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Crystals and crystal structures

� What is a crystal system?

� What are unit cells?

� What information is needed to specify a

crystal structure?

Crystals are solids that possess long-range order.

The arrangement of the atoms at one point in a

crystal is identical, (excepting localised mistakes

or defects that can arise during crystal growth),

to that in any other remote part of the crystal.

Crystallography describes the ways in which

the component atoms are arranged in crystals

and how the long-range order is achieved. Many

chemical (including biochemical) and physical

properties depend on crystal structure and know-

ledge of crystallography is essential if the pro-

perties of materials are to be understood and

exploited.

Crystallography first developed as an observa-

tional science; an adjunct to the study of miner-

als. Minerals were, (and still are), described by

their habit, the shape that a mineral specimen

may exhibit, which may vary from an amor-

phous mass to a well-formed crystal. Indeed, the

regular and beautiful shapes of naturally occur-

ring crystals attracted attention from the ear-

liest times, and the relationship between crystal

shape and the disposition of crystal faces, the

crystal morphology, was soon used in classi-

fication. At a later stage in the development of

the subject, symmetry, treated mathematically,

became important in the description of crystals.

The actual determination of crystal structures, the

positions of all of the atoms in the crystal, was a

later level of refinement that was dependent upon

the discovery and subsequent use of X-rays.

1.1 Crystal families and crystal systems

Careful measurement of mineral specimens

allowed crystals to be classified in terms of six

crystal families, called anorthic, monoclinic,

orthorhombic, tetragonal, hexagonal and iso-

metric. This classification has been expanded

slightly by crystallographers into seven crystal
systems. The crystal systems are sets of refer-

ence axes, which have a direction as well as a

magnitude, and hence are vectors1. The crystal

families and classes are given in Table 1.1.
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The three reference axes are labelled a, b and

c, and the angles between the positive direction

of the axes are a, b, and g, where a lies between

þb and þc, b lies between þa and þc, and g lies

between þa and þb, (Figure 1.1). The angles are

chosen to be greater or equal to 90� except for

the trigonal system, as described below. In fig-

ures, the a-axis is represented as projecting out

of the plane of the page, towards the reader, the

b-axis points to the right and the c-axis points

towards the top of the page. This arrangement is

a right-handed coordinate system.

Measurements on mineral specimens could give

absolute values for the inter-axial angles, but only

relative axial lengths could be derived. These

lengths are written a, b and c.

The seven crystal systems are named accord-

ing to the relationship between the axes and the

inter-axial angles. The most symmetric of the

crystal classes is the cubic or isometric system,

in which the three axes are arranged at 90� to

each other and the axial lengths are identical.

These form the familiar Cartesian axes. The

tetragonal system is similar, with mutually per-

pendicular axes. Two of these, usually desig-

nated a (¼ b), are of equal length, while the

third, designated c, is longer or shorter than

the other two. The orthorhombic system has

three mutually perpendicular axes of different

lengths. The monoclinic system is also defined

by three unequal axes. Two of these, con-

ventionally chosen as a and c, are at an oblique

angle, b, while the third c, is normal to the plane

containing a and b. The least symmetrical crys-

tal system is the triclinic, which has three

unequal axes at oblique angles. The hexagonal

crystal system has two axes of equal length,

designated a (¼ b), at an angle, g, of 120�. The

c-axis lies perpendicular to the plane containing

a and b, and lies parallel to a six-fold axis of

rotation symmetry, (see Chapter 4).

The trigonal system has three axes of equal

length, each enclosing equal angles a (¼ b¼ g),

forming a rhombohedron. The axes are called

rhombohedral axes, while the system name trigo-

nal refers to the presence of a three-fold axis of

a

b

c

β α
γ

Figure 1.1 The reference axes used to characterise

the seven crystal systems

Table 1.1 The seven crystal systems

Crystal family Crystal system Axial relationships

Isometric Cubic a¼ b¼ c, a¼ b¼ g¼ 90�;

Tetragonal Tetragonal a¼ b 6¼ c, a¼ b¼ g¼ 90�;

Orthorhombic Orthorhombic a 6¼ b 6¼ c, a¼ b¼ g¼ 90�;

Monoclinic Monoclinic a 6¼ b 6¼ c, a¼ 90�, b 6¼ 90�, g¼ 90�;

Anorthic Triclinic a 6¼ b 6¼ c, a 6¼ 90�, b 6¼ 90�, g 6¼ 90�;

Hexagonal Hexagonal a¼ b 6¼ c, a¼ b¼ 90�, g¼ 120�;

Trigonal or a¼ b¼ c, a¼ b¼ g; or

Rhombohedral a0 ¼ b0 6¼ c0, a0 ¼ b0 ¼ 90�, g0 ¼ 120�;

(hexagonal axes)
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rotation symmetry in the crystal (see Chapter 4).

