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The Bayes linear approach

The subject of this book is the qualitative and quantitative analysis of our beliefs,
with particular emphasis on the combination of beliefs and data in statistical anal-
ysis. In particular, we will cover:

(i) the importance of partial prior specifications for problems which are too com-
plex to allow us to make meaningful full prior specifications;

(ii) simple ways to use our partial prior specifications to adjust our beliefs given
observations;

(iii) interpretative and diagnostic tools that help us, first, to understand the impli-
cations of our collections of belief statements and, second, to make stringent
comparisons between what we expect to observe and what we actually observe;

(iv) general approaches to statistical modelling based upon partial exchangeability
judgements;

(v) partial graphical models to represent our beliefs, organize our computations
and display the results of our analysis.

Our emphasis is methodological, so that we will mostly be concerned with
types of specification and methods of analysis which are intended to be useful in a
wide variety of familiar situations. In many of these situations, it will be clear that
a careful, quantitative study of our beliefs may offer a valuable contribution to the
problem at hand. In other cases, and in particular in certain types of problem that are
conventionally treated by statisticians, the status of a belief analysis may be more
controversial. Therefore, we shall begin our account by giving our views as to the
role of the analysis of beliefs in such problems, and then briefly discuss what we
perceive to be the strengths and weaknesses of the traditional Bayesian approach to
belief analysis. We will briefly describe some of the distinctive features of Bayes
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linear analysis, give an overview of the contents of this book and introduce the
methodology by example.

1.1 Combining beliefs with data

To introduce our approach, compare the following examples. First, we test an
individual for precognitive powers, and observe correct guesses in ten out of ten
flips of a fair coin. Secondly, we test a promising new treatment against a current
treatment for a disease, and observe that the new treatment outperforms the current
treatment in each of ten trials on carefully matched pairs of patients.

The two experiments have, in a sense, yielded the same data, namely ten
successes in ten binary trials. However, in the first case, most people would
be intrigued but remain unconvinced that precognition had been demonstrated,
whereas in the second case most people would be largely convinced of the efficacy
of the new treatment. Such disagreements that might arise in the above analyses
would be based, in the first case, on the extent of our predisposition to accept
the existence of psychic powers, and, in the second, on possible medical grounds
that we might have to be suspicious of the new treatment. Thus, similar data in
different experiments may lead to different conclusions, when judged by the same
person, and the same data may lead to different conclusions when judged by dif-
ferent people. In the above cases, the differences in the conclusions arise from
differences in beliefs, either over the a priori plausibility of the hypotheses in the
two experiments, or disagreements between individual beliefs as to the a priori
plausibility of the hypothesis in a given experiment. More generally, people may
disagree as to the relevance of the data to the conclusions or to any other feature
of the probabilistic modelling required to reach a given conclusion.

Statistical theory has traditionally been concerned with analysing evidence
derived from individual experiments, employing seemingly objective methods
which lead to apparently clear-cut conclusions. In this view, the task of the statis-
tician is to analyse individual data sets and, where necessary, pass the conclusions
of the analysis to subject area specialists who then try to reach substantive conclu-
sions. This viewpoint has the apparent virtue of turning statistics into a well-defined
technical activity, which can be conducted in comparative isolation from the dif-
ficulties involved in making practical decisions. For example, in each of the two
experiments above we may agree that, given a certain null hypothesis (no pre-
cognitive ability, no difference between treatments), the experiment has yielded
a surprising result. This data analysis may be useful and revealing. However, as
we have observed, such surprise may have different implications between exper-
iments and between individuals. Ultimately, whether or not a particular data set
suggests that a new treatment is better than the current treatment is only of interest
if such consideration helps us to address the substantive question as to whether
it is reasonable for us to believe and act as though the new treatment actually is
better.
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Such substantive analyses are much harder than the analysis of individual data
sets, as they must confront and synthesize all of the evidence, including much that is
fragmentary, contradictory, hard to find and difficult to assess, and for which there
may be legitimate grounds for expert disagreement. However, these difficulties are
unavoidable given that we want to reach substantive conclusions.

In practice, statisticians often do present themselves as addressing substantive
issues, and are generally perceived as so doing by their clients. Indeed, the theory of
statistical inference is generally formulated and perceived as an attempt to address
substantive questions, but this may only be achieved within a traditional statistical
analysis when the data set is sufficiently large and unambiguous as to overwhelm all
other sources of prior information. When the statistical analysis is less clear-cut, it
is necessary to synthesize the statistical results with all of the other considerations
which might influence the substantive conclusions of the analysis. However, in
current practice, this synthesis rarely takes place. As a result, the fate of far too
many statistical analyses is to be accepted uncritically, or completely ignored, or
treated in some other equally arbitrary fashion. The only way to avoid this fate is
to frame the statistical analysis within the wider context with which the problem
should be concerned, so that the purpose and construction of the analysis are
directed at those things that we actually wish to know.

However, such a change in orientation requires a change in attitude and
approach. Statisticians are used to being careful and precise in the collection and
quantitative analysis of data. What we must further develop are the corresponding
methods and skills for the specification and quantitative analysis of beliefs. As our
beliefs are of fundamental interest, the study and refinement of these beliefs offer
a central unifying principle for the bewildering variety of problems that we may
confront when analysing uncertain situations.

The most fully developed methodology for such study is the Bayesian approach.
We shall develop an alternative framework for the quantitative elicitation, analysis
and interpretation of our beliefs, with particular emphasis on situations where our
beliefs are at least partly influenced by statistical data. The framework is similar
in spirit to the Bayes formalism. However, it differs in various important ways
which are directed towards clearer and simpler analyses of beliefs, as, for reasons
that we shall discuss in the next section, even the Bayesian approach can easily
become, in practice, a methodology for using beliefs to analyse data, rather than a
methodology for using data to analyse beliefs.

1.2 The Bayesian approach

Suppose that you visit a doctor, as you fear that you might have some particular
disease, which you either have, event D, or you do not have, event Dc. The doctor
gives you a test, which either is positive, event T , or not positive, event T c. Before
testing, you have a prior probability, P(D), that you have the disease. If you take
the test, and the result is positive, then your conditional probability of the disease
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is given by Bayes’ theorem as

P(D|T ) = P(T |D)P(D)

P(T |D)P(D) + P(T |Dc)P(Dc)
. (1.1)

Using Bayes’ theorem, we replace the question

• Does the data, i.e. the test, suggest that you have the disease?

with the substantive question

• Should you now believe that you have the disease?

The evidence provided by the data, in this case the likelihood ratio,

P(T |D)

P(T |Dc)
,

has been combined with the external evidence as to whether you have the disease,
as summarized by the prior odds ratio,

P(D)

P(Dc)
,

to produce the composite conditional probability P(D|T ).
This form of argument dates back at least to the famous posthumously published

essay of Thomas Bayes. At that time, probabilistic judgements were generally taken
to be subjective quantifications of opinion. Subsequently, however, a different
tradition arose, within which statisticians became reluctant to allow that a general
statement, for example that a new treatment is better than a current treatment,
could meaningfully be given a prior probability. As a result, use of the Bayes
argument fell out of fashion, and probabilistic analysis was only deemed relevant
within statistics to the extent that it applied to the outcomes of well-defined and
repeatable sampling experiments.

While this may even now be a majority view, Bayes methods have recently
grown again in popularity. This is partly due to the influence of decision analysis,
in which the Bayes paradigm fits very naturally, and partly as a consequence of
the critical re-examination of the logical, philosophical and practical basis of sta-
tistical procedures. The strengths of the Bayes approach are, first, that it appears
to be more logical than most other approaches, replacing ad hoc methods with
a unified methodology, and, second, that the approach may be used to address
complex problems which cannot easily be considered within more traditional sta-
tistical paradigms. As a result, the approach has been judged to be successful in
many applications, particularly where the analysis of data has been improved by
combination with expert judgements.

However, perhaps because of the historical development, Bayes methods have
themselves often been viewed as a sophisticated form of data analysis, so that
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much emphasis has been placed on ‘objective Bayes methods’ based on ‘non-
informative priors’ and similar methods which are intended to extract information
from a particular data set, without imposing any particular prior quantifications.
Thus, there has developed a form of ‘objective’ Bayes methodology which is
implicitly based around the idea that we may use beliefs to improve the analysis
of data, in the sense that we may consider that data have a story to tell that is quite
separate from the individual preconceptions that we may bring to the analysis.
Such methods may be interesting, particularly for the analysis of large data sets,
but they cannot address directly the substantive questions that concern us. To do
so, we require the reverse process, namely to use data to help analyse beliefs.
However, there is a fundamental difficulty in carrying out this program within
the Bayes paradigm, namely that honest belief specification for large problems is
usually very difficult.

