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Mathematics in a Pill

The purpose of this chapter is to give a brief outline of the probability theory underlying the
mathematics inside the book, and to introduce necessary notation and conventions which are
used throughout.

1.1 PROBABILITY SPACE AND RANDOM VARIABLES

A probability triple �����P� consists of the following components:

1. A set � of elementary outcomes called the sample space.
2. A �-algebra � of possible events (subsets of �).
3. A probability function P � � → 	0�1
 that assigns real numbers between 0 and 1 called

probabilities to the events in �.

The conditional probability of A given B is defined as follows:

P�A�B� = P�A ∩ B�/P�B��

Two events are said to be independent if the following three (equivalent) conditions hold:

1. P�A ∩ B� = P�A�P�B�
2. P�A� = P�A�B�
3. P�B� = P�B�A�

A random variable X � � → G is a measurable function from a probability space � into a
Banach space G known as the state space.

We say that random two variables X and Y are independent if for all events A and B

P�X ∈ A�Y ∈ B� = P�X ∈ A�P�Y ∈ B��

We define expected (mean) value EX of the random variable X as the integral

EX =
∫
�

X���P�d���

and define the variance DX as

DX =
∫
�

�X��� − EX� ⊗ �X��� − EX�P�d���
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where ⊗ stands for tensor product. We may define the conditional expectation of a random
variable X with respect to a �-algebra � ⊂ �. It is the only random variable E�X��� such
that for all A ∈ �

∫
A

X���P�d�� =
∫
A

E�X������P�d���

If the state space is the real line R, we define the distribution function F�x� (also called the
cumulative density function or probability distribution function) as the probability that a real
random variable X takes on a value less than or equal to a number x.

F�x� = P�X < x��

If the function F is differentiable, its derivative f�x� is called the density function:

f�x� = F ′�x��

1.2 NORMAL DISTRIBUTIONS

A normal (Gaussian) distribution on R with mean EX =  and variance DX = �2 is a
probability distribution with probability function

f�t� = 1

�
√

2�
exp

{
−
(

�t − �2

2�2

)}
� (1.1)

f(x)

x

F(x)

x

Figure 1.1 Gaussian distribution.

We also have the result that the sum of two normal variables is also a normal variable. A
normal variable with mean = 0 and variance � = 1 is called a standard normal. We denote
the cumulative distribution by N . A vector of M normal variables is called a multidimensional
normal variable.

1.3 STOCHASTIC PROCESSES

Let Ft ⊂ � be a family of increasing �-algebras. We define the probability quadruple
���Ft���P� as a standard probability setting for all dynamic models used in this book. A
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stochastic process is an indexed collection of Ft-measurable random variables X�t�, each
of which is defined on the same probability triple �����P� and takes values on the same
codomain – in our case the interval 	0� T
. In a continuous stochastic process the index set
is continuous, resulting in an infinite number of random variables. A particular stochastic
process is determined by specifying the joint probability distributions of the various random
variables X�t�.

1.4 WIENER PROCESSES

A continuous-time stochastic process W�t� with the following properties

• W�0� = 0,
• W has continuous paths,
• W�s� and �W�t� − W�s�� are independent random variables for any 0 < s < t,
• W�t� has Gaussian distribution with mean 0 and variance t

is called Wiener process or Brownian motion. It was introduced by Louis Bachelier in
1900 as a model of stock prices. A vector of N independent Wiener processes is called a
multidimensional Wiener process. The general shape of such a process is seen in the example
below.

Figure 1.2 Wiener process.

1.5 GEOMETRIC WIENER PROCESSES

The following stochastic process

X�t� = X�0� exp
{

t + �W�t� − �2

2
t

}
(1.2)

is called geometric Wiener process. The coefficient  is called the drift and the coefficient
� is called the volatility.
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1.6 MARKOV PROCESSES

A stochastic process X whose future probabilities are determined by its most recent values
is called or is said to be Markov. This can be described mathematically in the following
manner

P�X�T� ∈ A�X�s�� s ≤ t� = P�X�T� ∈ A�X�t���

1.7 STOCHASTIC INTEGRALS AND STOCHASTIC
DIFFERENTIAL EQUATIONS

If Y is a predictable stochastic process such that

P

⎛
⎝

t∫
0

�Y�s��2 ds < �
⎞
⎠= 1�

we may define the stochastic integral with respect to the Wiener process W�t� to be

C�t� =
t∫

0

Y�s� · dW�s�� (1.3)

If the process Y is deterministic then C is Gaussian with independent increments. The
stochastic integral has the following properties:

EC�t� = 0 and EC2�t� = E

t∫
0

�Y�s��2 ds�

We say that Y satisfies the Ito stochastic differential equation

dY�t� = f�t� Y�t��dt + g�t� Y�t�� · dW�t��

Y�0� = y�
(1.4)

If

Y�t� = Y�0� +
t∫

0

f�s� Y�s��ds +
t∫

0

g�s� Y�s�� · dW�s��

If f and g are deterministic functions with properties that ensure uniqueness of solution,
then the process Y is a Markov process. A Geometric Wiener process satisfies the following
stochastic equation:

dX�t� = X�t�dt + �X�t�dW�t�� (1.5)
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1.8 ITO’S FORMULA

