the system-to-be should satisfy are generally identified
from multiple sources which have conflicting viewpoints and interests. As a result, there
may be different perceptions of what the problems and opportunities are; and there may be
different views on how the perceived problems should be addressed. In the end, a coherent
set of objectives needs to emerge from agreed trade-offs. (Chapters 3, 16 and 18 will present
techniques to support that task.)

• Example: Library management. All parties concerned with the library system-to-be
will certainly agree that access to state-of-the-art books and journals should be made
more effective. There were sufficient complaints reported about this in the system-as-is.

Setting the Scene 15

Conflicts are likely to arise, though, when this global objective is refined into more
concrete objectives in order to achieve it. Everyone will acclaim the objective of improving
the effectiveness of bibliographical search. However, university authorities are likely to
emphasize the objective of cost reduction through integration of department libraries.
Departments might be reluctant to accede to the implications of this, such as losing their
autonomy. On the other hand, library staff might be concerned by strict enforcement of
rules limiting library opening periods, the length of loan periods or the number of loans to
the same patron. In contrast, library patrons might want much more flexible usage rules.

• Example: Train control. All parties will agree on the objectives of faster and
safer transportation. Conflicts will, however, appear between the railway company
management and the unions while exploring the pros and cons of alternative options
with or without drivers, respectively.

The WHAT dimension
This RE dimension is concerned with the functional services that the system-to-be should
provide to satisfy the objectives identified along the WHY-dimension (see Figure 1.2). Such
services often rely on specific system assumptions to work properly. They need to meet
constraints related to performance, security, usability, interoperability and cost – among others.
Some of the services will be implemented by the software-to-be whereas others will be realized
through manual procedures or device operations.

The system services, constraints and assumptions may be identified from the agreed system
objectives, from usage scenarios envisioned in the system-to-be, or from other elicitation
vehicles discussed in Chapter 2. They must be formulated in precise terms and in a language
that all parties concerned understand to enable their validation and realization. They should
be traceable back to system objectives so that we can argue that the latter will be satisfied.
The formulation of software services must also be mapped to precise specifications for use by
software developers (the nature of this mapping will become clearer in Section 1.1.4).

This analysis of the required services, constraints and assumptions is in general far from
simple, as we will see in greater detail in subsequent chapters. Some might be missing; others
might be inadequate with respect to objectives stated explicitly or left implicit; others might be
formulated ambiguously or inconsistently.

• Example: Library management. We might envision a bibliographical query facility as a
desirable software service in the UWON library system-to-be. To enable validation, we
should define this service in terms that are comprehensible by library staff or by the
students who would use it. The definition should make it possible to argue that the
objectives of increased coverage, information accuracy and wider accessibility will be
achieved through that service. One assumption to meet the objective of anywhere/anytime
accessibility is that library users do have Web access outside library opening hours.
Constraints on the bibliographical query service might refer to the average response time
to a query, the interaction mode and query/answer format for useability by non-experts,
and user privacy (e.g. non-staff users should not be able to figure out what other users
have borrowed).

16 Fundamentals of Requirements Engineering

• Example: Train control. For the WAX train system-to-be, we must define the service of
computing train accelerations in terms that allow domain experts to establish that the
objective of avoiding collisions of successive trains will be guaranteed. There should be
critical constraints on maximum delays in transmitting acceleration commands to trains,
on the readability of such commands by train drivers so as to avoid confusion and
so forth. Assumptions about the train-tracking subsystem should be made explicit and
validated.

The WHO dimension
This RE dimension addresses the assignment of responsibilities for achieving the objectives,
services and constraints among the components of the system-to-be – humans, devices or
software. Decisions about responsibility assignments are often critical; an important objective,
service or constraint might not be achieved if the system component responsible for it fails to
behave accordingly.

• Example: Library management. The objective of accurate book classification will not
be achieved if department faculty members, who might be made responsible for it, do
not provide accurate keywords when books are acquired in their area. The objective
of limited loan periods for increased availability of book copies will not be achieved if
borrowers do not respond to warnings or threatening reminders, or if the software that
might be responsible for issuing such reminders in time fails to do so.

• Example: Train control. The objective of safe train acceleration will not be achieved if
the software responsible for computing accelerations produces values outside the safety
range, or if the driver responsible for following the safe instructions issued by the software
fails to do so.

Responsibility assignments may also require the evaluation of alternative options. The same
responsibility might be assignable to different system components, each alternative assignment
having its pros and cons. The selected assignment should keep the risks of not achieving
important system objectives, services or constraints as small as possible.

• Example: Library management. The objective of accurate book classification might
be assigned to the software-to-be; the latter would retrieve relevant keywords from
electronic abstracts supplied by publishers, and classify books accordingly. The downsides
of such an assignment are increased development costs and the risk of sometimes
bizarre classifications. The same objective might alternatively be assigned to the relevant
department, at the risk of piles of books waiting for overloaded faculty members to
classify them.

• Example: Train control. The objective of safe train accelerations might be under
the direct responsibility of the software-to-be, in a driverless alternative, or under the
responsibility of train drivers who would follow indications issued by the software-to-be.
Each alternative has associated strengths and risks that need to be analysed carefully.

Setting the Scene 17

Elaborating the software-environment boundary As illustrated by the previous examples,
alternative responsibility assignments generally yield different system proposals in which more
or less functionality is automated. When we select responsibility assignments from multiple
alternatives, we make decisions on what is going to be automated in the system-to-be and
what is not. The boundary between the software-to-be and its environment thus emerges from
such decisions. This boundary is rarely fixed a priori when the RE process starts. Assessing
alternative boundaries and deciding on a specific one is an important aspect of the RE process
along the WHO dimension.

1.1.4 Types of statements involved in requirements engineering
Throughout the RE process we need to collect, elaborate, correct or adapt statements that may
differ in mood and in scope (Jackson, 1995a; Parnas & Madey, 1995).

Descriptive vs prescriptive statements
Descriptive statements state properties about the system that hold regardless of how the system
behaves. Such properties hold typically because of some natural law or physical constraint.
Descriptive statements are in the indicative mood. For example, the following statements are
descriptive:

• If train doors are open, they are not closed.

• The same book copy cannot be borrowed by two different people at the same time.

• A person cannot physically attend two meetings on different continents on the same day.

Prescriptive statements state desirable properties about the system that may hold or not
depending on how the system behaves. Such statements need to be enforced by system
components. They are in the optative mood. For example, the following statements are
prescriptive:

• Train doors shall always remain closed when the train is moving.

• A patron may not borrow more than three books at the same time.

• The meeting date must fit the constraints of all important participants.

The distinction between descriptive and prescriptive statements is essential to make in the
context of engineering requirements. We may need to negotiate, weaken, change or find
alternatives to prescriptive statements. We cannot negotiate, weaken, change or find alternatives
to descriptive statements.

Statement scope
Section 1.1.1 introduced a partition of phenomena into world, machine and shared phenom-
ena to make the point that RE is concerned with the problem world only. If we focus
our attention on the software part of the machine we want to build, we obtain a similar

18 Fundamentals of Requirements Engineering

TrainMoving

DoorsClosed

TrainAtStation

measuredSpeed ≠ 0

doorsState = ‘closed’

System
requirements

errorCode = 013
Environmental
phenomena

Software
phenomena

TrainMoving → DoorsClosed

Shared
phenomena

measuredSpeed ≠ 0 → doorsState = ‘closed’

Software
requirements

Figure 1.3 Phenomena and statements about the environment and the software-to-be

partition. A phenomenon is owned by the software-to-be, by its environment, or shared among
them. The environment includes the machine’s input/output devices such as sensors and
actuators.

For example, the phenomenon of a train physically moving is owned by the environment
(see Figure 1.3); the software controller cannot directly observe whether the train is moving or
not. The phenomenon of a train’s measured speed being non-null is shared by the software
and the environment; it is controlled by a speedometer in the environment and observed by
the software. The phenomenon of an error variable taking a particular value under a particular
condition is owned by the software; the environment cannot directly observe the state of this
variable.

The RE process involves statements about the system-to-be that differ in scope. Some
statements may refer to phenomena owned by the environment without necessarily being
shared with the software-to-be. Other statements may refer to phenomena shared between the
environment and the software-to-be; that is, controlled by the software and observed by the
environment, or vice versa.

In view of those differences in mood and scope, we can now more precisely define the
various types of statement involved in the RE process. Their interrelationships will be discussed
next.

Requirements, domain properties, assumptions and definitions
A system requirement is a prescriptive statement to be enforced by the software-to-be, possibly
in cooperation with other system components, and formulated in terms of environmental
phenomena. For example:

• All train doors shall always remain closed while a train is moving.

• Patrons may not borrow more than three books at a time.

• The constraints of a participant invited to a meeting should be known as soon as possible.

Satisfying system requirements may require the cooperation of other system components in
addition to the software-to-be. In the first example above, the software train controller might

Setting the Scene 19

be in charge of the safe control of doors; the cooperation of door actuators is also needed,
however (passengers should also be required to refrain from opening doors unsafely).

As we will see in Section 1.1.6, the system requirements are to be understood and agreed
by all parties concerned with the system-to-be. Their formulation in terms of environmental
phenomena, in the vocabulary used by such parties, will make this possible.

A software requirement is a prescriptive statement to be enforced solely by the software-
to-be and formulated only in terms of phenomena shared between the software and the
environment. For example:

• The doorsState output variable shall always have the value 'closed' when the measuredSpeed input
variable has a non-null value.

• The recorded number of loans by a patron may never exceed a maximum number x.

• A request for constraints shall be e-mailed to the address of every participant on the meeting
invitee list.

A software requirement constrains the observable behaviours of the software-to-be in its
environment; any such behaviour must satisfy it. For example, any software behaviour where
measuredSpeed �= 0 and doorsState = 'open' is ruled out according to the first software requirement
in the above list.

Software requirements are to be used by developers; they are formulated in the vocabulary
of developers, in terms of software input/output variables.

Note that a software requirement is a system requirement by definition, while the converse
is not true (see Figure 1.3). When no ambiguity arises, we will often use the term requirement
as a shorthand for ‘system requirement’.

The notion of system requirement is sometimes referred as ‘user requirement’ or ‘customer
requirement’ in the literature or in descriptions of good practice. The notion of software
requirement is sometimes referred as ‘product requirement’, ‘specification’ or even, mislead-
ingly, ‘system requirement’. We will avoid those phrases in view of possible confusion. For
example, many ‘user requirements’ do not come from any software user; a ‘system’ does not
merely consist of software; a ‘specification’ may refer in the software engineering literature both
to a process and to a variety of different products along the software lifecycle (requirement
specification, design specification, module specification, test case specification etc.).

A domain property is a descriptive statement about the problem world. It is expected to
hold invariably regardless of how the system will behave – and even regardless of whether
there will be any software-to-be or not. Domain properties typically correspond to physical
laws that cannot be broken. For example:

• A train is moving if and only if its physical speed is non-null.

• A book may not be borrowed and available at the same time.

• A participant cannot attend multiple meetings at the same time.

An assumption is a statement to be satisfied by the environment and formulated in terms of
environmental phenomena. For example:

20 Fundamentals of Requirements Engineering

• A train’s measured speed is non-null if and only if its physical speed is non-null.

• The recorded number of loans by a borrower is equal to the actual number of book copies physically
borrowed by him or her.

