Chapter 1

Introduction

Performance Analysis, Queuing Theory, Large Deviations. Performance analysis
of communication networks is the branch of applied probability that deals with
the evaluation of the level of efficiency the network achieves, and the level of
(dis)satisfaction enjoyed by its users. Clearly, there is a broad variety of measures
that characterize these two aspects. Focusing on the efficiency of the use of network
resources, one could think of the throughput, i.e., the rate at which the network
effectively works—in the case of a single network element, this could be the rate
(in terms of, say, bits per second) at which traffic leaves. Another option is to
use a relative measure, such as the utilization, commonly defined as the ratio of
the throughput and the available service speed of the network element. Also the
(dis)utility experienced by users can be expressed by a broad variety of measures.
Realizing that at any network element traffic can be stored in a buffer when the
input rate temporarily exceeds the available service rate, it seems justified to study
performance indicators that describe the delay incurred when passing the network
node. Buffers have a finite size, so there is the possibility of losing traffic, and as
a result the fraction of traffic lost becomes a relevant metric.

Performance analysis is a probabilistic discipline, as the main underlying as-
sumption is that user behavior is inherently random, and therefore described by a
statistical model. This statistical model defines the probabilistic properties of the
arrival process (or, input process) of traffic at the network. Traffic could arrive in
a smooth way, but highly irregular patterns also occur; in the latter case, commu-
nication engineers call the arrival process bursty.

Justified by the above description of network elements as storage systems, we
could model a communication network as a network of queues; at any node traffic
arrives, is stored if it cannot be handled immediately, and is served. Performance
analysis often relies heavily on results from the theory that describes the perfor-
mance of these queues, i.e., queuing theory. A key element of performance analysis
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is the characterization of the impact of ‘user parameters’ on the performance offered
by the network (how is the delay affected by the arrival rate? what is the impact of
increased variability of the input traffic? etc.). On the other hand, one often studies
the sensitivity of the performance in the system parameters (what is the impact of
the buffer size on the loss probability? how does the service speed affect the mean
delay? etc.)

A substantial part of the defined performance metrics relates to rare events.
Often network engineers have the target to design the system such that the loss
probability is below, say, 107%. Another common objective is that the probability
that the delay is larger than some predefined excessive value is of the same order.
This explains why we heavily rely on a subdomain of probability theory that
exclusively focuses on the analysis of rare events: large deviations theory. This
theory has a long history, but has been applied intensively for performance analysis
purposes only during the last, say, two decades.

Traffic management, dimensioning. Once one is capable of evaluating the per-
formance of a static situation (i.e., calculating performance metrics for a given
arrival process and given network characteristics), the next step is often to choose
the set of design parameters such that a certain condition is met, or such that some
objective function is optimized. For instance, a requirement imposed upon the net-
work element could be that just (on average) a fraction € of the incoming traffic
is lost. Evidently, when increasing the buffer size B, the loss probability decreases,
and therefore it is legitimate to ask for which minimal B the loss probability is at
most €. Of course, there is often a cost incurred when increasing B. As a result
one could imagine that one should maximize an objective function that consists of
a ‘utility part’, minus a ‘cost part’, where both parts increase in B. Selecting an
appropriate value for B is usually called buffer dimensioning; similarly the choice
of a suitable service speed is referred to as link rate dimensioning (or, shortly, link
dimensioning).

