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Liquid Crystal Physics

1.1 Introduction

Liquid crystals are mesophases between crystalline solids and isotropic liquids [1–3]. The constituents
are elongated rod-like (calamitic) or disk-like (discotic) organic molecules as shown in Figure 1.1. The
size of the molecules is typically a few nanometers (nm). The ratio between the length and the diameter
of the rod-like molecules or the ratio between the diameter and the thickness of the disk-like molecules is
about 5 or larger. Because the molecules are non-spherical, besides positional order, they may also
possess orientational order.

Figure 1.1(a) shows a typical calamitic liquid crystal molecule. Its chemical name is 40-n-pentyl-4-
cyano-biphenyl and is abbreviated as 5CB [4,5]. It consists of a biphenyl, which is the rigid core, and a
hydrocarbon chain, which is the flexible tail. The space-filling model of the molecule is shown in
Figure 1.1(c). Although the molecule itself is not cylindrical, it can be regarded as a cylinder, as shown
Figure 1.1(e), in considering its physical behavior because of the fast rotation (on the order of 10�9 s)
around the long molecular axis due to thermal motion. The distance between two carbon atoms is
about1:5 A8 ; therefore the length and the diameter of the molecule are about 2 nm and 0.5 nm,
respectively. The molecule shown has a permanent dipole moment (from the CN head); however, it
can still be represented by a cylinder whose head and tail are the same, because in non-ferroelectric
liquid crystal phases, the dipole has equal probability of pointing up or down. It is necessary for a liquid
crystal molecule to have a rigid core(s) and flexible tail(s). If the molecule is completely flexible, it will
not have orientational order. If it is completely rigid, it will transform directly from the isotropic liquid
phase at high temperature to the crystalline solid phase at low temperature. The rigid part favors both
orientational and positional order while the flexible part does not. With balanced rigid and flexible parts,
the molecule exhibits liquid crystal phases.

Figure 1.1(b) shows a typical discotic liquid crystal molecule [6]. It also has a rigid core and flexible
tails. The branches are approximately on one plane. The space-filling model of the molecule is shown
in Figure 1.1(d). If there is no permanent dipole moment perpendicular to the plane of the molecule, it
can be regarded as a disk in considering its physical behavior as shown in Figure 1.1(f), because of the
fast rotation around the axis which is at the center of the molecule and perpendicular to the plane of the
molecule. If there is a permanent dipole moment perpendicular to the plane of the molecule, it is better to
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visualize the molecule as a bowl, because the reflection symmetry is broken and all the permanent
dipoles may point in the same direction and spontaneous polarization occurs. The flexible tails are also
necessary, otherwise the molecules form the crystal phase where there is positional order.

The variety of phases that may be exhibited by rod-like molecules are shown in Figure 1.2. At high
temperature, the molecules are in the isotropic liquid state where they do not have either positional or
orientational order. The molecules can easily move around and the material can flow like water. The
translational viscosity is comparable to that of water. Both the long and short axes of the molecules can
point in any direction.

When the temperature is decreased, the material transforms into the nematic phase, which is the most
common and simplest liquid crystal phase, where the molecules have orientational order but still no
positional order. The molecules can still diffuse around and the translational viscosity does not change
much from that of the isotropic liquid state. The long axis of the molecules has preferred direction.
Although the molecules still swivel due to thermal motion, the time-averaged direction of the long axis
of a molecule is well defined and is the same for all the molecules at the macroscopic scale. The average
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Figure 1.1 Calamitic liquid crystal: (a) chemical structure, (c) space-filling model, (e) physical

model. Discostic liquid crystal: (b) chemical structure, (d) space-filling mode, (f) physical model
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direction of the long molecular axis is denoted by ~n which is a unit vector and called the liquid crystal
director. The short axes of the molecules have no orientational order in a uniaxial nematic liquid crystal.

When the temperature is decreased further, the material may transform into the smetic-A phase where,
besides the orientational order, the molecules have partial positional order, i.e., the molecules form a
layered structure. The liquid crystal director is perpendicular to the layers. Smectic-A is a one-
dimensional crystal where the molecules have positional order in the normal direction of the layer.
The diagram shown in Figure 1.2 is schematic. In reality, the separation between neighboring layers is
not as well defined as that shown in the figure. The molecular number density exhibits an undulation with
the wavelength about the molecular length. Within a layer, it is a two-dimensional liquid in which there
is no positional order and the molecules can move around. For a material in poly-domain smectic-A, the
translational viscosity is significantly higher, and it behaves like a grease. When the temperature is
decreased still futher, the material may transform into the smectic-C phase where the liquid crystal
director is no longer perpendicular to the layer but tilted.

At low temperature, the material is in the crystal solid phase where there are both positional and
orientational orders. The translational viscosity become infinite and the molecules (almost) no longer
diffuse.

Liquid crystals get the ‘crystal’ part of their name because they exhibit optical birefringence like
crystalline solids. They get the ‘liquid’ part of their name because they can flow and do not support
shearing like regular liquids. Liquid crystal molecules are elongated and have different molecular
polarizabilities along their long and short axes. Once the long axes of the molecules orient along a
common direction, the refractive indices along and perpendicular to the common direction are different.
It should be noted that not all rod-like molecules exhibit all the liquid crystal phases, but just some of
them.

Some of the liquid crystal phases of disk-like molecules are shown in Figure 1.3. At high temperature,
they are in the isotropic liquid state where there are no positional and orientational orders. The material
behaves in the same way as a regular liquid. When the temperature is decreased, the material transforms

Figure 1.2 Schematic representation of the phases of rod-like molecules

Figure 1.3 Schematic representation of the phases of disk-like molecules
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into the nematic phase which has orientational order but not positional order. The average direction of
the short axis perpendicular to the disk is oriented along a preferred direction which is also called the
liquid crystal director and denoted by a unit vector~n. The molecules have different polarizabilities along
a direction in the plane of the disk and along the short axis. Thus the discotic nematic phase also exhibits
birefringence as crystals.

When the temperature is decreased further, the material transforms into the columnar phase where,
besides orientational order, there is partial positional order. The molecules stack up to form columns.
Within a column, the columnar phase is a liquid where the molecules have no positional order.
The columns, however, are arranged periodically in the plane perpendicular to the columns. Hence
the columnar phase is a two-dimensional crystal. At low temperature, the material transforms into the
crystalline solid phase where the positional order along the columns is developed.

The liquid crystal phases discussed so far are called thermotropic liquid crystals and the transitions
from one phase to another phase are driven by varying temperature. There is another type of liquid
crystallinity, called lyotropic, exhibited by molecules when they are mixed with a solvent of some kind.
The phase transitions from one phase to another phase are driven by varying the solvent concentration.
Lyotropic liquid crystals usually consist of amphiphilic molecules which have a hydrophobic group at
one end and a hydrophilic group at the other end, with water as the solvent. The common lyotropic liquid
crystal phases are micelle phase and lamellar phase. Lyotropic liquid crystals are important in biology.
They will not be discussed in this book because its scope concerns displays and photonic devices.

Liquid crystals have a history of more than 100 years. It is believed that the person who discovered
liquid crystals was Friedrich Reinitzer, an Austrian botanist [7]. The liquid crystal phase observed by
him in 1888 was a cholesteric phase. Since then liquid crystals have come a long way and become a
major branch of interdisciplinary science. Scientifically, liquid crystals are important because of the
richness of their structures and transitions. Technologically, they have gained tremendous success in
display and photonic applications [8–10].

1.2 Thermodynamics and Statistical Physics

Liquid crystal physics is an interdisciplinary science, involving thermodynamics, statistical physics,
electrodynamics, and optics. Here we give a brief introduction to thermodynamics and statistical
physics.

1.2.1 Thermodynamic laws

One of the important quantities in thermodynamics is entropy. From the microscopic point of view,
entropy is a measure of the number of quantum states accessible to a system. In order to define entropy
quantitatively, we first consider the fundamental logical assumption that for a closed system (in which no

energy and particles exchange with other systems), quantum states are either accessible or inaccessible

to the system, and the system is equally likely to be in any one of the accessible states as in any other

accessible state [11]. For a macroscopic system, the number of accessible quantum states g is a huge
number (� 1023). It is easier to deal with ln g, which is defined as the entropy s:

s ¼ ln g (1.1)

If a closed system consists of subsystem 1 and subsystem 2, the numbers of accessible states of the
subsystems are g1 and g2, respectively. The number of accessible quantum states of the whole system is
g ¼ g1g2 and the entropy is s ¼ ln g ¼ ln ðg1g2Þ ¼ ln g1 þ ln g2 ¼ s1 þ s2.

Entropy is a function of the energy u of the system s ¼ sðuÞ. The second law of thermodynamics
states that for a closed system, the equilibrium state has maximum entropy. Let us consider a closed
system which contains two subsystems. When two subsystems are brought into thermal contact the
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energy exchange between them is allowed, the energy is allocated to maximize the number of accessible
states; that is, the entropy is maximized. Subsystem 1 has energy u1 and entropy s1; subsystem 2 has
energy u2 and entropy s2. For the whole system, u ¼ u1 þ u2 and s ¼ s1 þ s2. The first law of
thermodynamics states that energy is conserved, i.e., u ¼ u1 þ u2 ¼ constant. For any process inside the
closed system, du ¼ du1 þ du2 ¼ 0. From the second law of thermodynamics, for any process we have
ds ¼ ds1 þ ds2� 0. When the two subsystems are brought into thermal contact, at the beginning energy
flows. For example, an amount of energy jdu1j flows from subsystem 1 to subsystem 2, du1 < 0 and
du2 ¼ �du1 > 0, and

@s
@u2
¼ @s1

@u2
þ @s2

@u2
¼ @s1

@u1

@u1

@u2
þ @s2

@u2
¼ � @s1

@u1
þ @s2

@u2
� 0

When equilibrium is reached, the entropy is maximized and

@s1

@u1
� @s2

@u2
¼ 0 or

@s1

@u1
¼ @s2

@u2

We know that when two systems reach equilibrium, they have the same temperature. Accordingly the
fundamental temperature t is defined by

1=t ¼ ð@s=@uÞN;V (1.2)

where N is the number of particles and V the volume. Energy flows from a high temperature system to a

low-temperature system. The conventional temperature (Kelvin temperature) is defined by

T ¼ t=kB (1.3)

where kB ¼ 1:81
 10�23 joules=kelvin is the Boltzmann constant. Conventional entropy S is defined by

1=T ¼ @S=@u (1.4)

Hence

S ¼ kBs (1.5)