• Borrowers who receive threatening reminders after the loan deadline has expired will return books
promptly.

• Participants will promptly respond to e-mail requests for constraints.

• A participant is on the invitee list for a meeting if and only if he or she is invited to that meeting.

Assumptions are generally prescriptive, as they constrain the behaviour of specific environmen-
tal components. For example, the first assumption in the previous list constrains speedometers
in our train control system.

The formulation of requirements, domain properties and assumptions might be adequate
or not. We will come back to this throughout the book. The important point here is their
difference in mood and scope.

Definitions are the last type of statement involved in the RE process. They allow domain
concepts and auxiliary terms to be given a precise, complete and agreed meaning – the same
meaning for everyone. For example:

• TrainMoving is the name for a phenomenon in the environment that accounts for the fact that the
train being considered is physically moving on a block.

• A patron is any person who has registered at the corresponding library for the corresponding period
of time.

• A person participates in a meeting if he or she attends that meeting from beginning to end.

Unlike statements of other types, definitions have no truth value. It makes no sense to say
that a definition is satisfied or not. However, we need to check definitions for accuracy,
completeness and adequacy. For example, we might question the above definition of what it
means for a person to participate in a meeting; as a result, we might refine the concept of
participation into two more specialized concepts instead – namely, full participation and partial
participation.

In view of their difference in mood and scope, the statements emerging from the RE process
should be ‘typed’ when we document them (we will come back to this in Section 4.2.1). Anyone
using the documentation can then directly figure out whether a statement is a requirement, a
domain property, an assumption or a definition.

Relating software requirements to system requirements
The link between the notions of system requirement and software requirement can be made
more precise by introducing the following types of variables:

Setting the Scene 21

• Monitored variables are environmental quantities that the software monitors through
input devices such as sensors.

• Controlled variables are environmental quantities that the software controls through
output devices such as actuators.

• Input variables are data items that the software needs as input.

• Output variables are quantities that the software produces as output.

These different types of variable yield a more explicit framework for control systems, known
as the four-variable model (Parnas and Madey, 1995); see Figure 1.4. As we can see there,
input/output devices are highlighted as special interface components between the control
software and its environment.

In this framework, we can define system requirements and software requirements as distinct
mathematical relations. Let us use the standard notations ⊆ and × for set inclusion and set
Cartesian product, respectively.

• A system requirement SysReq is a relation between a set M of monitored variables and a
corresponding set C of controlled variables:

SysReq ⊆ M × C

• A software requirement SofReq is a relation between a set I of input variables and a
corresponding set O of output variables:

SofReq ⊆ I × O

measuredSpeed

Input data

doorsClosed

Controlled variables

trainSpeed

doorsState

Environment

Monitored variables

Output results

Software-to-be

Output devices (e.g. actuators)

Input devices (e.g. sensors)

Figure 1.4 Four-variable model

22 Fundamentals of Requirements Engineering

A software requirement SofReq ‘translates’ the corresponding system requirement SysReq in the
vocabulary of the software’s input/output variables.

Satisfaction arguments
Such translation of a system requirement into a software requirement is not a mere reformulation
obtained by mapping the environment’s vocabulary into the software’s one. Domain properties
and assumptions are often required to ensure the ‘correctness’ of the translation; that is, the
satisfaction of the system requirement when the corresponding software requirement holds.

Let us illustrate this very important point. We first introduce some shorthand notations:

A → B for ‘if A then B′, A ↔ B for ‘A if and only if B′.

We may express the above examples of system requirement, software requirement, domain
property and assumption for our train system in the shorter form:

(SysReq:) TrainMoving → DoorsClosed
(SofReq:) measuredSpeed �= 0 → doorsState = 'closed'
(Dom:) TrainMoving ↔ trainSpeed �= 0
(Asm:) measuredSpeed �= 0 ↔ trainSpeed �= 0

DoorsState = 'closed' ↔ DoorsClosed

To ensure that the software requirement SofReq correctly translates the system requirement
SysReq in this simple example, we need to identify the domain property Dom and the
assumptions Asm, and make sure that those statements are actually satisfied. If this is the case,
we can obtain SysReq from SofReq by the following rewriting: (a) we replace measuredSpeed �=
0 in SofReq by TrainMoving, thanks to the first equivalence in the assumptions Asm and then the
equivalence in the domain property Dom; and (b) we replace doorsState = 'closed' in SofReq by
DoorsClosed thanks to the second equivalence in Asm.

The assumptions in Asm are examples of accuracy statements, to be enforced here by
the speedometer and door actuator, respectively. Accuracy requirements and assumptions
form an important class of non-functional statements to be considered in the RE process (see
Section 1.1.5). Overlooking them or formulating wrong ones has sometimes been the cause of
major software disasters. We will come back to this throughout the book.

Our job as requirements engineers is to elicit, make precise and consolidate requirements,
assumptions and domain properties. Then we need to provide satisfaction arguments taking
the following form:

{SOFREQ, ASM, DOM} |= SysReq
which reads:

if the software requirements in set SOFREQ are satisfied by the software, the assumptions in set ASM are
satisfied by the environment, the domain properties in set DOM hold and all those statements are consistent
with each other,

then the system requirements SysReq are satisfied by the system.

Setting the Scene 23

Such a satisfaction argument could not be provided in our train example without the statements
Asm and Dom previously mentioned. Satisfaction arguments require environmental assumptions
and domain properties to be elicited, specified and validated. For example, is it the case that
the speedometer and door actuator will always enforce the first and second assumptions in
Asm, respectively?

In Chapter 6, we will see that satisfaction arguments play an important role in managing
the traceability among requirements and assumptions for requirements evolution. In Part II of
this book, we will extend them to higher-level arguments for goal satisfaction by requirements
and assumptions.

1.1.5 Categories of requirements
In the above typology of statements, the requirements themselves are of different kinds.
Roughly, functional requirements refer to services that the software-to-be should provide,
whereas non-functional requirements constrain how such services should be provided.

Functional requirements
Functional requirements define the functional effects that the software-to-be is required to have
on its environment. They address the ‘WHAT’ aspects depicted in Figure 1.2. Here are some
examples:

• The bibliographical search engine shall provide a list of all library books on a given subject.

• The train control sofware shall control the acceleration of all the system’s trains.

• The meeting scheduler shall determine schedules that fit the diary constraints of all invited
participants.

The effects characterized by such requirements result from operations to be automated by the
software. Functional requirements may also refer to environmental conditions under which
such operations should be applied. For example:

• Train doors may be opened only when the train is stopped.

• The meeting scheduler shall issue a warning when the constraints entered by a participant are not
valid.

Functional requirements characterize units of functionality that we may want to group into
coarser-grained functionalities that the software should support. For example, bibliographical
search, loan management and acquisition management are overall functionalities of the library
software-to-be. Units of functionality are sometimes called features in some problem worlds;
for example, call forwarding and call reactivation are features generally provided in telephony
systems.

24 Fundamentals of Requirements Engineering

Non-functional requirements
Non-functional requirements define constraints on the way the software-to-be should satisfy its
functional requirements or on the way it should be developed. For example:

• The format for submitting bibliographical queries and displaying answers shall be accessible to
students who have no computer expertise.

• Acceleration commands shall be sent to every train every 3 seconds.

• The diary constraints of a participant may not be disclosed to any other invited participant.

The wide range of such constraints makes it helpful to classify them in a taxonomy (Davis,
1993; Robertson & Robertson, 1999; Chung et al., 2000). Specific classes can then be char-
acterized more precisely. Browsing through the taxonomy may help us acquire instances of
the corresponding classes that might have been overlooked (Section 2.2.7 will come back to
this).

Figure 1.5 outlines one typical classification. The taxonomy there is not meant to be
exhaustive, although it covers the main classes of non-functional requirements.

Quality requirements
Quality requirements state additional, quality-related properties that the functional effects of the
software should have. They are sometimes called ‘quality attributes’ in the software engineering
literature. Such requirements complement the ‘WHAT’ aspects with ‘HOW WELL’ aspects. They
appear on the left-hand side in Figure 1.5.

Safety requirements are quality requirements that rule out software effects that might result
in accidents, degradations or losses in the environment. For example:

• The controlled accelerations of trains shall always guarantee that a worst-case stopping distance is
maintained between successive trains.

Non-functional requirement

Quality of service Compliance Architectural constraint Development constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Useability

PerformanceReliability MaintainabilityCost

Time Space

Deadline Variability

Software
interoperability

Convenience

Interface

User
interaction

Device
interaction

Sub-class link

Accuracy

Cost

Figure 1.5 A taxonomy of non-functional requirements

Setting the Scene 25

Security requirements are quality requirements that prescribe the protection of system assets
against undesirable environment behaviours. This increasingly critical class of requirements is
traditionally split into subcategories such as the following (Amoroso, 1994; Pfleeger, 1997).

Confidentiality requirements state that some sensitive information may never be disclosed
to unauthorized parties. For example:

• A non-staff patron may never know which books have been borrowed by others.

Among these, privacy requirements state that some private information may never be disclosed
without the consent of the owner of the information. For example:

• The diary constraints of a participant may never be disclosed to other invited participants without
his or her consent.

Integrity requirements state that some information may be modified only if correctly done and
with authorization. For example:

• The return of book copies shall be encoded correctly and by library staff only.

Availability requirements state that some information or resource can be used at any point in
time when it is needed and its usage is authorized. For example:

• A blacklist of bad patrons shall be made available at any time to library staff.

• Information about train positions shall be available at any time to the vital station computer.

Reliability requirements constrain the software to operate as expected over long periods of time.
Its services must be provided in a correct and robust way in spite of exceptional circumstances.
For example:

• The train acceleration control software shall have a mean time between failures of the order of
109 hours.

Accuracy requirements are quality requirements that constrain the state of the information
processed by the software to reflect the state of the corresponding physical information in the
environment accurately. For example:

• A copy of a book shall be stated as available by the loan software if and only if it is actually available
on the library shelves.

• The information about train positions used by the train controller shall accurately reflect the actual
position of trains up to X metres at most.

26 Fundamentals of Requirements Engineering

• The constraints used by the meeting scheduler should accurately reflect the real constraints of
invited participants.

Performance requirements are quality requirements that constrain the software’s operational
conditions, such as the time or space required by operations, the frequency of their activation,
their throughput, the size of their input or output and so forth. For example:

• Responses to bibliographical queries shall take less than 2 seconds.

• Acceleration commands shall be issued to every train every 3 seconds.

• The meeting scheduler shall be able to accommodate up to X requests in parallel.

Performance requirements may concern other resources in addition to time or space, such as
money spent in operational costs. For example:

• The new e-subscription facility should ensure a 30% cost saving.

Interface requirements are quality requirements that constrain the phenomena shared by the
software-to-be and the environment (see Figure 1.3). They refer to the static and dynamic
aspects of software-environment interactions; input/output formats and interaction sequences
should be compatible with what the environment expects. Interface requirements cover a wide
range of concerns depending on which environmental component the software is interacting
with.

For human interaction, useability requirements prescribe input/output formats and user
dialogues to fit the abstractions, abilities and expectations of the target users. For example:

• The format for bibliographical queries and answers shall be accessible to students from any
department.