Even in small problems, with few sources of uncertainty, it can be hard to
distil all of our prior knowledge into a satisfactory full joint prior probability
specification over all of the possible outcomes. In practical problems there may
be hundreds of relevant sources of uncertainty about which we may make prior
judgements. In such problems it is arguably impossible for us to carry out the
Bayes programme, which requires us to specify meaningful probabilistic beliefs
over collections of probability distributions over such high-dimensional structures.
Even were we able to carry out such a full prior specification, we would usually find
that the specification was too time-consuming and too difficult to check, document
and validate to be worth the effort, unless we were working on questions that were
of such importance that they justified the enormous expenditure of effort that is
required simply to apply the paradigm in an honest fashion.

Even if we were able to make such high-dimensional specifications, the result-
ing Bayes analysis would often be extremely computer intensive, particularly in
areas such as experimental design. Computational issues, while of great practi-
cal importance, are secondary to the fundamental difficulty of making meaningful
high-dimensional prior probability specifications. However, such considerations do
support the basic argument that we shall develop in this book, which is as follows.

The more complex the problem, the more we need help to consider the result-
ing uncertainties, but the more difficult it is to carry out a full Bayes analysis.
Essentially, the Bayes approach falls victim to the ambition in its formulation.
Often, the approach is considered to be a description of what a perfectly rational
individual would do when confronted with the problem. The implication is that we
should copy the behaviour of such an individual as closely as we can. However,
as the complexity of problems increases, the disparity between the hypothetical
abilities of the perfectly rational analyst and our actual abilities to specify and
analyse our uncertainties becomes so wide that it is hard to justify the logical or
practical relevance of such a formulation.

Therefore if, in complex problems, we are unable to make and analyse full prior
specifications, it follows that we need to develop methods based around partial
belief specification. We shall develop one such methodology, termed the Bayes
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linear approach. The approach is similar in spirit to the full Bayes approach, and is
particularly appropriate whenever the full Bayes approach requires an unnecessarily
exhaustive description and analysis of prior uncertainty.

Depending on our viewpoint, we may view the Bayes linear approach either
as offering a simple approximation to a full Bayes analysis, for problems where
the full analysis would be too difficult or time-consuming, or as complementary
to the full Bayes analysis, offering a variety of new interpretative and diagnostic
tools which may be of value whatever our viewpoint, or as a generalization of
the full Bayes approach, where we lift the artificial constraint that we require full
probabilistic prior specification before we may learn anything from data.

1.3 Features of the Bayes linear approach

The following are important features of the Bayes linear approach.

1. The approach is subjectivist. We express our prior judgements of uncertainty
in quantitative form, and adjust these uncertainties in the light of observation.

2. We use prior specifications which honestly correspond to prior beliefs. In order
to do this, we must structure our analyses so that the prior specifications that
we require are within the ability of the individual to make.

3. The approach is based on expectation rather than probability as a primitive.
With expectation as a primitive, we may immediately obtain probabilities as
expectations of indicator functions. With probability as a primitive, we need to
determine all probabilities for a quantity before we may assess the expectation.
Therefore, starting with expectation allows us to focus directly on the crucial
uncertainties in the problem.

4. With expectation as a primitive, the fundamental object of interest is the col-
lection of random quantities, which are naturally gathered into inner product
spaces. Therefore, the resulting analysis follows from the geometric structure
implied by the partial belief specification.

5. Beliefs are adjusted by linear fitting rather than conditioning. Therefore, the
Bayes linear approach may be viewed as a simple and tractable approximation
to a full Bayes analysis.

6. There are general temporal relationships between the adjusted beliefs created
by linear fitting and our posterior beliefs. Full conditioning is a special case
of linear fitting whose general temporal relation with posterior beliefs is no
different than for any other linear fit. Therefore the full Bayes analysis may
be also viewed as a particular special case of the Bayes linear approach.

7. As linear fitting is generally computationally simpler than full conditioning,
we may often analyse complex problems, in particular those arising in exper-
imental design, more straightforwardly than under the full Bayes counterpart.
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8. We only specify beliefs over observable quantities, so that all of our belief
statements can be given a direct, physical interpretation. We therefore construct
underlying population models strictly by means of exchangeability judgements
over observables, which is feasible precisely because we take expectation as
the primitive for the theory.

9. Our aim is to develop improved assessments of belief. Partly, this is achieved
by sensible processing of prior and data inputs. However, just as important is
the qualitative interpretation of the belief adjustment. Therefore, we develop
interpretative tools to identify which aspects of our prior judgements and the
data are most influential for which aspects of our conclusions, so that we
may judge whether or not our belief adjustments appear intuitively reasonable,
and compare possible alternative adjustments, based for example on different
sampling frames or experimental designs.

10. When we adjust our beliefs, we similarly need qualitative methods for inter-
preting the resulting collection of changes in belief. Therefore, we develop
interpretative tools to summarize both the magnitude and the nature of the
overall changes in belief, and to display conflict or consistency between the
various sources of evidence which contribute to such changes.

11. Each belief statement made about an observable may be subsequently com-
pared with the value of that observable. Stringent diagnostics are available to
warn us of possible conflicts between our beliefs and reality.

12. There are important special cases, for example certain analyses for multi-
variate Gaussian models, where many aspects of the Bayes and the Bayes linear
approaches correspond. Therefore, many of the interpretative and diagnostic
tools that we describe will also be relevant for such analyses. Further, it is of
general interest to separate those aspects of the Gaussian analysis which follow
directly from the geometric implications of the second-order specification, from
those aspects whose validity depends on the precise form of the Gaussian
density function.

13. Much of the qualitative and quantitative structure of the Bayes linear anal-
ysis may be displayed visually using Bayes linear graphical models. These
models aid the intuitive understanding of expected and observed information
flow through complex systems, and also facilitate efficient local computation
methods for the analysis of large systems.

1.4 Example

As a trailer for the ideas in the book we give the following example. The example
is intended to convey the flavour of our approach, and so we refrain both from
detailed exposition of the methodology and from deep analysis of the problem.
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A factory produces two products. For planning purposes, the factory wishes to
predict sales of the products in each period. In order to do this, various relevant
information will be used, in particular the sales of the two products in the previous
period. For this introduction, it will be sufficient to suppose that this is all that is
explicitly used, though of course the judgements of the sales forecasters will be
called on to formulate the prior beliefs.

For illustration, we shall imagine that sales at a time point soon to come are
used to improve our understanding of sales at a more distant future time point.
Thus, there are four quantities of interest: X1 and X2, the sales of products 1 and
2 at the first time point, and Y1 and Y2, the corresponding sales at the later time
point.

For the simplest form of analysis that we shall describe, the sales forecaster
first specifies prior expectations for the four quantities, together with a variance
matrix over them. We will consider the problem of eliciting and specifying prior
information in the form of expectations, variances, and covariances in Chapter 2.
In the meantime, suppose that we have based our prior specifications on sample
information from previous sales figures, and managerial judgements as to their
relevance in the light of any special circumstances which may be felt appropriate
to the current sales period.

1.4.1 Expectation, variance, and standardization

In this book, we assume basic knowledge of expectation, variance and covariance,
and correlation. Suppose that X and Y are collections of m and n random quan-
tities, respectively. The expectation for X is denoted by E(X), an m × 1 vector
with ith element E(Xi). The variance for X is denoted by Var(X), an m × m vari-
ance–covariance matrix with (i, i)th element Var(Xi) and with (i, j)th element
giving the covariance between Xi and Xj , denoted by Cov(Xi, Xj ). The covari-
ance between X and Y is denoted by Cov(X, Y ), an m × n covariance matrix
with (i, j)th element Cov(Xi, Yj ). The correlation between X and Y is denoted
by Corr(X, Y ), an m × n correlation matrix with (i, j)th element Corr(Xi, Yj ),
assuming finite non-zero variances Var(Xi) and Var(Yj ). We may find it helpful
to refer to the standardized versions of quantities.

Definition 1.1 For a random quantity X, we write the standardized quantity as

S(X) = X − E(X)√
Var(X)

.

1.4.2 Prior inputs

Suppose that, in some appropriate units, the prior mean for each quantity is 100;
the prior variance for X1, X2 is 25; the prior variance for the future sales Y1, Y2
is 100; and the prior correlation matrix over all four quantities is
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X1 X2 Y1 Y2
X1 1.00 −0.60 0.60 −0.20
X2 −0.60 1.00 −0.20 0.60
Y1 0.60 −0.20 1.00 −0.60
Y2 −0.20 0.60 −0.60 1.00

Thus, we might summarize our prior specifications as follows. We have the same
expectation for sales for each product at each time point, but we are much less cer-
tain about the sales figures for the later time point. The correlation matrix specified
expresses the belief that sales of each product are quite strongly positively corre-
lated over the two time periods, but that the products are considered to compete and
so sales of the two products are negatively correlated. Note that in this problem we
do not complete the prior specification by choosing a prior joint probability distri-
bution for these four quantities with the given mean and variance structure. Rather,
our aim is to perform an analysis based solely on the partial prior specification that
we have described.