Crystals described in terms of rhombohedral axes

are often more conveniently described in terms of

a hexagonal set of axes. In this case, the hexago-

nal c-axis is parallel to the rhombohedral body

diagonal, which is a three-fold axis of symmetry

(Figure 1.2). The relationship between the two

sets of axes is given by the vector equations:

aR ¼ �̃̄ aHþ �̂̄ bHþ �̂̄ cH

bR ¼� �̂̄ aHþ �̂̄ bHþ �̂̄ cH

cR ¼� �̂̄ aH� �̃̄ bHþ �̂̄ cH

aH ¼ aR � bR

bH ¼ bR � cR

cH ¼ aR þ bR þ cR

where the subscripts R and H stand for rhombo-

hedral and hexagonal respectively. [Note that in

these equations the vectors a, b and c are added

vectorially, not arithmetically, (see Appendix 1)].

The arithmetical relationships between the axial

lengths is given by:

aH ¼ 2 aR sin
a
2

cH ¼ aR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 6 cos a
p

aR ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2

H þ c2
H

q
sin

a
2
¼ 3aH

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2

H þ c2
H

p

where the subscripts R and H stand for rhombo-

hedral and hexagonal respectively.

1.2 Morphology and crystal classes

Observations of the shapes of crystals, the crystal

morphology, suggested that the regular external

form of a crystal was an expression of internal

order. Among other observations, the cleavage

of crystals, that is, the way in which they could

be fractured along certain directions in such a

manner that the two resultant fragments had

perfect faces, suggested that all crystals might

be built up by a stacking of infinitesimally

small regular ‘brick-like’ elementary volumes,

each unique to the crystal under consideration.

These elementary volumes, the edges of which

could be considered to be parallel to the axial

vectors a, b and c, of the seven crystal systems,

eventually came to be termed morphological unit
cells. The relative axial lengths, a, b and c were

taken as equal to the relative lengths of the unit

cell sides. The values a, b, c, a, b and g are termed

the morphological unit cell parameters. [The

absolute lengths of the axes, also written a, b

and c or a0, b0 and c0, determined by diffraction

techniques, described below, yield the structural
unit cell of the material. Unit cell parameters now

refer only to these structural values.]

Three-fold axis c

Three-fold axis

Rhombohedral Hexagonal

aH

aH

aR

aR

bH

bH

bR

bR

cR

cR

(a)

(c)

(b)

γ

Figure 1.2 Rhombohedral and hexagonal axes: (a, b),

axes in equivalent orientations with the trigonal 3-fold

axis parallel to the hexagonal c-axis; (c) superposition

of both sets of axes, projected down the hexagonal c-axis

(¼ the rhombohedral 3-fold axis)
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A central concept in crystallography is that

the whole of a crystal can be built up by stacking

identical copies of the unit cell in exactly the same

orientation. That is to say, a crystal is charac-

terised by both translational and orientational
long-range order. The unit cells are displaced

repeatedly in three dimensions, (translational
long-range order), without any rotation or reflec-

tion, (orientational long-range order). This res-

triction leads to severe restrictions upon the

shape (strictly speaking the symmetry) of a

unit cell; a statement which will be placed on a

firm footing in later chapters. The fact that some

unit cell shapes are not allowed is easily demon-

strated in two dimensions, as it is apparent that

regular pentagons, for example, cannot pack

together without leaving gaps (Figure 1.3). [A

regular pentagon is a plane figure with five equal

sides and five equal internal angles.]

Not only could unit cells be stacked by

translation alone to yield the internal struc-

ture of the crystal, but, depending on the rate

at which the unit cells were stacked in dif-

ferent directions, (i.e. the rate at which the

crystal grew in three dimensions), different

facets of the crystal became emphasised, while

others were suppressed, so producing a variety

of external shapes, or habits, (Figure 1.4),

Figure 1.3 Irrespective of how they are arranged,

regular pentagons cannot fill a plane completely; spaces

always appear between some of the pentagons. Just one

arrangement is drawn, others are possible

(a)

(c)(b) (d)

(e)

Figure 1.4 (a) schematic depiction of a crystal built

of rectangular (orthorhombic) unit cells. The unit cells

must be imagined to be much smaller than depicted,

thus producing smooth facets. (b – e) different crystal

habits derived by differing rates of crystal growth in

various directions
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thus explaining the observation that a single

mineral could occur in differing crystal morpho-

logies.

The faces of a crystal, irrespective of the

overall shape of the crystal, could always be

labelled with respect to the crystal axes. Each

face was given a set of three integers, (h k l),

called Miller indices. These are such that the

crystal face in question made intercepts on the

three axes of a=h, b=k and c=l. A crystal face that

intersected the axes in exactly the axial ratios

was given importance as the parametral plane,

with indices (111). [Miller indices are now

used to label any plane, internal or external, in

a crystal, as described in Chapter 2, and the

nomenclature is not just confined to the external

faces of a crystal.]