Other human interaction requirements may constrain software effects so that users feel them
to be ‘convenient’ in some system-specific sense. For example:

• To ensure smooth and comfortable train moves, the difference between the accelerations in two
successive commands sent to a train should be at most X.

• To avoid disturbing busy people unduly, the amount of interaction with invited participants for
organizing meetings should be kept as low as possible.

For interaction with devices or existing software components, interoperability requirements
prescribe input/output formats and interaction protocols that enable effective cooperation with
those environmental components. For example:

• The meeting scheduling software should be interoperable with the WSS Agenda Manager product.

Setting the Scene 27

Figure 1.5 covers other categories of non-functional requirements in addition to quality require-
ments.

Compliance requirements
Compliance requirements prescribe software effects on the environment to conform to national
laws, international regulations, social norms, cultural or political constraints, standards and the
like. For example:

• The value for the worst-case stopping distance between successive trains shall be compliant with
international railways regulations.

• The meeting scheduler shall by default exclude official holidays associated with the target market.

Architectural requirements
Architectural requirements impose structural constraints on the software-to-be to fit its environ-
ment, typically:

• Distribution constraints on software components to fit the geographically distributed
structure of the host organization, the distribution of data to be processed, or the
distribution of devices to be controlled.

• Installation constraints to ensure that the software-to-be will run smoothly on the target
implementation platform.

Here are some examples of architectural requirements:

• The on-board train controllers shall handle the reception and proper execution of acceleration
commands sent by the station computer.

• The meeting scheduling software should cooperate with email systems and e-agenda managers of
participants distributed worldwide.

• The meeting scheduling software should run on Windows version X.x and Linux version Y.y.

Architectural requirements reduce the space of possible software architectures. They may guide
developers in the selection of an appropriate architectural style, for example an event-based
style. We will come back to this in Section 16.5.

Development requirements
Development requirements are non-functional requirements that do not constrain the way the
software should satisfy its functional requirements but rather the way it should be developed
(see the right-hand part of Figure 1.5). These include requirements on development costs,
delivery schedules, variability of features, maintainability, reusability, portability and the like.
For example:

28 Fundamentals of Requirements Engineering

• The overall cost of the new UWON library software should not exceed X.

• The train control software should be operational within two years.

• The software should provide customized solutions according to variations in type of meeting
(professional or private, regular or occasional), type of meeting location (fixed, variable) and type of
participant (same or different degrees of importance).

Possible overlaps between categories of requirements
The distinction between functional and non-functional requirements should not be taken in
a strict, clear-cut sense. The boundary between those two categories is not always clear. For
example, consider the following requirement in a safety injection system for a nuclear power
plant (Courtois & Parnas, 1993):

• The safety injection signal shall be on whenever there is a loss of coolant except during normal
start-up or cool down.

Is this a functional or a safety requirement? Both, we might be inclined to say. Similarly,
many functional requirements for a firewall management software are likely to be security
requirements as well. Call screening is traditionally considered as a functional feature in
telephony software, even though it is about keeping the caller’s phone number confidential.

Likewise, some of the non-functional requirements categories in Figure 1.5 may overlap
in specific situations. Consider, for example, a denial-of-service attack on a patient’s file that
prevents surgeons from accessing critical patient data during surgery. Does this violate a
security or a safety requirement? Similarly, the requirement to send acceleration commands
to trains at very high frequency is related to both performance and safety. More generally,
availability requirements often contribute to both security and reliability.

Uses of requirements taxonomies
In spite of possible overlaps in specific situations, what matters in the end are the roles and
benefits of a requirements taxonomy in the RE process.

a. More specific characterization of requirements. Requirements categories allow us to char-
acterize more explicitly what requirements refer to, beyond our general definition as
prescriptive statements to be enforced by the software and formulated in terms of environ-
mental phenomena.

b. More semantic characterization of requirements. The distinction between requirements
categories allows for a more semantic characterization of requirements in terms of prescribed
behaviours.

• There are requirements that prescribe desired behaviours. For example, scheduler
behaviours should result in a meeting being scheduled every time a corresponding
request has been submitted. Many functional requirements are of this kind.

Setting the Scene 29

• There are requirements that rule out unacceptable behaviours. For example, any train
controller behaviour that results in trains being too close to each other must be avoided.
Many safety, security and accuracy requirements are of this kind.

• There are requirements that indicate preferred behaviours. For example, the requirement
that 'participants shall be notified of the scheduled meeting date as soon as possible' states a
preference for scheduler behaviours where notification is sooner over behaviours where
notification is later. Likewise, the requirement that 'interactions with participants should
be kept as limited as possible' states a preference for scheduler behaviours where there
are fewer interactions (e.g. through e-agenda access) over behaviours where there are
more interactions (e.g. through e-mail requests and pestering). Many performance and
‘-ility’ requirements are of this kind, for example useability, reuseability, portability or
maintainability requirements. When alternative options are raised in the RE process,
we will use such requirements to discard alternatives and select preferred ones (see
Chapters 8 and 16).

c. Differentiation between confined and cross-cutting concerns. Functional requirements tend
to address single points of functionality. In contrast, non-functional requirements tend
to address cross-cutting concerns; the same requirement may constrain multiple units of
functionality. In the library system, for example, the useability requirement on accessibility of
input/output formats to non-expert users constrains the bibliographical search functionality.
It may, however, constrain other functionalities as well, for example user registration or
book reservation. Similarly, the non-disclosure of participant constraints might affect multiple
points of functionality such as meeting notification, information on the current status of
planning, replanning and so on.

d. Basis for RE heuristics. The characterization of categories in a requirements taxonomy yields
helpful heuristics for the RE process. Some heuristics may help elicit requirements that were
overlooked, for example:

• Is there any accuracy requirement on information X in my system?

• Is there any confidentiality requirement on information Y in my system?

Other heuristics may help discover conflicts among instances of requirements categories
known to be potentially conflicting, for example:

• Is there any conflict in my system between hiding information on display for better useability
and showing critical information for safety reasons?

• Is there any conflict in my system between password-based authentication and useability
requirements?

• Is there any conflict in my system between confidentiality and accountability requirements?

We will come back to such heuristics in Chapters 2 and 3 while reviewing techniques for
requirements elicitation and evaluation. As we will see there, conflict detection is a prerequisite
for the elaboration of new requirements for conflict resolution.

30 Fundamentals of Requirements Engineering

1.1.6 The requirements lifecycle: Processes, actors and products
As already introduced briefly, the requirements engineering process is composed of different
activities yielding various products and involving various types of actors.

A stakeholder is a group or individual affected by the system-to-be, who may influence
the way this system is shaped and has some responsibility in its acceptance. As we will see,
stakeholders play an important role in the RE process. They may include strategic decision
makers, managers of operational units, domain experts, operators, end-users, developers,
subcontractors, customers, and certification authorities.

For example in our library management system, stakeholders might include the UWON
board of management, department chairs, library staff from the various departments and from
partner universities, ordinary users and software consultants. In the WAX transportation system,
stakeholders might include airport authorities, government representatives, airline companies,
Wonderland Railways, passengers, union representatives and software subcontractors. In the
meeting scheduling system, stakeholders might include a variety of people who schedule
meetings (local, international, intra- or inter-organization meetings), a variety of people who
attend such meetings under different positions, secretaries and software consultants.

Note that the set of stakeholders may vary slightly from the system-as-is to the system-to-be.
In the WAX transportation system-to-be, for example, bus drivers will no longer be involved
whereas railways personnel will.

In spite of their difference in aim and supporting techniques, the activities composing the
RE process are highly intertwined. We review them individually first and then discuss their
interaction.

Domain understanding
This activity consists of studying the system-as-is within its organizational and technical context.
The aim is to acquire a good understanding of:

• The domain in which the problem world is rooted.

• What the roots of the problem are.

More specifically, we need to get an accurate and comprehensive picture of the following
aspects:

• The organization within which the system-as-is takes place: its structure, strategic objec-
tives, business policies, roles played by organizational units and actors, and dependencies
among them.

• The scope of the system-as-is: its underlying objectives, the components forming it, the
concepts on which it relies, the tasks involved in it, the information flowing through it,
and the constraints and regulations to which the system is subject.

• The set of stakeholders to be involved in the RE process.

Setting the Scene 31

• The strengths and weaknesses of the system-as-is, as perceived by the identified stake-
holders.

The product of this activity typically consists of the initial sections in a preliminary draft
proposal that describe those contextual aspects. This proposal will be expanded during the
elicitation activity and then used by the evaluation activity that comes after.

In particular, a glossary of terms should be established to provide definitions of key concepts
on which everyone should agree. For example, in the library system-as-is, what precisely is a
patron? What does it mean to say that a requested book is being reserved? In the train system,
what precisely is a block? What does it mean to say that a train is at a station? In the meeting
scheduling system, what is referred to by the term ‘participant’? What does it mean to say that
a person is invited to a meeting or participates in it? What precisely are participant constraints?

A glossary of terms will be used throughout the RE process, and even beyond, to ensure
that the same term does not refer to different concepts and the same concept is not referred to
under different terms.

Domain understanding is typically performed by studying key documents, investigating
similar systems and interviewing or observing the identified stakeholders. The cooperation of
the latter is obviously essential for our understanding to be correct. Chapter 2 will review
techniques that may help us in this task.

Requirements elicitation
This activity consists of discovering candidate requirements and assumptions that will shape
the system-to-be, based on the weaknesses of the system-as-is as they emerge from domain
understanding. What are the symptoms, causes and consequences of the identified deficiencies
and limitations of the system-as-is? How are they likely to evolve? How could they be addressed
in the light of new opportunities? What new business objectives could be achieved then?

The aim is thus to explore the problem world with stakeholders and acquire the following
information:

• The opportunities arising from the evolution of technologies and market conditions that
could address the weaknesses of the system-as-is while preserving its strengths.

• The improvement objectives that the system-to-be should meet with respect to such
weaknesses and opportunities, together with alternative options for satisfying them.

• The organizational and technical constraints that this system should take into account.

• Alternative boundaries that we might consider between what will be automated by the
software-to-be and what will be left under the responsibility of the environment.

• Typical scenarios illustrating desired interactions between the software-to-be and its
environment.

• The domain properties and assumptions about the environment that are necessary for
the software-to-be to work properly.

32 Fundamentals of Requirements Engineering

• The requirements that the software-to-be should meet in order to conform to all of the
above.

The requirements are by no means there when the project starts. We need to discover them
incrementally, in relation to higher-level concerns, through exploration of the problem world.
Elicitation is a cooperative learning process in which the requirements engineer and the system
stakeholders work in close collaboration to acquire the right requirements. This activity is
obviously critical. If done wrong, it will result in poor requirements and, consequently in poor
software.

The product of the elicitation activity typically consists of additional sections in the
preliminary draft proposal initiated during the domain understanding activity. These sections
document the items listed above. The resulting draft proposal will be used as input to the
evaluation activity coming next.

The elicitation process can be supported by a variety of techniques, such as knowledge
reuse, scenarios, prototyping, interviews, observation and the like. Chapter 2 will discuss these.

Evaluation and agreement
The aim of this activity is to make informed decisions about issues raised during the elicitation
process. Such decisions are often based on ‘best’ trade-offs on which the involved parties
should agree. Negotiation may be required in order to reach a consensus.

• Conflicting concerns must be identified and resolved. These often arise from multiple
viewpoints and different expectations.