We intend to use the sales at the first time point to improve our forecasts for
sales at the later time point. Much of our approach deals with simultaneous analysis
of collections of quantities, so, for convenience, we group together the two sales
from the first time point into the collection D = (X1, X2), and the two sales for the
later time point into the collection B = (Y1, Y2). There is no particular significance
to the names B and D, except that we sometimes find it useful to retain D for a
collection of ‘data’ quantities (i.e. quantities which we intend to observe, and so
for which data will become available) and to retain B for a collection of ‘belief’
quantities (i.e. quantities that we wish to predict, and so for which we have prior
beliefs followed by adjusted beliefs).

1.4.3 Adjusted expectations

There are many ways in which we might try to improve our forecasts for the col-
lection B. A simple method, which exploits the prior mean and variance statements
that we have made, is as follows. We can look among the collection of linear esti-
mates, i.e. those of the form c0 + c1X1 + c2X2, and choose constants c0, c1, c2 to
minimize the prior expected squared error loss in estimating each of Y1 and Y2.
For example, we aim to minimize

E([Y1 − c0 − c1X1 − c2X2]2). (1.2)

The choices of constants may be easily computed from the above specifications,
and the estimators turn out to be

ED(Y1) = 1.5X1 + 0.5X2 − 100, (1.3)

ED(Y2) = 0.5X1 + 1.5X2 − 100. (1.4)

We call ED(Y1) the adjusted expectation for Y1 given the information D =
[X1, X2]. Similarly, ED(Y2) is the adjusted expectation for Y2 given D. The
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adjusted expectations have a number of properties which we will come to below
and in later chapters; in particular, they are themselves random quantities, so that
they too have expectations, variances and so forth.

1.4.4 Adjusted versions

We will be concerned not only with the adjusted expectation for a quantity, but also
with the residual component associated with it, which we call the adjusted version
of the quantity. The adjusted version of Y given D is defined to be AD(Y ) =
Y − ED(Y ). In our example, the adjusted versions are

AD(Y1) = Y1 − (1.5X1 + 0.5X2 − 100), (1.5)

AD(Y2) = Y2 − (0.5X1 + 1.5X2 − 100). (1.6)

These adjusted versions have important roles to play in Bayes linear analysis in that
they allow us to quantify the uncertainty expected to remain after an adjustment.
A priori, we expect the residual component to be zero, E(AD(Yi)) = 0.

1.4.5 Adjusted variances

How useful are the adjusted expectations when judged as predictors? One way to
assess how much information about the elements of B we gain by observing the
elements of D is to evaluate the adjusted variance for each quantity. The adjusted
variance for any quantity Y , given a collection of information D, is defined as

VarD(Y ) = Var(AD(Y )) = E([Y − ED(Y )]2),

being the minimum of the prior expected squared error loss in the sense of (1.2).
This is a measure of the residual uncertainty, or, informally, the ‘unexplained’
variance, having taken into account the information in D. The portion of variation
resolved is

Var(Y ) − VarD(Y ) = Var(ED(Y )).

For this example the adjusted variances are the same, so that we have

VarD(Y1) = VarD(Y2) = 60,

whereas we began with variances Var(Y1) = Var(Y2) = 100. Consequently, the
value of observing sales at the first time point is to reduce our uncertainty about
sales at the later time point by 40%. We typically summarize the informativeness
of data D for any quantity Y by a scale-free measure which we call the resolution
of Y induced by D, defined as

RD(Y ) = 1 − VarD(Y )

Var(Y )
= Var(ED(Y ))

Var(Y )
. (1.7)
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In our example, the variance resolutions are RD(Y1) = RD(Y2) = 0.4. The resolu-
tion lies between 0 and 1, and in general, small (large) resolutions imply that the
information has little (much) linear predictive value, given the prior specification.

In terms of the vector B, we began with a variance matrix Var(B) which we
have decomposed into unresolved and resolved portions, each a matrix:

Var(B) = VarD(B) + RVarD(B), (1.8)

where RVarD(B) = Var(ED(B)) is our notation for the resolved variance matrix
for the adjustment of the collection B by the collection D, and equals the prior
variance matrix for the adjusted expectation vector. The off-diagonal terms are
adjusted covariances and resolved covariances. For example, the adjusted covari-
ance between Y1 and Y2 given D is the covariance between the two residual
components,

CovD(Y1, Y2) = Cov(AD(Y1), AD(Y2)),

and the resolved covariance is the change from prior to adjusted,

RCovD(Y1, Y2) = Cov(Y1, Y2) − CovD(Y1, Y2).

In our example, the decomposition (1.8) turns out to be

Var(B) =
[

100 −60
−60 100

]
=

[
60 −60

−60 60

]
+

[
40 0
0 40

]
.

The off-diagonal entries here show that Cov(Y1, Y2) = CovD(Y1, Y2) = −60, and
that RCovD(Y1, Y2) = 0. It may seem a little puzzling that we do not seem to have
resolved any of the covariance between Y1 and Y2. Indeed, the variance matrix for
their adjusted versions is singular. We shall discover why this is so, and comment
on it in more detail, later.

1.4.6 Checking data inputs

At some point, we may observe the values of D. In our case, suppose that the sales
at the first time point turn out to be x1 = 109 and x2 = 90.5. (We follow convention
in using lower case for observations and upper case for unknowns.) The first thing
we do is to check that these observations are consistent with beliefs specified about
them beforehand. A simple diagnostic is to examine the standardized change
from the prior expectation to the observed value. In our example, the standardized
changes are

S(x1) = x1 − E(X1)√
Var(X1)

= 109 − 100√
25

= 1.8, (1.9)

S(x2) = 90.5 − 100√
25

= −1.9. (1.10)

Each (squared) standardized change has prior expectation one. Informally, we might
begin to suspect an inconsistency if we saw a standardized change of more than
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about two standard deviations; and be quite concerned to see standardized changes
of more than about three standard deviations. We do not wish to give rigid rules
or thresholds for interpreting these kinds of measure, as they are largely dependent
on the context of the problem.

1.4.7 Observed adjusted expectations

When the data quantities are observed we may calculate the observed adjusted
expectations. Replacing X1, X2 by x1 = 109 and x2 = 90.5 in (1.3) and (1.4), we
obtain the following assessments:

Ed (Y1) = 1.5 × 109 + 0.5 × 90.5 − 100 = 108.75,

Ed (Y2) = 0.5 × 109 + 1.5 × 90.5 − 100 = 90.25.

We call these values observed adjusted expectations. Notice that our subscript
notation uses lower case, Ed(·), rather than upper case, ED(·) to indicate that the
entire collection D has been observed to be d. The effect of the data here is to
cause our expectations for future sales to follow a similar pattern, i.e. larger and
smaller sales respectively in the two components.

1.4.8 Diagnostics for adjusted beliefs

It is valuable at this stage to check how different the observed adjusted expectation
is from the prior expectation. A simple diagnostic is given by the change from prior
to adjusted expectation, standardized with respect to the variance of the adjusted
expectation. We have that E(ED(Y )) = E(Y ) for any Y and D. Thus, from (1.9),
the standardized change is

S(Ed(Y )) = Ed(Y ) − E(Y )√
Var(ED(Y ))

,

where the denominator in the standardization does not depend on the observed
data. We call these standardized changes the standardized adjustments. In our
example, they are:

S(Ed (Y1)) = 108.75 − 100√
40

= 1.38, S(Ed (Y2)) = 90.25 − 100√
40

= −1.54,

where in each case the squared standardized adjustment has prior expectation one.
As such, the changes in expectation for sales at a future time point are 1.38 and
1.54 standard deviations, relative to variation explained, and so are roughly in line
with what we expected beforehand.

1.4.9 Further diagnostics for the adjusted versions

As time progresses, we eventually discover actual sales, y1 = 112 and y2 = 95.5,
of the two products. It is diagnostically important now to compare our predictions
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with what actually happened. There are two diagnostics to examine. First, we can
compare a quantity’s observation with its prior expectation, irrespective of the
linear fitting on D. The standardized change in expectation for a quantity is given
by (1.9). In our example, the standardized changes in expectation from prior to
observed are S(Y1) = (112 − 100)/10 = 1.2 and S(Y2) = −0.45, so these future
sales turned out to be consistent with our prior considerations.