The application of Miller indices allowed

crystal faces to be labelled in a consistent fash-

ion. This, together with accurate measurements

of the angles between crystal faces, allowed the

morphology of crystals to be described in a

reproducible way, which, in itself, lead to an

appreciation of the symmetry of crystals. Sym-

metry was broken down into a combination of

symmetry elements. These were described as

mirror planes, axes of rotation, and so on, that,

when taken in combination, accounted for the

external shape of the crystal. The crystals of a

particular mineral, regardless of its precise mor-

phology, were always found to possess the same

symmetry elements.

Symmetry elements are operators. That is,

each one describes an operation, such as reflec-

tion. When these operations are applied to the

crystal, the external form is reproduced. It was

found that all crystals fell into one or another

of 32 different groups of symmetry operations.

These were called crystal classes. Each crystal

class could be allocated to one of the six crystal

families. These symmetry elements and the

resulting crystal classes are described in detail

in Chapters 3 and 4.

1.3 The determination
of crystal structures

The descriptions above were made using optical

techniques, especially optical microscopy. How-

ever, the absolute arrangement of the atoms in a

crystal cannot be determined in this way. This

limitation was overcome in the early years of

the 20th century, when it was discovered that

X-rays were scattered, or diffracted, by crystals

in a way that could be interpreted to yield the

absolute arrangement of the atoms in a crystal,

the crystal structure. X-ray diffraction remains

the most widespread technique used for structure

determination, but diffraction of electrons and

neutrons is also of great importance, as these

reveal features that are complementary to those

observed with X-rays.

The physics of diffraction by crystals has been

worked out in detail. It is found that the incident

radiation is scattered in a characteristic way,

called a diffraction pattern. The positions and

intensities of the diffracted beams are a function

of the arrangements of the atoms in space and

some other atomic properties, such as the atomic

number of the atoms. Thus, if the positions

and the intensities of the diffracted beams are

recorded, it is possible to deduce the arrange-

ment of the atoms in the crystal and their

chemical nature. The determination of crystal

structures by use of the diffraction of radiation is

outlined in Chapter 6.

1.4 The description of crystal structures

The minimum amount of information needed to

specify a crystal structure is the unit cell type, i.e.,

cubic, tetragonal, etc, the unit cell parameters and

the positions of all of the atoms in the unit cell.

The atomic contents of the unit cell are a simple

multiple, Z, of the composition of the material.
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The value of Z is equal to the number of formula
units of the solid in the unit cell. Atom positions

are expressed in terms of three coordinates, x, y,

and z. These are taken as fractions of a, b and c,

the unit cell sides, say �̂̃ , �̂̃ , �̂̆ . The x, y and z

coordinates are plotted with respect to the unit cell

axes, not to a Cartesian set of axes, (Figure 1.5).

The position of an atom can also be expressed as a

vector, r:

r ¼ xaþ ybþ zc

where a, b and c are the unit cell axes, (Figure 1.5).

An atom at a cell corner is given the coordi-

nates (0, 0, 0). An atom at the centre of the face

of a unit cell is given the coordinates ( �̂̃ , �̂̃ , 0)

if it lies between the a- and b-axes, ( �̂̃ , 0, �̂̃ ) if

between the a- and c-axes, and (0, �̂̃ , �̂̃ ) if

between the b- and c-axes. An atom at the centre

of a unit cell would have a position specified as

( �̂̃ , �̂̃ , �̂̃ ), irrespective of the type of unit cell.

Atoms at the centres of the cell edges are speci-

fied at positions ( �̂̃ , 0, 0), (0, �̂̃ , 0) or (0, 0, �̂̃ ),

for atoms on the a-, b- and c-axis, (Figure 1.6).

Stacking of the unit cells to build a structure

will ensure that an atom at the unit cell origin will

appear at every corner, and atoms on unit cell

edges or faces will appear on all of the cell edges

and faces.

In figures, the conventional origin is placed

at the left rear corner of the unit cell. The a- or

x-axis is represented as projecting out of the

plane of the page, towards the reader, the b- or

y-axis points to the right and the c- or z-axis

points towards the top of the page. In pro-

jections, the origin is set at the upper left cor-

ner of the unit cell projection. A frequently

encountered projection is that perpendicular to

the c-axis. In this case, the a- or x-axis is drawn

pointing down, (from top to bottom of the page),

and the b- or y-axis pointing to the right. In pro-

jections the x and y coordinates can be determined

from the figure. The z position is usually given on

the figure as a fraction.

A vast number of structures have been deter-

mined, and it is very convenient to group those

with topologically identical structures together.