1.2.2 Boltzmann distribution

Now we consider the thermodynamics of a system at a constant temperature, i.e., in thermal contact with
a thermal reservoir. The temperature of the thermal reservoir (named B) is t. The system under
consideration (named A) has two states with energy 0 and e, respectively. A and B form a closed system,
and its total energy u ¼ uA þ uB ¼ uo ¼ constant. When A is in the state with energy 0, B has energy uo,
and the number of accessible states is g1 ¼ gA
 gB ¼ 1
 gBðuoÞ ¼ gBðuoÞ. When A has energy e, B has
energy uo � e, and the number of accessible states is g2 ¼ gA 
 gB ¼ 1
 gBðuo � eÞ ¼ gBðuo � eÞ. For
the whole system, the total number of accessible states is

G ¼ g1 þ g2 ¼ gBðuoÞ þ gBðuo � eÞ (1.6)

ðAþ BÞ is a closed system, and the probability in any of the G states is the same. When the whole
system is in one of the g1 states, A has energy 0. When the whole system is in one of the g2 states, A has
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energy e. Therefore the probability that A is in the state with energy 0 is

Pð0Þ ¼ g1

g1 þ g2
¼ gBðuoÞ

gBðuoÞ þ gBðuo � eÞ

The probability that A is in the state energy e is

PðeÞ ¼ g2

g1 þ g2
¼ gBðuo � eÞ

gBðuoÞ þ gBðuo � eÞ

From the definition of entropy, we have gBðuoÞ ¼ esBðuoÞ and gBðuo � eÞ ¼ esBðuo�eÞ. Because e� uo,

sBðuo � eÞ� sBðuoÞ �
@sB

@uB
e ¼ sBðuoÞ �

1

t
e

Therefore we have

Pð0Þ ¼ esBðuoÞ

esBðuoÞ þ esBðuoÞ�e=t
¼ 1

1þ e�e=t
¼ 1

1þ e�e=kBT
(1.7)

PðeÞ ¼ esBðuoÞ�e=t

esBðuoÞ þ esBðuoÞ�e=t
¼ e�e=t

1þ e�e=t
¼ e�e=kBT

1þ e�e=kBT
(1.8)


 pðeÞ
Pð0Þ ¼ e�e=kBT (1.9)

For a system having N states with energies e1; e2; . . . ; ei; . . . eiþ1; . . . ; eN , the probability for the
system in the state with energy ei is

PðeiÞ ¼ e�ei=t
�XN

j¼1

e�e j=kBT (1.10)

The partition function of the system is defined as

Z ¼
X

i

e�ei=kBT (1.11)

The internal energy (average energy) of the system is given by

U ¼ hei ¼
X

i

eiPðeiÞ ¼
1

Z

X
i

eie
�ei=kBT (1.12)

Because

@Z

@T
¼
X

i

ei

kBT2

� �
e�ei=KBT ¼ 1

kBT2

X
i

eie
�ei=kBT

then

U ¼ kBT2

Z

@Z

@T
¼ kBT2 @ðln ZÞ

@T
(1.13)
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1.2.3 Thermodynamic quantities

As energy is conserved, the change of the internal energy U of a system equals the heat dQ absorbed and
the mechanical work dW done to the system, dU ¼ dQþ dW . When the volume of the system changes
by dV under the pressure P, the mechanical work done to the system is given by

dW ¼ �PdV (1.14)

When there is no mechanical work, the heat absorbed equals the change of internal energy. From the

definition of temperature 1=T ¼ ð@S=@UÞV , the heat absorbed in a reversible process at constant

volume is

dU ¼ dQ ¼ TdS (1.15)

When the volume is not constant, then

dU ¼ TdS� PdV (1.16)

The derivatives are

T ¼ @U

@S

� �
V

(1.17)

P ¼ � @U

@V

� �
S

(1.18)

The internal energy U, entropy S, and volume V are extensive quantities, while temperature T and

pressure P are intensive quantities. The enthalpy H of the system is defined by

H ¼ U þ PV (1.19)

Its variation in a reversible process is given by

dH ¼ dU þ dðPVÞ ¼ ðTdS� PdVÞ þ ðPdV þ VdPÞ ¼ TdSþ VdP (1.20)

From this equation, it can be seen that the physical meaning of enthalpy is that in a process at constant
pressure ðdP ¼ 0Þ, the change of enthalpy dH is equal to the heat absorbed dQð¼ TdSÞ. The derivatives
of the enthalpy are

T ¼ @H

@S

� �
P

(1.21)

V ¼ @H

@P

� �
S

(1.22)

The Helmholtz free energy F of the system is defined by

F ¼ U � TS (1.23)
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Its variation in a reversible process is given by

dF ¼ dU � dðTSÞ ¼ ðTdS� PdVÞ � ðTdSþ SdTÞ ¼ SdT � PdV (1.24)

The physical meaning of Helmholtz free energy is that in a process at constant temperature, the change
of Helmholtz free energy is equal to the work done to the system. The derivatives are

S ¼ � @F

@T

� �
V

(1.25)

P ¼ � @F

@V

� �
T

(1.26)

The Gibbs free energy G of the system is defined by

G ¼ U � TSþ PV (1.27)

The variation in a reversible process is given by

dG ¼ dU � dðTSÞ � dðPVÞ ¼ �SdT þ VdP (1.28)

In a process at constant temperature and pressure, the Gibbs free energy does not change. The

derivatives are

S ¼ � @G

@T

� �
P

(1.29)

V ¼ @G

@P

� �
T

(1.30)

The Helmholtz free energy can be derived from the partition function. From Equations (1.13) and

(1.25),

F ¼ U � TS ¼ KBT2 @ðln ZÞ
@T

þ T
@F

@T

� �
V

F � T
@F

@T

� �
V

¼ �T2 1

T

@F

@T

� �
V

þ F
@ð1=TÞ
@T

� �
V

� �
¼ �T2 @ðF=TÞ

@T

� �
V

¼ KBT2 @ðln ZÞ
@T

Hence

F ¼ �kBT ln Z ¼ �kBT ln
X

i

e�ei=kBT

 !
(1.31)

From Equations (1.11), (1.25), and (1.31), the entropy of a system at constant temperature can be
calculated as

S ¼ �kBhln ri ¼ �kB

X
i

ri ln ri (1.32)
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1.2.4 Criteria for thermodynamic equilibrium

Now we consider the criteria which can used to judge whether a system is in its equilibrium state under
given conditions. We already know that for a closed system, as it changes from a non-equilibrium state to
the equilibrium state, the entropy increases:

dS� 0 (1.33)

It can be stated differently that, for a closed system, the entropy is maximized in the equilibrium state.
In considering the equilibrium state of a system at constant temperature and volume, we construct a

closed system which consists of the system (subsystem 1) under consideration and a thermal reservoir
(subsystem 2) with temperature T. When the two systems are brought into thermal contact, energy is
exchanged between subsystem 1 and subsystem 2. Because the whole system is a closed system,
dS ¼ dS1 þ dS2� 0. For system 2, 1=T ¼ ð@S2=@U2ÞV , and therefore dS2 ¼ dU2=T (this is true when
the volume of the subsystem is fixed, which also means the volume of subsystem 1 is fixed). Because of
energy conservation, dU2 ¼ �dU1. Hence dS ¼ dS1 þ dS2 ¼ dS1 þ dU2=T ¼ dS1� dU1=T � 0.
Because the temperature and volume are constant for subsystem 1, dS1 � dU1=T ¼ ð1=TÞd
ðTS1 � UÞ� 0, and therefore

dðU1 � TS1Þ ¼ dF1 � 0 (1.34)

At constant temperature and volume, the equilibrium state has minimum Helmholtz free energy.
Again, as above, in considering the equilibrium state of a system at constant temperature and pressure,

we construct a closed system which consists of the system (subsystem 1) under consideration and a
thermal reservoir (subsystem 2) with temperature T. When the two systems are brought into thermal
contact, energy is exchanged between subsystem 1 and subsystem 2. Because the whole system is a
closed system, dS ¼ dS1 þ dS2� 0. But now, for system 2, because the volume is not fixed, and
mechanical work is involved, dU2 ¼ TdS2 � PdV2, i.e., dS2¼ðdU2 þ PdV2Þ=T . Because dU2¼ �dU1

and dV2 ¼ �dV1, then dS ¼ dS1 þ ðdU2 þ PdV2Þ=T ¼ dS1 � ðdU1 þ PdV1Þ=T ¼ ð1=TÞdðTS1� U2�
PV1Þ� 0. Therefore

dðU1 þ PV1 � TS1Þ ¼ dG1 � 0 (1.35)

At constant temperature and pressure, the equilibrium state has minimum Gibbs free energy. If
electric energy is involved, then we have to consider the electric work done to the system by external
sources such as a battery. In a thermodynamic process, if the electric work done to the system is dWe,
then

dS� dQ

T
¼ dU � dWm � dWe

T
¼ dU þ PdV � dWe

T

Therefore at constant temperature and pressure

dðU �We þ PV � TSÞ ¼ dðG�WeÞ � 0 (1.36)

In the equilibrium state, G �We is minimized.
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1.3 Orientational Order

Orientational order is the most important feature of liquid crystals. The average directions of the long
axes of the rod-like molecules are parallel to each other. Because of the orientational order, liquid
crystals possess anisotropic physical properties; that is, in different directions, they have different
responses to external fields such as an electric field, a magnetic field, and shear. In this section, we will
discuss how to quantitatively specify orientational order and why rod-like molecules tend to be parallel
to each other.

For a rigid elongated liquid crystal molecule, three axes can be attached to it to describe its orientation.
One is the long molecular axis and the other two are perpendicular to the long molecular axis. Usually the
molecule rotates rapidly around the long molecular axis. Although the molecule is not cylindrical, if
there is no hindrance to the rotation in the nematic phase, the rapid rotation around the long molecular
axis makes it behave like a cylinder. There is no preferred direction for the short axes and thus the
nematic liquid crystal is usually uniaxial. If there is hindrance to the rotation, the liquid crystal is biaxial.
A biaxial nematic liquid crystal is a long sought for material. The lyotropic biaxial nematic phase has
been observed [12]. The existence of a thermotropic biaxial nematic phase is still under debate, and it
may exist in bent-core molecules [13,14]. Here our discussion is on bulk liquid crystals. The rotational
symmetry around the long molecular axis can be broken by confinement. In this book, we will deal with
uniaxial liquid crystals consisting of rod-like molecules unless otherwise stated.

1.3.1 Orientational order parameter

In uniaxial liquid crystals, we have only to consider the orientation of the long molecular axis. The
orientation of a rod-like molecule can be represented by a unit vector â which is attached to the molecule
and parallel to the long molecular axis. In the nematic phase, the average directions of the long molecular
axes are along a common direction: namely, the liquid crystal director denoted by the unit vector~n. The
3-D orientation of â can be specified by the polar angle y and the azimuthal angle f where the z axis is
chosen parallel to ~n as shown in Figure 1.4. In general the orientational order of â is specified by an
orientational distribution function f ðy;fÞ. f ðy;fÞdOðdO ¼ sin ydydfÞ is the probability that â is
oriented along the direction specified by y and f within the solid angle dO. In the isotropic phase, â has
equal probability of pointing in any direction and therefore f ðy;fÞ ¼ constant. For uniaxial liquid
crystals, there is no preferred orientation in the azimuthal direction, and then f ¼ f ðyÞ which depends
only on the polar angle y.