• There are risks associated with the system that is being shaped. They must be assessed
and resolved.

• The alternative options identified during elicitation must be compared with regard to
quality objectives and risks, and best options must be selected on that basis.

• Requirements prioritization is often necessary for a number of reasons:

a. Favouring higher-priority requirements is a standard way of resolving conflicts.

b. Dropping lower-priority requirements provides a way of integrating multiple wishlists
that would together exceed budgets and deadlines.

c. Priorities make it easier to plan an incremental development process, and to replan
the project during development as new constraints arise such as unanticipated delays,
budget restrictions, deadline contractions etc.

The product of this activity typically consists of final sections in the preliminary draft proposal
initiated during the preceding activities. These sections document the decisions made after
assessment and negotiation. They highlight the agreed requirements and assumptions about

Setting the Scene 33

the selected system-to-be. The system proposal thereby obtained will serve as input to the
specification activity coming next.

The evaluation process can be supported by a variety of qualitative and quantitative
techniques. Chapters 3 and 16 will provide a comprehensive sample of these.

Specification and documentation
This activity consists of detailing, structuring and documenting the agreed characteristics of the
system-to-be as they emerge from the evaluation activity.

The resulting product is the requirements document (RD). In this document, the objectives,
concept definitions, relevant domain properties, responsibilities, system requirements, software
requirements and environmental assumptions are specified precisely and organized into a
coherent structure. These specifications form the core of the RD. Satisfaction arguments should
appear there as well (see Section 1.1.4.). Other sections in the RD may include a description
of likely variants and revisions, acceptance test data and cost figures. The RD may also be
complemented by annexes such as the preliminary system proposal after domain understanding,
elicitation and evaluation, to provide the context and rationale for decisions taken, as well as
technical annexes about the domain.

The requirements document will be used for a variety of purposes throughout the software
lifecycle, as we will see in Section 1.1.9 (see Figure 1.7). To enable validation and com-
mitment, any RD portion that concerns specific parties, such as customers, domain experts,
(sub)contractors, developers or users, must be specified in a form understandable by them.

A wide range of techniques can be used to support the specification and documentation
process, including structured natural language templates, diagrammatic notations and formal
specifications. Chapter 4 will discuss these.

Requirements consolidation
The purpose of this activity is quality assurance. The specifications resulting from the preceding
activity must be carefully analysed. They should be validated with stakeholders in order to
pinpoint inadequacies with respect to actual needs. They should also be verified against each
other in order to find inconsistencies and omissions before the software requirements are
transmitted to developers. Any error found must be fixed. The sooner an error is found, the
cheaper the fix will be.

The main product of this activity is a consolidated requirements document, where the
detected errors and flaws have been fixed throughout the document. Other products may
include a prototype or mock-up built for requirements validation, additional test data coming
out of verification, a proposed development plan, the contract linking the client and the
software developer, and a call for tenders in the case of development subcontracting.

Section 1.1.7 will detail the quality criteria addressed by this activity more precisely, together
with the various types of errors and flaws that may need to be fixed. Section 1.2 will discuss the
consequences of not fixing them. Chapter 5 will present techniques for requirements quality
assurance.

34 Fundamentals of Requirements Engineering

Requirements engineering: A spiral process
The above activities are sometimes called phases of the RE process. There are, of course,
data dependencies among them. Consolidation requires input from specification; specification
requires input from evaluation; evaluation requires input from elicitation; and elicitation requires
input from domain understanding. We should not think of these phases as being applied in a
strict sequence, however. They are generally intertwined, they may overlap, and backtracking
from one phase to preceding ones may be required.

Overall, the RE process can be viewed as an iteration on successive increments according
to a spiral model (Boehm, 1988; Kotonya & Sommerville, 1997). Figure 1.6 shows such process
model for the activities previously discussed in this section.

Each iteration in Figure 1.6 is triggered by the need to revise, adapt or extend the
requirements document through addition, removal or modification of statements such as
requirements, assumptions or domain properties.

A new iteration may take place at different stages of the software lifecycle:

• Within the RE process itself, as such statements are found during consolidation to be
missing, inadequate or inconsistent with others.

• During software development, as such statements turn out to be missing, unfeasible or
too costly to implement, incompatible with new implementation constraints, or no longer
adequate as the problem world has evolved in the meantime.

• After software deployment, as the problem world has evolved or must be customized to
specific contexts.

‘Late’ iterations of the RE process will be further discussed in Chapter 6 on evolution manage-
ment and in Section 16.5 where the interplay between RE and architectural design will appear
more clearly.

The spiral process model depicted in Figure 1.6 is fairly general and flexible. It may need
to be specialized and adapted to the specificities of the problem world and to the standards

Start

Domain understanding
and elicitation

Evaluation
and negotiation

Alternative proposals

Agreed
requirements

Documented requirements

Consolidated
requirements

Specification
and documentation

Quality
assurance

Figure 1.6 The requirements engineering process

Setting the Scene 35

of the host organization, for example by further defining the nature of each increment or
the intertwining with software development cycles. The important points, though, are the
range of issues to consider, the complementarity and difference among RE activities, their data
dependencies and the iterative nature of the RE process.

1.1.7 Target qualities and defects to avoid
Elaborating a good requirements document is difficult. We need to cater for multiple and
diverse quality factors. Each of these may be hard to reach.

Quality factors define the goals of the RE process. They provide the basis for evaluating
successive versions of the requirements document. This section defines them precisely together
with their opposite, that is, the requirements defects that we must avoid. References to those
qualities and defects will appear throughout the book. In particular, Chapter 5 and Parts II
and III will detail a variety of techniques for checking them. Let us start with the qualities
first.

• Completeness. The requirements, assumptions and domain properties, when taken
together, must be sufficient to ensure that the system-to-be will satisfy all its objectives.
These objectives must themselves be fully identified, including quality-related ones. In
other words, the needs addressed by the new system must be fully covered, without any
undesirable outcomes. In particular, we must have anticipated incidental or malicious
behaviours of environmental components so that undesirable software effects are ruled
out through dedicated requirements. A requirement on software behaviour must prescribe
a desired output for all possible inputs. The specification of requirements and assumptions
must also be sufficiently detailed to enable subsequent software development.

• Consistency. The requirements, assumptions and domain properties must be satisfiable
when taken together. In other words, they must be compatible with each other.

• Adequacy. The requirements must address the actual needs for a new system – explicitly
expressed by stakeholders or left implicit. The software requirements must be adequate
translations of the system requirements (see Section 1.1.4). The domain properties must
correctly describe laws in the problem world. The environmental assumptions must be
realistic.

• Unambiguity. The requirements, assumptions and domain properties must be formulated
in a way that precludes different interpretations. Every term must be defined and used
consistently.

• Measureability. The requirements must be formulated at a level of precision that enables
analysts to evaluate alternative options against them, developers to test or verify whether
an implementation satisfies them, and users to determine whether they are met or not in
the system under operation. The assumptions must be observable in the environment.

• Pertinence. The requirements and assumptions must all contribute to the satisfaction of
one or several objectives underpinning the system-to-be. They must capture elements of
the problem world rather than elements of the machine solution.

36 Fundamentals of Requirements Engineering

• Feasibility. The requirements must be realizable in view of the budget, schedule and
technology constraints.

• Comprehensibility. The formulation of requirements, assumptions and domain properties
must be comprehensible by the people who need to use them.

• Good structuring. The requirements document should be organized in a way that
highlights the structural links among its elements – refinement or specialization links,
dependency links, cause–effect links, definition–use links and so forth. The definition of
a term must precede its use.

• Modifiability. It should be possible to revise, adapt, extend or contract the requirements
document through modifications that are as local as possible.

• Traceability. The context in which an item of the requirements document was created,
modified or used should be easy to retrieve. This context should include the rationale
for creation, modification or use. The impact of creating, modifying or deleting that
item should be easy to assess. The impact may refer to dependent items in the require-
ments document and to dependent artefacts subsequently developed – architectural
descriptions, test data, user manuals, source code etc. (Traceability management will be
discussed at length in Section 6.3.)

Note that critical qualities such as completeness, adequacy and pertinence are not defined in an
absolute sense; they are relative to the underlying objectives and needs of a new system. The
latter may themselves be implicit, unclear or even unidentified. Those qualities can therefore
be especially hard to enforce.

Section 1.2.1 will review some facts and figures about project failures that are due to
poor-quality requirements. Elaborating a requirements document that meets all of the above
qualities is essential for the success of a software project. The techniques described in this book
are aimed at supporting this task. As a prerequisite, we should be aware of the corresponding
types of defect to avoid.

Requirements errors and flaws
Table 1.1 lists various types of defects frequently found in requirements documents. Each entry
in Table 1.1 corresponds to the opposite of one of the preceding qualities. Table 1.2 and
Table 1.3 suggest examples of defects that we might find in requirements documents for our
case studies.

The defect types in Table 1.1 can be divided into two classes according to the potential
severity of their consequences.

There are errors whose occurrence may have fatal effects on the quality of the software-to-be:

• Omissions may result in the software failing to implement an unstated critical requirement,
or failing to take into account an unstated critical assumption or domain property.

• We cannot produce a correct implementation from a set of requirements, assumptions
and domain properties that contradict each other.

Setting the Scene 37

Omission Problem world feature not stated by any RD item – e.g. missing
objective, requirement or assumption; unstated software response
to some input.

Contradiction RD items defining a problem world feature in an incompatible way.

Inadequacy RD item not adequately stating a problem world feature.

Ambiguity RD item allowing a problem world feature to be interpreted in
different ways – e.g. ambiguous term or statement.

Unmeasurability RD item stating a problem world feature in a way that cannot be
precisely compared with alternative options, or cannot be tested or
verified in machine solutions.

Noise RD item yielding no information on any problem world feature.

Overspecification RD item stating a feature not pertaining to the problem world but to
the machine solution.

Unfeasibility RD item that cannot be realistically implemented within the
assigned budget, schedule or development platform.

Unintelligibility RD item stated in an incomprehensible way for those who need to
use it.

Poor structuring RD items not organized according to any sensible and visible
structuring rule.

Forward reference RD item making use of problem world features that are not defined
yet.

Remorse RD item stating a problem world feature too late or incidentally.

Poor modifiability RD items whose modification may need to be globally propagated
throughout the RD.

Opacity RD item whose rationale, authoring or dependencies are invisible.

Table 1.1 Defects in a requirements document (RD)

• Inadequacies may result in a software implementation that meets requirements, assump-
tions or domain properties that are not the right ones.

• Ambiguous and unmeasurable statements may result in a software implementation built
from interpretations of requirements, assumptions or domain properties that are different
from the intended ones.

In addition to errors, there are flaws whose consequences are in general less severe. In the
best cases they result in a waste of effort and associated risks:

• Useless effort in finding out that some noisy or overspecified aspects are not
needed – with the risk of sticking to overspecified aspects that may prevent better
solutions from being taken.

• Useless effort in determining what requirements to stick to in unfeasible situations – with
the risk of dropping important requirements.

38 Fundamentals of Requirements Engineering

Omission No requirement about the expected state of train doors in case
of emergency stop.

Contradiction Train doors must always be kept closed between stations.

And elsewhere:

Train doors must be opened once a train is stopped after an
emergency signal.