A second diagnostic is given by examining the change from adjusted expec-
tation to actual observation, relative to the associated adjusted variance, as this
was the variation remaining in each Yi after fitting on D, but before observing
Y1 and Y2. By observing the actual sales values y1, y2, we observe the residual
components, i.e. the adjusted versions AD(Yi) = Yi − ED(Yi). Given that they had
prior expectation zero, we wish to see how far the adjusted versions have changed
from zero, relative to their variances

Var(AD(Yi)) = VarD(Yi).

The appropriate standardized change is thus

Sd(yi) = S(Ad (yi)) = yi − Ed(Yi)√
VarD(Yi)

.

In our example, the sales at the later time point, y1 = 112, y2 = 95.5, should
be compared to the adjusted expectations Ed(Y1) = 108.75 and Ed(Y2) = 90.25,
standardizing with respect to the adjusted variances:

VarD(Y1) = VarD(Y2) = 60.

We obtain

Sd(y1) = 112 − 108.75√
60

= 0.42 and Sd(y2) = 95.5 − 90.25√
60

= 0.68.

The squared standardized changes should again be about one, so our diagnostic
checks suggest that both of our predictions were roughly within the tolerances
suggested by our prior variance specifications. If anything, the adjusted expectations
are, in terms of standard deviations, rather closer to the observed values than
expected.

1.4.10 Summary of basic adjustment

Let us summarize our results so far in the form of tables, shown in Table 1.1. The
analysis results in decomposing the sales quantities into two parts, the first of which
comes from linear fitting on other quantities D, and the second of which is resid-
ual. Summary statistics are calculated for the original and component quantities; all
summaries are additive over components, except for the standardized changes. We
note that the diagnostics reveal nothing untoward: all the standardized changes
are about in line with what was expected beforehand. In each case, the change
from prior to adjusted expectation was slightly larger than expected, one up and
one down; and in each case the standardized change from adjusted expectation to
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Table 1.1 Adjusting future sales Y1, Y2 by previous sales: summary.

Original = Adjusted expectation + Adjusted version

Quantity Y1 = ED(Y1) + AD(Y1)

= 1.5X1 + 0.5X2 − 100 + Y1 − ED(Y1)

Prior E(Y1) = E(ED(Y1)) = E(Y1) + E(AD(Y1)) = 0
expectation 100 = 100 + 0

Prior Var(Y1) = RVarD(Y1) + VarD(Y1)

variance 100 = 40 + 60

Observed y1 = 1.5x1 + 0.5x2 − 100 + y1 − Ed (Y1)

112 = 108.75 + 3.25

Standardized y1−E(Y1)√
Var(Y1)

Ed (Y1)−E(Y1)√
RVarD(Y1)

y1−Ed (Y1)√
VarD(Y1)

change 1.2 1.38 0.42

Quantity Y2 = ED(Y2) + AD(Y2)

= 0.5X1 + 1.5X2 − 100 + Y2 − ED(Y2)

Prior E(Y2) = E(ED(Y2)) = E(Y2) + E(AD(Y2)) = 0
expectation 100 = 100 + 0

Prior Var(Y2) = RVarD(Y2) + VarD(Y2)

variance 100 = 40 + 60

Observed y2 = 0.5x2 + 1.5x2 − 100 + y2 − Ed (Y2)

95.5 = 90.25 + 5.25

Standardized y2−E(Y2)√
Var(Y2)

Ed (Y2)−E(Y2)√
RVarD(Y2)

y2−Ed (Y2)√
VarD(Y2)

change −0.45 −1.54 0.68

observed value was smaller than expected, and closer to the original prior expecta-
tion. Whether this should cause concern cannot be answered solely by examining
single quantities using summaries such as these, useful though they are. In fact, we
need also to analyse changes in our collection of beliefs, which we consider next.

1.4.11 Diagnostics for collections

We showed in §1.4.6 how we check individual data inputs by calculating stan-
dardized changes. To check a collection of data inputs, we need to make a basic
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consistency check, and if this is successful we proceed to calculate a global dis-
crepancy. For the basic consistency check, recall that, for any random quantity X,
if we specify Var(X) = 0 then we expect to observe x = E(X): otherwise either
the variance specification is wrong, or perhaps some error has occurred in collect-
ing the data. For a collection (vector) of random quantities B, with observed value
b, expectation E(B), and variance matrix Var(B), the basic consistency check is
as follows. If Var(B) is non-singular then the value of b − E(B) is unconstrained,
and the basic consistency check is passed. Otherwise, Var(B) has one or more
eigenvalues equal to zero. In this case, suppose that q is an eigenvector corre-
sponding to a zero eigenvalue. Such eigenvectors identify linear combinations of
the Bs having variance zero, as for each such eigenvector q, it is the case that
Var(qT B) = 0. Consequently, in the case of singularity the basic consistency check
lies in verifying that qT b = qT E(B) for every eigenvector q corresponding to a
zero eigenvalue. Failure of the consistency check always corresponds to infinite
values for the corresponding standardized changes. Following a successful basic
consistency check, we calculate measures of discrepancy based on the Mahalanobis
distance.

To return to checking data inputs, we are concerned with differences between
a vector of data d and the vector of prior expectations E(D). The variance matrix
concerned here is

Var(D) =
[

25 −15
−15 25

]
,

which is full rank, so that the basic consistency check is passed. Next, for our
measure of the difference between the data d and their prior expectations E(D),
we calculate the discrepancy, Dis(d), as the Mahalanobis distance between d and
E(D):

Dis(d) = (d − E(D))T Var(D)†(d − E(D))

= [
109 − 100 90.5 − 100

] [
25 −15

−15 25

]−1 [
109 − 100

90.5 − 100

]

= 4.29.

Here, Var(D)† is the Moore–Penrose generalized inverse of Var(D), equivalent to
the usual inverse Var(D)−1 when Var(D) is full rank. The Moore–Penrose inverse
is employed as we make no distinction between the handling of full rank and
singular variance matrices: this is especially useful when analysing the structural
implications of prior specifications. The discrepancy has prior expectation equal to
the rank of the prior variance matrix Var(D), which in our example has rank two.
We thus obtain as a summary statistic of the discrepancy between the observed
values and the prior specification, the discrepancy ratio,

Dr(d) = Dis(d)

rk{Var(D)} = 2.15,
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to be compared to its prior expectation of one. For single observations rather than
collections, the discrepancies are just the squared standardized changes. None of
these measures indicate any substantial problem with our prior formulation.

We showed in §1.4.8 how we calculate a standardized adjustment to check
for a difference between an observed adjusted expectation and the corresponding
prior expectation. As above, we obtain a global diagnostic by making a basic
consistency check and then calculating a measure of discrepancy. The vectors to
be compared are the observed adjustments, Ed(B), and their prior expectations,
E(B). The variance matrix concerned is

Var(ED(B)) = RVarD(B) =
[

40 0
0 40

]
,

which is full rank, so that the basic consistency check is passed. We obtain a global
diagnostic for the observed adjustment by calculating the Mahalanobis distance
between the observed adjusted expectations and the prior expectations, to give the
adjustment discrepancy, Disd(B), where

Disd(B) = (Ed(B) − E(B))T RVarD(B)†(Ed(B) − E(B))

= [
108.75 − 100 90.25 − 100

] [
40 0
0 40

]−1 [
108.75 − 100
90.25 − 100

]

= 4.29.

As before, this discrepancy measure fails to suggest any substantial problem with
our prior formulation.

For our final collection diagnostic of this section, we showed in §1.4.9 how
to calculate the standardized change from observed adjusted expectation, Ed(Yi),
to actual observation yi , where the standardization is with respect to the vari-
ance remaining in Yi , VarD(Yi), before observing it. As above, we proceed to a
global diagnostic where we wish to measure the discrepancy between the observed
adjusted expectations Ed(B), and the actual observations b = [y1 y2]T , relative to
the variance matrix VarD(B). Another way of thinking about this is that we finally
observe the adjusted versions AD(B) and wish to see whether these observations
are consistent with their prior variance–covariance specifications, Var(AD(B)). For
a basic consistency check, we have that

Var(AD(B)) = VarD(B) =
[

60 −60
−60 60

]
, (1.11)

which is singular. There is one eigenvalue equal to zero, with corresponding eigen-
vector proportional to [1 1]T . Consequently we have specified a variance of zero
for [

1 1
]T

[
AD(Y1)

AD(Y2)

]
= AD(Y1) + AD(Y2),

and it is thus necessary to verify in this example that the observed adjusted versions
sum to their expected value, which is zero. However, we see from Table 1.1 that



THE BAYES LINEAR APPROACH 17

the observed adjusted versions are 3.25 and 5.25, summing to 8.5 �= 0, so we have
discovered a very serious flaw in our specification. In practice there is no point in
proceeding further with the analysis. Had the basic consistency check not failed,
we would have calculated the adjusted version discrepancy as

(b − Ed (B))T VarD(B)†(b − Ed (B))

= [
112 − 108.75 95.5 − 90.25

] [
60 −60

−60 60

]† [
112 − 108.75
95.5 − 90.25

]
= 0.02.