Rod-like liquid crystal molecules may have permanent dipole moments. If the dipole moment is
perpendicular to the long molecular axis, the dipole has equal probability of pointing along any direction
because of the rapid rotation around the long molecular axis in uniaxial liquid crystal phases. The dipoles
of the molecules cannot generate spontaneous polarization. If the permanent dipole moment is along the

x

y

z

â

n
n

f

q

Figure 1.4 Schematic diagram showing the orientation of rod-like molecules
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long molecular axis, the flip of the long molecular axis is much slower (of the order of 10�5 s), so the
above argument does not hold. In order to see the orientation of the dipoles in this case, we consider the
interaction between two dipoles [15]. When one dipole is on top of the other, if they are parallel, the
interaction energy is low and thus parallel orientation is preferred. When two dipoles are side by side, if
they are anti-parallel, the interaction energy is low and thus anti-parallel orientation is preferred. As we
know, the molecules cannot penetrate each other. For elongated molecules, the distance between two
dipoles when they are on top of each other is farther than that when they are side by side. The interaction
energy between two dipoles is inversely proportional to the cubic power of the distance between them.
Therefore anti-parallel orientation of dipoles is dominant in rod-like molecules. There are the same
number of dipoles aligned parallel to the liquid crystal director ~n as there are aligned anti-parallel to ~n.
The permanent dipole along the long molecular axis cannot generate spontaneous polarization. Thus,
even when the molecules have a permanent dipole moment along the long molecular axes, they can be
regarded as cylinders whose top and bottom are the same. It can also be concluded that ~n and �~n are
equivalent.

An order parameter must be defined in order to quantitatively specify the orientational order. The
order parameter is usually defined in such a way that it is zero in the high-temperature unordered phase
and non-zero in the low-temperature ordered phase. By analogy with ferromagnetism, we may consider
the average value of the projection of â along the director ~n, i.e.,

hcosyi ¼
Zp
0

cos yf ðyÞ sin ydy
�Zp

0

f ðyÞ sin ydy (1.37)

where hi indicate the average (the temporal and spatial averages are the same) and cos y is the first-order
Legendre polynomial. In the isotropic phase, the molecules are randomly oriented and hcosyi ¼ 0. We
also know that in the nematic phase the probability that a molecule will orient at angles y and p� y is
the same, i.e., f ðyÞ ¼ f ðp� yÞ; therefore hcosyi ¼ 0, and so hcosyi provides no information about the
orientational order parameter. Next, let us consider the average value of the second-order Legendre
polynomial for the order parameter:

S¼hP2ð cos yÞi¼
�

1

2
ð3 cos2 y� 1Þ



¼
Zp
0

1

2
ð3 cos2 y�1Þ f ðyÞ sin ydy

�Zp
0

f ðyÞ sin ydy (1.38)

In the isotropic phase as shown in Figure 1.5(b), f ðyÞ ¼ c, a constant, and

Zp
0

1

2
ð3 cos2 y� 1Þ f ðyÞ sin ydy ¼

Zp
0

1

2
ð3 cos2 y� 1Þc sin ydy ¼ 0

In the nematic phase, f ðyÞ depends on y. For a perfectly ordered nematic phase as shown in
Figure 1.5(d), f ðyÞ ¼ dðyÞ, where sin ydðyÞ ¼ 1 when y ¼ 0, sin ydðyÞ ¼ 0 when y 6¼ 0, andR p

0dðyÞsin ydy ¼ 1, and the order parameter is S ¼ 1
2 ð3cos2 y� 1Þ ¼ 1. It should be pointed out that

the order parameter can be positive or negative. Two order parameters with the same absolute value but
different signs correspond to different states. When the molecules all lie in a plane but are randomly
oriented in the plane as shown in Figure 1.5(a), the distribution function is f ðyÞ ¼ dðy� p=2Þ, where
dðy� p=2Þ ¼ 1 when y ¼ p=2, dðy� p=2Þ ¼ 0 when y 6¼ p=2, and

R p
0dðy� p=2Þsin ydy ¼ 1, and the

order parameter is S ¼ 1
2 ½3cos2ðp=2Þ � 1Þ=1 ¼�0:5. In this case, the average direction of the molecules
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is not well defined. The director ~n is defined by the direction of the uniaxial axis of the material.
Figure 1.5(c) shows the state with the distribution function f ðyÞ ¼ ð35=16Þ½cos4yþ ð1=35Þ�, which is
plotted vs. y in Figure 1.5(e). The order parameter is S ¼ 0:5. Many anisotropies of physical properties
are related to the order parameter and will be discussed later.

1.3.2 Landau–de Gennes theory of orientational order in the nematic phase

Landau developed a theory for second-order phase transitions [16], such as those from the diamagnetic
phase to the ferromagnetic phase, in which the order parameter increases continuously from zero as the
temperature is decreased across the transition temperature Tc from the high-temperature disordered
phase to the low temperature ordered phase. For a temperature near Tc, the order is very small. The free
energy of the system can be expanded in terms of the order parameter.

The transition from water to ice at 1 atmosphere pressure is a first-order transition and the latent
heat is about 100 J=g. The isotropic–nematic transition is a weak first-order transition because the
order parameter changes discontinuously across the transition but the latent heat is only about 10 J=g.
De Gennes extended Landau’s theory to the isotropic–nematic transition because it is a weak first-order
transition [1, 17]. The free energy density f of the material can be expressed in terms of the order
parameter S as

f ¼ 1

2
aðT � T�ÞS2 � 1

3
bS3 þ 1

4
cS 4 þ 1

2
LðrSÞ2 (1.39)

where a, b, c and L are constants and T� is the virtual second-order phase transition temperature. The last
term is the energy cost when there is a variation of the order parameter in space, but here we will consider
only the uniform order parameter case. There is no linear term of S, which would result in a non-zero
order parameter at any temperature; a is positive, otherwise S will never be zero and the isotropic phase
will not be stable at any temperature. A significant difference between the free energy here and that of a
magnetic system is the cubic term. In a magnetic system, the magnetization m is the order parameter. For
a given value of jmj, there is only one state, and the sign of m is decided by the choice of the coordinate.
The free energy must be the same for a positive m and a negative m, and therefore the coefficient of the
cubic term must be zero. For nematic liquid crystals, positive and negative values of the order parameter
S correspond to two different states and the corresponding free energies can be different, and therefore b
is not zero; b must be positive because at sufficiently low temperatures positive order parameters have

f (q )

0.0
0.5
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2.0
2.5

1.00.80.60.40.20.0
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S = −0.5

(b)

S = 0 n

(c)

S = 0.5 n

(d)

S = 1

(e)
q (p)

Figure 1.5 Schematic diagram showing the states with different orientational order parameters
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global minimum free energies. We also know that the maximum value of S is 1. The quadratic term with
a positive c prevents S from exploding. The values of the coefficients can be estimated in the following
way: the energy of the intermolecular interaction between the molecules associated with orientation is
about 0:1 eV and the molecular size is about 1 nm, f is the energy per unit volume, and therefore
Taðor b or cÞ� 0:1 eV=volume of 1 molecule � 0:1
 10�19 joules=ð10�9 mÞ3� 107 J=m3. For a given
temperature, the order parameter S is found by minimizing f :

@ f

@S
¼ aðT � T�ÞS� bS2 þ cS3 ¼ aðT � T�Þ � bSþ cS2

� �
S ¼ 0 (1.40)

There are three solutions:

S1 ¼ 0

S2 ¼
1

2c
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4acðT � T�Þ

q� �

S3 ¼
1

2c
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4acðT � T�Þ

q� �

S1 ¼ 0 corresponds to the isotropic phase and the free energy is f1 ¼ 0. The isotropic phase has global
minimum free energy at a high temperature. It will be shown that at a low temperature S2 has global
minimum free energy

f2 ¼
1

2
aðT � T�ÞS2

2 �
1

3
bS3

2 þ
1

4
cS4

2

S3 has a local minimum free energy. At the nematic–isotropic phase transition temperature TNI , the order

parameter is Sc ¼ S2c, and f2ðS2 ¼ ScÞ ¼ f1 ¼ 0; that is,

1

2
aðTNI � T�ÞS2

c �
1

3
bS3

c þ
1

4
cS4

c ¼ 0 (1.41)

From Equation (1.40), at this temperature, we also have

aðTNI � T�Þ � bSc þ cS2
c ¼ 0 (1.42)

From these two equations, we can obtain

aðTNI � T�Þ � 1

3
bSc ¼ 0

Therefore

Sc ¼
3a

b
ðTNI � T�Þ (1.43)

Substituting Equation (1.43) into Equation (1.42), we get the transition temperature

TNI ¼ T� þ 2b2

9ac
(1.44)
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and the order parameter at the transition temperature

Sc ¼
2b

3c
(1.45)

For liquid crystal 5CB, the experimentally measured order parameter is shown by the solid circles in
Figure 1.6(a) [6]. In fitting the data, the following parameters were used: a ¼ 0:023s J=Km3, b ¼
1:2s J=m3; and c ¼ 2:2s J=m3, where s is a constant which has to be determined by the latent heat of the
nematic–isotropic transition.

Because S is a real number in the region from �0:5 to 1.0, when T � T�> b2=4ac, i.e., when
T � TNI > b2=4ac� 2b2=9ac ¼ b2=36ac, S2 and S3 are not real. The only real solution is S ¼ S1 ¼ 0,
corresponding to the isotropic phase. When T � TNI < b2=36ac, there are three solutions. However,
when 0 < T � TNI � b2=36ac, the isotropic phase is the stable state because its free energy is still the
global minimum as shown in Figure 1.6(b). When T � TNI � 0, the nematic phase with order parameter
S ¼ S2 ¼ bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4acðT � T�Þ

ph i
=2c is the stable state because its free energy is the global

minimum.
In order to see the physical meaning clearly, let us plot f vs. S at various temperatures as shown in

Figure 1.7. At temperature T1 ¼ TNI þ b2=36acþ 1:0�C, the curve has only one minimum at S ¼ 0,
which means that S1 ¼ 0 is the only solution and the corresponding isotropic phase is the stable state. At
temperature T3 ¼ TNI þ b2=36ac� 0:5�C, there are two local minima and one local maximum, where
there are three solutions: S1 ¼ 0; S2 > 0; and S3 > 0. S1 ¼ 0 corresponds to the global minimum
free energy and the isotropic phase is still the stable state. At T4 ¼ TNI , the free energies of the isotropic
phase with order parameter S1 and the nematic phase with order parameter S2 become the same; phase
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transition takes place and the order parameter changes discontinuously from 0 to Sc ¼ 2b=3c. This is a
first-order transition. It can be seen from the figure that at this temperature there is an energy barrier
between S1 and S2. If the system is initially in the isotropic phase and there are no means to overcome the
energy barrier, it will remain in the isotropic phase at this temperature. As the temperature is decreased,
the energy barrier is lowered. At T5 ¼ TNI � 3�C, the energy barrier is low. At T6 ¼ T�, the second-
order derivative of f with respect to S at S1 ¼ 0 is

@2 f

@S2

����
S¼0

¼ aðT � T�Þ � 2bSþ 3cS2

����
S¼0

¼ aðT � T�Þ ¼ 0

S1 is no longer a local minimum, and the energy barrier disappears. T� is therefore the supercooling
temperature below which the isotropic phase becomes absolutely unstable. At this temperature, S1 ¼ S3.
At T7 ¼ T� � 2�C, there are two minima located at S2ð> 0Þ and S3ð< 0Þ (the minimum value is slightly
below zero), and a maximum at S1 ¼ 0.