Inadequacy If a book copy has not been returned one week after the third
reminder has been issued, the negligent borrower shall be
notified that he or she has to pay a fine of £X.

Rather than

If a book has not been returned one week after the third
reminder has been issued, a fine of £x shall be retained from
the borrower’s registration deposit and a notification will be
sent to the borrower.

Ambiguity Train doors shall be opened as soon as the train is stopped at
a platform.

(Possible interpretations:)

The front of the train is (stopped) at a platform or The whole
train is (stopped) at a platform?

Unmeasurability Information panels inside trains shall be user-friendly.

Table 1.2 Errors in a requirements document: Examples

• Useless effort in the understanding or reverse engineering of unintelligible, poorly defined,
poorly structured or poorly traceable aspects – with the risk of wrong understanding or
wrong reverse engineering.

• Excessive effort in revising or adapting a poorly modifiable RD – with the risk of incorrect
change propagation.

The various types of defect in Table 1.1 may originate from any RE activity – from elicitation
to evaluation to documentation to consolidation (see Figure 1.6). Omissions, which are the
hardest errors to detect, may happen at any time. Contradictions often originate from conflicting
viewpoints that emerged during elicitation and were left unresolved at the end of the RE
process. Inadequacies often result from analyst–stakeholder mismatch during elicitation and
negotiation. Some flaws are more likely to happen during documentation phases – such as
noise, unintelligibility, forward reference and remorse, poor structuring, poor modifiability and
opacity.

Overspecifications are frequently introduced in requirements documents written by devel-
opers or people who want to jump promptly to technical solutions. They may take the form of

Setting the Scene 39

Noise Every train car will be equipped with a software-controlled
information panel together with non-smoking signs posted on every
window.

Overspecification The setAlarm method must be invoked on receipt of a stopAlarm
message.

Unfeasibility The meeting scheduler will also make travel arrangements such as
flight, car and hotel reservations for every participant who needs to
travel to attend the meeting.

Unintelligibility A requirement statement containing five acronyms.

Poor structuring Intertwining of book acquisition and loan management aspects.

Forward reference Multiple uses of the concept of 'participating in a meeting' in the
requirements document and then, several pages later, the definition:

A person participates in a meeting if he or she attends that meeting
from beginning to end.

Remorse After multiple uses of the undefined concept of 'participating in a
meeting', the last one is directly followed by an incidental definition
between brackets such as:

(a person participates in a meeting if he or she attends that meeting
from beginning to end).

Poor modifiability Use of fixed numerical values for quantities throughout the
requirements document (e.g. for maximum loan period, meeting
notification deadline or train speed thresholds), when such values
are subject to change over time or from one variant to another.

Opacity A requirement such as:

the commanded speed of a train must always be at least 7 mph
above its physical speed,

without any contextual information about the origin of and rationale
for this requirement, and its impact on other requirements.

Table 1.3 Flaws in a requirements document: Examples

flowcharts, variables that are internal to the software (rather than shared with the environment,
cf. Figure 1.3), statements formulated in terms of programming constructs such as sequential
composition, iterations or go-tos. ‘Algorithmic requirements’ implement declarative require-
ments that are left implicit. They might incorrectly implement these hidden requirements. They
cannot be verified or tested against them. They may preclude some alternative ‘implementa-
tion’ of the hidden requirements that might prove more effective with respect to other quality
requirements.

In view of their potentially harmful consequences, requirements errors and flaws should
be detected and fixed in the requirements document. Chapter 5 will review a variety of
techniques for requirements quality assurance. In particular, Table 1.1 may be used as a basis

40 Fundamentals of Requirements Engineering

for requirements inspection checklists (see Section 5.1.3). Model-based quality assurance will
be discussed at length in Parts II and III.

1.1.8 Types of software projects
There are different types of projects for which requirements need to be elaborated. As we will
see, different project types may entail variations in the RE process discussed in Section 1.1.6.

Greenfield vs brownfield projects
In a greenfield project, a brand new software solution is built from scratch to address
problems with the system-as-is and exploit new opportunities from technology evolution or
market conditions. In a brownfield project, the system-as-is already offers software solutions;
the software-to-be needs to integrate, improve, adapt or extend such solutions. Note that
a greenfield project may become brownfield as the software evolves after deployment. As
examples:

• The WAX train transportation system is a greenfield project.

• The UWON library project would be brownfield if we needed to integrate legacy software
from some departments.

Greenfield projects are sometimes specialized further into normal design vs radical design
projects (Vicenti, 1993). In a normal design project, engineers solve problems by making
improvements to existing technologies or by using them in new ways. They have a good
idea of what features the target artefact will provide. In contrast, radical design projects
result in fundamentally new technologies. The creators of the target artefact have little
idea at the beginning of how this artefact will work and how its components should
be arranged. Radical design projects are much less common. They are exploratory by
nature.

Customer-driven vs market-driven projects
In a customer-driven project, a software solution is developed to address the actual needs of
one specific customer in the context of one specific organization. In a market-driven project,
a software solution is developed to address the potential needs of a whole market segment.
There are projects lying between those extremes where the software-to-be is aimed at a specific
class of customers within a specific domain. As examples:

• The WAX train transportation system is a customer-driven project.

• The meeting scheduler system is a market-driven project.

• The UWON library project lies somewhere in between, as other universities might be
potentially interested in such software to integrate and manage their libraries.

Setting the Scene 41

In-house vs outsourced projects
In an in-house project, the same company or consortium is carrying out all project phases.
In an outsourced project, the development is carried out by subcontractors – usually once the
project requirements have been established. In general, the contractor is selected by evaluating
proposals in response to a call for tenders. There are again projects lying in between, where
only specific development phases are being subcontracted. As examples:

• The meeting scheduler is a WSS in-house project.

• The WAX train transportation project is likely to be an outsourced one.

Single-product project vs product-line projects
In a single-product project, a single product version is developed for the target customer(s). In
a product-line project, a product family is developed to cover multiple variants. Each variant
customizes the product to a specific class of users or a specific class of items to be managed
or controlled. It usually shares commonalities with other variants while differing at specific
variation points. Note that a greenfield, single-product project may evolve into a brownfield,
product-line one where the single product initially delivered evolves into multiple variants. As
examples:

• The WAX train transportation system is a single-product project (at least at inception).

• The meeting scheduler is a product-line project. Variability might refer to the type of
customer or the type of meeting.

• If we consider the in-car light-control software for a car manufacturer, variability might
refer to different car categories where the software should be installed.

A software project is generally multi-type along the above dimensions. For example, the
meeting scheduler might be a greenfield, market-driven, in-house, product-line project.

As far as RE is concerned, these project types have commonalities and differences. On the
commonality side, they all need to be based on some form of requirements document at some
development stage or another. For example, there is no way of developing a high-quality
software product in a brownfield, market-driven, in-house, product-line project without any
formulation of the requirements for the software and the assumptions on the environment.
Differences from one project type to the other may lie in the following aspects of the RE
process:

• Respective weights of requirements elicitation, evaluation, documentation, consolidation
and evolution. Documentation has been observed to be more prominent in customer-
driven projects, whereas prioritization is more prominent in market-driven projects (Lubars
et al., 1993). Consolidation is likely to be more prominent in greenfield, customer-driven,
mission-critical projects.

42 Fundamentals of Requirements Engineering

• Use of specific techniques to support RE activities. For example, greenfield projects may
require prototyping techniques for requirements elicitation and risk-based evaluation
techniques for decision making (see Chapters 2 and 3). Product-line projects may require
feature diagrams for capturing multiple system variants (see Chapter 6).

• Intertwining between requirements engineering and product design. In greenfield
projects, and in radical design projects in particular, requirements might emerge only
once critical design decisions have been made or a product prototype is available.

• Respective weights of functional and non-functional requirements. Brownfield projects
are often concerned with improving product quality. Non-functional requirements are
therefore prominent in such projects.

• Types of stakeholder involved in the process. A market-driven project might involve
specific types of stakeholder such as technology providers, service providers, retailers,
consumers, legislator and the like.

• Types of developer involved. The skills required in an outsourced project might be limited
to implementation skills, whereas an in-house, greenfield project might require advanced
analysis skills.

• Specific uses of the requirements document. In an outsourced project, the RD is often
used as an annex to the call for tenders, as a reference for evaluating submitted proposals
and as a basis for progress monitoring and product evaluation.

1.1.9 Requirements in the software lifecycle
As we saw before, the requirements document is the main product of the RE process. It defines
the system-to-be in terms of its objectives, constraints, referenced concepts, responsibility
assignments, requirements, assumptions and relevant domain properties. It may also describe
system variants and likely evolutions.

Requirements engineering is traditionally considered as the preliminary phase of a software
project. The requirements document may indeed be used subsequently in a variety of contexts
throughout the software lifecycle. Figure 1.7 summarizes the impact of the requirements
document on various software engineering artefacts. The arrows there indicate impact links
(which may be bidirectional). Let us briefly review lifecycle activities where the requirements
document may be used.

Software prototyping In development processes that integrate a prototyping phase, the
requirements already elicited provide input for building an initial prototype or mock-up.

Architectural design A software architecture defines the organization of the software in terms
of configurations of components, connectors capturing the interactions among components,
and constraints on the components, connectors and configurations (Shaw & Garlan, 1996;
Bosch, 2000). The architecture designed must obviously meet the software requirements. In

Setting the Scene 43

Impacts on

Requirements
document

Project estimations
(size, cost, schedules)

Project work plan

Software prototype,
mock-up

Follow-
up directives

Software architecture

Call for tenders,
proposal evaluation

Quality assurance
checklists

Project contract

Software evolution
directives

Software documentation

Acceptance test data

Implementation
directives

User manual

Figure 1.7 Requirements in the software lifecycle

particular, architectural choices may have a deep impact on non-functional requirements (Perry
& Wolf, 1992). The requirements document is therefore an essential input for architectural
design activities such as:

• The identification of architectural components and connectors.

• Their specification to meet the requirements.

• The selection of appropriate architectural styles.

• The evaluation of architectural options against non-functional requirements.

Software quality assurance The requirements document provides the ultimate reference for
quality assurance activities. In particular:

• Requirements provide the basis for elaborating acceptance test data that cover them.

• They are used to define checklists for software inspections and reviews.

Implementation and integration These later steps of the software lifecycle must take non-
functional requirements such as interface and installation requirements into account.

Documentation The requirements document, possibly in summarized form, is an important
component of the software documentation. Parts of it may be used for writing user manuals.

Maintenance The requirements document, together with problem reports and approved mod-
ification requests, provides the input material for revising, adapting, extending or contracting
the software product.

44 Fundamentals of Requirements Engineering

Project management The requirements provide a solid basis for project management tasks
such as:

• Estimating project size, cost and schedules, e.g. through function points (Low & Jeffery,
1990).

• Planning development activities.

• Writing a call for tenders and evaluating proposals (for outsourced projects).

• Writing the contract linking the developer and the customer.

• Reviewing progress during an incremental development.

• Assessing development team productivity.

• Evaluating the final product.

Many software process models and development methodologies recognize the important role
of requirements throughout the software lifecycle. For example, the diagrams summarizing the
RUP Unified Process show how the requirements document permeates all project phases from
inception to elaboration to construction to transition (Jacobson et al., 1999).