Let the process Y satisfy the Ito equation:

dY�t� = f�t�dt + g�t� · dW�t�

and let F be a smooth function. By applying the Ito formula we produce the stochastic
equation satisfied by the process F�t� Y�t��:

dF�t� Y�t�� =
(

�F

�t
+ 1

2
�2F

�Y 2
�g�t��2

)
dt + �F

�Y
dY�t�� (1.6)

1.9 MARTINGALES

The N -dimensional stochastic process M�t� is a martingale with respect to Ft if E�C�t��<�
and the following property also holds:

M�t� = E �M�T��Ft� �

Every stochastic integral (and hence any Wiener process) is a martingale. However, a
Geometric Wiener process is a martingale only if  = 0. Any continuous martingale M can
be represented as an Ito integral, i.e.

M�t� =
t∫

0

Y�s� · dW�s�

for some predictable process Y . A martingale can be considered as a model of a fair game
and therefore can be considered a proper model of financial markets.

1.10 GIRSANOV’S THEOREM

Let M be a positive continuous martingale, such that M�0�=1. Then there exists a predictable
stochastic process ��t� such that

dM�t� = −��t�M�t�dW�t�

or, equivalently

M�t� = exp

⎧⎨
⎩−1

2

t∫
0

�2�s�ds −
t∫

0

��s�dW�s�

⎫⎬
⎭ �

If we now define new probability measure ET by

PT �A� =
∫
�

IA���M�T���P�d���
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then PT is a probability measure under which the stochastic process

WT �t� = W�t� +
t∫

0

��s�ds

is a Wiener process.

1.11 BLACK’S FORMULA (1976)

Let the stochastic process X satisfy the equation:

dX�t� = �X�t�dW�t��

Let C represent the (undiscounted) payoff from a European call option, so that C =
E �X�T� − K�+. Then C is given by the Black’76 formula:

C = X�0�N�d1� − KN�d2�� (1.7)

where

d1 = ln�X�0�/K� + �2T/2

�
√

T
�

d2 = d1 − �
√

T�

1.12 PRICING DERIVATIVES AND CHANGING OF NUMERAIRE

We can introduce a general abstract approach to derivatives pricing as follows: We are
given a set of positive continuous stochastic processes X0�t��X1�t�� � � � �XN �t� representing
market quantities; these could be stock prices, interest rates, exchange rates, etc. We assume
that the market is arbitrage-free, so that the quantities M1�t� = X1�t�

X0�t�
� � � � �MN �t� = XN �t�

X0�t�
are

martingales, where X0�t� is called a basic asset – a numeraire. Pricing European derivatives
maturing at time T consists of calculating functionals of the form:

Price = E

{
�

X0�T�

}
�

where � is a random variable representing the payoff at time T . The process X0�t� is
understood as the time value of money, i.e. comparable to a savings account, so we have to
assume that X0�0� = 1. If we define N new probability measures by

Pi�A� = X−1
i �0�

∫
�

IA���Mi�T���P�d���

then this leads to the following theorem:
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Theorem. The processes X0�t�

Xi�t�
�

X1�t�

Xi�t�
� � � � �

XN �t�

Xi�t�
are martingales under the measure Pi.

Proof. Let � be an Ft-measurable random variable.

Xi�0�Ei

{
Xj�t�

Xi�t�
�

}
= E

{
Xj�t�

Xi�t�

Xi�t�

X0�t�
�

}
= EMj�t�� = E�E

(
Mj�T� �Ft

)

= EE
(
Mj�T��

∣∣∣Ft

)
= EMj�T�� = E

{
Xj�T�

Xi�T�

Xi�T�

X0�T�
�

}
= Xi�0�Ei

{
Xj�T�

Xi�T�
�

}
�

This simple theorem is extremely important. In pricing derivatives the savings account X0�t�
can be replaced by any other tradable asset – we can change the numeraire, which may
allow us to simplify certain calculations, for example we have

Price = E

{
�

X0�T�

}
= E

{
�

X1�T�

X1�T�

X0�T�

}
= X1�0�E1

{
�

X1�T�

}
�

1.13 PRICING OF INTEREST RATE DERIVATIVES AND THE
FORWARD MEASURE

The theory of interest rate derivatives is in some sense simple because it relies only on one
basic notion – the time value of money. Let us start with some basic notions: denote by
B�t�T� be discount factors on the period 	t� T
 – understood as value at time t of an obligation
to pay $1 at time T . Payment of this dollar is certain; there is no credit risk involved. This
obligation is also called a zero-coupon bond. We assume that zero-coupon bonds with all
maturities are traded and this market is absolutely liquid – there are no transaction spreads.
These assumptions are quite sensible since the money, bond and swap markets are very
liquid with spreads not exceeding several basis points. Notice several obvious properties of
discount factors:

0 < B�t�T� ≤ B�t� S� ≤ 1 if S ≤ T and B�T�T� = 1�

Let X0�t� be the savings account then all tradable assets ��t� satisfy the arbitrage property
that

��t�

X0�t�
is a martingale�

In particular we have that

M�t�T� = B�t�T�

X0�t�B�0� T�

is a positive continuous martingale. We assume that the savings account is a process with
finite variation – existence and uniqueness of a savings account may be a subject to a
fascinating mathematical investigation. Since this problem is completely irrelevant to pricing
issues – we refer to Musiela and Rutkowski (1997b) stating only that it is satisfied for all
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practical models. The savings account is of little interest because it is not a tradable asset,
hence its importance is rather of mathematical character and practitioners try get rid of all
notions not related to trading as soon as possible. We adopt this principle and will shortly
remove the notion of savings account from our calculations.

There exists a d-dimensional stochastic process ��t�T� a d-dimensional Brownian motion
and such that

dB�t�T� = −B�t�T� �−d ln X0�t� + ��t�T� · dW�t��

and

dM�t�T� = −M�t�T���t�T� · dW�t��

Remark. The d-dimensional representation is not unique, however uniqueness does hold for
the single dimensional representation. Since most financial models are multidimensional we
have chosen the less elegant d-dimensional representation. The dot stands for scalar product.

Therefore

M�t�T� = exp

⎧⎨
⎩−1

2

t∫
0

���s�T��2ds −
t∫

0

��s�T� · dW�s�

⎫⎬
⎭

and

B�t�T� = B�0� T�X−1
0 �t� exp

⎧⎨
⎩−1

2

t∫
0

���s�T��2ds −
t∫

0

��s�T� · dW�s�

⎫⎬
⎭ � (1.8)

Since B�T�T� = 1� M�T�T�B�0� T� = X−1
0 �T�.

The pricing of European interest rate derivatives consists of finding expectation of dis-
counted values of cash flows

E
(
X−1

0 �t��
)
�

where � is an FT -measurable random variable – the intrinsic value of the claim. Define the
probability measure ET by

ET � = E�M�T�T�

for any random variable �. By the Girsanov theorem ET is a probability measure under
which the process

WT �t� = W�t� +
t∫

0

��s�T�ds

is a Wiener process. Now

EX−1
0 �T�� = B�0� T�EM�T�T�� = B�0� T�ET ��
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We may take discounting with respect to multiple cash flows as in the case of swaptions.
Let � be accrual period for both interest rates and swaps. For simplicity, we assume it is
constant. Define consecutive grid points as Ti+1 = Ti + � for a certain initial T = T0 < �.
To ease the notation, we set En = ETn

and Wn = WTn
. The forward compound factors and

forward LIBOR rates are defined as

�Ln�t� + 1 = Dn�t� = B�t�Tn−1�

B�t�Tn�
(1.9)

and forward swap rates as

SnN �t� =
N∑

i=n+1
B�t�Ti�Li�t�

AnN �t�
= B�t�Tn� − B�t�TN �

�AnN �t�

where

AnN �t� =
N∑

i=n+1

B�t�Ti��

Now let

C�SnN � =
N∑

i=n+1

X−1
0 �Ti� =

N∑
i=n+1

B�0� Ti�M�Ti�Ti��

Thus the pricing of European swap derivatives consists of finding

E�C�SnN ����

where � is an FTn+1
-measurable random variable – the intrinsic value of the claim. Since

M�t�T� is a positive continuous martingale we also have that the following is a positive
continuous martingale:

M�t�SnN � =
N∑

i=n+1
B�0� Ti�M�t�Ti�

AnN �0�
=

N∑
i=n+1

B�t�Ti�

X0�t�AnN �0�
�

Moreover

dM�t� SnN � = −
N∑

i=n+1
B�0� Ti�M�t�Ti�

AnN �0�
·

N∑
i=n+1

B�0� Ti�M�t�Ti���t�Ti�

N∑
i=n+1

B�0� Ti�M�t�Ti�

dW�t�

= −M�t�SnN �

N∑
i=n+1

B�t�Ti���t�Ti�

AnN �t�
dW�t��
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Therefore EnN defined by

EnN � = E�M�Tn+1� SnN �

is a probability measure under which the process

WnN �t� = W�t� +
t∫

0

N∑
i=n+1

B�s�Ti���s�Ti�

AnN �t�
ds (1.10)

is a Wiener process. Hence

EC�SnN �� =
N∑

i=n+1

B�0� Ti�EM�Ti�Ti��

=
N∑

i=n+1

B�0� Ti�EM�Tn+1� Ti�� = AnN �0�EnN ��

Moreover

M�t�SnN �SnN �t� =
N∑

i=n+1
B�t�Ti�

X0�t�AnN �0�

B�t�Tn� − B�t�TN �

AnN �t�
= B�t�Tn� − B�t�TN �

X0�t�AnN �0�
�

Therefore SnN �t�M�t� SnN � is a martingale under the measure E, and then the forward swap
rate SnN �t� is a martingale under EnN .


