
1
Defining the Signal

. . . the distance of the invisible background [is] so immense that no ray from it has yet been able to

reach us at all.

–Edgar Allan Poe in Eureka, 1848

1.1 The power of light – luminosity and spectral power

The luminosity, L, of an object is the rate at which the object radiates away its energy

(cgs units of erg s�1 or SI units of watts),

dE ¼ L dt ð1:1Þ

This quantity has the same units as power and is simply the radiative power output from

the object. It is an intrinsic quantity for a given object and does not depend on the

observer’s distance or viewing angle. If a star’s luminosity is L� at its surface, then at a

distance r away, its luminosity is still L�.
Any object that radiates, be it spherical or irregularly shaped, can be described by

its luminosity. The Sun, for example, has a luminosity of L� ¼ 3:85 � 1033 erg s�1

(Table G.3), most of which is lost to space and not intercepted by the Earth

(Example 1.1).

Example 1.1

Determine the fraction of the Sun’s luminosity that is intercepted by the Earth. What
luminosity does this correspond to?

At the distance of the Earth, the Sun’s luminosity, L�, is passing through the imaginary

surface of a sphere of radius, r� ¼ 1 AU. The Earth will be intercepting photons over only
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the cross-sectional area that is facing the Sun. This is because the Sun is so far away that

incoming light rays are parallel. Thus, the fraction will be

f ¼ �R�
2

4� r2
�

ð1:2Þ

where R� is the radius of the Earth. Using the values of Table G.3, the fraction is

f ¼ 4:5 � 10�10 and the intercepted luminosity is therefore Lint ¼ f L� ¼ 1:73�
1024 erg s�1. A hypothetical shell around a star that would allow a civilization to intercept

all of its luminosity is called a Dyson Sphere (Figure 1.1).

When one refers to the luminosity of an object, it is the bolometric luminosity that is

understood, i.e. the luminosity over all wavebands. However, it is not possible to

determine this quantity easily since observations at different wavelengths require

different techniques, different kinds of telescopes and, in some wavebands, the
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Figure 1.1. Illustration of a Dyson Sphere that could capture the entire luminous ouput from the
Sun. Some have suggested that advanced civilizations, if they exist, would have discovered ways to
build such spheres to harness all of the energy of their parent stars.
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necessity of making measurements above the obscuring atmosphere of the Earth. Thus,

it is common to specify the luminosity of an object for a given waveband (see

Table G.6). For example, the supernova remnant, Cas A (Figure 1.2), has a radio

luminosity (from �1 ¼ 2 � 107 Hz to �2 ¼ 2 � 1010 Hz) of Lradio ¼ 3 � 1035 erg s�1

(Ref. [6]) and an X-ray luminosity (from 0:3 to 10 keV) of LX-ray ¼ 3 � 1037 erg s�1

(Ref. [37]). Its bolometric luminosity is the sum of these values plus the luminosities

from all other bands over which it emits. It can be seen that the radio luminosity

might justifiably be neglected when computing the total power output of Cas A.

Clearly, the source spectrum (the emission as a function of wavelength) is of

some importance in understanding which wavebands, and which processes, are most

important in terms of energy output. The spectrum may be represented mostly by

continuum emission as implied here for Cas A (that is, emission that is continuous

over some spectral region), or may include spectral lines (emission at discrete

wavelengths, see Chapter 3, 5, or 9). Even very weak lines and weak continuum

emission, however, can provide important clues about the processes that are occurring

within an astronomical object, and must not be neglected if a full understanding of the

source is to be achieved.

In the optical region of the spectrum, various passbands have been defined

(Figure 1.3). The Sun’s luminosity in V-band, for example, represents 93 per cent of

its bolometric luminosity.

The spectral luminosity or spectral power is the luminosity per unit bandwidth and

can be specified per unit wavelength, L� (cgs units of erg s�1 cm�1) or per unit

Figure 1.2. The supernova remnant, Cas A, at a distance of 3:4 kpc and with a linear diameter of
�4 pc, was produced when a massive star exploded in the year AD 1680. It is currently expanding
at a rate of 4000 km s�1 (Ref. [181]) and the proper motion (angular motion in the plane of the sky,
see Sect. 7.2.1.1) of individual filaments have been observed. One side of the bipolar jet, emanating
from the central object, can be seen at approximately 10 o’clock. (a) Radio image at �20 cm shown
in false colour (see Sect. 2.6) from Ref. [7]. Image courtesy of NRAO/AUI/NSF. (b) X-ray emission,
with red, green and blue colours showing, respectively, the intensity of low, medium and high
energy X-ray emission. (Reproduced courtesy of NASA/CXC/SAO) (see colour plate)
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frequency, L� (erg s�1 Hz�1),

dL ¼ L� d� ¼ L� d� ð1:3Þ

so L ¼
Z

L� d� ¼
Z

L� d� ð1:4Þ

Note that, since � ¼ c
� ;

d� ¼ � c

�2
d� ð1:5Þ

so the magnitudes of L� and L� will not be equal (Prob. 1.1). The negative sign in

Eq. (1.5) serves to indicate that, as wavelength increases, frequency decreases.

In equations like Eq. (1.4) in which the wavelength and frequency versions of a function

are related to each other, this negative is already taken into account by ensuring that the

lower limit to the integral is always the lower wavelength or frequency. Note that the cgs

units of L� (erg s�1 cm�1) are rarely used since 1 cm of bandwidth is exceedingly large

(Table G.6). Non-cgs units, such as erg s�1 Å�1 are sometimes used instead.
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Figure 1.3. Filter bandpass responses for (a) the UBVRI bands (Ref. [17]) and (b) the JHKLL�

bands (Ref. [19]). (The U and B bands correspond to UX and BX of Ref. [17].) Corresponding data
can be found in Table 1.1
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Luminosity is a very important quantity because it is a basic parameter of the source

and is directly related to energetics. Integrated over time, it provides a measure of the

energy required to make the object shine over that timescale. However, it is not a

quantity that can be measured directly and must instead be derived from other

measurable quantities that will shortly be described.