The inevitable intertwining of RE, system design and software architecture design
We might think of RE and design ideally as two completely separate processes coming one after
the other in a waterfall-like fashion. This is rarely the case in practice. A complex problem is
solved by identifying subproblems, specifying them and solving them, which recursively yields
new subproblems (Nilsson, 1971). The recursive nature of problem solving makes the problem
and solution spaces intertwined. This applies, in particular, when we elaborate requirements,
a corresponding system-to-be and a corresponding software architecture.

Such intertwining occurs at places where we need to make decisions among alternative
options based on quality requirements, in particular:

• When we have elicited a system objective and want to decompose it into sub-
objectives – different decompositions might be envisioned, and we need to select a
preferred one.

• When we have identified a likely and critical risk – different countermeasures might be
envisioned, and we need to select a preferred one.

• When we have detected a conflict between requirements and want to resolve it – different
resolutions might be envisioned, and we need to select a preferred one.

• When we realize a system objective through a combination of functional services,
constraints and assumptions – different combinations might be envisioned, and we need
to select a preferred one.

Setting the Scene 45

• When we consider alternative assignments of responsibilities among components of the
system-to-be – a more suitable one must eventually be selected. In this process, we might
consider alternative component granularities as well.

All these situations involve system design decisions. Once such a decision has been made,
we need to recursively elicit, evaluate, document and consolidate new requirements and
assumptions based on it. Different decisions may result in different proposals for the system-
to-be, which, in turn, are likely to result in different software architectures. Conversely, while
elaborating the software architecture we might discover new requirements or assumptions that
had been overlooked thus far.

Let us illustrate this intertwining of RE and design in our case studies.
In the meeting scheduler, the objective of knowing the constraints of invited participants

might be decomposed into a sub-objective of knowing them through e-mail requests or,
alternatively, a sub-objective of knowing them through access to their electronic agenda. The
architecture of a meeting scheduler based on e-mail communication for getting constraints
will be different in places from one based on e-agendas. Likewise, there will be architectural
differences between an alternative where meeting initiators are taking responsibility for handling
constraint requests and a more automated version where a software component is responsible
for this.

In our train control system, the computation of train accelerations and the transmis-
sion of acceleration commands to trains might be under responsibility of software com-
ponents located at specific stations. Alternatively, this responsibility might be assigned,
for the acceleration of a specific train, to the on-board software of the train preced-
ing it. These are system design options that we need to evaluate while engineering the
system requirements, so that preferred options can be selected for further requirements
elaboration. Those two alternatives result in very different software architectures – a semi-
centralized architecture and a fully distributed one. The alternative with an ultra-reliable
component at specific stations is likely to be selected in order to better meet safety require-
ments.

1.1.10 The relationship of requirements engineering to other disciplines
Section 1.1.3 discussed how wide the scope of RE is. Section 1.1.6 showed how diverse its
activities and actors are. It is therefore not surprising that some areas of RE are connected to
other disciplines and research communities.

The discipline of RE has a primary interaction with, of course, software engineering (SE).
As frequently said, the former is about getting the right system whereas the latter is about
getting the software right in this system. The previous section discussed numerous interactions
between RE and SE processes and products. In addition, RE benefits from SE technology for
designing tools to support its activities – such as smart editors, prototyping tools, analysers,
documentation tools, configuration managers and the like.

There are other disciplines to which RE is connected. We just mention the connections
here; they will appear more clearly as we discuss RE techniques, by activity, in Chapters 2 to 6.

46 Fundamentals of Requirements Engineering

Domain understanding and requirements elicitation
Analysing system objectives, tasks and roles is a concern shared with systems engineering,
sometimes called systems analysis in the business application domain.

For control systems, control theory provides techniques for modelling controllers and
controlled processes. These techniques can be used to analyse the environment and the
interactions that the software should have with it.

The system-as-is and the system-to-be are generally grounded within an organization. The
structure, business objectives, policies and operational procedures of this organization need
to be understood and analysed. Effective techniques for doing so are found in management
science and organization theory.

The quality of communication between requirements engineers and stakeholders is a
necessary condition for the effectiveness of domain understanding and requirements elicitation.
Principles and guidelines can be borrowed from behavioural psychology here. Some of the
techniques used for elicitation originate in sociological theories of human groups; others are
grounded on ethnographical principles from anthropology (see Section 2.3.2).

Requirements elicitation amounts to a form of knowledge acquisition for which techniques
have been developed in artificial intelligence.

The elicitation and analysis of specific categories of non-functional requirements may
be supported by dedicated techniques found in other disciplines, for example reliability
theory for safety requirements, security engineering for security requirements, probabilistic
performance evaluation for performance requirements, cognitive psychology and human-
computer interaction (HCI) for useability requirements. In particular, the HCI literature contains
a significant number of dedicated techniques for eliciting, evaluating, specifying and validating
user interface requirements based on user models and task models.

Requirements evaluation and agreement
The assessment of alternative options against qualities and risks is a general issue addressed by
decision theory and the literature on risk management. Specific techniques such as multicriteria
analysis are highly relevant in this context.

Management science also provides principles and theories on the art of negotiation and
conflict management. These issues are addressed from a different perspective in artificial
intelligence in the context of multi-agent planning.

Requirements specification, documentation and consolidation
There is some partial overlap between the techniques available to support these activities and
the languages, structuring mechanisms and analysis tools found in the software engineering
literature on software specification. Some of the software design notations can be lifted up to RE,
including a subset of the UML, as we will see in Part II. Formal methods provide technological
solutions for analysing requirements when the latter are available in fully formalized, machine-
processable form. They will be introduced in Sections 4.4 and 5.4 and further discussed in
Chapters 17 and 18.

Setting the Scene 47

Requirements evolution
From a managerial perspective, this area intersects with the area of change management in
management science. From a technical perspective, it intersects with the area of version control
and configuration management in software engineering.

Modelling as a transversal activity
Parts II and III of this book will present a model-driven approach to requirements engineering
where multifaceted models of the system-as-is and the system-to-be are built as a common
interface to the various RE activities. Requirements modelling is connected to other disciplines
in computing science where models are used, notably:

• Conceptual models in databases and management information systems.

• Task models in human–computer interaction.

• Models for representing domain knowledge and structuring problem spaces in artificial
intelligence.

1.2 Why engineer requirements?
Now that we have a better idea of what RE is about, we could ask ourselves whether it is
worth the effort. This section discusses why and to what extent the engineering of high-quality
requirements is an essential precondition for the success of a software project. We first review
some citations and facts that provide anecdotal evidence about the importance of RE and the
consequences of poor RE. Then we discuss the role and critical impact of RE in the software
lifecycle from a more general perspective.

1.2.1 Facts, data and citations about the requirements problem
The phrase ‘requirements problem’ refers to software project failures that have been attributed
to poor or non-existent requirements.

An old problem
The requirements problem is among the oldest in software engineering. An early empirical
study of a variety of software projects revealed that incomplete, inadequate, inconsistent
or ambiguous requirements are numerous and have a critical impact on the quality of the
resulting software (Bell & Thayer, 1976). These authors concluded that ‘the requirements for
a system do not arise naturally; instead, they need to be engineered and have continuing
review and revision’. This was probably the first reference to the phrase ‘requirements
engineering’, suggesting the need for systematic, repeatable procedures for building high-quality
artefacts.

A consensus has been rapidly growing that such engineering is difficult. As Brooks noted in
his landmark paper on the essence and accidents of software engineering, ‘the hardest single
part of building a sofware system is deciding precisely what to build . . . Therefore, the most

48 Fundamentals of Requirements Engineering

important function that the software builder performs for the client is the iterative extraction
and refinement of the product requirements’ (Brooks, 1987).

Requirements errors are the most expensive software errors
Lots of time and money can be saved if requirements errors and flaws are detected and fixed at
the RE stage rather than later. Boehm and Papaccio reported that it costs 5 times more to detect
and fix requirements defects during design, 10 times more during implementation, 20 times
more during unit testing and up to 200 times more after system delivery (Boehm & Papaccio,
1988).

Requirements errors are numerous and persistent
Requirements errors are not only usually costly; they are numerous and persistent over the
software lifecycle. Jones states that US companies average one requirements error per function
point (Jones, 1995). According to an earlier study, for management information systems 55%
of software faults can be traced to the requirements and design phases; the figure is 50% for
military software and 45% for systems software. The overall figure, weighted by occurrences,
is 52%, with 25% from the requirements phase and 27% from the design phase (Jones, 1991).
In her study of software errors in NASA Voyager and Galileo programs, Lutz consistently
reported that the primary cause of safety-related faults was errors in functional and interface
requirements (Lutz, 1993).

Other studies have confirmed the requirements problem on a much larger scale. A survey
over 8000 projects undertaken by 350 US companies suggested that only 16% of them
were considered to be successful; 33% of them failed without having ever been completed;
and 51% succeeded only partially; that is, with partial functionalities, major cost overruns
and significant delays (Standish Group, 1995). When asked about the main reasons for
this, about 50% of the project managers identified requirements-related problems as the
primary cause; specifically, the lack of user involvement (13%), requirements incompleteness
(13%), changing requirements (11%), unrealistic expectations (9%) and unclear objectives
(5%). An independent survey of 3800 European organizations in 17 countries led to parallel
conclusions. When asked where their main software problems were, more than half of the
managers ranked requirements specification and management in first position (Ibanez &
Rempp, 1996).

The requirements problem has been echoed in various business reports about the lack
of alignment between business problems and IT solutions. An Accenture study in 2003
pointed out the mismatch between IT investments and business objectives. A Giga Group
report in 2001 consistently recommended that IT projects be prioritized according to their
contribution to business objectives. Another report by Meta Group in 2003 claimed that
60–70% of IT project failures are to be attributed to poor requirements gathering, analysis and
management.

Other studies led independently to the consistent conclusion that many software problems
and failures are to be attributed to poor RE, for example Lyytinen and Hirscheim, 1987 and
Jones, 1996.

Setting the Scene 49

Requirements errors are the most dangerous software errors
The requirements problem gets even worse in the case of mission-critical systems such as
safety-critical or security-critical systems. Many harmful and sometimes tragic software failures
were recognized to be traceable back to defective requirements (Leveson, 1995; Neumann,
1995; Knight, 2002).

For example, 290 people were killed when a civil IranAir A300 Airbus was confused with a
hostile F-14 aircraft and shot by the US Vincennes warship in July 1988. Investigations revealed
that the origins of this tragedy were a mix of threatening conditions and missing requirements
on the AEGIS combat software. Some timing requirements for successive input events to be
threatening were missing. Furthermore, critical information on aircraft displays to allow pilots
to assess threats correctly was missing, such as current altitude and ascending/descending
mode of ‘target’ aircraft (US Department of Defense, 1988).

Neumann reports on several cases in the London underground system where people were
killed due to doors opening or closing in unexpected circumstances without alarm notification
to the train driver (Neumann, 1995).

As noted before, omissions and inadequacies do not refer to requirements only. Many
reported problems originate in missing, inadequate, inaccurate or changing assumptions and
properties about the environment in which the software operates. An early study of software
engineering practice already made that point (Curtis et al., 1988). Sadly enough, its conclusions
remained valid. Let us first mention a few cases of inadequate assumptions or domain
properties.