On going from one member of the group to

another, the atoms in the unit cell differ, reflecting

a change in chemical compound, and the atomic

coordinates and unit cell dimensions change

slightly, reflecting the difference in atomic size,

but relative atom positions are identical or very

similar. Frequently, the group name is taken

from the name of a mineral, as mineral crystals

were the first solids used for structure deter-

mination. Thus, all crystals with a structure

similar to that of sodium chloride, NaCl, (the

mineral halite), are said to adopt the halite

structure. These materials then all have a general

a

b

c

Atom at (0, 0, 0)

Atom at (0,½,0)

Atom at (½,½,½)

Atom at (½,½,0)

Figure 1.6 Atoms at positions 0, 0, 0; 0, �̂̃ , 0; �̂̃ ,

�̂̃ , 0; and �̂̃ , �̂̃ , �̂̃ in a unit cell

a

b

c

Origin Atom at x, y, z

x
y

z
r

Figure 1.5 The position of an atom in a unit cell, x,

y and z, is defined with respect to the directions of the

unit cell edges. The numerical values of x, y and z are

specified as fractions, ( �̂̃ , �̂̆ , etc.) of the unit cell edges

a, b and c
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formula MX, where M is a metal atom and X a

non-metal atom, for example, MgO. Similarly,

crystals with a structure similar to the rutile form

of titanium dioxide, TiO2, are grouped with the

rutile structure. These all have a general formula

MX2, for example FeF2. As a final example, com-

pounds with a similar structure to the mineral

fluorite, (sometimes called fluorspar), CaF2, are

said to adopt the fluorite structure. These also

have a general formula MX2, an example being

UO2. Examples of these three structures follow.

Crystallographic details of a number of simple

inorganic structures are given in Appendix 2.

Some mineral names of common structures are

found in Table 1.2 and Appendix 2.

A system of nomenclature that is useful for

describing relatively simple structures is that

originally set out in 1920, in Volume 1 of the

German publication Strukturbericht. It assigned a

letter code to each structure; A for materials with

only one atom type, B for two different atoms,

and so on. Each new structure was characterised

further by the allocation of a numeral, so that the

crystal structures of elements were given symbols

A1, A2, A3 and so on. Simple binary compounds

were given symbols B1, B2 and so on, and binary

compounds with more complex structures C1,

C2, D1, D2 and so on. As the number of crystal

structures and the complexity displayed increased,

the system became unworkable. Nevertheless, the

terminology is still used, and is useful for the des-

cription of simple structures. Some Strukturbericht

symbols are given in Table 1.2.

1.5 The cubic close-packed (A1)
structure of copper

A number of elemental metals crystallise with

the cubic A1 structure, also called the copper

structure.

Unit cell: cubic

Lattice parameter for copper2, a ¼ 0:3610 nm.

Z ¼ 4 Cu

Atom positions: 0, 0, 0; �̂̃ , �̂̃ , 0;

0, �̂̃ , �̂̃ ; �̂̃ , 0, �̂̃ ;

There are four copper atoms in the unit cell,

(Figure 1.7). Besides some metals, the noble

gases, Ne(s), Ar(s), Kr(s), Xe(s), also adopt this

structure in the solid state. This structure is often

called the face-centred cubic (fcc) structure or

the cubic close-packed (ccp) structure, but the

Strukturbericht symbol, A1 is the most compact

notation. Each atom has 12 nearest neighbours,

and if the atoms are supposed to be hard touching

spheres, the fraction of the volume occupied is

2Lattice parameters and interatomic distances in crystal

structures are usually reported in Ångström units, Å, in

crystallographic literature. 1 Å is equal to 10�10 m, that is,

10 Å¼ 1 nm. In this book, the SI unit of length, nm, will be

used most often, but Å will be used on occasion, to conform

with crystallographic practice.

Table 1.2 Strukturbericht symbols and names for simple structure types

Symbol and name Examples Symbol and name Examples

A1, cubic close-packed, copper Cu, Ag, Au, Al A2, body-centred cubic, iron Fe, Mo, W, Na

A3, hexagonal close-packed, Mg, Be, Zn, Cd A4, diamond C, Si, Ge, Sn

magnesium

B1, halite, rock salt NaCl, KCl, NiO, MgO B2, caesium chloride CsCl, CsBr, AgMg, BaCd

B3, zinc blende ZnS, ZnSe, BeS, CdS B4, wurtzite ZnS, ZnO, BeO, CdS, GaN

C1, fluorite CaF2, BaF2, UO2, ThO2 C4, rutile TiO2, SnO2, MgF2, FeF2
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0.7405. More information on this structure is

given in Chapter 7.

1.6 The body-centred cubic (A2)
structure of tungsten

A second common structure adopted by metal-

lic elements is that of the cubic structure of

tungsten, W.

Unit cell: cubic

Lattice parameter for tungsten, a ¼ 0:316 nm.