If initially the system is in the nematic phase, it will remain in this phase even at temperatures higher
than TNI and its free energy is higher than that of the isotropic phase because there is an energy barrier
preventing the system from transforming from the nematic phase to the isotropic phase. The temperature
T2 (superheating temperature) at which the nematic phase becomes absolutely unstable can be found
from

@2 f

@S2

����
S2

¼ aðT2 � T�Þ � 2bS2 þ 3cS2
2 ¼ 0 (1.46)

Using S2 ¼ ð1=2cÞ½bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4acðT2 � T�Þ

p
�, we can get T2 ¼ TNI þ b2=36ac.

In reality, there are usually irregularities, such impurities and defects, which can reduce the energy
barrier of nematic–isotropic transition. The phase transition takes place before the thermodynamic
instability limits (the supercooling or superheating temperature). Under an optical microscope, it is
usually observed that with decreasing temperature nematic ‘islands’ are initiated by irregularities and
grow out of the isotropic ‘sea’, and with increasing temperature isotropic ‘lakes’ are produced by
irregularities and grow on the nematic ‘land’. The irregularities are called nucleation seeds and the
transition is a nucleation process. In summary, nematic–isotropic transition is a first-order transition and
the order parameter changes discontinuously, there is an energy barrier in the transition, and the
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Figure 1.7 Free energy vs. order parameter at various temperatures in Landau-de Gennes theory
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transition is a nucleation process; superheating and supercooling occur. In a second-order transition,
there is no energy barrier and the transition occurs simultaneously everywhere at the transition
temperature (the critical temperature).

There are a few points worth mentioning in Landau–de Gennes theory. First, the theory works well
at temperatures near the transition temperature. At temperatures far below the transition temperature,
however, the order parameter increases without limit with decreasing temperature, and the theory
does not work well because the maximum order parameter should be 1. In Figure 1.6, the parameters
are chosen in such a way that the fitting is good for a relatively wide temperatures region,
TNI � T� ¼ 2b2=9ac ¼ 6:3�C, which is much larger than the value (�18C) measured by light-scattering
experiments in the isotropic phase [18]. There are fluctuations in orientational order in the isotropic
phase, which results in a variation of refractive index in space and causes light scattering. The intensity
of the scattered light is proportional to 1=ðT � T�Þ.

1.3.3 Maier–Saupe theory

In the nematic phase, there are interactions, such as the van der Waals interaction, between the liquid
crystal molecules. Because the molecular polarizability along the long molecular axis is larger than
along the short transverse molecular axis, the interaction is anisotropic and results in the parallel
alignment of the rod-like molecules. In the spirit of the mean field approximation, Maier and Saupe
introduced an effective single molecule potential V to describe the intermolecular interaction [19, 20].
The potential has the following properties. (1) It must be a minimum when the molecule orients along the
liquid crystal director (the average direction of the long molecular axis of the molecules). (2) Its strength
is proportional to the order parameter S ¼ hP2ðcos yÞi because the potential well is deep when the
molecules are highly orientationally ordered and vanishes when the molecules are disordered. (3) It
assures that the probabilities for the molecules pointing up and down are the same. The potential in
Maier–Saupe theory is given by

VðyÞ ¼ �vS
3

2
cos2 y� 1

2

� �
(1.47)

where v is the orientational interaction constant of the order of 0:1 eV and y is the angle between the

long molecular axis and the liquid crystal director as shown in Figure 1.4. The probability f of the

molecule orienting along the direction with polar angle y is governed by the Boltzmann distribution:

f ðyÞ ¼ e�VðyÞ=kBT

�Zp
0

e�VðyÞ=kBT sin ydy (1.48)

The single molecule partition function is

Z ¼
Zp
0

e�VðyÞ=kBT sin ydy (1.49)

From the orientational distribution function we can calculate the order parameter:

S ¼ 1

Z

Zp
0

P2ð cos yÞe�VðyÞ=kBT sin ydy ¼ 1

Z

Zp
0

P2ð cos yÞevSP2ðyÞ=kBT sin ydy (1.50)

We introduce a normalized temperature t ¼ kBT=v. For a given value of t, the order parameter S can
be found by numerically solving Equation (1.50). An iteration method can be used for the numerical
calculation of the order parameter: (1) choose an initial value for the order parameter, (2) substitute it
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into the right hand side of Equation (1.50), and (3) calculate the order parameter. Use the newly obtained
order parameter to repeat the above process until a stable value is obtained. As shown in Figure 1.8(a),
there are three solutions: S1, S2, and S3. In order to determine which is the actual solution, we have to
examine the corresponding free energies. The free energy F has two parts, F ¼ U � TEn, where U is the
intermolecular interaction energy and En is the entropy. The single molecular potential describes the
interaction energy between one liquid crystal molecule and the remaining molecules of the system. The
interaction energy of the system with N molecules is given by

U ¼ 1

2
NhVi ¼ N

2Z

Zp
0

VðyÞe�VðyÞ=kBT sin ydy (1.51)

where the factor 1
2 avoids counting the intermolecular interaction twice. The entropy is calculated by

using Equation (1.32):

En ¼ �NkBhln f i ¼ �NkB

Z

Zp
0

ln½ f ðyÞ�e�VðyÞ=kBT sin ydy (1.52)

From Equation (1.48) we have ln½ f ðyÞ� ¼ �V ðyÞ=kBT � lnZ; therefore En ¼ ðN=TÞhVi þ NkB ln Z
and the free energy is

F ¼ U � TEn ¼ �NkBT ln Z � 1

2
NhVi (1.53)

From Equation (1.47) we have hVi ¼ �vS2 and therefore

F ¼ U � TEn ¼ �NkBTlnZ þ 1

2
NvS2 (1.54)

Although the second term in this equation looks abnormal, this equation is correct and can be checked

by calculating the derivative of F with respect to S:

@F

@S
¼ �NkBT

@ ln Z

@S
� 1

2
N
@hVi
@S
¼ �NkBT

Z

@Z

@S
þ NvS

1S

2S

f
3f
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Letting @F=@S ¼ 0, we have

S ¼ kBT

vZ

@Z

@S
¼ kBT

vZ

Zp
0

�1

kBT

@V

@S
e�VðyÞ=kBT sin ydy ¼ 1

Z

Zp
0

P2ð cos yÞevSP2ðyÞ=kBT sin ydy

which is consistent with Equation (1.50). The free energies corresponding to the solutions are shown in
Figure 1.8(b). The nematic–isotropic phase transition temperature is tNI ¼ 0:22019. For temperatures
higher than tNI , the isotropic phase with order parameter S ¼ S1 ¼ 0 has a lower free energy and thus is
stable. For temperatures lower than tNI , the nematic phase with order parameter S ¼ S2 has a lower free
energy and thus is stable. The order parameter jumps from 0 to Sc ¼ 0:4289 at the transition.

In the Maier–Saupe theory there are no fitting parameters. The predicted order parameter as a function
of temperature is universal, and agrees qualitatively, but not quantitatively, with experimental data. This
indicates that higher order terms are needed in the single molecule potential, i.e.,

VðyÞ ¼
X

i

½�vihPið cos yÞiPið cos yÞ� (1.55)

where Piðcos yÞ ði ¼ 2; 4; 6; . . .Þ are the ith-order Legendre polynomials. The fitting parameters are vi.

With higher order terms, better agreement with experimental results can be achieved.

Maier–Saupe theory is very useful in considering liquid crystal systems consisting of more than one
type of molecule, such as mixtures of nematic liquid crystals and dichroic dyes. The interactions between
different molecules are different and the constituent molecules have different order parameters.

All the theories discussed above do not predict well the orientational order parameter for temperatures
far below TNI . The order parameter as a function of temperature is better described by the empirical
formula [21]

S ¼ 1� 0:98TV2

TNIV
2
NI

 !0:22

(1.56)

where V and VNI are the molar volumes at T and TNI , respectively.

1.4 Elastic Properties of Liquid Crystals

In the nematic phase, the liquid crystal director ~n is uniform in space in the ground state. In reality, the
liquid crystal director ~n may vary spatially because of confinement or external fields. This spatial
variation of the director, called the deformation of the director, costs energy. When the variation occurs
over a distance much larger than the molecular size, the orientational order parameter does not change
and the deformation can be described by a continuum theory analogous to the classic elastic theory of a
solid. The elastic energy is proportional to the square of the spatial variation rate.

1.4.1 Elastic properties of nematic liquid crystals

There are three possible deformation modes of the liquid crystal director as shown in Figure 1.9. We
choose the cylindrical coordinate such that the z axis is parallel to the director at the origin of the
coordinate:~nð0Þ ¼ ẑ. Consider the variation of the director at an infinitely small distance from the origin.
When moving in the radial direction, there are two possible modes of variation: (1) the director tilts
toward the radial direction r̂ as shown in Figure 1.9(a), and (2) the director tilts toward the azimuthal
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direction f̂ as shown in Figure 1.9(b). The first mode is called splay, where the director at ðdr; f; z ¼ 0Þ
is

~nðdr; z ¼ 0Þ ¼ dnrðdrÞr̂þ ½1þ dnzðdrÞ�ẑ (1.57)

where dnr� 1 and dnz� 1. Because j~nj2 ¼ n2
r þ n2

f þ n2
z ¼ ðdnrÞ2 þ ð1þ dnzÞ2 ¼ 1, then dnz ¼

�ðdnrÞ2=2, where dnz is a higher order term and can be neglected. The spatial variation rate is @nr=@r
and the corresponding elastic energy is

fsplay ¼ ð1=2ÞK11ð@n r=@rÞ2 (1.58)

where K11 is the splay elastic constant.

