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Brownian Motion

The exposition of Brownian motion is in two parts. Chapter 1 introduces
the properties of Brownian motion as a random process, that is, the true
technical features of Brownian motion which gave rise to the theory
of stochastic integration and stochastic calculus. Annex A presents a
number of useful computations with Brownian motion which require no
more than its probability distribution, and can be analysed by standard
elementary probability techniques.

1.1 ORIGINS

In the summer of 1827 Robert Brown, a Scottish medic turned botanist,
microscopically observed minute pollen of plants suspended in a fluid
and noticed increments1 that were highly irregular. It was found that
finer particles moved more rapidly, and that the motion is stimulated
by heat and by a decrease in the viscosity of the liquid. His investiga-
tions were published as A Brief Account of Microscopical Observations
Made in the Months of June, July and August 1827. Later that century
it was postulated that the irregular motion is caused by a very large
number of collisions between the pollen and the molecules of the liq-
uid (which are microscopically small relative to the pollen). The hits
are assumed to occur very frequently in any small interval of time, in-
dependently of each other; the effect of a particular hit is thought to
be small compared to the total effect. Around 1900 Louis Bachelier,
a doctoral student in mathematics at the Sorbonne, was studying the
behaviour of stock prices on the Bourse in Paris and observed highly
irregular increments. He developed the first mathematical specification
of the increment reported by Brown, and used it as a model for the in-
crement of stock prices. In the 1920s Norbert Wiener, a mathematical
physicist at MIT, developed the fully rigorous probabilistic framework
for this model. This kind of increment is now called a Brownian motion
or a Wiener process. The position of the process is commonly denoted

1 This is meant in the mathematical sense, in that it can be positive or negative.
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2 Brownian Motion Calculus

by B or W . Brownian motion is widely used to model randomness in
economics and in the physical sciences. It is central in modelling finan-
cial options.

1.2 BROWNIAN MOTION SPECIFICATION

The physical experiments suggested that:� the increment is continuous� the increments of a particle over disjoint time intervals are indepen-
dent of one another� each increment is assumed to be caused by independent bombard-
ments of a large number of molecules; by the Central Limit Theorem
of probability theory the sum of a large number of independent iden-
tically distributed random variables is approximately normal, so each
increment is assumed to have a normal probability distribution� the mean increment is zero as there is no preferred direction� as the position of a particle spreads out with time, it is assumed that
the variance of the increment is proportional to the length of time the
Brownian motion has been observed.

Mathematically, the random process called Brownian motion, and de-
noted here as B(t), is defined for times t ≥ 0 as follows. With time on
the horizontal axis, and B(t) on the vertical axis, at each time t , B(t) is
the position, in one dimension, of a physical particle. It is a random vari-
able. The collection of these random variables indexed by the continu-
ous time parameter t is a random process with the following properties:

(a) The increment is continuous; when recording starts, time and posi-
tion are set at zero, B(0) = 0

(b) Increments over non-overlapping time intervals are independent
random variables

(c) The increment over any time interval of length u, from any time t to
time (t + u), has a normal probability distribution with mean zero
and variance equal to the length of this time interval.

As the probability density of a normally distributed random variable
with mean μ and variance σ 2 is given by

1
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the probability density of the position of a Brownian motion at the end
of time period [0, t] is obtained by substituting μ = 0 and σ = √

t ,
giving

1√
t
√

2π
exp

[
−1

2

(
x√
t

)2
]

where x denotes the value of random variable B(t). The probability
distribution of the increment B(t + u) − B(t) is

P[B(t +u)−B(t) ≤ a] =
∫ a

x=−∞

1√
u
√

2π
exp

[
− 1

2

(
x√
u

)2
]

dx

Note that the starting time of the interval does not figure in the expres-
sion for the probability distribution of the increment. The probability
distribution depends only on the time spacing; it is the same for all time
intervals that have the same length. As the standard deviation at time t
is

√
t , the longer the process has been running, the more spread out is

the density, as illustrated in Figure 1.1.
As a reminder of the randomness, one could include the state of

nature, denoted ω, in the notation of Brownian motion, which would
then be B(t, ω), but this is not commonly done. For each fixed time t∗,
B(t∗, ω) is a function of ω, and thus a random variable. For a partic-
ular ω∗ over the time period [0, t], B(t, ω∗) is a function of t which is
known as a sample path or trajectory. In the technical literature this is
often denoted as t �−→ B(t). On the left is an element from the domain,
on the right the corresponding function value in the range. This is as
in ordinary calculus where an expression like f (x) = x2 is nowadays
often written as x �−→ x2.

As the probability distribution of B(t) is normal with standard devia-
tion

√
�t , it is the same as that of

√
�t Z , where Z is a standard normal

random variable. When evaluating the probability of an expression in-
volving B(t), it can be convenient to write B(t) as

√
�t Z .