Z ¼ 2 W

Atom positions: 0, 0, 0; �̂̃ , �̂̃ , �̂̃ ;

There are two tungsten atoms in the body-

centred unit cell, one at (0, 0, 0) and one at the

cell centre, ( �̂̃ , �̂̃ , �̂̃ ), (Figure 1.8). This struc-

ture is often called the body-centred cubic (bcc)

structure, but the Strukturbericht symbol, A2,

is a more compact designation. In this struc-

ture, each atom has 8 nearest neighbours and 6

next nearest neighbours at only 15% greater

distance. If the atoms are supposed to be hard

touching spheres, the fraction of the volume

occupied is 0.6802. This is less than either the

A1 structure above or the A3 structure that

follows, both of which have a volume fraction

of occupied space of 0.7405. The A2 structure

is often the high temperature structure of a metal

that has an A1 close-packed structure at lower

temperatures.

1.7 The hexagonal (A3) structure
of magnesium

The third common structure adopted by ele-

mental metals is the hexagonal magnesium, Mg,

structure.

Unit cell: hexagonal

Lattice parameters for magnesium,

a¼ 0:321 nm; c ¼ 0:521 nm

Z ¼ 2 Mg

Atom positions: 0, 0, 0; �̂̄ , �̃̄ , �̂̃ ;

There are two atoms in the unit cell, one at

(0, 0, 0) and one at ( �̂̄ , �̃̄ , �̂̃ ). [The atoms can

also be placed at �̃̄ , �̂̄ , �̂̆ ; �̂̄ , �̃̄ , �̄̆ , by changing

the unit cell origin. This is preferred for some

a

b

c

Figure 1.8 The cubic unit cell of the A2, tungsten,

structure

a

b

c

Figure 1.7 The cubic unit cell of the A1, copper,

structure
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purposes]. The structure is shown in perspec-

tive, (Figure 1.9a) and projected down the

c-axis, (Figure 1.9b). This structure is often

referred to as the hexagonal close-packed (hcp)

structure. If the atoms are supposed to be hard

touching spheres, the fraction of the volume

occupied is 0.7405, equal to that in the A1

structure of copper, and the ratio of the lattice

parameters, c =a, is equal to H8 =H3, ¼ 1.633.

The ideal volume, V, of the unit cell, equal to the

area of the base of the unit cell multiplied by the

height of the unit cell, is:

V ¼
ffiffiffi
3
p

2
a2c ¼ 0:8660 a2c

More information on this structure, and the rela-

tionship between the A1 and A3 structures, is

given in Chapter 7.

1.8 The halite structure

The general formula of crystals with the halite

structure is MX. The mineral halite, which names

the group, is sodium chloride, NaCl, also called

rock salt.

Unit cell: cubic.

Lattice parameter for halite,

a¼ 0.5640 nm.

Z¼ 4 {NaCl}

Atom positions: Na: �̂̃ , 0, 0; 0, 0, �̂̃ ;

0, �̂̃ , 0; �̂̃ , �̂̃ , �̂̃
Cl: 0, 0, 0; �̂̃ , �̂̃ , 0;

�̂̃ , 0, �̂̃ ; 0, �̂̃ , �̂̃

There are four sodium and four chlorine atoms in

the unit cell. For all materials with the halite

structure, Z¼ 4. In this structure, each atom is

surrounded by six atoms of the opposite type at

the corners of a regular octahedron (see Chapter 7).

A perspective view of the halite structure is shown

in Figure 1.10a, and a projection, down the c-axis,

in Figure 1.10b.

This structure is adopted by many oxides,

sulphides, halides and nitrides with a formula

MX.

1.9 The rutile structure

The general formula of crystals with the rutile

structure is MX2. The mineral rutile, which names

the group, is one of the structures adopted by

titanium dioxide, TiO2. [The other common form

c

b

a

a

b

(a)

(b)

Figure 1.9 The hexagonal unit cell of the A3, mag-

nesium, structure: (a) perspective view; (b) projection

down the c-axis
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of TiO2 encountered is called anatase. Other

structures for TiO2 are also known.]

Unit cell: tetragonal.

Lattice parameters for rutile, a ¼ 0:4594 nm;
c ¼ 0:2959 nm:

Z ¼ 2 fTiO2g
Atom positions: Ti: 0, 0, 0; �̂̃ , �̂̃ , �̂̃

O: /̄̂ ´ , /̄̂´ , 0; �̆̇ , �̂̇ , �̂̃ ;

	/̂´ , 	/̂´ , 0; �̂̇ , �̆̇ , �̂̃

There are two molecules of TiO2 in the unit

cell, that is, for all materials that adopt the rutile

structure, Z ¼ 2. In this structure, each titanium

atom is surrounded by six oxygen atoms at the

corners of an octahedron. A perspective view of

the rutile structure is shown in Figure 1.11a, and a

projection, down the c-axis, in Figure 1.11b.