The second mode is called twist, where the director at ðdr; f; z ¼ 0Þ is

~nðdr; f; z ¼ 0Þ ¼ dnfðdrÞf̂þ ½1þ dnzðdrÞ�ẑ (1.59)

where dnf� 1 and dnz ¼ �ðdnfÞ2=2, a higher order term which can be neglected. The spatial variation
rate is @nf=@r and the corresponding elastic energy is

ftwist ¼ ð1=2ÞK22ð@nf=@rÞ2 (1.60)

where K22 is the twist elastic constant.
When moving in the z direction, there is only one possible mode of variation, as shown in

Figure 1.9(c), which is called bend. The director at ðr ¼ 0; f; dzÞ is

~nðr ¼ 0; f; dzÞ ¼ dnrðdzÞr̂þ ½1þ dnzðdzÞ�ẑ (1.61)

where dnr� 1 and dnz ¼ �ðdnrÞ2=2, a higher order term which can be neglected.
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Figure 1.9 The three possible deformations of the liquid crystal director: (a) splay; (b) twist; and

(c) bend
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Note that when r ¼ 0, the azimuthal angle is not well defined and we can choose the coordinate such
that the director tilts toward the radial direction. The corresponding elastic energy is

fbend ¼ ð1=2ÞK33ð@nr=@zÞ2 (1.62)

where K33 is the bend elastic constant. Because dnz is a higher order term, @nz=@z� 0 and

@nz=@r� 0. Recall thatr �~njr¼0; z¼0 ¼ ð1=rÞ@ðrnrÞ=@rþ ð1=rÞ@nf=@fþ @nz=@z ¼ @nr=@rþ dnr.

Because @nr=@r is finite and dnr� 1, r �~njr¼0; z¼0 ¼ @nr=@r. The splay elastic energy can be

expressed as fsplay ¼ ð1=2ÞK11ðr �~nÞ2. Because ~n ¼ ẑ, at the origin ~n � r 
~njr¼0; z¼0 ¼ ðr
~nÞz ¼
@nf=@r. The twist elastic energy can be expressed as ftwist ¼ ð1=2ÞK22ð~n � r 
~nÞ2. Because ~n

r
~njr¼0; z¼0 ¼ ðr 
~nÞr � ðr 
~nÞf ¼ @nr=@z, the bend elastic energy can be expressed as

fbend ¼ ð1=2ÞK33ð~n
r
~nÞ2. Putting all the three terms together, we obtain the elastic energy

density:

fela ¼
1

2
K11ðr �~nÞ2 þ

1

2
K22ð~n � r 
~nÞ2 þ

1

2
K33ð~n
r
~nÞ2 (1.63)

This elastic energy is often referred to as the Oseen–Frank energy and K11, K22, and K33 are referred
to as the Frank elastic constants because of his pioneering work on the elastic continuum theory of liquid
crystals [22]. The value of the elastic constants can be estimated in the following way. When a significant
variation of the director occurs in a length L, the angle between the average directions of the long
molecular axes of two neighboring molecules is ða/LÞ, where a is the molecular size. When the average
directions of the long molecular axes of two neighboring molecules are parallel, the intermolecular
interaction energy between them is a minimum. When the average direction of their long molecular
axes makes an angle of ða/LÞ, the intermolecular interaction energy increases to ða /LÞ2u, where u is the
intermolecular interaction energy associated with orientation and is about 0:1 eV. The increase of the
interaction energy is the elastic energy, i.e.,

a

L

� �2
u ¼ Kiiðr~nÞ2 
molecular volume ¼ Kii

1

L

� �2

a3

Therefore

Kii ¼
u

a
� 0:1
 10�19 J

1 nm
¼ 10�11 N

Experiments show that usually the bend elastic constant K33 is the largest and the twist elastic constant
K22 is the smallest. As an example, at room temperature the liquid crystal 5CB has these elastic
constants: K11 ¼ 0:64
 10�11 N, K22 ¼ 0:3
 10�11 N, and K33 ¼ 1
 10�11 N.

The elastic constants are temperature dependent. As shown in Maier–Saupe theory, the intermolecular
interaction energy u (the averaged value of the potential given by Equation (1.47) is proportional
to the square of the orientational order parameter S. Therefore the elastic constants are proportional
to S2.

It is usually sufficient to consider the splay, twist, and bend deformations of the liquid crystal
director in determining the configuration of the director, except in some cases where the surface to
volume ratio is high and another two terms, called divergence terms (or surface terms), may have to be
considered. The elastic energy density of these terms is given by f13 ¼ K13r � ð~nr �~nÞ and
f24 ¼ �K24r � ð~nr �~nþ~n
r
~nÞ, respectively [23]. The volume integral of these two terms

can be changed to a surface integral because of the Gauss theorem.
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1.4.2 Elastic properties of cholesteric liquid crystals

So far we have considered liquid crystals consisting of molecules with reflectional symmetry. The
molecules are the same as their mirror images, and are called achiral molecules. The liquid crystal 5CB
shown in Figure 1.1(a) is an example of an achiral molecule. Now we consider liquid crystals consisting
of molecules without reflectional symmetry. The molecules are different from their mirror images and
are called chiral molecules. Such an example is CB15 shown in Figure 1.10(a). It can be regarded as a
screw, instead of a rod, in considering its physical properties. After considering the symmetry where ~n
and �~n are equivalent, the generalized elastic energy density is

fela ¼
1

2
K11ðr �~nÞ2 þ

1

2
K22ð~n � r 
~nþ qoÞ2 þ

1

2
K33ð~n
r
~nÞ2 (1.64)

where qo is the chirality and its physical meaning will be discussed in a moment. Note that r
~n is a

pseudo-vector which does not change sign under reflectional symmetry while ~n � r 
~n is a pseudo-

scalar which changes sign under reflectional symmetry operation. Under reflectional symmetry operation,

the elastic energy changes to

f 0ela ¼
1

2
K11ðr �~nÞ2 þ

1

2
K22ð�~n � r 
~nþ qoÞ2 þ

1

2
K33ð�~n
r
~nÞ2 (1.65)

If the liquid crystal molecule is achiral and thus has reflectional symmetry, the system does not
change and the elastic energy does not change under reflectional symmetry operation. It is required that
fela ¼ f 0eta; then qo ¼ 0. When the liquid crystal is in the ground state with minimum free energy,
fela ¼ 0, which requires that r �~n ¼ 0, ~n � r 
~n ¼ 0, and ~n
r
~n ¼ 0. This means that in the

ground state, the liquid crystal director ~n is uniformly aligned along one direction.
If the liquid crystal molecule is chiral and thus has no reflectional symmetry, the system changes under

reflectional symmetry operation. The elastic energy may change. It is no longer required that fela ¼ f 0eta,
and thus qo may not be zero. When the liquid crystal is in the ground state with minimum free energy,
fela ¼ 0, which requires thatr �~n ¼ 0,~n � r 
~n ¼ �qo, and~n
r
~n ¼ 0. A director configuration

which satisfies the above conditions is

nx ¼ cosðqozÞ; ny ¼ sinðqozÞ; nz ¼ 0 (1.66)

and is schematically shown in Figure 1.11. The liquid crystal director twists in space. This type of liquid

crystal is called a cholesteric liquid crystal. The axis around which the director twists is called the helical

axis and is chosen to be parallel to z here. The distance Po over which the director twists by 360� is called

the pitch and is related to the chirality by

Po ¼
2p
qo

(1.67)

CH3

CH3

CH2 CH2

C NCH

(b)(a)

Figure 1.10 (a) Chemical structure of a typical chiral liquid crystal molecule; (b) physical model of a

chiral liquid crystal molecule
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Depending on the chemical structure, the pitch of a cholesteric liquid crystal could take any value in the

region from a few tenths of a micron to infinitely long. The periodicity of a cholesteric liquid crystal with

pitch Po is Po=2 because ~n and �~n are equivalent. Cholesteric liquid crystals are also called chiral

nematic liquid crystals and denoted as N�. Nematic liquid crystals can be considered as a special case of

cholesteric liquid crystals with an infinitely long pitch.

In practice, a cholesteric liquid crystal is usually obtained by mixing a nematic host with a chiral
dopant. The pitch of the mixture is given by

P ¼ 1

ðHTPÞ � x (1.68)

where x is the concentration of the chiral dopant and (HTP is the helical twisting power of the chiral

dopant, which is mainly determined by the chemical structure of the chiral dopant and depends only

slightly on the nematic host.

1.4.3 Elastic properties of smectic liquid crystals

Smectic liquid crystals possess partial positional orders besides the orientational order exhibited in
nematic and cholesteric liquid crystals. Here we only consider the simplest case: smectic-A. The elastic
energy of the deformation of the liquid crystal director in smectic-A is the same as in the nematic liquid
crystal. In addition, the dilatation (compression) of the smectic layer also costs energy which is given by
[24]

flayer ¼
1

2
B

d � do

do

� �2

(1.69)

where B is the elastic constant for the dilatation of the layer and is referred as to the Young modulus, do

and d are the equilibrium layer thickness (the periodicity of the density undulation) and the actual layer

Figure 1.11 Schematic diagram of the director configuration of the cholesteric liquid crystal
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thickness of the smectic layer, respectively. Typical values of B are about 106�107 J=m3, which are

103 to 104 smaller than those in a solid. In a slightly deformed smectic-A liquid crystal, we consider a

closed loop as shown in Figure 1.12. The total number of layers traversed by the loop is zero, which

can be mathematically expressed as
H
~n � dl ¼ 0. Using the Stokes theorem, we have

R
r
~n � d~s ¼H

~n � dl ¼ 0. Therefore in smectic-A we have

r
~n ¼ 0 (1.70)

which assures that ~n � r 
~n ¼ 0 and ~n
r
~n ¼ 0. The consequence is that twist and bend

deformations of the director are not allowed (because they change the layer thickness and cost too

much energy). The elastic energy in a smectic-A liquid crystal is

felas ¼
1

2
K11ðr �~nÞ2 þ

1

2
B

d � do

do

� �2

(1.71)

Some chiral liquid crystals, as the temperature is decreased, exhibit the mesophases isotropic !
cholesteric ! smectic-A. Because of the property shown by Equation (1.70), there is no spontaneous

twist in smectic-A. Expressed another way, the pitch in smectic-A is infinitely long. In the cholesteric

phase, as the temperature is decreased toward the cholesteric–smectic-A transition, there is a

pretransitional phenomenon where the smectic-A order forms in short space-scale and time-scale due

to thermal fluctuations. This effect causes the pitch of the cholesteric liquid crystal to increase with

decreasing temperature and diverge at the transition temperature as shown in Figure 1.13. As will be

discussed later, a cholesteric liquid crystal with pitch P exhibits Bragg reflection at the wavelength

l ¼ nP, where n is the average refractive index of the material. If l ¼ nP is in the visible light region,

n

Figure 1.12 Schematic diagram showing the deformation of the liquid crystal director and the

smectic layer in the smectic-A liquid crystal

T

P

IsotropicCholestericSmectic-A 
TCh−SA TI−Ch

Visible
region

2T 1T

Figure 1.13 Schematic diagram showing how the pitch of a thermochromic cholesteric liquid crystal

changes
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the liquid crystal reflects colored light. When the temperature is varied, the color of the liquid crystal

changes. These types of cholesteric liquid crystals are known as thermochromic cholesteric liquid

crystals [24]. As shown in Figure 1.13, the reflected light is in the visible region for temperatures in

the region from T1 to T2. There are liquid crystals with DT ¼ T1 � T2 ¼ 1�. If there are two

thermochromic cholesteric liquid crystals with different cholesteric–smectic-A transition temperatures,

mixtures with different concentrations of the two components will exhibit color reflections at different

temperatures. This is how thermochromic cholesteric liquid crystals are used to make thermometers.