1.2 Light through a surface – flux and flux density

The flux of a source, f (erg s�1 cm�2), is the radiative energy per unit time passing

through unit area,

dL ¼ f dA ð1:6Þ

As with luminosity, we can define a flux in a given waveband or we can define it per unit

spectral bandwidth. For example, the spectral flux density, or just flux density

(erg s�1 cm�2 Hz�1 or erg s�1 cm�2 cm�1)1 is the flux per unit spectral bandwidth,

either frequency or wavelength, respectively,

dL� ¼ f� dA dL� ¼ f� dA

df ¼ f� d� df ¼ f� d� ð1:7Þ

A special unit for flux density, called the Jansky (Jy) is utilized in astronomy, most

often in the infrared and radio parts of the spectrum,

1 Jy ¼ 10�26 W m�2 Hz�1 ¼ 10�23 erg s�1 cm�2 Hz�1 ð1:8Þ

Radio sources that are greater than 1 Jy are considered to be strong sources by

astronomical standards (Prob. 1.3).

The spectral response is independent of other quantities such as area or time so

Eq. (1.6) and the first line of Eq. (1.7) show the same relationships except for the

subscripts. To avoid repetition, then, we will now give the relationships for the

bolometric quantities and it will be understood that these relationships apply to the

subscripted ‘per unit bandwidth’ quantities as well.

The luminosity, L, of a source can be found from its flux via,

L ¼
Z

f dA ¼ 4� r2 f ð1:9Þ

where r is the distance from the centre of the source to the position at which the flux

has been determined. The 4� r2 on the right hand side (RHS) of Eq. (1.9) is strictly

1The two ‘cm’ designations should remain separate. See the Appendix at the end of the Introduction.
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only true for sources in which the photons that are generated can escape in all directions,

or isotropically. This is usually assumed to be true, even if the source itself is irregular in

shape (Figure 1.4). These photons pass through the imaginary surfaces of spheres as they

travel outwards. The 1
r2 fall-off of flux is just due to the geometry of a sphere (Figure

1.5.a). In principle, however, one could imagine other geometries. For example, the flux

of a man-made laser beam would be constant with r if all emitted light rays are parallel

and without losses (Figure 1.5.b). Light that is beamed into a narrow cone, such as may

be occurring in pulsars2 is an example of an intermediate case (Prob. 1.4).

For stars, we now define the astrophysical flux, F, to be the flux at the surface of the

star,

L� ¼ 4�R2
� F ¼ 4� r2 f ) f ¼ R�

r

� �2

F ð1:10Þ

where L� is the star’s luminosity and R� is its radius.

Using values from Table G.3, astrophysical flux of the Sun is F� ¼ 6:33�
1010 erg s�1 cm�2 and the Solar Constant, which is the flux of the Sun at the distance

Figure 1.4. An image of the Centaurus A jet emanating from an active galactic nucleus (AGN) at
the centre of this galaxy and at lower right of this image. Radio emission is shown in red and X-rays
in blue. (Reproduced by permission of Hardcastle M.J., et al., 2003 ApJ, 593, 169.) Even though
gaseous material may be moving along the jet in a highly directional fashion, the RHS of Eq. (1.9)
may still be used, provided that photons generated within the jet (such as at the knot shown)
escape in all directions. (see colour plate)

2Pulsars are rapidly spinning neutron stars with strong magnetic fields that emit their radiation in beamed cones.
Neutron stars typically have about the mass of the Sun in a diameter only tens of km across.
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of the Earth3, denoted, S�, is 1:367 � 106 erg s�1 cm�2. The Solar Constant is of great

importance since it is this flux that governs climate and life on Earth. Modern satellite

data reveal that the solar ‘constant’ actually varies in magnitude, showing that our Sun

is a variable star (Figure 1.6). Earth-bound measurements failed to detect this variation

since it is quite small and corrections for the atmosphere and other effects are large in

comparison (e.g. Prob. 1.5).

The flux of a source in a given waveband is a quantity that is measurable, provided

corrections are made for atmospheric and telescopic responses, as required (see Sects.

2.2, 2.3). If the distance to the source is known, its luminosity can then be calculated

from Eq. (1.9).

1.3 The brightness of light – intensity and specific intensity

The intensity, I (erg s�1 cm�2 sr�1), is the radiative energy per unit time per unit solid

angle passing through a unit area that is perpendicular to the direction of the emission.

The specific intensity (erg s�1 cm�2 Hz�1 sr�1 or erg s�1 cm�2 cm�1 sr�1) is the

radiative energy per unit time per unit solid angle per unit spectral bandwidth (either

frequency or wavelength, respectively) passing through unit area perpendicular to the

direction of the emission. The intensity is related to the flux via,

df ¼ I cos � d� ð1:11Þ
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Figure 1.5. (a) Geometry illustrating the 1
r2 fall-off of flux with distance, r, from the source. The

two spheres shown are imaginary surfaces. The same amount of energy per unit time is going
through the two surface areas shown. Since the area at r2 is greater than the one at r1, the energy
per unit time per unit cm2 is smaller at r2 than r1. Since measurements are made over size scales so
much smaller than astronomical distances, the detector need not be curved. (b) Geometry of an

artificial laser. For a beam with no divergence, the flux does not change with distance.

3This is taken to be above the Earth’s atmosphere.
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As before, the same kind of relation could be written between the quantities per unit

bandwidth, i.e. between the specific intensity and the flux density.

The specific intensity, I� , is the most basic of radiative quantities. Its formal

definition is written,

dE ¼ I� cos � d� d� dA dt ð1:12Þ

Note that each elemental quantity is independent of the others so, when integrating, it

doesn’t matter in which order the integration is done.

The intensity isolates the emission that is within a given solid angle and at some

angle from the perpendicular. The geometry is shown in Figure 1.7 for a situation in

which a detector is receiving emission from a source in the sky and for a situation in

which an imaginary detector is placed on the surface of a star. In the first case, the

source subtends some solid angle in the sky in a direction, �, from the zenith. The

factor, cos � accounts for the foreshortening of the detector area as emission falls on it.