The first version of the London ambulance despatching system was based on a series of
assumptions about the environment, for example that radio communication would work in all
circumstances, that the ambulance localization system would always work properly, that crews
would always select the ambulance being allocated to them by the software, that they would
always go to the incident assigned to them by the software, that they would always press
ambulance availability buttons correctly and when needed, that no incident data could be lost
and so forth. The two tragic failures of this system from October to November 1992 resulted
from a combination of circumstances that violated many such assumptions (LAS, 1993).

Hooks and Farry mention an aerospace project where 49% of requirements errors were due
to incorrect facts about the problem world (Hooks & Farry, 2000).

An inadequate assumption about the environment of the flight guidance system may have
contributed to the tragic crash of an American Airlines Boeing 757 in Cali (Colombia) in
December 1995 (Modugno et al., 1997). The information about the point in space where the
pilot was expected to initiate the flap extension was assumed to arrive before the plane actually
reached that point in space. The aircraft landing in Cali had already passed that point, which
resulted in the guidance software ordering the plane to turn around towards a mountain.

Domain properties, used explicitly or implicitly for elaborating requirements, may be wrong
as well. A famous example is the Lufthansa A320 Airbus flight to Warsaw, in which the plane
ran off the end of the runway, resulting in injuries and loss of life. The reverse thrust was
disabled for up to nine seconds after landing on a waterlogged runway (Ladkin, 1995). In
terms of the satisfaction argument discussed in Section 1.1.4, the problem might be recollected

50 Fundamentals of Requirements Engineering

in simplified form as follows (Jackson, 1995a). The autopilot had the system requirement that
reverse thrust be enabled if and only if the plane is moving on the runway:

(SysReq:) ReverseThrustEnabled ↔ MovingOnRunway

The software requirement given to developers in terms of software input/output variables was:

(SofReq:) reverse = 'on' ↔ WheelPulses = 'on'

An argument that this software requirement entails the corresponding system requirement had
to rely on assumptions on the wheels sensor and reverse thrust actuator, respectively:

(Asm:) WheelPulses = 'on' ↔ WheelsTurning

reverse = 'on' ↔ ReverseThrustEnabled,

together with the following domain property:

(Dom:) MovingOnRunway ↔ WheelsTurning

This domain property proved to be inadequate on the waterlogged Warsaw runway. Due to
aquaplaning, the plane there was moving on the runway without wheels turning.

A similar case occurred recently where a car driver was run over by his luxurious
computerized car while opening a gate in front of it. The software controlling the handbrake
release had the system requirement:

‘The handbrake shall be released if and only if the driver wants to start.’

The software requirement was:

‘The handbrake control shall be ‘‘off’’ if and only if the normal running of the motor is raised.’

The assumption that

‘The driver wants to start if and only if he presses the acceleration pedal’

is adequate; but the domain property stating:

‘The normal running of the motor is raised if and only if the acceleration pedal is pressed’

proved to be inadequate on a hot summer’s day. The car’s air conditioner started automatically,
due to the car’s door being open while the driver was opening the gate in front, which resulted
in the normal running of the motor being raised and the handbrake being released.

Setting the Scene 51

In addition to cases of wrong assumptions or wrong domain properties, there are cases
where failure originates from environmental changes that render the original assumptions no
longer adequate. A concrete example showing the problems with changing environments,
in the context of our train control case study, is the June 1995 New York subway crash.
The investigation revealed that the distance between signals was shorter than the worst-case
stopping distance of trains; the assumption that a train could stop in the space allowed after
the signal was adequate for 1918 trains but inadequate for the faster, longer and heavier trains
running in 1995 (16 June 1995 New York Times report, cited in Hammond et al., 2001).

The well-known Ariane 5 rocket failure is another example where environmental assump-
tions, set for requirements satisfaction, were no longer valid. Software components were reused
from the Ariane 4 rocket with ranges of input values that were different from the expected
ones due to changes in rocket features (Lions, 1996). In the same vein, the Patriot anti-missile
system that hit US military barracks during the first Gulf War had been used for more than
100 hours. The system was assuming missions of 14 hours at most (Neumann, 1995).

Missing or inadequate requirements/assumptions may have harmful consequences in
security-critical systems as well. For example, a Web banking service was reported to have no
adequate requirements about how the software should behave when a malicious user is search-
ing for all bank accounts that match some given 4-digit PIN number (dos Santos et al., 2000).

As we will see in Chapter 5, there are fortunately techniques for spotting errors in
requirements and assumptions. For example, such techniques uncovered several dangerous
omissions and ambiguities in TCAS II, a widely used aircraft collision-avoidance system
(Heimdahl & Leveson, 1996). This important topic will be covered in depth in Chapters 5, 9, 16
and 18.

1.2.2 The role and stakes of requirements engineering
The bottom line of the previous section is that engineering high-quality requirements is essential,
as errors in requirements, assumptions and domain properties tend to be numerous, persistent,
costly and dangerous. To support that conclusion, we may also observe the prominent role
that RE plays with respect to multiple stakes.

Technical stakes As we saw in Section 1.1.9, the requirements document (RD) provides a
basis for:

• Deriving acceptance test data.

• Designing the software architecture and specifying its components/connectors.

• Defining quality-assurance checklists.

• Writing the documentation and user manuals.

• Handling requests for software evolution.

52 Fundamentals of Requirements Engineering

Communication stakes The RD provides the main reference through which the various
parties involved in a software project can communicate with each other.

Project management stakes The RD provides a basis for determining the project costs,
required resources, development steps, milestones, review points and delivery schedules.

Legal stakes The RD forms the core of the contract linking the software provider, customers
and subcontractors (if any).

Certification stakes Quality norms are increasingly enforced by law or regulations on projects
in specific domains such as medical, transportation, aerospace or nuclear. They may also be
requested by specific customers in other domains. Such norms constrain the development
process and products. At the process level, maturity models such as CMMI, SPICE or ISO9001
require RE to be taken seriously. For example, CMMI Maturity Level 2 imposes a requirements
management activity as a necessary condition for process repeatability; Level 3 requires
a repeatable requirements development process (Ahern et al., 2003). At the product level,
standards such as IEEE-STD-830 or ESA PSS-05 impose a fairly elaborate structure on the
requirements document (see Section 4.2.2).

Economic stakes The consequences of numerous, persistent and dangerous errors related to
requirements can be economically devastating.

Social stakes When not sufficiently user centred, the RE process may overlook important
needs and constraints. This may cause severe deteriorations in working conditions, and a
wide range of reactions from partial or diverted use of the software to mere rejection of it.
Such reactions may have severe consequences beyond user dissatisfaction. For example, in the
London ambulance system mentioned in the previous section, misuse and rejection of the new
system by ambulance drivers were reported to be among the main causes of failure.

1.3 Obstacles to good requirements engineering practice
Many practitioners have heard about the requirements problem and may have experienced it.
The critical role of RE in the success of a software project is widely recognized. Process maturity
models promote spending effort in RE activities. A recent large-scale study has confirmed that
almost any project includes some RE activity, whatever its type and size (Jones, 2003).

In spite of all this, the current state of RE practice is still, by and large, fairly limited in terms
of effort spent on this activity and technology used to support it (Glass, 2003). Practitioners
are in a sense like cigarette smokers who know that smoking is pretty unhealthy but keep
smoking. The reasons for this may be in the following obstacles to spending effort and money
in the RE process:

• Such effort generally needs to be spent before the project contract is signed, without a
guarantee that a contract will be signed.

Setting the Scene 53

• There might be stronger concerns and pressure on tight schedules, short-term costs and
catching up on the latest technology advances.

• Too little research work has been devoted to RE economics. On one hand, the benefits
and cost saving from using RE technology have not been quantified. They are hard to
measure and not enough evidence has been gained from large-scale empirical studies.
On the other hand, progress in RE activities is harder to measure than in design or
implementation activities.

• Practitioners sometimes feel that the requirements document is exceedingly big and
complex (Lethbridge et al., 2003). In such cases it might not be maintained as the project
evolves, and an outdated document is no longer of any use.

• The requirements document may be felt to be too far away from the executable product
for which the customer is paying. In fact, the quality of requirements does not indicate
much about the quality of the executable product.

• RE technology is sometimes felt to be too heavyweight by some practitioners, and too
vague by others.

• Beyond general guidelines, the transfer of effective RE techniques through courses,
textbooks and pilot studies has been much more limited than in other areas of software
engineering.

We need to be aware of such obstacles to find ways of overcoming them. Chapters 2–6 will
review standard techniques to support the RE process more effectively. In this framework,
the next parts of the book will detail a systematic method for building a multifaceted system
model from which a well-structured requirements document can be generated. This method
will make the elicitation, evaluation, documentation, consolidation and evolution efforts more
focused and more effective.

1.4 Agile development processes and requirements engineering
More agility in the RE process might address some of the previously mentioned obstacles in
some software projects.

Agile processes are aimed at early and continuous provision of functionality of value to the
customer by reducing both the RE effort and the requirements-to-code distance.

To achieve this, the spiral RE process in Figure 1.6 iterates on very short cycles, where each
cycle is directly followed by a short implementation cycle:

• A RE cycle is shortened by eliciting some useful functional increment directly from the
user, and by shortcutting the evaluation, specification and consolidation phases; or by
making these very rudimentary to expedite them. For example, the specification phase
may amount to the definition of test cases that the implementation must pass.

• The implementation cycle next to a RE cycle is shortened as (a) the functional increment
from this RE cycle is expected to be small; and (b) this increment is implemented by a

54 Fundamentals of Requirements Engineering

small team of programmers working at the same location, following strict programming
rules, doing their own unit testing and staying close to the user to get instant feedback
for the next RE cycle.

The functional increment elicited at a RE cycle is sometimes called user story. It captures some
unit of functionality of direct value that the user can write and deliver easily to the programming
team.

Agile processes have emerged in certain development communities and projects as a
reaction against overly heavyweight practices, sometimes resulting from the misinterpretation
of process models and the amount of ‘ceremony’ and reporting they require. However, it is
important to highlight the underlying assumptions that a project must fulfil for an agile process
to work successfully. Such assumptions delimit the applicability of agile processes:

• All stakeholder roles, including the customer and user roles, can be reduced to one single
role.

• The project is sufficiently small to be assignable to a single, small-size, single-location
development team.

• The user can be made available at the development site or can interact promptly and
effectively.

• The project is sufficiently simple and non-critical to disregard or give little consideration
to non-functional aspects, environmental assumptions, underlying objectives, alternative
options and risks.

• The user can provide functional increments quickly, consistently (so that no conflict
management is required) and gradually from essential to less important requirements (so
that no prioritization is required).

• The project requires little documentation for work coordination and subsequent product
maintenance. Precise requirements specification before coding is not an issue.

• Requirements verification before coding is less important than early release.

• New or changing requirements are not likely to require major code refactoring and
rewrite, and the people in charge of product maintenance are likely to be the product
developers.

These assumptions are quite strong. Many projects obviously do not meet them all, if any – in
particular, projects for mission-critical systems. We would obviously not like our air traffic
control, transportation, power plant, medical operation or e-banking systems to be obtained
through agile development of critical parts of the software.

Agility is not a binary notion, however. Depending on which of the preceding assumptions
can be fulfilled and which cannot, we can achieve more or less agility by paying more or less
attention to the elicitation, evaluation, specification and consolidation phases of an RE cycle,
making it longer or shorter.