The Brownian motion distribution is also written with the cumula-
tive standard normal notation N (mean, variance) as B(t + u) − B(t) ∼
N (0, u), or for any two times t2 > t1 as B(t2) − B(t1) ∼ N (0, t2 −
t1). As Var[B(t)] = E[B(t)2] − {E[B(t)]}2 = t , and E[B(t)] = 0, the
second moment of Brownian motion is E[B(t)2] = t . Over a time
step �t , where �B(t)

def= B(t + �t) − B(t), E{[�B(t)]2} = �t . A
normally distributed random variable is also known as a Gaussian ran-
dom variable, after the German mathematician Gauss.
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Figure 1.1 Brownian motion densities

1.3 USE OF BROWNIAN MOTION IN STOCK
PRICE DYNAMICS

Brownian motion arises in the modelling of the evolution of a stock
price (often called the stock price dynamics) in the following way. Let
�t be a time interval, S(t) and S(t + �t) the stock prices at current time
t and future time (t + �t), and �B(t) the Brownian motion increment
over �t . A widely adopted model for the stock price dynamics, in a
discrete time setting, is

S(t + �t) − S(t)

S(t)
= μ �t + σ �B(t)
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where μ and σ are constants. This is a stochastic difference equation
which says that the change in stock price, relative to its current value
at time t , [S(t + �t) − S(t)]/S(t), grows at a non-random rate of μ per
unit of time, and that there is also a random change which is propor-
tional to the increment of a Brownian motion over �t , with proportion-
ality parameter σ . It models the rate of return on the stock, and evolved
from the first model for stock price dynamics postulated by Bachelier
in 1900, which had the change in the stock price itself proportional to a
Brownian motion increment, as

�S(t) = σ �B(t)

As Brownian motion can assume negative values it implied that there is
a probability for the stock price to become negative. However, the lim-
ited liability of shareholders rules this out. When little time has elapsed,
the standard deviation of the probability density of Brownian motion,√

t , is small, and the probability of going negative is very small. But
as time progresses the standard deviation increases, the density spreads
out, and that probability is no longer negligible. Half a century later,
when research in stock price modelling began to take momentum, it
was judged that it is not the level of the stock price that matters to in-
vestors, but the rate of return on a given investment in stocks.

In a continuous time setting the above discrete time model becomes
the stochastic differential equation

d S(t)

S(t)
= μ dt + σ dB(t)

or equivalently d S(t) = μ S(t) dt + σ S(t) dB(t), which is discussed in
Chapter 5. It is shown there that the stock price process S(t) which
satisfies this stochastic differential equation is

S(t) = S(0) exp[(μ − 1
2
σ 2)t + σ B(t)]

which cannot become negative. Writing this as

S(t) = S(0) exp(μt) exp[σ B(t) − 1
2
σ 2t]

gives a decomposition into the non-random term S(0) exp(μt) and
the random term exp[σ B(t) − 1

2
σ 2t]. The term S(0) exp(μt) is S(0)

growing at the continuously compounded constant rate of μ per unit
of time, like a savings account. The random term has an expected value
of 1. Thus the expected value of the stock price at time t , given S(0),
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equals S(0) exp(μt). The random process exp[σ B(t) − 1
2
σ 2t] is an ex-

ample of a martingale, a concept which is the subject of Chapter 2.

1.4 CONSTRUCTION OF BROWNIAN MOTION FROM
A SYMMETRIC RANDOM WALK

Up to here the reader may feel comfortable with most of the mathemat-
ical specification of Brownian motion, but wonder why the variance is
proportional to time. That will now be clarified by constructing Brown-
ian motion as the so-called limit in distribution of a symmetric random
walk, illustrated by computer simulation. Take the time period [0, T ]

and partition it into n intervals of equal length �t
def= T/n. These inter-

vals have endpoints tk
def= k �t , k = 0, . . . , n. Now consider a particle

which moves along in time as follows. It starts at time 0 with value 0,
and moves up or down at each discrete time point with equal probabil-
ity. The magnitude of the increment is specified as

√
�t . The reason

for this choice will be made clear shortly. It is assumed that successive
increments are independent of one another. This process is known as a
symmetric (because of the equal probabilities) random walk. At time-
point 1 it is either at level

√
�t or at level −√

�t . If at time-point 1 it is
at

√
�t , then at time-point 2 it is either at level

√
�t + √

�t = 2
√

�t
or at level

√
�t − √

�t = 0. Similarly, if at time-point 1 it is at level
−√

�t , then at time-point 2 it is either at level 0 or at level −2
√

�t ,
and so on. Connecting these positions by straight lines gives a contin-
uous path. The position at any time between the discrete time points is
obtained by linear interpolation between the two adjacent discrete time
positions. The complete picture of all possible discrete time positions is
given by the nodes in a so-called binomial tree, illustrated in Figure 1.2
for n = 6. At time-point n, the node which is at the end of a path that
has j up-movements is labelled (n, j), which is very convenient for
doing tree arithmetic.