On the other hand, knowledge of the static situation enables the computation of
conditions on the arrival process (both in terms of average input traffic rate and the
variability of the arrival process) under which the network can offer some required
performance level:

e In this way, one could develop mechanisms that decide what the maximum
number of users is such that the mean delay stays within some predefined
bound; such a mechanism is usually called admission control. To imple-
ment an admission control, one needs to be able to characterize the so-called
admissible region, which is, in a situation of two classes of users, the com-
bination of all numbers of users of both classes (n1, n,) for which for both
classes the performance requirement is met.

e Also, insight into the static situation may tell us how to ‘smooth’ traffic (i.e.,
decrease the variability of the arrival process), such that the traffic stream
becomes more ‘benign’, and the loss probability in some target queue can
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meet some set requirement (a technique known as traffic shaping). Traffic
shaping is usually done by inserting an additional queue between the traffic
sources and the target queue that is emptied at a service rate ¢’ that is lower
than the peak rate of the original stream (but higher than the service rate
of the target queue). Then the traffic stream arriving at the second queue is
smoother than the original traffic stream, and therefore easier to handle, but
this is at the expense of introducing additional delay.

This traffic shaping example explains the interest in tandem queues, i.e.,
systems of queues in series (in which the output of the first queue feeds
into the second queue). In such a situation one would, for instance, like to
dimension the shaping rate: given a buffer B and service rate ¢ in the target
queue, how should one choose the shaping rate ¢’ to ensure that the loss
probability in the target queue is below € (where it assumed that the shaper
queue has a relatively big buffer).

In the literature, the set of control measures that affect the network’s efficiency
or the user’s (dis-)satisfaction is often called traffic management. Clearly, dimen-
sioning is a traffic management action that relates to a relatively long timescale:
one can choose a new value for the buffer size or the link rate only at a very
infrequent rate; the process of updating the resource capacities is known as the
planning cycle. Mechanisms like admission control serve to control fluctuations of
the offered traffic at a relatively short timescale: admission control is done on the
timescale that new users arrive (and hence the decision to accept or reject a new
user has to be done essentially in real time).

Performance differentiation. We have described above the situation in which we
wished to guarantee some performance requirement that is uniform across users; for
instance, all users should be offered the same maximum loss probability. In practice,
however, all applications have their own specific performance requirements. Think
of a voice user, who tolerates a substantial amount of loss (up to the order of a few
percents, if certain codecs are used) but whose delay is critical, versus a data user,
who has very stringent requirements with respect to loss, but is less demanding
with respect to delay. Of course one could treat all traffic in the same fashion,
e.g., by using first-in-first-out (FIFO) queues; clearly, to meet the performance
requirements of all users, the requirement of the most stringent users should be
satisfied. Such an approach will, however, inevitably lead to a waste of resources,
and therefore one has developed queuing disciplines that actively discriminate. An
example of such a scheme is the (two-class) priority queue, in which one class
has strict priority over another class. The high-priority class does not ‘see’ the
low-priority class, so its performance can be evaluated as in the FIFO case. The
low-priority class, however, sees a fluctuating service capacity, and therefore its
performance is considerably harder to analyze.

Strict priority has the intrinsic drawback of ‘starvation’, i.e., the low-priority
class can be excluded from service for relatively long periods of time (namely,
the periods in which the high-priority class uses all the bandwidth). To avoid this
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starvation effect, one could guarantee the low-priority class at least some minimal
service rate. This thought led to the idea of generalized processor sharing (GPS).
In GPS, both classes have their own queue. Class i can always use a fraction ¢;
of the total service rate C (where ¢; + ¢, = 1). If one of the classes does not use
its full capacity, then the remaining capacity is allocated to the other class (thus
making the service discipline work conserving). Note that the priority queue is a
special case of GPS (choose ¢; =1 to give class i strict priority over the other
class). One of the crucial engineering questions here is, for two user classes with
given traffic arrival processes and performance targets, how should the weights
be set?

Scope of this book. In view of the above, one could say that traffic management
is all about the interrelationship between

(N) the network traffic offered (not only in terms of the average imposed load,
but also in terms of its fluctuations, summarized in a certain arrival process);

(r) the amount of network resources available (link capacity, buffers, etc.);

(p) the performance level achieved.

With this interrelationship in mind, we conclude that there are three indispensable
prerequisites for appropriate traffic management.