Figure 1.6. Plot of the Solar Constant (in W m�2) as a function of time from satellite data. The
variation follows the 11-year Sunspot cycle such that when there are more sunspots, the Sun, on
average, is brighter. The peak to peak variation is less than 0.1 per cent. This plot provides
definitive evidence that our Sun is a variable star. (Reproduced by permission of www.answers.com/
topic/solar-variation)
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Usually, a detector would be pointed directly at the source of interest in which case

cos � ¼ 1. In the second case, the coordinate system has been placed at the surface

of a star. At any position on the star’s surface, radiation is emitted over all directions

away from the surface. The intensity refers to the emission in the direction,

� radiating into solid angle, d�. Example 1.2 indicates how the intensity relates

to the flux for these two examples. Figure 1.7 also helps to illustrate the generality of

these quantities. One could place the coordinate system at the centre of a star, in

interstellar space, or wherever we wish to determine these radiative properties of a

source (Probs. 1.6, 1.7).

Example 1.2

(a) A detector pointed directly at a uniform intensity source in the sky of small solid angle,

�, would measure a flux,

f ¼
Z
�

I cos � d� � I � ð1:13Þ

(b) The astrophysical flux at the surface of an object (e.g. a star) whose radiation is

escaping freely at all angles outwards (i.e. over 2 � sr), can be calculated by integrating

dA

dA cosθ 

d Ω 
(a) (b) 

θ

θ

dA

dA cosθ 

d Ω 

θ

θ

Figure 1.7. Diagrams showing intensity and its dependence on direction and solid angle,
using a spherical coordinate system such as described in Appendix B. (a) Here dA would be an
element of area of a detector on the Earth, the perpendicular upwards direction is towards the
zenith, a source is in the sky in the direction, �, and d� is an elemental solid angle on the
source. The arrows show incoming rays from the centre of the source that flood the detector. (b) In

this example, an imaginary detector is placed at the surface of a star. At each point on the

surface, photons leave in all directions away from the surface. The intensity would be a

measure of only those photons which pass through a given solid angle at a given angle, � from
the vertical
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in spherical coordinates (see Appendix B),

F ¼
Z

I cos � d� ¼
Z 2�

0

Z �
2

0

I cos � sin �d� d� ¼ � I ð1:14Þ

Figure 1.8 shows a practical example as to how one might calculate the flux of a

source for a case corresponding to Example 1.2a, but for which the intensity varies with

position. The intensity in a given waveband is a measurable quantity, provided a solid

angle can also be measured. If a source is so small or so far away that its angular size

cannot be discerned (i.e. it is unresolved, see Sects. 2.2.3, 2.2.4, 2.3.2), then the

intensity cannot be determined. In such cases, it is the flux that is measured, as shown

in Figure 1.9. All stars other than the Sun would fall into this category4.

Specific intensity is also referred to as brightness which has its intuitive meaning. A

faint source has a lower value of specific intensity than a bright source. Note that it is

possible for a source that is faint to have a larger flux density than a source that is bright

if it subtends a larger solid angle in the sky (Prob. 1.9).

Figure 1.8. Looking directly at a hypothetical object in the sky corresponding to the situation
shown in Figure 1.7.a but for � ¼ 0 (i.e. the detector pointing directly at the source). The object
subtends a total solid angle, �, which is small and therefore � � 0 at any location on the source.
In this example, the object is of non-uniform brightness and � is split up into many small square
solid angles, each of size, �i and within which the intensity is Ii. Then we can approximate
f ¼

R
I cos � d� using f �

P
Ii �i. Basically, to find the flux, we add up the individual fluxes of

all elements.

4The exception is a few nearby stars for which special observing techniques are required.
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The intensity and specific intensity are independent of distance (constant with

distance) in the absence of any intervening matter5. The easiest way to see this is

via Eq. (1.13). Both f and � decline as 1
r2 (Eq. (1.11), Eq. (B.2), respectively) and

therefore I is constant with distance. The Sun, for example, has I� ¼ F�=� ¼
2:01 � 1010 erg s�1 cm�2 sr�1 as viewed from any source at which the Sun subtends

a small, measurable solid angle. The constancy of I with distance is general, however,

applying to large angles as well. This is a very important result, since a measurement of

I allows the determination of some properties of the source without having to know its

distance (e.g. Sect. 4.1).

1.4 Light from all angles – energy density and mean intensity

The energy density, u (erg cm�3), is the radiative energy per unit volume. It describes

the energy content of radiation in a unit volume of space,

du ¼ dE

dV
ð1:15Þ

The specific energy density is the energy density per unit bandwidth and, as usual,

u ¼
R
u� d� ¼

R
u� d�. The energy density is related to the intensity (see Figure 1.10,

Eq. 1.12) by,

u ¼ 1

c

Z
I d� ¼ 4�

c
J ð1:16Þ

Figure 1.9. In this case, a star has a very small angular size (left) and so, when detected in a
square solid angle, �p (right), which is determined by the properties of the detector, its light is
‘smeared out’ to fill that solid angle. In such a case, it is impossible to determine the intensity of
the surface of the star. However, the flux of the star, f�, is preserved, i.e. f� ¼ I� �� ¼ �I �p

(Eq. 1.13) where I� is the true intensity of the star, �� is the true solid angle subtended by the star,
and �I is the mean intensity in the square. Thus, for an object of angular size smaller than can be
resolved by the available instruments (see Sects. 2.2.3, 2.2.4, and 2.3.2), we measure the flux
(or flux density), but not intensity (or specific intensity) of the object

5More accurately, I=n2 is independent of distance along a ray path, where n is the index of refraction but the
difference is negligible for our purposes.
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where J is the mean intensity, defined by,

J � 1

4�

Z
I d� ð1:17Þ

The mean intensity is therefore the intensity averaged over all directions. In an

isotropic radiation field, J ¼ I. In reality, radiation fields are generally not isotropic,

but some are close to it or can be approximated as isotropic, for example, in the centres

of stars or when considering the 2.7 K cosmic microwave background radiation (Sect.

3.1). In a non-isotropic radiation field, J is not constant with distance, even though I is.

Example 1.3 provides a sample computation.

Example 1.3

Compute the mean intensity and the energy density at the distance of Mars. Assume that the
only important source is the Sun.