1.4.12 Exploring collections of beliefs via canonical structure

To this point we have specified prior information, recorded some data, obtained
predictions, calculated the value of the predictions, and compared expected to
actual behaviour, largely focusing on the single quantities of interest, Y1 and Y2,
the sales for two products at a future time point. Little of the analysis turned up
anything surprising: changes in expectation were mostly about in line with what
we expected. However, one of the diagnostics calculated for a collection revealed a
very serious flaw, namely actual observations which should not have been possible
given the prior specifications. This suggests, rightly, that our analysis should focus
on analysing collections of beliefs, rather than on piecemeal analysis for single
quantities. Further, to focus on collections of beliefs will allow us naturally to
address many other relevant questions. For example, it reveals the implications
of correlations between the collections of interest; it allows us to make global
uncertainty and diagnostic assessments for entire collections or any sub-collections
we choose; and it allows us easily to go beyond analysis of single quantities such
as Y1 and Y2 to such quantities as total sales, Y1 + Y2, or the difference between
sales, Y1 − Y2. Answering such questions is an important part of the Bayes linear
approach.

It turns out, whether our interest is in making assessments for simple quantities
such as Y1, or for interesting linear combinations such as Y1 + Y2, or for global
collections such as B = [Y1, Y2], that for all such problems there is a natural
reorganization which we may use to answer these questions directly. The reorga-
nization arises by generating and exploiting an underlying canonical structure.
This structure completely summarizes the global dynamics of belief adjustment for
an analysis. For the two-dimensional problem, this amounts to finding the linear
combinations of Y1 and Y2 about which D is respectively most and least informa-
tive, in the sense of maximizing and minimizing the variance resolution. In our
example, these linear combinations have a particularly simple form; they are Z1
and Z2, where

Z1 = 0.112(Y1 + Y2) − 22.361, (1.12)

Z2 = 0.056(Y1 − Y2). (1.13)
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For convenience, we have centred each Zi so that it has prior mean zero, and scaled
it so that it has prior variance one. We call Z1 and Z2 respectively the first and
second canonical directions. Canonical directions are always uncorrelated. For
our example, Z1 is essentially a linear combination giving total sales, and Z2 is
the difference between sales. As far as the original sales quantities are concerned,
they can be expressed in terms of the canonical quantities as

Y1 = 4.472(Z1 + 2Z2) + 100,

Y2 = 4.472(Z1 − 2Z2) + 100.

In addition to calculating the canonical directions, we also calculate their
resolutions RD(Z1) and RD(Z2) from (1.7). We call these the canonical resolu-
tions. The canonical directions and canonical resolutions together comprise the
canonical structure. In our example, the resolutions in the canonical directions are
RD(Z1) = 1 and RD(Z2) = 0.25. In the latter case, the implication is that the min-
imum variance resolution for any linear combination of the two unknown sales
quantities is 0.25, i.e. by observing D we expect to ‘explain’ at least 25% of the
variance for all linear combinations of our future sales quantities, Y1 and Y2.

The resolution of Z1 turns out to be exactly 1. This means that, according
to our prior specifications, there will be no uncertainty remaining in Z1 once we
have observed the previous sales X1, X2. This might appear to be good news:
we are, after all, hoping to reduce our uncertainty about future sales by linear
fitting on these two explanatory quantities. However, let us look a little more
closely at the implications. Z1 is proportional (except for a constant) to total sales:
Y1 + Y2 = 8.944Z1 + 200, so that one implication of our prior specification is that
we shall have no uncertainty about Y1 + Y2 after we have observed X1 and X2.
Indeed, as the adjusted expectations of Y1, Y2 are given above as Ed(Y1) = 108.75
and Ed (Y2) = 90.25 respectively, we shall apparently know certainly that Y1 + Y2
will be 108.75 + 90.25 = 199. Did we really intend our prior specifications to
contain the algebraic implication that we will ‘know’ total future sales in advance?
Most likely we did not; and indeed later we actually observe total sales of y1 + y2 =
112 + 95.5 = 207.5, which flatly contradicts the prior specification, and which
resulted in the failure of the consistency check in the previous section.

Now, what has led to this position? To find out, we obtain the adjusted expec-
tations for the canonical quantities Z1 and Z2. For simplicity we introduce an
obvious notation for the main sums and differences:

X+ = X1 + X2, X− = X1 − X2, Y+ = Y1 + Y2, Y− = Y1 − Y2.

The adjusted expectations for the canonical quantities are:

ED(Z1) = 0.224X+ − 44.722, (1.14)

ED(Z2) = 0.056X−.

The resolution RD(Z1) = 1 corresponds to having an adjusted variance of zero for
ED(Z1), shown as (1.14), so that the correlation between Z1 (where Z1 ∝ Y+)
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and ED(Z1) (where ED(Z1) ∝ X+) must be equal to one. Thus, X+ and Y+ have
a prior correlation of one, and this explains why Y+ becomes ‘known’ as soon as
we observe x+.

Now, while this was a logical consequence of our prior specification, it is quite
possible that we had not realized, when we made our pairwise prior correlation
specifications, that we were building such a strong degree of dependency between
X+ and Y+. Indeed, it will usually be the case, particularly when we come to
specify beliefs over large, complex and highly interdependent collections of quan-
tities, that our initial prior specifications will have surprising and counter-intuitive
consequences, which may cause us to reconsider the basis for our specifications.
It is for this reason that it is vital to carry out a global analysis, by generating and
examining the canonical structure, to ensure coherence and consistency over and
between belief specifications and data. In particular, many defects are not discov-
ered if we carry out analyses piecemeal – for example, nearly all of the analyses
carried out in §1.4.3 to §1.4.10 are unremarkable when Y1 and Y2 are considered
separately, but are revealed to be dubious when we analyse them as a collection.
We did receive a hint of the underlying problem earlier, in §1.4.5, where we noticed
the singularity in the adjusted variance matrix. Singularities showing up here are
directly related to finding canonical resolutions equal to one.

In this particular example, the canonical quantities Z1, Z2 are the suitably
centred and scaled versions of Y+ and Y−. Because of the symmetries involved in
the prior specification, the canonical data quantities ED(Z1), ED(Z2) are likewise
the suitably centred and scaled versions of X+ and X−. Note that these are also
uncorrelated. In later chapters we shall discuss in detail the use of such canonical
structures and explain the relationship with classical canonical correlation analysis.

1.4.13 Modifying the original specifications

In this case, let us suppose that we reconsider our prior specifications. There are
many changes that we might make. Suppose, for simplicity, that we decide not
to change our prior means and variances for the four sales quantities, but just to
weaken one or two of the correlations. In terms of the four sums and differences,
the original prior correlation matrix was:

X− X+ Y− Y+
X− 1
X+ 0 1
Y− 0.5 0 1
Y+ 0 1 0 1

Inspecting the matrix, suppose we decide that it is appropriate to weaken the
correlation between X+ and Y+ to 0.8. With this change, the prior correlation
matrix over sales becomes
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X1 X2 Y1 Y2
X1 1
X2 −0.60 1
Y1 0.56 −0.24 1
Y2 −0.24 0.56 −0.60 1

so that the actual effect is to decrease generally all the correlations between the
sales quantities.

1.4.14 Repeating the analysis for the revised model

We now repeat our analysis with the modified belief specifications. The results are
rather similar, and have similar interpretations. The adjusted expectations are now

ED(Y1) = 100 + 1.3(X1 − 100) + 0.3(X2 − 100), (1.15)

ED(Y2) = 100 + 0.3(X1 − 100) + 1.3(X2 − 100),

so that x1 = 109, x2 = 90.5 yields observed adjusted expectations of

Ed(Y1) = 108.85 and Ed(Y2) = 90.35.

These are about the same as for the original prior specifications. As before, the
adjusted variances are the same for the two products,

VarD(Y1) = VarD(Y2) = 67.2,

so that the variance resolutions are 32.8%. Compared to the original specifications,
the weakening of the underlying correlations leads to the explanatory quantities
being less informative for future sales. The standardized changes in expectation
(prior to adjusted) are S(Ed (Y1)) = 1.55 and S(Ed(Y2)) = −1.69, a little larger
than before. Finally, when we observe y1 = 112 and y2 = 95.5, the standardized
changes from adjusted expectation to observed are 0.38 and −0.63 respectively.
Summaries of the basic adjustments are shown in Table 1.2.