This structure is relatively common and adopted

by a number of oxides and fluorides with a

formula MX2.

1.10 The fluorite structure

The general formula of crystals with the fluorite

structure is MX2. The mineral fluorite, calcium

fluoride, CaF2, which names the group, is some-

times also called fluorspar.

Unit cell: cubic.

Lattice parameter for fluorite,

a ¼ 0:5463 nm.

a
b

c

a

b

(a)

(b)

Ti

O

Figure 1.11 The tetragonal unit cell of the rutile

structure: (a) perspective view; (b) projection down the

c-axis

Figure 1.10 The cubic unit cell of the B1, halite,

structure: (a) perspective view; (b) projection down the

c-axis
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Z ¼ 4 fCaF2g
Atom positions:

Ca: 0, 0, 0; �̂̃ , �̂̃ , 0; 0, �̂̃ , �̂̃ ; �̂̃ , 0, �̂̃
F: �̂̆ , �̄̆ , �̂̆ ; �̂̆ , �̄̆ , �̄̆ ; �̂̆ , �̂̆ , �̂̆ ; �̂̆ , �̂̆ , �̄̆ ;

�̄̆ , �̂̆ , �̂̆ ; �̄̆ , �̂̆ , �̄̆ ; �̄̆ , �̄̆ , �̂̆ ; �̄̆ , �̄̆ , �̄̆

There are four calcium and eight fluorine atoms

in the unit cell. The number of molecules of CaF2

in the unit cell is four, so that, for all fluorite

structure compounds, Z ¼ 4. In this structure,

each calcium atom is surrounded by eight fluor-

ine atoms at the corners of a cube. Each fluorine

atom is surrounded by four calcium atoms at

the vertices of a tetrahedron (see also Chapter 7).

A perspective view of the structure is shown in

Figure 1.12a, and a projection of the structure

down the c-axis in Figure 1.12b.

This structure is adopted by a number of oxides

and halides of large divalent cations of formula

MX2.

1.11 The structure of urea

The structures of molecular crystals tend to have

a different significance to those of inorganic and

mineral structures. Frequently, the information

of most importance is the molecular geometry,

and how the molecules are arranged in the

crystallographic unit cell is often of less interest.

To introduce the changed emphasis when deal-

ing with molecular materials, the crystal struc-

ture of the organic compound urea is described.

Urea is a very simple molecule, with a formula

CH4N2O. The unit cell is small and of high

symmetry. It was one of the earliest organic

structures to be investigated using the methods

of X-ray crystallography, and in these initial

investigations the data was not precise enough

to locate the hydrogen atoms. [The location of

hydrogen atoms in a structure remains a problem

to present times, see also Chapters 6 and 7.] The

crystallographic data for urea is3

Unit cell: tetragonal.

Lattice parameters for urea,

a ¼ 0:5589 nm; c ¼ 0:46947 nm.

Z ¼ 2 fCH4N2Og
Atom positions: C1: 0, 0.5000, 0.3283

C2: 0.5000, 0, 0.6717

O1: 0.5000, 0, 0.4037

N1: 0.1447, 0.6447, 0.1784

N2: 0.8553, 0.3553, 0.1784

N3: 0.6447, 0.8553, 0.8216

N4: 0.3553, 0.1447, 0.8216

Figure 1.12 The cubic unit cell of the fluorite struc-

ture: (a) perspective view; (b) projection down the c-axis

3Data adapted from: V. Zavodnik, A. Stash, V. Tsirelson,

R. de Vries and D. Feil, Acta Crystallogr., B55, 45 (1999).
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H1: 0.2552, 0.7552, 0.2845

H2: 0.1428, 0.6428, 0.9661

H3: 0.8448, 0.2448, 0.2845

H4: 0.8572, 0.3572, 0.9661

H5: 0.7552, 0.7448, 0.7155

H6: 0.2448, 0.2552, 0.7155

H7: 0.6429, 0.8571, 0.0339

H8: 0.3571, 0.1428, 0.0339

Notice that atoms of the same chemical type are

numbered sequentially. The number of molecules

of urea in the unit cell is two, so that Z ¼ 2.

The atoms in a unit cell, (including hydrogen),

are shown in Figure 1.13a. This turns out to be

not very helpful, and an organic chemist would

have difficulty in recognising it as urea. This is

because the molecules lie along the unit cell

sides, so that a whole molecule is not displayed

in the unit cell, only molecular fragments. [The

unit cell is chosen in this way because of sym-

metry constraints, described in the following

chapters.] The chemical structural formula for

urea is drawn in Figure 1.13b, and this is com-

pared to a molecule of urea viewed front on

(Figure 1.13c), and edge on (Figure 1.13d)

extracted from the crystallographic data. The

crystal structure is redrawn in Figures 1.13e, f

with the atoms linked to form molecules. This

latter depiction now agrees with chemical intui-

tion, and shows how the molecules are arranged

in space.