J ¼ 1

4 �

Z 4�

0

I d�

¼ 1

4 �

Z
��

I� d� � I� ��
4�

¼ I�
4�

� ��
2

4
¼ I�

16

2R�
rMars

� �2

ð1:18Þ

where we have used Eq. (B.3) to express the solid angle in terms of the linear angle, and

Eq. (B.1) to express the linear angle in terms of the size of the Sun and the distance of Mars.

Inserting I� ¼ 2:01 � 1010 erg s�1 cm�2 sr�1 (Sect. 1.3), R� ¼ 6:96 � 1010 cm, and

rMars ¼ 2:28 � 1013 cm (Tables G.3, G.4), we find, J ¼ 4:7 � 104 erg s�1 cm�2 sr�1.

Then u ¼ 4�
c
ð4:7 � 104Þ ¼ 2:0 � 10�5 erg cm�3.

The radiation field (u or J) in interstellar space due to randomly distributed stars

(Prob. 1.10) must be computed over a solid angle of 4� steradians, given that

θ 
θ 

dA 

I
dl 

dV = dAdl 

dl 
= cdt 

cos θ 

Figure 1.10. This diagram is helpful in relating the energy density (the radiative energy per unit
volume) to the light intensity. An individual ray spends a time, dt ¼ dl=ðc cos �Þ in an infinitesimal
cylindrical volume of size, dV ¼ dl dA. Combined with Eq. (1.12), the result is Eq. (1.16).
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starlight contributes from many directions in the sky. However, in this case, J 6¼ I

because there is no emission from directions between the stars. If there were so

many stars that every line of sight eventually intersected the surface of a star of

brightness, I�, then J ¼ I� and the entire sky would appear as bright as I�. This

would be true even if the stars were at great distances since I�, being an intensity, is

independent of distance. If this is the case, we would say that the stellar covering

factor is unity.

A variant of this concept is called Olbers’ Paradox after the German astron-

omer, Heinrich Wilhelm Olbers who popularized it in the 19th century. It was

discussed as early as 1610, though, by the German astronomer, Johannes Kepler,

and was based on the idea of an infinite starry Universe which had been propounded

by the English astronomer and mathematician, Thomas Digges, around 1576. If the

Universe is infinite and populated throughout with stars, then every line of sight

should eventually intersect a star and the night sky as seen from Earth should be

as bright as a typical stellar surface. Why, then, is the night sky dark?6 Kepler took

the simple observation of a dark night sky as an argument for the finite extent of the

Universe, or at least of its stars. The modern explanation, however, lies with the

Figure 1.11. Why is the night sky dark? If the Universe is infinite and populated in all directions
by stars, then eventually every sight line should intersect the surface of a star. Since I is constant
with distance, the night sky should be as bright as the surface of a typical star. This is known as
Olbers’ Paradox, though Olbers was not the first to note this discrepancy. See Sect. 1.4.

6The earlier form of the question was posed somewhat differently, referring to increasing numbers of stars on
increasingly larger shells with distance from the Earth.
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intimate relation between time and space on cosmological scales (Sect. 7.1). Since

the speed of light is constant, as we look farther into space, we also look farther back

in time. The Universe, though, is not infinitely old but rather had a beginning

(Sect. 3.1) and the formation of stars occurred afterwards. The required number of

stars for a bright night sky is �1060 and the volume needed to contain this quantity of

stars implies a distance of 1023 light years (Ref. [74]). This means that we need to see

stars at an epoch corresponding to 1023 years ago for the night sky to be bright. The

Universe, however, is younger than this by 13 orders of magnitude (Sect. 3.1)! Thus,

as we look out into space and back in time, our sight lines eventually reach an epoch

prior to the formation of the first stars when the covering factor is still much less than

unity. (Today, we refer to this epoch as the dark ages.) Remarkably, this solution was

hinted at by Edgar Allan Poe in his prose-poem, Eureka in 1848 (see the prologue to

this chapter).

1.5. How light pushes – radiation pressure

Radiation pressure is the momentum flux of radiation (the rate of momentum transfer

due to photons, per unit area). It can also be thought of as the force per unit area exerted

by radiation and, since force is a vector, we will treat radiation pressure in this way

as well7. Thus, the pressure can be separated into its normal, P?, and tangential,

Pk, components with respect to the surface of a wall. The normal radiation pressure will

be,

dP? ¼ dF?
dA

¼ dp

dt dA
cos � ¼ dE

c dt dA
cos � ð1:19Þ

where we have expressed the momentum of a photon in terms of its energy (Table I.1).

Using Eq. (1.12) we obtain,

dP? ¼ 1

c

� �
I cos2 � d� ð1:20Þ

For the tangential pressure, we use the same development but take the sine of the

incident angle, yielding,

dPk ¼
1

c

� �
I cos � sin �d� ð1:21Þ

7Pressure is actually a tensor which is a mathematical quantity described by a matrix (a vector is a specific kind of
tensor). We do not need a full mathematical treatment of pressure as a tensor, however, to appreciate the meaning
of radiation pressure.
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Then for isotropic radiation,

P? ¼ 1

c

� � Z
4�

I cos2 � d� ¼ 4�

3 c
I

Pk ¼
1

c

� � Z
4�

I cos � sin �d� ¼ 0

therefore P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P?

2 þ Pk
2

q
¼ 4�

3 c
I ¼ 1

3
u ð1:22Þ

where we have used a spherical coordinate system for the integration (Appendix B),

Eq. (1.16), and the fact that J ¼ I in an isotropic radiation field. Note that the units of

pressure are equivalent to the units of energy density, as indicated in Table 0.A.2. Since

photons carry momentum, the pressure is not zero in an isotropic radiation field. A

surface placed within an isotropic radiation field will not experience a net force,

however. This is similar to the pressure of particles in a thermal gas. There is no net

force in one direction or another, but there is still a pressure associated with such a gas

(Sect. 3.4.2).

We can also consider a case in which the incoming radiation is from a fixed angle,

� and the solid angle subtended by the radiation source,�, is small. This would result in

an acceleration of the wall, but the result depends on the kind of surface the photons are

hitting. We consider two cases, illustrated in Figure 1.12: that in which the photon loses

all of its energy to the wall (perfect absorption) and that in which the photon loses none

of its energy to the wall (perfect reflection).