In terms of the vector B, the decomposition of the prior variance matrix into
unresolved and resolved portions is now (with the correlation matrices shown
underneath),

Variances:

[
100 −60
−60 100

]
=

[
67.2 −52.8

−52.8 67.2

]
+

[
32.8 −7.2
−7.2 32.8

]
,

Correlations:

[
1 −0.6

−0.6 1

] [
1 −0.79

−0.79 1

] [
1 −0.22

−0.22 1

]
,

so that unlike for the first prior specification, there has been some alteration to the
covariance structure for the residual portions of Y1 and Y2. The understanding of
such changes to the covariance structure is a matter we defer until later.
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Table 1.2 Adjusting future sales Y1, Y2 by previous sales: summary for the modi-
fied structure, giving expectations E(·), variances Var(·), and standardized changes
S(·).

Initial = Adjusted expectation + Adjusted version

Y1 = 0.3X1 + 1.3X2 − 100 + Y1 − (0.3X1 + 1.3X2 − 100)

Prior 100 = 100 + 0
E(·)

Prior 100 = 32.8 + 67.2
Var(·)

Data 112 = 108.85 + 3.15

Change 1.2 1.55 0.38
S(·)

Y2 = 0.3X1 + 1.3X2 − 100 + Y2 − (0.3X1 + 1.3X2 − 100)

Prior 100 = 100 + 0
E(·)

Prior 100 = 32.8 + 67.2
Var(·)

Data 95.5 = 90.35 + 5.15

Change −0.45 −1.69 −0.63
S(·)

For the modified model, we recalculate the canonical structure. The two canon-
ical directions are as in (1.12) and (1.13), with corresponding canonical resolutions
RD(Z1) = 0.64 and RD(Z2) = 0.25. It follows that we expect to ‘explain’ 64% of
the variation in the direction/linear combination Z1 ∝ Y+, and this is the most we
can learn about any linear combination of the two future sales quantities. Otherwise,
the canonical structure is as before.

The canonical structure helps us to understand the implications of our belief
specifications. There are two ideas. The first is that we examine the implications
of our belief specifications as they affect variance reduction, and the second is that
we do this globally, i.e. simultaneously over all linear combinations of interest,
thereby taking account of the relationships expressed between the quantities being
predicted. Our unknowns have been reorganized as a canonical structure which
has two directions, scaled so that the prior variance in each is one, and so that the
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removed variance in each is the corresponding canonical resolution. Consequently
we will talk of the global structure as having initial uncertainty 1 + 1 = 2 and
resolved uncertainty 0.64 + 0.25 = 0.89, with resolution averaged over the struc-
ture evaluated as 0.89/2 = 0.445. This single number, which we call the system
resolution for our collection B of future sales quantities, is a simple quantification
of the value of the information for the entire collection B. We treat the system
resolution just as we treat resolutions for individual quantities such as Y1. That
is, a system resolution of zero implies that the information contains no potential
to reduce uncertainties in the collection by linear fitting, whereas a system reso-
lution of one implies that the information precisely identifies all the elements of
the collection B. In this way we begin to distance ourselves from the idea that
the individual quantities are the fundamentals of interest, and approach instead the
idea that the collections constitute the fundamentals of interest. This blurring of the
distinction between single quantities and collections of them has many advantages,
particularly as the dimensionality of a problem increases.

1.4.15 Global analysis of collections of observations

In previous sections we saw that piecemeal analyses for individual quantities
such as Y1 provided little or no evidence of the serious flaws present in the
prior belief specification; these flaws were revealed only by calculating and inter-
preting the underlying canonical structure. In a Bayes linear analysis we assess
both the expected value of information sources and diagnostics (such as standard-
ized changes) comparing expected to actual behaviour. Therefore, the question
arises: is it sufficient to examine standardized changes for the single elements of
a collection, or, analogous to the underlying canonical structure, is there a more
informative underlying diagnostic structure? Recall that one motivation for calcu-
lating the canonical structure was to find the linear combination with maximum
variance reduction. Suppose, analogously, that we calculate the linear combination
Y ∗ with the largest squared change in expectation, relative to prior variance. For
the observations x1 = 109, x2 = 90.5, this turns out to be

Y ∗ = 0.0478Y1 − 0.0678Y2 + 2.0000.

This linear combination, which has been centred so that it has prior expectation
zero, has adjusted expectation ED(Y ∗) = 1.078 and, for a reason we shall come
to, a prior variance also of 1.078. Thus, the largest change in expectation from
prior to adjusted for any linear combination of the future sales quantities is about√

1.078 = 1.038 prior standard deviations. It appears that the interplay between
prior specifications and the data used to compute adjusted expectations is about as
expected. As Y ∗ has been deliberately chosen to maximize the squared standard-
ized change in expectation, we now describe how to assess the magnitude of the
maximal change associated with it.

It turns out that Y ∗ has a unique and important role to play in Bayes linear
analysis, and so we introduce a notation and a name for it. For a collection B being
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adjusted by a further collection D observed to be d, we call the linear combination
in B with the largest standardized squared change in expectation the bearing, and
we use the notation Zd(B) for it. It is a simple linear combination of the quantities
being predicted (here, Y1 and Y2), with the coefficients being functions of the data
used to generate the observed adjusted expectation (here, x1 and x2). The bearing
has two useful properties.

1.4.15.1 Summary of direction and magnitude of changes

The bearing summarizes the direction and magnitude of changes between prior
and adjusted beliefs in the following sense: for any quantity Y constructed
from the elements of the collection B, the change in expectation from prior to
adjusted is equal to the prior covariance between Y and the bearing Zd(B) so
that Ed(Y ) − E(Y ) = Cov(Y, Zd(B)). In our example it is simple to illustrate this
result: we have

Zd(B) = 0.0478Y1 − 0.0678Y2 + 2,

so that

Cov(Y1, Zd(B)) = Cov(Y1, 0.0478Y1 − 0.0678Y2 + 2)

= 8.85 = 108.85 − 100

and

Cov(Y2, Zd(B)) = −9.65 = 90.35 − 100.

Changes in expectation for other linear combinations, such as Y+ and Y−, are
obtained as easily. For example,

Ed (Y+) = Cov(Y+, Zd(B)) = −0.8,

Ed (Y−) = Cov(Y−, Zd(B)) = 18.5.

In particular, recalling that we noticed above that Y ∗ has a prior variance equal to
its change in expectation, 1.078, we now observe that this is explained because

Ed(Zd(B)) − E(Zd(B)) = Cov(Zd(B), Zd(B)) = Var(Zd(B)).

1.4.15.2 Global diagnostic

The bearing provides a global diagnostic which gives a guide as to how well the
data agree with the prior information. We have already seen that Zd(B) is the
linear combination having the largest squared change in expectation, relative to
prior variance. We will call this change, which we have seen is just Var(Zd(B)),
the size of the adjustment, and introduce the notation Sized(B) for it. It is natural
to compare this maximum data effect with our expectation E(SizeD(B)) for it,
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where expectation is with respect to the data quantities and prior to them being
observed. This expectation turns out to be

E(SizeD(B)) = E(Var(ZD(B))) =
∑

i

RD(Zi),

i.e. the sum of the canonical resolutions. In our example, the size of the adjustment
and its prior expectation are

Var(Zd(B)) = 1.078,

E(Var(ZD(B))) = 0.64 + 0.25 = 0.89.

For a simple global diagnostic we calculate Srd(B), the ratio of these quantities,
which we call the size ratio for the adjustment of B given the observations
D = d . In our example we obtain Srd(B) = 1.078/0.89 = 1.21. This ratio has
expectation one. Large size ratios indicate larger than expected changes in expecta-
tion, suggesting that the data are in sharp disagreement with our prior specifications.
Small size ratios indicate smaller changes in expectation than expected and may
imply that our prior variance specifications were too large. In our example, the size
ratio is fairly close to one, suggesting little conflict between our prior information
and the observations.

1.4.16 Partial adjustments

We have so far addressed the adjustments of both single quantities and collections
by a single collection of information sources. We now move on to explore the
partial effects and implications of individual pieces of information. In the follow-
ing example, each ‘information source’ will be a single random quantity, but the
approach works in just the same way when the individual information sources
are themselves collections of quantities. Some of the reasons for studying partial
adjustments are as follows. First, at the design stage, some of the information
sources may be expensive to observe and so there may be advantages in exclud-
ing them as predictors if they are not individually valuable in helping to reduce
variation in the unknowns. Secondly, at the analysis stage, it is valuable to know
which aspects of the data have led us to our conclusions. Thirdly, at the diagnostic
stage, adjustments are usually based on data from different sources which may or
may not be in general agreement – for example, the data from one information
source may suggest that an adjusted expectation should rise, whilst data from a
different information source may suggest the reverse. In such cases it can easily
happen that an overall adjustment appears quite plausible, but conceals surprising
conflicts between different pieces of evidence. Bayes linear analysis permits us to
explore the interactions between the various sources of beliefs and data in a way
which highlights any such discordant features.