Note that the list of atoms in the unit cell is

becoming lengthy, albeit that this is an extremely

simple structure. The ways used by crystallogra-

phers to reduce these lists to manageable propor-

tions, by using the symmetry of the crystal, is

explained in later chapters.

1.12 The density of a crystal

The theoretical density of a crystal can be found

by calculating the mass of all the atoms in the unit

Figure 1.13 The structure of urea: (a) perspective

view of the tetragonal unit cell of urea; (b) structural

formula of urea; (c) a ‘ball and stick’ representation

of urea ‘face on’, as in (b); (d) a ‘ball and stick’

representation of urea ‘sideways on’; (e) projection

of the structure along the c-axis; (f) projection of the

structure down the a-axis
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cell. The mass of an atom, mA, is its molar mass

(grams mol�1) divided by the Avogadro constant,

NA; ð6:02214� 1023 mol�1Þ

mA ¼ molar mass=NA ðgramsÞ
¼ molar mass=ð1000� NAÞ ðkilogramsÞ

The total mass of all of the atoms in the unit cell

is then

n1 m1 þ n2 m2 þ n3 m3 . . . =ð1000� NAÞ

where n1 is the number of atoms of type 1, with a

molar mass of m1, and so on. This is written in a

more compact form as

Xq

i¼1

nimi=ð1000� NAÞ

where there are q different atom types in the unit

cell. The density, r, is simply the total mass is

divided by the unit cell volume, V:

r ¼
Xq

i¼1

nimi=ð1000� NAÞ
( )

=V

For example, the theoretical density of halite is

calculated in the following way. First count the

number of different atom types in the unit cell. To

count the number of atoms in a unit cell, use the

information:

an atom within the cell counts as 1

an atom in a face counts as �̂̃

an atom on an edge counts as �̂̆

an atom on a corner counts as �̂̊

A quick method to count the number of atoms in

a unit cell is to displace the unit cell outline to

remove all atoms from corners, edges and faces.

The atoms remaining, which represent the unit

cell contents, are all within the boundary of the

unit cell and count as 1.

The unit cell of the halite structure contains 4

sodium (Na) and 4 chlorine (Cl) atoms. The mass

of the unit cell, m, is then given by:

m ¼ ½ð4� 22:99Þ þ ð4� 35:453Þ�=1000� NA

¼ 3:882� 10�25 kg

Where 22.99 g mol�1 is the molar mass of

sodium, 35.453 g mol�1 is the molar mass of

chlorine, and NA is the Avogadro constant,

6.02214� 1023 mol�1.

The volume, V, of the cubic unit cell is given

by a3, thus:

V ¼ ð0:5640� 10�9Þ3 m3

¼ 1:79406� 10�28 m3:

The density, r, is given by the mass m divided by

the volume, V:

r ¼ 3:882� 10�25 kg=1:79406� 10�28 m3

¼ 2164 kg m�3

The measured density is 2165 kg m�3. The

theoretical density is almost always slightly

greater than the measured density because real

crystals contain defects that act so as to reduce

the total mass per unit volume.

Answers to introductory questions

What is a crystal system?

A crystal system is a set of reference axes, used

to define the geometry of crystals and crystal
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structures. There are seven crystal systems,

cubic, tetragonal, orthorhombic, monoclinic, tri-

clinic, hexagonal and trigonal. As the crystal

systems are sets of reference axes, they have a

direction as well as a magnitude, and hence are

vectors. They must be specified by length and

interaxial angles.

The three reference axes are labelled a, b and c,

and the angles between the positive direction of

the axes as a, b, and g, where a lies between þb
and þc, b lies between þa and þc, and g lies

between þa and þb. The angles are chosen to be

greater or equal to 90� except for the trigonal

system. In figures, the a-axis is represented as

projecting out of the plane of the page, towards

the reader, the b-axis points to the right and the

c-axis points towards the top of the page.

What are unit cells?

All crystals can be built by the regular stacking

of a small volume of material called the unit cell.

The edges of the unit cell are generally taken to

be parallel to the axial vectors a, b and c, of the

seven crystal systems. The lengths of the unit

cell sides are written a, b and c, and the angles

between the unit cell edges are written, a, b and g.

The collected values a, b, c, a, b and g for a

crystal structure are termed the unit cell or lattice

parameters.

What information is needed to specify
a crystal structure?

The minimum amount of information needed to

specify a crystal structure is the unit cell type,

i.e., cubic, tetragonal, etc, the unit cell para-

meters and the positions of all of the atoms in

the unit cell. The atomic contents of the unit cell

are a simple multiple, Z, of the composition of

the material. The value of Z is equal to the

number of formula units of the solid in the unit

cell. Atom positions are expressed in terms of

three coordinates, x, y, and z. These are taken as

fractions of a, b and c, the unit cell sides, for

example, �̂̃ , �̂̃ , �̂̆ .