For perfect absorption, integrating Eqs. (1.20), (1.21) with �, �, constant, yields,

P? ¼ 1

c

� �
I � cos2 � ¼ f

c
cos2 �

Pk ¼
1

c

� �
I � cos � sin � ¼ f

c
cos � sin �

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P?

2 þ Pk
2

q
¼ f

c
cos � ð1:23Þ

where we have used Eq. (1.13) with f the flux along the directed beam8.

For perfect reflection, only the normal component will have any effect against the

wall (as if the surface were hit by a ball that bounces off). Also, because the momentum

of the photon reverses direction upon reflection, the change in momentum is twice the

value of the absorption case. Thus, the situation can be described by Eq. (1.20) except

8For a narrow beam, this is equivalent to the Poynting flux (Table I.1).
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for a factor of 2.

P ¼ P? ¼ 2

c

� �
I � cos2 � ¼ 2 f

c
cos2 � ð1:24Þ

A comparison of Eqs. (1.23) and (1.24) shows that, provided the incident angle is not

very large, a reflecting surface will experience a considerably greater radiation force

than an absorbing surface. Moreover, as Figure 1.12 illustrates, the direction of the

surface is not directly away from the source of radiation as it must be for the absorbing

case. These principles are fundamental to the concept of a Solar sail (Figure 1.13).

Figure 1.13. Artist’s conception of a thin, square, reflective Solar sail, half a kilometre across.
Reproduced by permission of NASA/MSFC
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Figure 1.12. An incoming photon exerts a pressure on a surface area. For perfect absorption, the
area will experience a force in the direction, ~Fabsorption. For perfect reflection, only the normal
component of the force is effective and the resulting force will be in the direction, ~F reflection
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Since the direction of motion depends on the angle between the radiation source and

the normal to the surface, it would be possible to ‘tack’ a Solar sail by altering the angle

of the sail, in a fashion similar to the way in which a sailboat tacks in the wind.

Moreover, even if the acceleration is initially very small, it is continuous and thus very

high velocities could eventually be achieved for spacecraft designed with Solar sails

(Prob. 1.11).

1.6 The human perception of light – magnitudes

Magnitudes are used to characterize light in the optical part of the spectrum, including

the near IR and near UV. This is a logarithmic system for light, similar to decibels for

sound, and is based on the fact that the response of the eye is logarithmic. It was first

introduced in a rudimentary form by Hipparchus of Nicaea in about 150 B.C. who

labelled the brightest stars he could see by eye as ‘first magnitude’, the second brightest

as ‘second magnitude’, and so on. Thus began a system in which brighter stars have

lower numerical magnitudes, a sometimes confusing fact. As the human eye has been

the dominant astronomical detector throughout most of history, a logarithmic system

has been quite appropriate. Today, the need for such a system is less obvious since the

detector of choice is the CCD (charge coupled device, Sect. 2.2.2) whose response is

linear. However, since magnitudes are entrenched in the astronomical literature, still

widely used today, and well-characterized and calibrated, it is very important to

understand this system.

1.6.1 Apparent magnitude

The apparent magnitude and its corresponding flux density are values as measured

above the Earth’s atmosphere or, equivalently, as measured from the Earth’s surface,

corrected for the effects of the atmosphere,

m� � m�0
¼ �2:5 log

f�

f�0

� �

m� � m�0
¼ �2:5 log

f�

f�0

� �
ð1:25Þ

where the subscript, 0, refers to a standard calibrator used as a reference, m� and m� are

apparent magnitudes in some waveband and f�, f� are flux densities in the same band.

Note that this equation could also be written as a ratio of fluxes, since this would only

require multiplying the flux density (numerator and denominator) by an effective

bandwidth to make this conversion. This system is a relative one, such that the

magnitude of the star of interest can be related to that of any other star in the same

waveband via Eq. (1.25). For example, if a star has a flux density that is 100 times greater
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than a second star, then its magnitude will be 5 less than the second star. However, in

order to assign a specific magnitude to a specific star, it is necessary to identify certain

standard stars with known flux densities to which all others can be compared.

Several slightly different calibration systems have evolved over the years so, for

careful and precise work, it is necessary to specify which system is being used when

measuring or stating a magnitude. An example of such a system is the UBVRIJHKL

Cousins–Glass–Johnson system for which parameters are provided in Table 1.1.

The corresponding wavebands, U, B, V, etc., are illustrated in Figure 1.3. The apparent

magnitude is commonly written in such a way as to specify these wavebands

directly, e.g.

V � V0 ¼ �2:5 log
fV

fV0

� �

B � B0 ¼ �2:5 log
fB

fB0

� �
etc: ð1:26Þ

where the flux densities can be expressed in either their �-dependent or �-dependent

forms. The V-band, especially, since it corresponds to the waveband in which the eye is

most sensitive (cf. Table G.5), has been widely and extensively used. Some examples of

apparent magnitudes are provided in Table 1.2.

The standard calibrator in most systems has historically been the star, Vega. Thus,

Vega would have a magnitude of 0 in all wavebands (i.e. U0 ¼ 0, B0 ¼ 0, etc) and its

flux density in these bands would be tabulated. However, concerns over possible

variability of this star, its possible IR excess, and the fact that it is not observable

from the Southern hemisphere, has led to modified approaches in which the star Sirius

is also taken as a calibrator and/or in which a model star is used instead. The latter

approach has been taken in Table 1.1 which lists the reference flux densities for

Table 1.1. Standard filters and magnitude calibrationa

U B V R I J H K L L�

�b
eff 0.366 0.438 0.545 0.641 0.798 1.22 1.63 2.19 3.45 3.80

��c 0.065 0.098 0.085 0.156 0.154 0.206 0.298 0.396 0.495 0.588

f d�0
1.790 4.063 3.636 3.064 2.416 1.589 1.021 0.640 0.285 0.238

f e�0
417.5 632 363.1 217.7 112.6 31.47 11.38 3.961 0.708 0.489

ZP� 0.770 �0.120 0.000 0.186 0.444 0.899 1.379 1.886 2.765 2.961

ZP� �0.152 �0.601 0.000 0.555 1.271 2.655 3.760 4.906 6.775 7.177

aUBVRIJHKL Cousins–Glass–Johnson system (Ref. [18]). The table values are for a fictitious A0 star which has
0 magnitude in all bands. A star of flux density, f� in units of 10�20 erg s�1 cm�2 Hz�1 or f� in units of
10�11 erg s�1 cm�2 Å�1, will have a magnitude, m� ¼ �2:5 logðf�Þ � 48:598 � ZP� or m� ¼ �2:5 logðf�Þ
�21:100 � ZP�, respectively. bThe effective wavelength, in �m, is defined by �eff ¼ ½