1.5 Response of Liquid Crystals to Electromagnetic Fields

Liquid crystals are anisotropic dielectric and diamagnetic media [1,25]. Their resistivities are very high
ð� 1010 O cmÞ. Dipole moments are induced in them by external fields. They have different dielectric
permittivities and magnetic susceptibilities along the directions parallel and perpendicular to the liquid
crystal director.

1.5.1 Magnetic susceptibility

We first consider magnetic susceptibility. Because the magnetic interaction between the molecules is
weak, the local magnetic field of the molecules is approximately the same as the externally applied
magnetic field. For a uniaxial liquid crystal, a molecule can be regarded as a cylinder. When a magnetic
field ~H is applied to the liquid crystal, it has different responses to the applied field, depending on the
angle between the long molecular axis ~a and the field ~H . The magnetic field can be decomposed into a
parallel component and a perpendicular component as shown in Figure 1.14. The magnetization ~M is
given by

~M ¼ Nkkð~a � ~HÞ~aþ Nk? ½~H � ð~a � ~HÞ~a�
¼ Nk?~H þ NDkð~a � ~HÞ~a
¼ Nk? ~H þ NDkð~a~aÞ � ~H

(1.72)

where N is the molecular number density, kk and k? are molecular magnetic polarizabilities parallel and

perpendicular to the long molecular axis, respectively, and Dk ¼ kk � k? . Expressed in matrix form,

Equation (1.72) becomes

~M ¼ N

k? þ Dkaxax Dkaxay Dkaxaz

Dkayax k? þ Dkayay Dkayaz

Dkazax Dkazay k? þ Dkazaz

0
B@

1
CA � ~H ¼ N k

$ � ~H (1.73)

where ai ði ¼ x; y; zÞ are the projections of~a in the x, y, and z directions in the lab frame whose z axis is

parallel to the liquid crystal director: az ¼ cosy, ax ¼ sin y cosf, and ay ¼ sin y sinf. The molecule

swivels because of thermal motion. The averaged magnetization is ~M ¼ Nhk$ i � ~H. For a uniaxial

liquid crystal, recall that hcos2 yi ¼ ð2Sþ 1Þ=3, hsin2 yi ¼ ð2� 2SÞ=3, hsin2 fi ¼ hcos2 fi ¼ 1=2,

and hsinf cosfi ¼ 0. Therefore

h k$i ¼
k? þ 1

3ð1� SÞDk 0 0

0 k? þ 1
3ð1� SÞDk 0

0 0 k? þ 1
3ð2Sþ 1ÞDk

0
B@

1
CA (1.74)
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Because ~M ¼ w~ �~H, the magnetic susceptibility tensor is

w
$¼

w? 0 0

0 w? 0

0 0 wk

0
B@

1
CA¼N

k?þ 1
3ð1� SÞDk 0 0

0 k?þ 1
3ð1� SÞDk 0

0 0 k? þ 1
3ð2Sþ 1ÞDk

0
B@

1
CA (1.75)

The anisotropy is

Dw¼ wk � w? ¼NDkS (1.76)

where wk and w? are negative and small (�10�5 in SI units) and Dw is usually positive. From Equation

(1.75) it can be seen that ð2w? þ wkÞ=3¼Nð3k? þDkÞ=3¼Nð2k? þkkÞ=3, which is independent of

the order parameter. The quantity ð2w? þ wkÞ=3N does not change discontinuously when crossing the

nematic–isotropic transition.

1.5.2 Dielectric permittivity and refractive index

When an electric field is applied to a liquid crystal, it will induce dipole moments in the liquid crystal.
For a uniaxial liquid crystal, the molecule can be regarded as a cylinder, and it has different molecular
polarizabilities parallel and perpendicular to the long molecular axis ~a. Similar to the magnetic case,
when a local electric field ~Eloc (also called an internal field) is applied to the liquid crystal, the
polarization (dipole moment per unit volume) is given by

~P ¼ Nakð~a �~ElocÞ~aþ Na? ½~Eloc � ð~a �~ElocÞ~a�
¼ Na?~Eloc þ NDað~a �~ElocÞ~a
¼ Na?~Eloc þ NDað~a~aÞ �~Eloc

(1.77)

H

a

H//

⊥H

b

y

z

x

n

f

q

Figure 1.14 Schematic diagram showing the field decomposed into components parallel and

perpendicular to the long molecular axis: ~a, unit vector parallel to the long molecular axis; ~b, unit

vector perpendicular to the long molecular axis
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where N is the molecular density, ak and a? are the molecular polarizabilities parallel and

perpendicular to the long molecular axis, respectively, and Da ¼ ak � a? . Different from the magnetic

case, the dipole–dipole interactions between the molecules are strong, or, stated in another way, the

local electric field on a molecule is the sum of the externally applied electric field and the electric field

produced by the dipole moments of other molecules. We can approach this problem in the following

way. Imagine a cavity created by removing the molecule under consideration, as shown in Figure 1.15.

The macroscopic field~E is the sum of the field~Eself produced by the molecule itself and the field~Eelse,

which is the local field ~Elocal produced by the external source and the rest of the molecules of the

system:

~E ¼ ~Eself þ~Eelse ¼ ~Eself þ~Elocal (1.78)

In order to illustrate the principle, let us first consider an isotropic medium. The cavity can be regarded as
a sphere. The field ~Eself is produced by the dipole moment inside the sphere, which can be calculated in
the following way. In the calculation of the field, the dipole moment can be replaced by the surface
charge produced by the dipole moment on the surface of the sphere. The surface charge density is
s ¼ ~P � ~m. The field produced by the surface charge is ~Eself ¼ �~P=3eo. The local field is
~Elocal ¼ ~E þ ~P=3eo. Hence the polarizability is

~P ¼ Na~Eloc ¼ Nað~E þ~P=3eoÞ (1.79)

~P ¼ Na~E
1� Na=3eo

(1.80)

The electric displacement ~D ¼ eoe~E ¼ eo~E þ ~P, where eo ¼ 8:85
 1012 N=V2 is the permittivity of
vacuum, and e is the (relative) dielectric constant which is given by

e ¼ 1þ
~P

eo
~E
¼ 1þ Na=eo

1� Na=3eo
(1.81)

e� 1

eþ 2
¼ 1

3eo
Na (1.82)

Induced
dipole

R RP

Figure 1.15 Schematic diagram showing how a macroscopic field is produced in a medium
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which is called the Clausius–Mossotti relation. At optical frequencies, the refractive index n is given by

n2 ¼ e, and therefore
n2 � 1

n2 þ 2
¼ 1

3eo
Na (1.83)

which is called the Lorentz–Lorenz relation. The local field is related to the macroscopic field by

~Elocal ¼ ~E þ~P=3eo ¼ ~E þ
Na=3eo

1� Na=3eo

~E ¼ 1

1� Na=3eo

~E ¼ K~E (1.84)

where the defined K ¼ 1=ð1� Na=3eoÞ is called the internal field constant.

Liquid crystals are anisotropic. The local field ~Elocal in them depends on the macroscopic field ~E as
well as the angles between ~E and the long molecular axis ~a and the liquid crystal director ~n. They are
related to each other by

~Elocal ¼ K
$ �~E (1.85)

where K
$

is the internal field tensor which is a second-rank tensor. Taking account of the internal field

tensor and the thermal motion of the molecules, the polarization is

~P ¼ Na? h~Ki �~E þ NDah½~K � ð~a~aÞ�i �~E (1.86)

The macroscopic dielectric tensor is

e$ ¼ I
$ þ N

eo
½a? hK

$ i þ DahK$ � ð~a~aÞi� (1.87)

In a material consisting of non-polar molecules, the induced polarization consist of two parts: (1) the

electronic polarization Pelectronic which comes from the deformation of the electron clouds of the

constituting atoms of the molecule, and (2) the ionic polarization Pionic which comes from the relative

displacement of the atoms constituting the molecule. For a material consisting of polar molecules,

there is a third contribution, namely the dipolar polarization Pdipolar , which comes from the

reorientation of the dipole. These contributions to the molecular polarizability depend on the frequency

of the applied field. The rotation of the molecule is slow and therefore the dipole-orientation

polarization can only contribute up to a frequency of megahertz. The vibration of atoms in molecules is

faster and the ionic polarization can contribute up to the frequency of infrared light. The motion of

electrons is the fastest and the electronic polarization can contribute up to the frequency of ultraviolet

light. In relation to the magnitudes, the order is Pelectronic <Pionic <Pdipolar .

At optical frequencies, only the electronic polarization contributes to the molecular polarizability,
which is small, and the electric field is usually low. De Jeu and Bordewijk showed experimentally that (1)
ð2e? þ ekÞ=3r is a constant through the nematic and isotropic phases [25, 26], where r is the mass
density, and (2) the dielectric anisotropy De ¼ ek � e? is directly proportional to the anisotropy of the
magnetic susceptibility. Based on these results, it was concluded that K

$
is a molecular tensor

independent of the macroscopic dielectric anisotropy. In the molecular principal frame Zzx with the
x axis parallel to the long molecular axis ~a, ~K has the form

~K ¼
K? 0 0

0 K? 0

0 0 Kk

0
B@

1
CA (1.88)
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Next we need to find the form of K
$

in the lab frame xyz with the z axis parallel to the liquid crystal

director~n. Because of the axial symmetry around~a, we only need to consider the transformation of the

matrix between the two frames as shown in Figure 1.16. The frame Zzx is achieved by first rotating the

frame xyz around the z axis through the angle f and then rotating the frame around the z axis through

the angle y. The rotation matrix is

R
$ ¼

cos y cosf �sinf sin ycosf

cos y sinf cosf sin y sinf

�sin y 0 cos y

0
B@

1
CA (1.89)

and the reverse rotation matrix is

R
$�1 ¼

cos y cosf cos y sinf �sin y

�sinf cosf 0

sin y cosf sin y sinf cos y

0
B@

1
CA (1.90)

In the lab frame K
$

has the form

~K¼R
$ �

K? 0 0

0 K? 0

0 0 K==

0
B@

1
CA � R$�1

¼
K? þ DK sin2 y cos2 f DK sin2 y sinf cosf DK sin y cos y cosf

DK sin2 y sinf cosf K? þ DK sin2 y sin2 f DKsin y cos y sinf

DK sin y cos y cosf DK sin y cos y sinf K? þ DK cos2 y

0
B@

1
CA

(1.91)

z

y
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a

n

f

h

q

x

q

V

Figure 1.16 Schematic diagram showing the transformation between the molecular principal frame