Key to understanding (linear) partial effects is the notion that one informa-
tion source is often at least partly a surrogate for another information source. For
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example, if two vectors U and V are perfectly correlated in the sense that every
linear combination constructed from the elements of U is perfectly correlated with
some linear combination constructed from the elements of V , then we could essen-
tially throw away V as U carries all the relevant information. Thus, when U and
V are correlated, there will be a portion of V which is irrelevant when we also
have U , and vice versa. We introduced in §1.4.4 the notion of, and notation for,
the decomposition of a single random quantity into an adjusted expectation plus
an adjusted version. We now extend this notation to vectors of random quantities.
That is, we write

U = EV (U) + [U − EV (U)] = EV (U) + AV (U).

Informally, in a linear framework, EV (U) and AV (U) are respectively (1) the
portion of the information source U that is also carried by V , and (2) the residual
portion of U not duplicated by any part of the information source V .

Before we illustrate the Bayes linear approach to design via partial adjustment,
it may be helpful to consider the usefulness of summaries of partial effects in the
traditional context of stepwise linear regression. In stepwise regression the usual
setting is that of one or more response variables with a large number of explanatory
variables, where it is desired to determine a small subset of explanatory variables
according to some criterion – such as the explanation of a given percentage of vari-
ation in the response variables. Two simple approaches to finding such a subset
are forward selection and backward elimination. The former proceeds by begin-
ning with an empty set of explanatory variables and then sequentially adding to
this set the explanatory variables which are most helpful in explaining remaining
variation in the response variables. The latter proceeds by taking the full set of
explanatory variables and then sequentially removing those explanatory variables
which are least helpful in explaining variation in the response variables. Both these
notions have their analogues in Bayes linear methodology. With regard to forward
addition of variables, the partial effect of interest is the extra percentage of vari-
ance explained in the response variables. With regard to backward deletion of
variables, the partial effect of interest is the reduction in the explained variance of
the response variables attributable to removing an explanatory variable.

In our example so far we have used our information sources X1 and X2 jointly
as D to learn about future sales. Suppose now that we consider how important each
is individually in predicting future sales. We adjust first by X1 and then perform
the partial adjustment by AX1(X2), the adjusted version of X2 given X1, which is
the portion of X2 which has not already been contributed to the adjustment by X1.

Details of the resulting variance resolutions are shown in Table 1.3. For
example, when X1 alone is used, the expected variance resolution in Y1 is
RX1(Y1) = 0.3136, rising to RD(Y1) = 0.3280 when X2 is also used. The partial
resolution contributed by AX1(X2) is thus, by subtraction,

RAX1 (X2)(Y1) = 0.0144.

Table 1.3 shows clearly that X1 is mainly informative for Y1, and that the residual
portion of X2 having taken into account X1 has little extra explanatory power. For
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Table 1.3 Variance implications for individual quantities and their collection.

Resolution given X1 Resolution given X1 and X2 Partial resolution
RX1(·) RX1∪X2 (·) RAX1 (X2)(·)

Y1 0.3136 0.3280 0.0144
Y2 0.0576 0.3280 0.2704
B 0.1640 0.4450 0.2810

explaining variation in Y2, the role is reversed. In the context of this example, if
we were particularly interested in predicting sales of Y1 rather than Y2, and if X2
was expensive to measure, we might decide at this stage not to bother observing
X2 but to depend on only observing X1. Actual design decisions will depend
on context and will take into account issues such as the expense of observing
quantities such as X1 and the utility of reducing variation in quantities such as
Y1. If we are concerned with explaining variation globally across the collection B,
we notice that the variance resolutions are RX1(B) = 0.1640 and RAX1 (X2)(B) =
0.2810 respectively, indicating that both information sources are valuable.

Given data X1 alone, the adjusted expectations are

EX1(Y1) = 1.12(X1 − 100) + 100,

EX1(Y2) = −0.48(X1 − 100) + 100.

Consequently, if we observe X1 to be larger than expected, the expectations for Y1
and Y2 are revised upwards and downwards, respectively. These movements are due
to the prior correlations shown in §1.4.13 in that X1 is positively correlated with Y1
and negatively correlated with Y2. The actual observation x1 = 109 gives adjusted
expectations of Ex1(Y1) = 110.08 and Ex1(Y2) = 95.68. These are standardized
changes of ±1.8 standard deviations relative to the variances resolved.

If we now make the partial adjustment by X2, or rather by the adjusted version
AX1(X2), we obtain partial adjusted expectations which provide the formulae to
update the expectations from the current adjusted expectation (given only X1) to
that based on both X1 and X2. In doing so, it is helpful to introduce some extra
notation. Let

E[X2/X1](B) = EX1∪X2(B) − EX1(B)

be the partial adjustment of B by X2 given that we have already adjusted by X1.
Such partial adjustments necessarily have expectation zero. We find that

E[X2/X1](Y1) = 0.18(X1 − 100) + 0.30(X2 − 100),

E[X2/X1](Y2) = 0.78(X1 − 100) + 1.30(X2 − 100).

In this case, if we observe X2 to be larger than expected, the partial change in
expectation for both Y1 and Y2 is upward. As we did observe x2 = 90.5, the par-
tial change in expectation is 0.18(109 − 100) + 0.30(90.5 − 100) = −1.23 for Y1
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Table 1.4 Exploring the implications of partial adjustment for Y1 and Y2.

Results for Y1

Prior Given X1 Given X1 and X2

Expectation 100.0 110.08 108.80
Variance 100.0 68.64 67.20
Total variance resolved 31.36 32.80
Change in expectation 10.08 −1.28
Change in variance resolved 31.36 1.44
Squared standardized change 3.24 1.05

in expectation

Results for Y2

Prior Given X1 Given X1 and X2

Expectation 100.0 95.68 90.35
Variance 100.0 94.24 67.20
Total variance resolved 5.76 32.80
Change in expectation −4.32 −5.33
Change in variance resolved 5.76 27.04
Squared standardized change 3.24 1.05

in expectation

and 0.78(109 − 100) + 1.30(90.5 − 100) = −5.33 for Y2. These are standardized
changes of 1.03 standard deviations relative to the respective resolutions in vari-
ance. A summary for the adjustments is given in Table 1.4. Overall, we notice that
the expectation for Y1 rose and then fell back slightly whilst the expectation for
Y2 fell and then fell again. None of the standardized changes are particularly large
and we conclude that the magnitudes of the changes in expectation are in apparent
agreement with the prior specification.

Because the initial data source X1 is uncorrelated with the partial data source
AX1(X2), notice how the overall adjusted expectations for Y1 and Y2 given in
(1.15) have been decomposed into additive initial and partial adjustments. That is,
we have

ED(·) = EX1(·) + E[X2/X1](·).

1.4.17 Partial diagnostics

We saw in Table 1.4 that the expectation for Y1 rose and then fell slightly, so that
the two information sources, X1 and AX1(X2), might be said to have contradictory
implications for Y1, whereas the two information sources are apparently comple-
mentary as far as Y2 is concerned. Obviously we can make similar judgements for
whichever quantities are of interest, such as total future sales Y+, but it is simpler
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to calculate a global summary of the implication of two sources of information.
Recall that in §1.4.15 we introduced the bearing for the adjustment to summarize
the magnitude and direction of changes in expectation implied by a data source.
For a partial adjustment we calculate the bearing for the partial adjustment,
which summarizes the magnitude and direction of changes in expectation implied
by the additional partial information source.

In our example, the initial bearing given data x1, the partial bearing given extra
data Ax1(x2), and the overall bearing given all the data d = x1 ∪ x2, are

Initial: Zx1(B) = 0.1170(Y1 − 100) + 0.0270(Y2 − 100)

Partial: Z[X2/X1](B) = −0.0692(Y1 − 100) − 0.0948(Y2 − 100)

Overall: Zd(B) = Zx1(B) + Z[X2/X1](B)

= 0.0478(Y1 − 100) − 0.0678(Y2 − 100).

As in §1.4.15, each bearing is associated with a size ratio measuring the discrep-
ancy between data and belief specifications taken as a whole across the collection
being adjusted. In this example, the size ratios for the initial, partial, and overall
adjustments are respectively 3.24, 1.05, and 1.21. None of these, each of which has
prior expectation unity, appears particularly large or disturbing, and we might con-
clude that the changes in expectation implied by the data are in general agreement
with the prior specifications.