Setting the Scene 55

From this perspective, the approach discussed in Parts II and III is intended to make RE
cycles shorter by:

• Supporting functional goals and scenarios as units of value to stakeholders.

• Focusing on declarative formulations for incremental elaboration, and incremental analysis
only when and where needed.

• Providing constructive guidance in model-based RE through a variety of heuristics and
patterns.

• Integrating tool support for effort reduction by elimination of clerical work.

Summary

• The focus of RE is the investigation, delineation and precise definition of the problem
world that a machine solution is intended to improve. The scope of investigation
is broad. It involves two system versions. Next to the system-as-is, the system-to-be
comprises the software to be developed and its environment. The latter may comprise
people playing specific roles, physical devices operating under physical laws, and
pre-existing software. The questions to be addressed about the system-to-be include
WHY, WHAT, HOW WELL and WHO questions. Such questions can be answered in
a variety of ways, leading to a range of alternative options to consider, each having
associated strengths and risks.

• Requirements engineers are faced with multiple transitions to handle: from the problem
world to the machine interface with it; from a partial set of conflicting concerns
to a complete set of consistent statements; from imprecise formulations to precise
specifications; from unstructured material to a structured document; from informal
wishes to a contractual document. There are multiple levels of abstraction to consider,
with strategic objectives at the top and technical requirements at the bottom. Multiple
abstraction levels call for satisfaction arguments, as we need to show that the higher-
level concerns are satisfied by the lower-level ones.

• The RE process is an iteration of intertwined activities for eliciting, evaluating, doc-
umenting, consolidating and changing the objectives, functionalities, assumptions,
qualities and constraints that the system-to-be should meet based on the opportunities
and capabilities provided by new technologies. Those activities involve multiple stake-
holders that may have conflicting interests. The relative weight of each activity may
depend on the type of project.

• The RE process involves different types of statements. Requirements are prescrip-
tive statements about software functionalities, qualities and development constraints.
They are expressed in the vocabulary of the problem world. Domain properties are

56 Fundamentals of Requirements Engineering

descriptive statements about this world. Assumptions are statements about expected
behaviours of environmental components. We need to make appropriate assumptions
and identify correct domain properties to elaborate the right requirements.

• These different types of statements have to be specified and structured in the require-
ments document. Their specification must meet multiple qualities, among which
completeness and adequacy are most critical. The requirements document is a core
artefact in the software lifecycle, as many software engineering activities rely on it. Its
quality has a strong impact on the software project – notably, its successful completion,
the development and maintenance costs, the rate of user acceptance and satisfaction,
system security and safety. Studies on the requirements problem have consistently
shown that requirements errors are numerous, persistent, costly and dangerous. Wrong
hidden assumptions can be the source of major problems.

• There are a few misconceptions and confusions about RE to avoid:

a. The target of investigation is not the software but a system of which the software is
one component.

b. RE does not amount to some translation of pre-existing problem formulations.

c. RE and design are not sequentially composed in a waterfall-like fashion. RE involves
system design. In view of the alternative options arising in the RE process, we need
to make decisions that may subsequently influence software design. Conversely,
some requirements might sometimes emerge only in the later stages of software
design.

d. Unlike domain properties, requirements may need to be negotiated, weakened or
changed.

e. ‘Precise’ does not mean ‘formal’. Every statement must have a unique, accurate
interpretation without necessarily being machine processable.

f. A set of notations may be a necessary condition for a RE method but certainly not a
sufficient one. A method should provide systematic guidance for building complex
requirements documents.

Notes and Further Reading

The grounding of machine requirements in the problem world is amply discussed in
Jackson (1995b). One of the first characterizations of RE as investigation of WHY, WHAT
and HOW issues appeared in Ross and Schoman (1977a). This seminal paper emphasized
the importance of analysing the contextual objectives that the system-to-be needs to
address. It introduced viewpoints as a composition mechanism for RE. Twenty years

Setting the Scene 57

later, Zave consistently argued that the relationship between objectives, functionalities,
constraints and software requirements is a key aspect of the RE process (Zave, 1997).
Requirements evolution along variants and revisions is also discussed there.

The important distinction between descriptive and prescriptive statements appeared
first in Jackson & Zave (1993) and was echoed in Jackson (1995a) and Zave and Jackson
(1997). The differentiation between system requirements and software requirements is
discussed in Jackson (1995a), where the latter are called ‘specifications’. Similar distinctions
were made in the more explicit setting of the four-variable model in Parnas and Madey
(1995).

Satisfaction arguments have been known for a long time in programming methodology.
When we build a program P in some environment E the program has to satisfy its
specification S. Therefore we need to argue that P, E |= S. Such argumentation was first
lifted up to the RE phase in Yue (1987). The need for satisfaction arguments at RE time
is discussed in Jackson (1995a) and convincingly illustrated in Hammond et al. (2001) in
the context of the REVEAL methodology for requirements engineering. Such arguments
were made explicit in terms of goal refinement and goal operationalization in Dardenne
et al. (1991), Dardenne et al. (1993) and van Lamsweerde (2000b).

The spiral model of software development is described in Boehm (1988). An adaptation
to requirements development was suggested first in Kotonya & Sommerville (1997). Agile
processes in the context of RE are briefly introduced in Leffingwell and Widrig (2003).
The need for early delivery of useful subsystems was recognized in Parnas (1979).

Numerous books and papers propose requirements taxonomies, notably Thayer and
Dorfman (1990), Davis (1993), Robertson and Robertson (1999) and Chung et al. (2000).

A thorough discussion of specification errors will be found in Meyer’s paper on the
specifier’s ‘‘seven sins’’ (Meyer, 1985). Those ‘sins’ are illustrated there on a published
specification of a text formatting problem, where most defects are found in a few
lines! Yue was probably the first to define requirements completeness and pertinence
with respect to underlying objectives (Yue, 1987). The best discussion on requirements
measurability is in Robertson and Robertson (1999), which proposes so-called fit criteria
as a way of checking whether a requirement is measurable (we come back to this in
Sections 4.2 and 5.1). Some of the qualities expected for a requirements document are
also presented in Davis (1993).

The distinction between customer-specific and market-driven projects is discussed
from an RE perspective in Lubars et al. (1993). Radical design projects are contrasted with
normal design ones from an engineering perspective in Vicenti (1993).

The view of RE as a composite system design activity is elaborated technically in
Feather (1987) and Fickas and Helm (1992). The inevitable intertwining of RE and
architectural design is argued in Nuseibeh (2001). To some extent it is a transposition, to
the earlier phases of the software lifecycle, of an argument made before for specification
and implementation (Swartout & Balzer, 1982).

58 Fundamentals of Requirements Engineering

Stories and analyses of poor RE in mission-critical systems can be found in Leveson
(1995) and Neumann (1995). For regular updates check the RISKS Digest Forum Web site,
moderated by P. G. Neumann under the auspices of the ACM Committee on Computers
and Public Policy.

An obvious indication of the vitality of RE as an autonomous discipline is the number of
introductory textbooks on the subject. They cover general insights, principles, guidelines
and modelling notations for RE. A sample of these includes Gause and Weinberg (1989).
Davis (1993), Loucopoulos and Karakostas (1995), Kotonya and Sommerville (1997),
Kovitz (1999), Robertson and Robertson (1999), Maciaszek (2001), Lauesen (2002) and
Bray (2003). Among these, Davis (1993) contains an extensive annotated bibliography
on early work. A good overview of requirements capture within the software lifecycle is
provided in Pfleeger (2001).

The running case studies in this book have some origins in the literature. The library
system significantly expands on a toy specification benchmark (Wing, 1988), to address
RE issues based on a real library system in a large university environment. The train
control system is partially inspired by the BART system (Winter et al., 1999), the old-
time McGean train system (Feather, 1994) and the author’s experience of missing flight
connections in large airports due to poor local transportation facilities. The meeting
scheduling system expands on an earlier version (van Lamsweerde et al., 1993), par-
tially published in Feather et al. (1998), based on personal experience in organizing
international meetings.

Exercises

• Consider the library world suggested by the case study description in Section 1.1.2.
Draw a world-and-machine diagram similar to Figure 1.1 showing where the following
phenomena are located: BookCopyReturned (the return of a book by a patron); ReturnEn-
coded (the encoding of a returned book by library staff at a terminal); LoanRecordUpdated
(the corresponding database update); BookCopyInShelves (the physical availability of a
book copy in library shelves); BookAvailabilityDisplayed (the displaying at a terminal of a
book’s availability status); BookCoversThisTopic (the fact that a book covers such or such
topic); BookKeywordsEncoded; DatabaseSearched; and QueryAnswerDisplayed.

• Distribute the list of complaints, reported in the case study description of the library sys-
tem in Section 1.1.2, among different viewpoints associated with specific stakeholders.

• From the case study description of the library system, elaborate alternative options to
meet the objective of reduced book stealing at UWON. Assess each alternative against
its risks.

Setting the Scene 59

• Consider the case study description of the train control system. Discuss the respec-
tive strengths and risks associated with alternative responsibility assignments of the
prescriptive statement TrainDoorsClosedWhileMoving; namely, to the train driver, to a
dedicated clerk, to passengers or to an on-board software controller.

• Identify a sample of strategic objectives, functional services and environmental assump-
tions from the case study descriptions of the library, train control and meeting
scheduling systems.

• Draw a diagram similar to Figure 1.3 for the meeting scheduling case study. Make your
diagram more precise by depicting a four-variable model of it.

• Repeat the previous exercise on your favourite cashpoint machine (ATM).

• Provide a sample of descriptive statements and a sample of prescriptive statements
from the case study descriptions of the library, train control and meeting scheduling
systems, respectively.

• Consider a simple traffic light system to regulate safe pedestrian crossing on a busy
lane. Consider the following system requirement:

(SysReq:) The traffic lights shall allow pedestrians to safely cross the lane by stopping cars

together with the following software requirements:

(SofReq1:) The light switch for pedestrians will be set to 'green' within x seconds after
the pedestrian button has been pressed.

(SofReq2:) The light switch for cars will be set to 'red' at least y seconds before the
light switch for pedestrians is set to 'green'.

Find missing environment assumptions and domain properties that are necessary to
build the following satisfaction argument:

{SofReq1, SofReq2, assumptions?, domain properties?} |= SysReq

Are the missing domain properties adequate? Are the missing assumptions realistic?

• Find out where such a satisfaction argument fails in the car handbrake control story
reported in Section 1.2.1.

• Section 1.1.4 gives a few examples of non-functional requirements for our running case
studies. Identify additional non-functional requirements mentioned in the case study
descriptions, and classify them according to the taxonomy in Figure 1.5. For example,
to what class does the following requirement belong?

The meeting date and location should be notified to participants x weeks before the meeting at
latest.

60 Fundamentals of Requirements Engineering

• Extend the case study descriptions in Section 1.1.2 with other non-functional require-
ments that might be worth considering. To elicit them, browse through the requirements
taxonomy in Figure 1.5 and look for system-specific instances of the various categories.

• Find or invent other examples of requirement/assumption defects in the case study
descriptions, in addition to those in Tables 1.2 and 1.3.

• Imagine that you need to convince your manager that the project budget has to cover
X person-months for the RE task. Prepare a full argument for this.