Zzx and the lab frame xyz
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where DK ¼ Kk � K? , and ~a~a has the form

~a~a ¼
sin y cosf

sin y sinf

cos y

0
B@

1
CAð sin y cosf sin y sinf cos y Þ

¼
sin2 y cos2 f sin2 y sinf cosf sin y cos y cosf

sin2 y sinf cosf sin2 y sin2 f sin y cos y sinf

sin y cos y cosf sin y cos y sinf cos2 y

0
B@

1
CA

(1.92)

and ~a~a � K$ has the form

~a~a � K$ ¼
Kk sin2 y cos2 f Kk sin2 y sinf cosf Kk sin y cos y cosf

Kk sin2 y sinf cosf Kk sin2 y sin2 f Kk sin y cos y sinf

Kk sin y cos y cosf Kk sin y cos y sinf Kk cos2 y

0
BB@

1
CCA (1.93)

Recall that hcos2 yi ¼ ð2Sþ 1Þ=3, hsin2 yi ¼ ð2� 2SÞ=3, hsin2 fi ¼ hcos2 fi ¼ 1=2, and hcos yi ¼
hsinfi ¼ hcosfi ¼ hsinf cosfi ¼ 0; therefore their averaged values are

hK$ i ¼
K? þ DKð1� SÞ=3 0 0

0 K? þ DKð1� SÞ=3 0

0 0 K? þ DKð2Sþ 1Þ=3

0
B@

1
CA (1.94)

h~a~a � K$ i ¼
Kkð1� SÞ=3 0 0

0 Kkð1� SÞ=3 0

0 0 Kkð2Sþ 1Þ=3

0
B@

1
CA (1.95)

e$ ¼ I
$ þ N

eo
½a? hK

$ i þ DahK$ � ð~a~aÞi�

Therefore

e$ ¼

1þ N

3eo
½a?K? ð2þ SÞ

þ akKkð1� SÞ�

0 0

0 1þ N

3eo
½a?K? ð2þ SÞ

þ akKkð1� SÞ�

0

0 0 1þ N

3eo
½a?K? ð2� 2SÞ

þ akKkð1þ 2SÞ�

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

(1.96)
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The anisotropy is

De ¼ ek � e? ¼
N

eo
ðakKk � a?K? ÞS (1.97)

which is linearly proportional to the order parameter S. In terms of the refractive indices, Equation

(1.97) becomes

n2
k � n2

? ¼ 2nDn ¼ N

eo
ðakKk � a?K? ÞS

where n ¼ ðnk þ n? Þ=2 and Dn ¼ ðnk � n? Þ. Approximately, the birefringence Dn is linearly propor-
tional to the order parameter. For most liquid crystals, n� 1:5�2:0 and Dn� 0:05�0:3.

The electronic polarization may be treated by using classical mechanics where the system is regarded
as a simple harmonic oscillator. There are three forces acting on the electron: (1) the elastic restoring
force �Kx, where K is the elastic constant and x is the displacement of the electron from its equilibrium
position; (2) the viscosity force �g@x=@t; and (3) the electric force �eEoeiot, where Eo and o are the
amplitude and frequency of the applied electric field, respectively. The dynamic equation is

m
d2x

dt2
¼ �kx� eEoeiot � g

@x

@t
(1.98)

The solution is x ¼ xoeiot and the amplitude of the oscillation is

xo ¼
�eEo

mðo2 � o2
oÞ þ igo

(1.99)

where oo ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is the frequency of the oscillator (the frequency of the transition dipole moment in

quantum mechanics). The induced dipole moment is p ¼ �exo. The molecule polarizability is

a ¼ p=Eloc ¼
e2

m

ðo2
o � o2Þ

ðo2
o � o2Þ2 þ ðgo=mÞ2

� i
e2

m

go=m

ðo2
o � o2Þ2 þ ðgo=mÞ2

(1.100)

which is a complex number and the imaginary part corresponds to absorption. When the frequency of

the light is far from the absorption frequency oo or the viscosity is small, the absorption is negligible,

a ¼ p=Eloc ¼ ðe2=mÞ=ðo2
o � o2Þ. The refractive index is

n2/ a/ 1

ðo2
o � o2Þ ¼

1

½ð2p=CloÞ2 � ð2p=ClÞ2�
¼ C2l2

o

4p2

l2

l2 � l2
o

as expressed in Sellmeier’s equation

n2 ¼ 1þ Hl2

l2 � l2
o

(1.101)

where H is a constant. When l is much longer than lo, expanding the above equation we have

n�Aþ B

l2
þ C

l4
(1.102)

This is Cauchy’s equation. The refractive index increases with decreasing wavelength. For liquid

crystals, along different directions with respect to the long molecular axis, the molecular

polarizabilities are different. Also along different directions, the frequencies of the transition dipole
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moments are different, which results in dichroic absorption: that is, when the electric field is parallel to

the transition dipole moment, the light is absorbed; when the electric field is perpendicular to the

transition moment, the light is not absorbed. Positive dichroic dyes have transition dipole moments

parallel to the long molecular axis, while negative dichroic dyes have transition dipole moments

perpendicular to the long molecular axis.

Under DC or low-frequency applied electric fields, for liquid crystals of polar molecules, the dipolar
polarization is dominant. For a liquid crystal with a permanent dipole moment ~p , the polarization is
given by

~P ¼ Na? h~Ki �~E þ NDah½~K � ð~a~aÞ�i �~E þ Nh~p i (1.103)

The macroscopic dielectric tensor is

e
$ ¼ I

$
þ N

eo
½a? hK

$
i þ DahK

$
� ð~a~aÞi þ h p

!i~E=E2� (1.104)

The energy of the dipole in the directing electric field ~Ed is u ¼ �~p �~Ed . The directing field ~Ed is

different from the local field ~Eloc because the dipole polarizes its surroundings, which in turn results in

a reaction field ~Er at the position of the dipole. As ~Er is always parallel to the dipole, it cannot affect

the orientation of the dipole. As an approximation, it is assumed that ~Ed ¼ d �~E, where d is a constant.

Usually the dipole moment p is about 1e
 1 A� ¼ 1:6
 10�19 C
 10�10 m ¼ 1:6
 10�29 mC. At

room temperature ðT � 300 KÞ and under the normal strength field E� 1 V=mm ¼ 106 V=m,

pE=3kBT� 1. Consider a liquid crystal molecule with a permanent dipole moment making an angle

b with the long molecular axis. In the molecular frame Zzx, the components of ~p are

ð p sin b cosc; p sin b sinc; p cos bÞ, as shown in Figure 1.17. Using the rotation matrix given by

Equation (1.90), we can calculate the components of ~p in the lab frame xyz:

p
! ¼

cosf �cos y sinf �sin y sinf

sinf cos y cosf sin y cosf

0 �sin y cos y

0
B@

1
CA � p

sin b cosc

sin b sinc

cos b

0
B@

1
CA

¼ p

sin b cosc cosf� sin b sinc cos y sinf� cos b sin y sinf

sin b sinc sinfþ sin b sinc cos y cosfþ cos bsin y cosf

�sin y sin b sincþ cos y cos b

0
B@

1
CA

(1.105)

y

z

y

a

p

n

f

h

y

b

x

q

q

V

Figure 1.17 Schematic diagram showing the orientation of the dipole ~p in the molecular principal

frame Zzx and the lab frame xyz
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When the applied field is parallel to~n, ~E ¼ Ek~z, the projection of the dipole along the applied field is

pk ¼ � pðsin b sinc sin yþ cos b cos yÞ (1.106)

and the energy is

u ¼ �dpðcos b cos y� sin b sinc sin yÞEk (1.107)

The average value of the projection is

h pki ¼
R
ð p cos b cos y� p sin b sinc sin yÞe�u=kBT�VðyÞ=kBT sin ydydfdcR

e�u=kBT�VðyÞ=kBT sin ydydfdc
(1.108)

Because �u� kBT , e�u=kBT �ð1� u=kBTÞ, then

h pki ¼
dEk
kBT

R
ð p cos b cos y� p sin b sinc sin yÞ2e�VðyÞ=kBT sin ydydfdcR

e�u=kBT�VðyÞ=kBT sin ydydfdc

¼
dEk p2

kBT
hðcos2 b cos2 yþ sin2 b sin2 y sin2 c� sinb cos b siny cos y sincÞi

Because hsin2 ci ¼ 1=2, hsinci ¼ 0, hcos2 yi ¼ ð2Sþ 1Þ=3, and hsin2yi ¼ ð2� 2SÞ=3,

h pki ¼
dEk p2

3kBT
½cos2 bð2Sþ 1Þ þ sin2 bð1� SÞ� ¼

dEk p2

3kBT
½1� ð1� 3 cos2 bÞS� (1.109)

From Equations (1.96), (1.104), and (1.109), we have

ek ¼ 1þ N

3eo
fa?K? ð2� 2SÞ þ akKkð1þ 2SÞ þ dp2

kBT
½1� ð1� 3 cos2 bÞS�g (1.110)

Note that ak and a? are the molecular polarizabilities contributed by the electronic and ionic

polarizations.

When the applied field is perpendicular to ~n, say ~E ¼ E? x̂, the projection of the dipole along the
applied field is

p? ¼ pðsin b cosc cosf� sin b sinc cos y sinf� cos b sin y sinfÞ (1.111)

and the energy is

u ¼ �dpðsin b cosc cosf� sin b sinc cos y sinf� cos b sin ysinfÞE? (1.112)

The average value of the projection is

h p? i¼
dE? p2

kBT

1

4
sin2 bþ 1

4
sin2 b

ð2Sþ 1Þ
3

þ cos2 b
ð1� SÞ

3

� �

¼ dE? p2

3kBT
1þ 1

2
ð1� 3cos2 bÞS

� �
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From Equations (1.96), (1.104), and (1.112), we have

e? ¼ 1þ N

3eo
a?K? ð2þ SÞ þ akKkð1� SÞ þ dp2

kBT
1þ 1

2
ð1� 3 cos2 bÞS

�� �
(1.113)

�

The dielectric anisotropy is

De ¼ ek � e? ¼
N

eo
ðakKk � a?K? Þ �

d p2

2kBT
ð1� 3 cos2 bÞ

� �
S (1.114)

which is proportional to the order parameter S. The contribution of induced polarization (electronic and

ionic polarizations) changes with temperature like S, while the contribution of the orientation

polarization changes with temperature like S/T. When the angle between the permanent dipole and the

long molecular axis is b ¼ 55�, ð1� 3 cos2 bÞ ¼ 0, the orientation polarization of the permanent

dipole does not contribute to De.
The permanent dipole moment is fixed on the molecule. Thus the molecule has to reorient in order to

contribute to the dielectric constants. Qualitatively speaking, only when the frequency of the applied
field is lower than a characteristic frequency oc can the molecule rotate to follow the oscillation of the
applied field and therefore to contribute to the dielectric constants. For rod-like liquid crystal molecules,
it is easier to spin around the long molecular axis than to rotate around a short molecular axis. Therefore
the characteristic frequency o? c for e? is higher than the characteristic frequency okc for ek. For
molecules for which the angle b between the permanent dipole and the long molecular axis is very small,
De is always positive at all frequencies. For molecules with large permanent dipole moment p and large
b, De is negative at low frequencies. For molecules with large permanent dipole moment p and
intermediate b, De is positive at low frequencies, then changes to negative when the frequency is
increased above a crossover frequency oo. The cross over frequency is in the region from a few kilohertz
to a few tens of kilohertz. At infrared light or higher frequencies, the dipolar polarization no longer
contributes, and De is always positive.