As a change in expectation for any quantity such as Y1 can be represented as a
covariance between that quantity and a bearing, we also note that the implications
of the two data sources for changes in expectation are opposite: typically positive
for the first, and typically negative for the second. To formalize this idea, the most
useful single summary is the correlation between the bearings for the two data
sources, which we call a path correlation. In this example, it is

PC(x1, Ax1(x2)) = Corr(Zx1(B), Z[X2/X1](B)) = −0.3633.

The interpretation is that there is a very mild form of conflict between the two
information sources.

We have already seen that the standardized changes in expectation at each stage
for the two quantities are not too surprising in relation to the variance resolved
at each stage. However, we should be aware that an overall adjustment by all
the data can mask (either by cancelling out or by averaging) two surprising and/or
contradictory changes in belief. As an illustration, we repeat the diagnostic analysis
using the canonical structure for the data quantities, which we saw at the foot of
§1.4.12 to be the current sales total and sales difference, X+ and X−. Thus, we
reorganize the data sources to be these canonical data quantities, and use them to
make predictions about future sales.

The analysis proceeds as described in previous sections, but we shall not detail
it as our interest here is only in the diagnostic evidence. Suppose that we carry out
an initial adjustment of B by X+, and then a further partial adjustment by X−,
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which is uncorrelated with X+, so that we have AX+(X−) = X−. We find that the
bearings are

Initial: Zx+(B) = −0.01(Y+ − 200)

Partial: Zx−(B) = 0.0578Y−

Overall: Zd(B) = 0.0478(Y1 − 100) − 0.0678(Y2 − 100),

so that there is a natural and straightforward correspondence between data sources
and what the data source is informative for: previous total sales are informative
for future total sales, and previous sales differences for future sales differences.
Because of the uncorrelatedness of these quantities, observe for example that previ-
ous sales totals X+ are valueless for making linear predictions about a future sales
difference, Y−. The overall bearing Zd(B), which is of course the same however
we reorganize the information sources, has a corresponding size ratio of 1.21. How-
ever, the size ratios for the initial and partial adjustments are respectively 0.0125
and 4.2781. The interpretation here is that the changes in expectation induced by
the first data source, X+, were surprisingly small compared to the expected level
of variance explained, whereas the changes in expectation induced by the second
data source, X−, were perhaps disturbingly large. A plausible explanation would
be that we overstated our prior variability for the sales totals, and that we under-
stated variability for the sales differences, or perhaps that there are errors in the
data. In such cases, we might choose to re-examine our prior specifications and
the data. Note that, as will often be the case, diagnostic inspection based on the
canonical structure gives a clearer picture of potential problems with the overall
prior formulation than is obtained by inspection of the adjustments of the original
quantities.

1.4.18 Summary

A good analysis of even simple problems such as these requires the knowledgeable
use of effective tools. Our analysis here is incomplete as we have only introduced
some of the basic machinery of the Bayes linear approach, and yet we have shown
how fairly simple ideas and procedures lead directly into the heart of a problem,
offering tools that work as well for collections as they do for single quantities, and
that reveal quickly the important aspects of a combined belief and data structure.
We could possibly have made a more detailed prior specification. However, by
concentrating on the reduced belief specifications required for the second-order
structure we have been able to apply a simple and efficient methodology under
which we can control input requirements, and within which the implications of
the belief specifications and any observations can be readily discerned. Various
aspects of the Bayes linear analysis are thus revealed: straightforward specifica-
tion of genuine beliefs, exploration of their implications, their adjustment using
data, and diagnostics comparing expected to actual behaviour. This methodology
works in essentially the same way as we increase the number of quantities in
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the problem, in which case we will find that the role of the canonical structure
becomes increasingly important in clarifying the effects of complex belief adjust-
ments.

1.5 Overview

The Bayes linear approach has been developed to the level where it is usable as a
general framework within which to develop statistical methodology. As with any
such methodology, much work may be required to bring the approach to bear on
particularly challenging practical problems. However, the basic elements of the
approach are sufficiently well developed to merit a unified exposition. Our inten-
tion, in this book, is to present in a systematic way those central methodological
features that we consider to be both essential for and distinctive to the Bayes linear
approach. Thus, we do not address the many aspects of belief specification, sta-
tistical modelling and data analysis which are common to our approach and other
views of statistical analysis. Nor do we attempt to summarize all of the ways in
which moment specification and analysis are currently exploited within statistical
methodology. Instead, by concentrating on the essentials of the approach, we aim to
give at least the outline of a unified methodology for belief analysis from a partic-
ular subjectivist viewpoint based on partial belief specification taking expectation
as primitive. Whether we consider this approach as (the skeleton of) a complete
methodology of itself or as part of a much larger toolkit of approaches to belief
modelling and analysis will depend both on our philosophical viewpoint and on
the types of problem which we wish to address.

The organization of this book is as follows. In Chapter 2, we introduce the
ingredients which we will blend in later chapters, namely prior means, variances
and covariances, assessed as primitive quantities. We give a brief introduction to the
idea of expectation as primitive, and discuss, by example, some simple approaches
to prior specification for means, variances and covariances.

The basics of our approach are threefold: (i) we specify collections of beliefs
and analyse how we expect beliefs to change given our planned data collection;
(ii) we collect information and analyse how our beliefs have actually changed; (iii)
we compare, diagnostically, expected to actual changes in our beliefs. Step (i) is
addressed in Chapter 3, where we explain the basic operations within our approach,
namely the adjustment of collections of expectations and variances, by linear fitting
on data. We develop the basic properties of belief adjustment and describe the natu-
ral geometric setting for the analysis. A general construction is introduced, namely
the belief transform, for interpreting collections of belief adjustments through the
eigenstructure of the transform.

We address steps (ii) and (iii) of our general approach in Chapter 4, which
is concerned with interpretation and diagnostic evaluation of the observed belief
adjustment given data. In particular, we describe the construction and interpretation
of the bearing for a belief adjustment, which is a form of linear likelihood for the
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analysis, which summarizes the overall direction and magnitude of a collection of
adjustments.

Usually, our information comes from different sources: for example, there may
be different time points, different populations, different types of quantity. It is useful
to identify how much information we expect from each source, and then to consider
whether the various data sources are giving consistent or a contradictory informa-
tion. In Chapter 5, we apply the three-step programme – (i) interpret expected
adjustments, (ii) interpret actual adjustments, (iii) compare actual to interpreted
effects – when the data have been divided into portions. We therefore consider
partial belief adjustments and develop the corresponding partial belief transforms
and partial bearings for an adjustment carried out in stages.

Exchangeability (the property that beliefs over a collection of objects would not
be affected by permutation of the order of the objects) is a fundamental subjective
judgement underlying many statistical applications. In principle, exchangeability
judgements allow us to carry out statistical modelling purely in terms of our judge-
ments over observables. Unfortunately, in the usual Bayes formalism, this is very
difficult, and exchangeability tends to be hidden from view. Because of our sim-
plified approach to belief specification, however, it is both feasible and natural
to build statistical models directly from second-order exchangeability judgements
over observables. This process is covered in Chapter 6, where we develop and
interpret the representation theorem for second-order exchangeable random quan-
tities. Chapter 6 is also concerned with how to adjust beliefs over the resulting
exchangeability models. We derive useful general results which greatly simplify
the analysis of such models, through the special properties of the corresponding
belief transforms. In Chapter 7, we extend such analyses to cover collections of
data which are individually second-order exchangeable, and which satisfy natu-
ral second-order exchangeability relationships between each pair of collections. In
Chapter 8, we address the issues that arise in learning about population variances
from exchangeable samples.

To this point, we have treated a particular type of belief transform as our basic
interpretative tool for analysing collections of belief changes. However, this type
of transform is itself a special case of a much wider class of transforms, which are
examined in Chapter 9, all of which are based on comparisons between collections
of variance and covariance specifications. We give the general construction for
such transforms, and illustrate the approach with various problems of comparison
over models and designs.

Graphical models are a powerful tool for graphically representing and evaluat-
ing our beliefs. Bayes linear graphical models, covered in Chapter 10, perform this
task for describing and manipulating our second-order specifications. We may also
display quantitative information, expressing our three-step sequence – expected
effects, observed effects and their comparison – in a natural way on the diagram.
Thus, the diagrams express both the modelling and the analysis of beliefs. Further,
the local computation properties of these models allow us to tackle large problems
in a straightforward and systematic way.
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In Chapter 12, we cover the technical material that we need for efficient imple-
mentation of the Bayes linear approach, assuming a somewhat higher level of
knowledge of matrix algebra than in the rest of the book. The matrix algebra
required is covered in Chapter 11.