R
� f ð�ÞRW ð�Þ d��=

½
R
f ð�ÞRW ð�Þ d��, where f ð�Þ is the flux of the star at wavelength, �, and RW ð�Þ is the response function of

the filter in band W (see Figure 1.3). Thus, the effective wavelength varies with the spectrum of the star
considered. cFull width at half-maximum (FWHM) of the filters in �m. dUnits of 10�20 erg s�1 cm�2 Hz�1.
eUnits of 10�11 erg s�1 cm�2 Å�1.
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reference magnitudes of zero in all filters. The flux density and reference flux density

must be in the same units. The above equations can be rewritten as,

m� ¼ �2:5 logðf�Þ � 21:100 � ZP�

m� ¼ �2:5 logðf�Þ � 48:598 � ZP� ð1:27Þ

where f� is in units of erg cm�2 s�1 Å�1, f� is in units of erg cm�2 s�1 Hz�1, and ZP�,

ZP� are called zero point values (Ref. [18]). Example 1.4 provides a sample calculation.

Example 1.4

An apparent magnitude of B ¼ 1:95 is measured for the star, Betelgeuse. Determine its flux
density in units of erg cm�2 s�1 Å�1.

Table 1.2. Examples of apparent visual magnitudesa

Object or item Visual magnitude Comments

Sun �26.8

Approx. maximum of a supernova �15 assuming V ¼ 0 precursor

Full Moon �12.7

Venus �3.8 to �4.5b brightest planet

Jupiter �1.7 to �2.5b

Sirius �1.44 brightest nighttime star

Vega 0.03 star in constellation Lyra

Betelgeuse 0.45 star in Orion

Spica 0.98 star in Virgo

Deneb 1.23 star in Cygnus

Aldebaran 1.54 star in Taurus

Polaris 1.97 the North Starc

Limiting magnituded 3.0 major city

Ganymede 4.6 brightest moon of Jupiter

Uranus 5.7e

Limiting magnituded 6.5 dark clear sky

Ceres 6.8e brightest asteroid

Pluto 13.8e

Jupiter-like planet 26.5 at a distance of 10 pc

Limiting magnitude of HSTf 28.8 1 h on A0V star

Limiting magnitude of OWLg 38 future 100 m telescope

aFrom Ref. [71] (probable error at most 0.03 mag) and on-line sources. bTypical range over a year. cA variable
star. dThis is the faintest star that could be observed by eye without a telescope. It will vary with the individual
and conditions. eAt or close to ‘opposition’ (180	 from the Sun as seen from the Earth). f ‘Hubble Space
Telescope’, from Space Telescope Science Institute on-line documentation. The limiting magnitude varies
with instrument used. The quoted value is a best case. gOWL (the ‘Overwhelmingly Large Telescope’) refers
to the European Southern Observatory’s concept for a 100 m diameter telescope with possible completion
in 2020.
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From Eq. (1.26) and the values from Table 1.1, we have,

B � B0 ¼ 1:95 � 0 ¼ �2:5 log
fB

632 � 10�11

� �
ð1:28Þ

Solving, this gives fB ¼ 1:0 � 10�9 erg cm�2 s�1 Å�1 for Betelgeuse.
Eq. (1.27) can also be used,

B ¼ 1:95 ¼ �2:5 logðfBÞ � 21:100 þ 0:601 ð1:29Þ

which, on solving, gives the same result.

1.6.2 Absolute magnitude

Since flux densities fall off as 1
r2, measurements of apparent magnitude between stars do

not provide a useful comparison of the intrinsic properties of stars without taking into

account their various distances. Thus the absolute magnitude has been introduced,

either as a bolometric quantity, Mbol, or in some waveband (e.g. MV, MB, etc). The

absolute magnitude of a star is the magnitude that would be measured if the star were

placed at a distance of 10 pc. Since the magnitude scale is relative, we can let the

reference star in Eq. (1.25) be the same star as is being measured but placed at a

distance of 10 pc,

m�M ¼ �2:5 log
f

f10 pc

� �
¼ �5 þ 5 log

d

pc

� �
ð1:30Þ

where we have dropped the subscripts for simplicity and used Eq. (1.9). Here d is the

distance to the star in pc. Eq. (1.30) provides the relationship between the apparent and

absolute magnitudes for any given star. The quantity, m�M, is called the distance

modulus. Since this quantity is directly related to the distance, it is sometimes quoted as

a proxy for distance. Writing a similar equation for a reference star and combining with

Eq. (1.30) (e.g. Prob. 1.12) we find,

M �Mb� ¼ �2:5 log
L

L�

� �
ð1:31Þ

where we have used the Sun for the reference star. Eq. (1.31) has been explicitly written

with bolometric quantities (Table G.3) but one could also isolate specific bands, as

before, provided the correct reference values are used.
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1.6.3 The colour index, bolometric correction, and HR diagram

The colour index is the difference between two magnitudes in different bandpasses for

the same star, for example,

B � V ¼ �2:5 log
fB

fV

fV0

fB0

� �
¼ �2:5 log

fB

fV

� �
� ðZPB � ZPVÞ ð1:32Þ

or between any other two bands. Eq. (1.32) is derivable from Eqs. (1.26) or (1.27).

Various colour indices are provided for different kinds of stars9 in Table G.7. Since this

quantity is basically a measure of the ratio of flux densities at two different wavelengths

(with a correction for zero point), it is an indication of the colour of the star. A positive

value for B � V, for example, means that the flux density in the V band is higher than that

in the B band and hence the star will appear more ‘yellow’ than ‘blue’ (see Table G.5).