1.6 Anchoring Effects of Nematic Liquid Crystals at Surfaces

In most liquid crystal devices, the liquid crystals are sandwiched between two substrates coated with
alignment layers. In the absence of externally applied fields, the orientation of the liquid crystal in the
cell is determined by the anchoring condition of the alignment layer [26–28].

1.6.1 Anchoring energy

Consider an interface between a liquid crystal (z> 0) and an alignment layer (z< 0) as shown in
Figure 1.18. For a liquid crystal molecule on the interface, some of the surrounding molecules are liquid
crystal molecules and other surrounding molecules are alignment layer molecules. The potential for the
molecule’s orientation is different from that of the liquid crystal in the bulk, where all the surrounding
molecules are liquid crystal molecules. At the interface, the orientational and positional orders may be
different from those in the bulk. Here we only discuss the anisotropic part of the interaction between the
liquid crystal molecule and the alignment layer molecule. The liquid crystal is anisotropic. If the
alignment layer is also anisotropic, then there is a preferred direction, referred to as the easy axis, for the
liquid crystal director at the interface, as shown in Figure 1.18. The interaction energy is a minimum
when the liquid crystal director is along the easy axis. The z axis is perpendicular to the interface and
pointing toward the liquid crystal side. The polar angle and the azimuthal angle of the easy axis are yo

and fo, respectively. If yo ¼ 0
�
, the anchoring is referred to as homeotropic. If yo ¼ 90

�
and fo is well
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defined, the anchoring is termed homogeneous. If yo ¼ 90
�

and there is no preferred azimuthal angle, the
anchoring is called planar. If 0< yo < 90

�
, the anchoring is referred to as tilted.

When the liquid crystal director~n is aligned along the direction specified by the polar angle y and the
azimuthal angle f, the anisotropic part of the surface energy, referred to as the anchoring energy
function, of the liquid crystal is fs ¼ fsðy; fÞ. When y ¼ yo and f ¼ fo, fs has a minimum value of 0,
and thus @fs=@yjy¼yo

¼ 0 and @ fs=@fjf¼fo
¼ 0. The materials above and below the interface are

different and there is no reflectional symmetry about the interface. If yo 6¼ 0, the anchoring energy does
not have azimuthal rotational symmetry around the easy direction. Therefore the anchoring energies are
different for deviations in polar angle and azimuthal angle. For small deviations, in the Rapini–Papoular
model [29,30], the anchoring energy function can be expressed as

fs ¼
1

2
W p sin2 b p þ

1

2
Wa sin2 ba (1.115)

where b p and ba are the angles between~n and the easy axis when~n deviates from the easy axis in the

polar angle direction and azimuthal angle direction, respectively; Wp and Wa are the polar and

azimuthal anchoring strengths, respectively. For small y� yo and f� fo, we have the approximations

sin2 b p ¼ sin2 ðy� yoÞ and sin2 ba ¼ sin2 ðf� foÞ sin2 yo. Therefore the anchoring energy function

is

fs ¼
1

2
W p sin2 ðy� yoÞ þ

1

2
Wa sin2 yo sin2 ðf� foÞ (1.116)

1.6.2 Alignment layers

Homogeneous anchoring can be achieved by mechanically rubbing the surface of the substrate, such as
glass, of the liquid crystal cell with a cotton ball or cloth. The rubbing creates micro-grooves along the
rubbing direction in the form of ridges and troughs, as shown in Figure 1.19(a). When the liquid crystal is
aligned parallel to the grooves, there is no orientational deformation. If the liquid crystal were
perpendicular to the groves, there would be orientational deformation, which costs elastic energy.
Therefore the liquid crystal will be homogeneously aligned along the grooves (the rubbing direction).
The problem with alignment created in this way is that the anchoring strength (� 10�5 J=m2) is weak.
Widely used for the homogeneous alignment layer are rubbed polyimides. The rubbing not only creates
the micro-grooves but also aligns the polymer chains. The intermolecular interaction between the liquid
crystal and the aligned polymer chains also favors parallel alignment and thus increases the anchoring
energy. The anchoring strength can become as high as 10�3 J=m2. Furthermore, pretilt angles of a few
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a a

q

q

b b
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f

Figure 1.18 Schematic diagram showing the easy axis of the anchoring and the liquid crystal director
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degrees can be generated. Homogeneous anchoring can also be achieved by using obliquely evaporated
SiO film.

Homeotropic anchoring can be achieved using monolayer surfactants such as lecithin and silane. The
polar head of the surfactant is chemically attached to the glass substrate and the hydrocarbon tail points
out and perpendicular to the surface, as shown in Figure 1.19(b). The intermolecular interaction between
the surfactant and the liquid crystal promotes the homeotropic alignment.

Homework Problems

1.1 Consider a nematic liquid crystal. The molecule can be regarded as a cylinder with a length of 2 nm
and diameter of 0.5 nm. The molecule has a permanent dipole moment of 10�29 mC at the center of
the molecule. The interaction between the molecules comes from the interactions between the
permanent dipoles. Calculate the interaction between two molecules in the following cases: (1) one
molecule is on top of the other molecule and the dipoles are parallel, (2) one molecule is on top of
the other molecule and the dipoles are anti-parallel, (3) the molecules are side by side and the
dipoles are parallel, and (4) the molecules are side by side and the dipoles are anti-parallel.

1.2 Using Equations (1.11), (1.25), and (1.31), prove that the entropy of a system at a constant
temperature is

S ¼ �kBhln ri ¼ �kB

X
i

ri ln ri

1.3 Calculate the orientational order parameter in the following two cases. (1) The orientational
distribution function is f ðyÞ ¼ cos2 y. (2) The orientational distribution function is f ðyÞ ¼ sin2 y.
y is the angle between the long molecular axis and the liquid crystal director.

1.4 Landau–de Gennes theory. For a liquid crystal with parameters a ¼ 0:1319
 105 J=Km3,
b ¼ �1:836
 105 J=m3, and c ¼ 4:05
 105 J=m3, numerically calculate the free energy as a
function of the order parameter and identify the order parameters corresponding to the maximum
and minimum free energy at the following temperatures: (1) T � T� ¼ 4:0 �C, (2) T � T� ¼
3:0 �C, (3) T � T� ¼ 2:0 �C, (4) T � T� ¼ 1:0 �C, (5) T � T� ¼ 0:0 �C, (6) T � T� ¼ �10:0 �C.

1.5 Maier–Saupe theory. Use Equation (1.50) to numerically calculate all the possible order para-
meters as a function of the normalized temperature t ¼ kBT=v, and use Equation (1.54) to calculate
the corresponding free energy.

1.6 Use Maier–Saupe theory to study the isotropic–nematic phase transition of a binary mixture
consisting of two components A and B. For molecule A, when its long molecular axis makes an
angle yA with respect to the liquid crystal director, the single molecular potential is

VAðyÞ ¼ �vAAð1� xÞSA
3

2
cos2 yA �

1

2

� �
� vABxSB

3

2
cos2 yA �

1

2

� �

(a) (b)

Figure 1.19 (a) Schematic diagram showing the liquid crystal aligned parallel to the grooves, (b)
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For molecule B, when its long molecular axis makes an angle yB with respect to the liquid crystal

director, the single molecular potential is

VBðyÞ ¼ �vABð1� xÞSA
3

2
cos2 yB �

1

2

� �
� vBBxSB

3

2
cos2 yB �

1

2

� �

where x is the molar fraction of component B. The interaction constants are vBB ¼ 1:05vAA and

vAB ¼ 0:95vAA. Express the normalized temperature by t ¼ kBT=vAA. Assume that the two

components are miscible at any fraction. Numerically calculate the transition temperature as a

function of the molar fraction x.

1.7 Consider a nematic liquid crystal cell with a thickness of 10mm. On the bottom surface the liquid
crystal is aligned parallel to the cell surface, and on top of the top surface the liquid crystal is
aligned perpendicular to the cell surface. Assume the tilt angle of the liquid crystal director changes
linearly with the coordinate z which is in the cell normal direction. Calculate the total elastic energy
per unit area. The elastic constants of the liquid crystal are K11 ¼ 6
 10�12 N,
K22 ¼ 3
 10�12 N, and K33 ¼ 10
 10�12 N.

1.8 The Cano-wedge method is an experimental technique to measure the pitch of cholesteric liquid
crystals. It consists of a flat substrate and a hemisphere with a cholesteric liquid crystal sandwiched
between them as shown Figure 1.20(a). At the center, the spherical surface touches the flat surface.
On both the flat and spherical surfaces there is a homogeneous alignment layer. The intrinsic pitch
of the liquid crystal is Po. Because of the boundary condition, the pitch of the liquid crystal is
quantized to match the boundary condition. In region n, h ¼ nðP=2Þ. In each region, on the inner
side, the pitch is compressed, i.e., P<Po while on the outer side, the pitch is stretched, i.e., P>Po.
Between region ðn� 1Þ and region n there is a disclination ring as shown in Figure 1.20(b).
Find the square of the radius of the nth disclination ring r2

n as a function of the intrinsic pitch Po,
the radius R of the hemisphere, and the ring number n. R Po and for small r only twist
elastic energy has to be considered. Hint: r2

n vs. n is a straight line with a slope dependent on Po

and R.
1.9 Consider a sphere of radius R. The polarization inside the sphere is ~P. Calculate the electric field at

the center of the sphere produced by the polarization. Hint: the polarization can be replaced by a
surface charge whose density is given by ~P �~n, where~n is the unit vector along the surface normal
direction.

1.10 Using Equations (1.87), (1.91), and (1.93), calculate the dielectric tensor e$ in terms of the order
parameter S.

nr

r

R

h

(b) (a) 

Figure 1.20
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