In the first place, we should have accurate traffic models at our disposal (i.e., N).
Part A of this book is devoted to a class of models that has proven to be suitable in
the context of communication networks: Gaussian traffic processes. An interesting
feature of this class is that it is highly versatile, as it covers a broad class of
correlation structures. We introduce this class and provide a number of generic
properties. Then we explain why Gaussian models are likely to be an adequate
statistical descriptor, and how this can be empirically verified. We also present a
number of standard Gaussian models that are used throughout the book.

Secondly, we show in part B how to assess the performance of the network,
for a given Gaussian traffic model, and for given amounts of available resources
(i.e., (N,R) > P). In other words, we analyze Gaussian queues, i.e., queues with
Gaussian input. It turns out that only for a very limited subclass of inputs exact
analysis is possible, and this explains why we resort to asymptotics. We present
and explain several asymptotic results. Emphasis is on the so-called many-sources
framework, which is an asymptotic regime in which the number of users grows
large (where the traffic streams generated by these users have more or less similar
statistical properties), and where the resources are scaled accordingly. Single queues
are relatively easy to deal with in this framework, but we also focus on problems
that are significantly harder, such as the analysis of a tandem queue, and a queue
operating under GPS.

The final subject of the book is how these Gaussian queues can be used for
traffic management purposes. Essentially, these problems all amount to questions
of the type (N,P) = R: given a traffic model and some performance target, how
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much resources are needed? Specific attention will be paid to link dimensioning in
the single queue, the weight setting problem in generalized processor sharing, and
bandwidth trading.

Bibliographical notes

This book focuses on large deviations for Gaussian queues, with applications to
communication networking. There is a vast body of related literature, which we
will cite at several occasions. Here, we briefly list a number of textbooks that can
be used as background.

The literature on performance analysis is vast, and the key journals include
IEEE/ACM Transactions on Networking, Computer Networks, and Performance
Evaluation. A textbook that gives an excellent survey on performance evaluation
techniques is by Roberts et al. [253], albeit with a focus on somewhat out-of-date
technologies. We also recommend the book by Kurose and Ross [167], and the
classical book by Bertsekas and Gallager [32].

There are several strong textbooks on queuing theory — without attempting to
provide an exhaustive list, here we mention the books by Baccelli and Brémaud
[17], Cohen [52], Prabhu [246], and Robert [250]. The beautiful survey by
Asmussen [13] deserves some special attention, as it gives an excellent account
of the state of the art on many topics in queuing theory. The leading journal in
queuing is Queueing Systems, but there are many nice articles scattered over sev-
eral other journals (including Advances in Applied Probability, Journal of Applied
Probability and Stochastic Models).

During the last two decades a number of books on large deviations appeared
with a focus on applications in performance and networking. In this context we
mention the book by Bucklew [42] as a nice introduction to large deviations and
the underlying intuition. The book by Shwartz and Weiss [267] is technically con-
siderably more demanding, but the reader’s efforts pay off when working through a
beautiful series of appealing examples. Interestingly, Chang [46] connects determin-
istic network calculus methods with large deviations techniques. The book that is
perhaps most related to the present book is Ganesh, O’Connell, and Wischik [109].
Also there the emphasis is on the application of large-deviations techniques in a
queuing setting, albeit without focusing on Gaussian inputs, and without applying
it (explicitly) in a communication networks context.

Apart from these books, there are a number of books on large deviations, but
without a focus on queuing. Ellis [91] approaches large deviations from the angle of
statistical mechanics, whereas in Dupuis and Ellis [87] control-theoretic elements
appear. Perhaps the most complete, rigorous introductory book is by Dembo and
Zeitouni [72]. Other useful textbooks include Deuschel and Stroock [75] and den
Hollander [132]. Articles on large deviations appear in a broad variety of jour-
nals; besides the Applied Probability journals mentioned above, this also includes
Stochastic Processes and their Applications and Annals of Applied Probability.