The colour index, since it applies to a single star, is independent of distance. (To see

this, note that converting the flux density to a distance-corrected luminosity would

require the same factors in the numerator and denominator of Eq. (1.32)). Conse-

quently, the colour index can be compared directly, star to star, without concern for the

star’s distance. We will see in Sect. 4.1.3 that colour indices are a measure of the

surface temperature of a star. This means that stellar temperatures can be determined

without having to know their distances.

Since a colour index could be written between any two bands, one can also define an

index between one band and all bands. This is called the bolometric correction, usually

defined for the V band,

BC ¼ mbol � V ¼ Mbol �MV ð1:33Þ

For any given star, this quantity is a correction factor that allows one to convert from a

V band measurement to the bolometric magnitude (Prob. 1.16). Values of BC are

provided for various stellar types in Table G.7.

Figure 1.14 shows a plot of absolute magnitude as a function of colour index for over

5000 stars in the Galaxy near the Sun. Such a plot is called a Hertzsprung–Russell (HR)

diagram or a colour–magnitude diagram (CMD). The absolute magnitude can be

converted into luminosity (see Eq. 1.31) and the colour index can be converted to a

temperature (see the calibration of Figure G.1) which are more physically meaningful

parameters for stars. The HR Diagram is an essential tool for the study of stars and

stellar evolution and shows that stars do not have arbitrary temperatures and luminos-

ities but rather fall along well-defined regions in L� T parameter space. The positions

of stars in this diagram provide important information about stellar parameters and

stellar evolution, as described in Sect. 3.3.2. It is important to note that the distance to

each star must be measured in order to obtain absolute magnitudes, a feat that has been

accomplished to unprecedented accuracy by Hipparcos, a European satellite launched

9Stellar spectral types will be discussed in Sect. 3.4.7.
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in 1989. The future GAIA (Global Astrometric Interferometer for Astrophysics)

satellite, also a European project with an estimated launch date of 2011, promises to

make spectacular improvements. This satellite will provide a census of 109 stars and it

is estimated that it will discover 100 new asteroids and 30 new stars that have planetary

systems per day.

1.6.4 Magnitudes beyond stars

Magnitudes are widely used in optical astronomy and, though the system developed to

describe stars (for which specific intensities cannot be measured, Sect. 1.3), it can be

applied to any object, extended or point-like, as an alternate description of the flux

Figure 1.14. Hertzsprung–Russell (HR) diagram for approximately 5000 stars taken from the
Hipparcos catalogue. Hipparcos determined the distances to stars, allowing absolute magnitude to
be determined. The MV data have errors of about 
0:1 magnitudes and the B� V data have errors of
< 0.025 magnitudes. Most stars fall on a region passing from upper left (hot, luminous stars) to
lower right (dim, cool stars), called the main sequence. The main sequence is defined by stars that
are burning hydrogen into helium in their cores (see Sect. 3.3.2). The temperature, shown at the
top and applicable to the main sequence, was determined from the Temperature �B� V calibration
of Table G.7 and Figure G.1. The luminosity, shown at the right, was determined from Eqs. (1.31)
and (1.33), using the bolometric correction from Table G.7. The straight line, defined by the
equation, MV ¼ �8:58ðB� VÞ þ 2:27, locates the central ridge of the instability strip for Galactic
Cepheid variable stars and the dashed lines show its boundaries (see Ref. [166a] and Sect. 5.4.2).
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density. One could quote an apparent magnitude for other point-like sources such as

distant QSOs (‘quasi-stellar objects’)10, or of extended sources like galaxies. Since the

specific intensity of an extended object is a flux density per unit solid angle, it is also

common to express this quantity in terms of magnitudes per unit solid angle (Prob. 1.17).

1.7 Light aligned – polarization

The magnetic and electric field vectors of a wave are perpendicular to each other and to

the direction of propagation (Figure I.2). A signal consists of many such waves

travelling in the same direction in which case the electric field vectors are usually

randomly oriented around the plane perpendicular to the propagation direction. How-

ever, if all of the electric field vectors are aligned (say all along the z axis of Figure I.2)

then the signal is said to be polarized. Partial polarization occurs if some of the waves

are aligned but others randomly oriented. The degree of polarization, Dp is defined as

the fraction of total intensity that is polarized (often expressed as a percentage),

Dp � Ipol

Itot

¼ Ipol

Ipol þ Iunpol

ð1:34Þ

Polarization can be generated internally by processes intrinsic to the energy generation

mechanism (see Sect. 8.5, for example), or polarization can result from the scattering

of light from particles, be they electrons, atoms, or dust particles (see Sect. 5.1 or

Appendix D). When polarization is observed, Dp is usually of order only a few percent

and ‘strong’ polarization, such as seen in radio jets (Figure 1.4), typically is

Dp <� 15 per cent (Ref. [175]). Values of Dp over 90 per cent, however, have been

detected in the jets of some pulsars (Ref. [113]) and in the low frequency radio

emission from planets (Sect. 8.5.1). For the Milky Way, Dp ¼ 2 per cent over distances

2 to 6 kpc from us due to scattering by dust (Ref. [175]). In practical terms, this means

that polarized emission is usually much fainter than unpolarized emission and requires

greater effort to detect.

Problems

1.1 Assuming Cas A (see Sect. 1.1 for more data) has a spectral luminosity between

�1 ¼ 2 � 107 Hz and �2 ¼ 2 � 1010 Hz, of the form, L� ¼ K ��0:7, where K is a constant.

Determine the value of K, and of L� and L� at � ¼ 109 Hz. What are the units of K?

1.2 Find, by comparison with exact trigonometry, the angle, � (provide a numerical value

in degrees), above which the small angle approximation, Eq. (B.1), departs from the exact

10A QSO is the bright active nucleus of a very distant galaxy that looks star-like at optical wavelengths. QSOs that
also emit strongly at radio wavelengths are called quasars.
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result by more than 1 per cent. How does this compare with the relatively large angle

subtended by the Sun?