Problems and exercises

Quick quiz

1 The number of crystal systems is:

(a) 5

(b) 6

(c) 7

2 The angle between the a- and c-axes in a unit

cell is labelled:

(a) a

(b) b

(c) g

3 A tetragonal unit cell is defined by:

(a) a¼ b¼ c, a¼ b¼ g¼ 90�

(b) a¼ b 6¼ c, a¼ b¼ g¼ 90�

(c) a 6¼ b 6¼ c, a¼ b¼ g¼ 90�

4 A crystal is built by the stacking of unit cells

with:

(a) Orientational and translational long-range

order

(b) Orientational long-range order

(c) Translational long-range order

5 Miller indices are used to label

(a) Crystal shapes
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(b) Crystal faces

(c) Crystal sizes

6 Crystal structures are often determined by the

scattering of:

(a) Light

(b) Microwaves

(c) X-rays

7 In crystallography the letter Z specifies:

(a) The number of atoms in a unit cell

(b) The number of formula units in a unit

cell

(c) The number of molecules in a unit cell

8 The position of an atom at the corner of a

monoclinic unit cell is specified as:

(a) 1, 0, 0

(b) 1, 1, 1

(c) 0, 0, 0

9 The number of atoms in the unit cell of the

halite structure is:

(a) 2

(b) 4

(c) 8

10 When determining the number of atoms in a

unit cell, an atom in a face counts as:

(a) �̂̃
(b) �̂̆
(c) �̂̊

Calculations and Questions

1.1 The rhombohedral unit cell of arsenic, As,

has unit cell parameters aR¼ 0.412 nm,

a¼ 54.17�. Use graphical vector addition

(Appendix 1) to determine the equivalent

hexagonal lattice parameter aH. Check

your answer arithmetically, and calculate

a value for the hexagonal lattice para-

meter cH.

1.2 Cassiterite, tin dioxide, SnO2, adopts the

rutile structure, with a tetragonal unit cell,

lattice parameters, a¼ 0.4738 nm, c¼
0.3187 nm, with Sn atoms at: 0, 0, 0; �̂̃ , �̂̃ ,

�̂̃ ; and O atoms at: /̄̂ ´ , /̄̂ ´ , 0; �̆̇ , �̂̇ , �̂̃ ;

	/̂´ , 	/̂´ , 0; �̂̇ , �̆̇ , �̂̃ . Taking one corner of

the unit cell as origin, determine the atom

positions in nm and calculate the unit cell

volume in nm3. Draw a projection of the

structure down the c-axis, with a scale of

1 cm¼ 0.1 nm.

1.3 The structure of SrTiO3, is cubic, with a

lattice parameter a¼ 0.3905 nm. The atoms

are at the positions: Sr: �̂̃ , �̂̃ , �̂̃ ; Ti: 0, 0, 0;

O: �̂̃ , 0, 0; 0, �̂̃ , 0; 0, 0, �̂̃ . Sketch the unit

cell. What is the number of formula units in

the unit cell? [This structure type is an

important one, and belongs to the perovskite

family.]

1.4 (a) Ferrous fluoride, FeF2, adopts the tetra-

gonal rutile structure, with lattice para-

meters a¼ 0.4697 nm, c¼ 0.3309 nm. The

molar masses are Fe, 55.847 g mol�1, F,

18.998 g mol�1. Calculate the density of this

compound. (b) Barium fluoride, BaF2, adopts the

cubic fluorite structure, with lattice parameter

a¼ 0.6200 nm. The molar masses are Ba,

137.327 g mol�1, F, 18.998 g mol�1. Calculate

the density of this compound.

1.5 Strontium chloride, SrCl2, adopts the fluorite

structure, and has a density of 3052 kg m�3.

The molar masses of the atoms are Sr,

87.62 g mol�1, Cl, 35.45 g mol�1. Estimate

the lattice parameter, a, of this compound.

1.6 Molybdenum, Mo, adopts the A2 (tungsten)

structure. The density of the metal is
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10222 kg mol�1 and the cubic lattice para-

meter is a¼ 0.3147 nm. Estimate the molar

mass of molybdenum.

1.7 A metal difluoride, MF2, adopts the tetra-

gonal rutile structure, with lattice para-

meters a¼ 0.4621 nm, c¼ 0.3052 nm and

density 3148 kg m�3. The molar mass of

fluorine, F, is 18.998 g mol�1. Estimate the

molar mass of the metal and hence attempt

to identify it.

1.8 The density of anthracene, C14H10, is

1250 kg m�3 and the unit cell volume is

475.35 � 10�30 m3. Determine the number

of anthracene molecules, Z, which occur in a

unit cell. The molar masses are: C, 12.011

g mol�1, H, 1.008 g mol�1.
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