1.3 Determine the flux density (in Jy) of a cell phone that emits 2 mW cm�2 at a

frequency of 1900 MHz over a bandwidth of 30 kHz, and of the Sun, as measured at the

Earth, at the same frequency. (Eq. 4.6 provides an expression for calculating the specific

intensity of the Sun.) Compare these to the flux density of the supernova remnant, Cas A

(� 1900 Jy as measured at the Earth at 1900 MHz) which is the strongest radio source in the

sky after the Sun. Comment on the potential of cell phones to interfere with the detection of

astronomical signals.

1.4 (a) Consider a pulsar with radiation that is beamed uniformly into a circular cone of

solid angle, �. Rewrite the right hand side (RHS) of Eq. (1.9) for this case.

(b) If � ¼ 0:02 sr, determine the error that would result in L if the RHS of Eq. (1.9) were

used rather than the correct result from part (a).

1.5 Determine the percentage variation in the solar flux incident on the Earth due to its

elliptical orbit. Compare this to the variation shown in Figure 1.6.

1.6 Determine the flux in a perfectly isotropic radiation field (i.e. I constant in all

directions).

1.7 (a) Determine the flux and intensity of the Sun (i) at its surface, (ii) at the mean

distance of Mars, and (iii) at the mean distance of Pluto.

(b) How large (in arcmin) would the Sun appear in the sky at the distances of the two

planets? Would it appear resolved or as a point source to the naked eye at these locations?

That is, would the angular diameter of the Sun be larger than the resolution of the human

eye (Table G.5) or smaller? (Sects. 2.2, 2.2.3, and 2.3.2 provide more information on the

meaning of ‘resolution’.)

1.8 The radio spectrum of Cas A, whose image is shown in Figure 1.2, is given in

Figure 8.14 in a log–log plot. The plotted specific intensity can be represented by,

I� ¼ I�0 ð�=�0Þ� in the part of the graph that is declining with frequency, where �0 is any

reference frequency in this part of the plot, I�0 is the specific intensity measured at �0 and �
is the slope. In Prob. 1.1, we assumed that � ¼ �0:7. Now, instead, measure this value from

the graph and determine, for the radio band from �1¼2 � 107 to �2 ¼ 2 � 1010 Hz,

(a) the intensity of Cas A, I,

(b) the solid angle that it subtends in the sky, �,

(c) its flux, f ,

(d) its radio luminosity, Lrad. Confirm that this value is approximately equal to the value

given in Sect. 1.1.
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1.9 On average, the brightness of the Whirlpool Galaxy, M 51 (see Figure 3.8 or 9.8),

which subtends an ellipse of major � minor axis, 11.20 � 6.90 in the sky, is 2.1 times that of

the Andromeda Galaxy, M 31 (subtending 1900 � 600). What is the ratio of their flux

densities?

1.10 Where does the Solar System end? To answer this, find the distance (in AU) at which

the radiation energy density from the Sun is equivalent to the ambient mean energy

density of interstellar space, the latter about 10�12 erg cm�3. After 30 years or more of

space travel, how far away are the Pioneer 10 and Voyager 1 spacecraft? Are they out of the

Solar System?

1.11 Consider a circular, perfectly reflecting Solar sail that is initially at rest at a distance

of 1 AU from the Sun and pointing directly at it. The sail is carrying a payload of 1000 kg

(which dominates its mass) and its radius is Rs ¼ 500 m.

(a) Derive an expression for the acceleration as a function of distance, aðrÞ, for this Solar

sail. Include the Sun’s gravity as well as its radiation pressure. (The constants may be

evaluated to simplify the expression.)

(b) Manipulate and integrate this equation to find an expression for the velocity of the

Solar sail as a function of distance, vðrÞ. Evaluate the expression to find the velocity of the

Solar sail by the time it reaches the orbit of Mars.

(c) Finally, derive an expression for the time it would take for the sail to reach the orbit

of Mars. Evaluate it to find the time. Express the time as seconds, months, or years,

whatever is most appropriate.

1.12 Derive Eq. (1.31) (see text).

1.13 Repeat Example 1.4 but expressing the flux density in its frequency-dependent

form.

1.14 For the U band and L� band filters, verify that f� corresponds to f� in Table 1.1. Why

might there be minor differences?

1.15 Refer to Table 1.2 for the following.

(a) Determine the range (ratio of maximum to minimum flux density) over which the

unaided human eye can detect light from astronomical objects. Research the range of

human hearing from ‘barely audible’ to the ‘pain threshold’ and compare the resulting

range to the eye.

(b) Use the ‘Multiparameter Search Tool’ of the Research Tools at the web site of the

Hipparcos satellite (http://www.rssd.esa.int/Hipparcos/) to determine what

percentage of stars in the night sky one would lose by moving from a very dark country site

into a nearby light polluted city.
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(c) The star, Betelgeuse, is at a distance of 130 pc. Determine how far away it would

have to be before it would be invisible to the unaided eye, if it were to undergo a supernova

explosion.

1.16 A star at a distance of 25 pc is measured to have an apparent magnitude of V ¼ 7:5.

This particular type of star is known to have a bolometric correction of BC ¼ �0:18.

Determine the following quantities: (a) the flux density, fV in units of erg cm�2 s�1 Å�1,

(b) the absolute V magnitude,MV, (c) the distance modulus, (d) the bolometric apparent and

absolute magnitudes, mbol, and Mbol, respectively, and (e) the luminosity, L in units of L�.

1.17 A galaxy of uniform brightness at a distance of 16 Mpc appears elliptical on the sky

with major and minor axis dimensions, 7:90 � 1:40. It is observed first in the radio band

centred at 1.4 GHz (bandwidth ¼ 600 MHz) to have a specific intensity of 4.8 mJy beam�1,

where the ‘beam’ is a circular solid angle of diameter, 1500 (see also Example 2.3d). A

measurement is then made in the optical B band of 22.8 magnitudes per pixel, where the

pixel corresponds to a square on the sky which is one arcsecond on a side. Determine (all in

cgs units) I� , f� , f , and L of the galaxy in each band. In which band is the source brighter? In

which band is it more luminous?

1.18 The limiting magnitude of some instruments can be pushed fainter by taking

extremely long exposures. Estimate the limiting magnitude of the Hubble Ultra-Deep

Field from the information given in Figure 3.1.
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