When there are n intervals, there are (n + 1) terminal nodes at time
T , labelled (n, 0) to (n, n), and a total of 2n different paths to these
terminal nodes. The number of paths ending at node (n, j) is given by a
Pascal triangle. This has the same shape as the binomial tree. The upper
and lower edge each have one path at each node. The number of paths
going to any intermediate node is the sum of the number of paths going
to the preceding nodes. This is shown in Figure 1.3. These numbers are
the binomial coefficients from elementary probability theory.
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Figure 1.2 Symmetric binomial tree

Each path has a probability ( 1
2
)n of being realized. The total proba-

bility of terminating at a particular node equals the number of different
paths to that node, times ( 1

2
)n . For n = 6 these are shown on the Pascal

triangle in Figure 1.2. It is a classical result in probability theory that as
n goes to infinity, the terminal probability distribution of the symmetric

1
1

5

4 paths to node (4,3) 1

15 paths to node (6,4) 1

1 15

6

1 10

10

1 2
3

4

6 20

3
4

5

6

1 15

1

1

1

1
1

time-points

0 1 2 3 4 5 6

Figure 1.3 Pascal triangle



JWBK142-01 JWBK142-Wiersema March 18, 2008 18:55 Char Count= 0

8 Brownian Motion Calculus

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2.451.630.820.00−0.82−1.63−2.45

terminal position of random walk

pr
ob

ab
ili

ty

Figure 1.4 Terminal probabilities

random walk tends to that of a normal distribution. The picture of the
terminal probabilities for the case n = 6 is shown in Figure 1.4.

Let the increment of the position of the random walk from time-point
tk to tk+1 be denoted by discrete two-valued random variable Xk . This
has an expected value of

E[Xk] = 1
2

√
�t + 1

2
(−√

�t) = 0

and variance

Var[Xk] = E[X2
k ] − {E[Xk]}2

= E[X2
k ] = 1

2
(
√

�t)2 + 1
2
(−√

�t)2 = �t

The position of the particle at terminal time T is the sum of n inde-

pendent identically distributed random variables Xk , Sn
def= X1 + X2 +

· · · + Xn . The expected terminal position of the path is

E[Sn] = E[X1 + X2 + · · · + Xn]

= E[X1] + E[X2] + · · · + E[Xn] = n0 = 0

Its variance is

Var[Sn] = Var

[
n∑

k=1

Xk

]
As the Xk are independent this can be written as the sum of the vari-
ances

∑n
k=1 Var[Xk], and as the Xk are identically distributed they have
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the same variance �t , so

Var[Sn] = n�t = n(T/n) = T

For larger n, the random walk varies more frequently, but the magnitude
of the increment

√
�t = √

T/n gets smaller and smaller. The graph of
the probability distribution of

Zn
def= Sn − E[Sn]√

Var[Sn]
= Sn√

T

looks more and more like that of the standard normal probability distri-
bution.

Limiting Distribution The probability distribution of Sn is determined
uniquely by its moment generating function.2 This is E[exp(θ Sn)],
which is a function of θ , and will be denoted m(θ ).

m(θ )
def= E[exp(θ{X1 + · · · + Xk + · · · + Xn})]
= E[exp(θ X1) · · · exp(θ Xk) · · · exp(θ Xn)]

As the random variables X1, . . . , Xn are independent, the random vari-
ables exp(θ X1), . . . , exp(θ Xn) are also independent, so the expected
value of the product can be written as the product of the expected val-
ues of the individual terms

m(θ ) =
n∏

k=1

E[exp(θ Xk)]

As the Xk are identically distributed, all E[exp(θ Xk)] are the same, so

m(θ ) = {E[exp(θ Xk)]}n

As Xk is a discrete random variable which can take the values
√

�t
and −√

�t , each with probability 1
2
, it follows that E[exp(θ Xk)] =

1
2

exp(θ
√

�t) + 1
2

exp(−θ
√

�t). For small �t , using the power series
expansion of exp and neglecting terms of order higher than �t , this can
be approximated by

1
2
(1 + θ

√
�t + 1

2
θ2�t) + 1

2
(1 − θ

√
�t + 1

2
θ2�t) = 1 + 1

2
θ2�t

so

m(θ ) ≈ (1 + 1
2
θ2�t)n

2 See Annex A, Computations with Brownian motion.
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As n → ∞, the probability distribution of Sn converges to the one de-
termined by the limit of the moment generating function. To determine
the limit of m as n → ∞, it is convenient to change to ln.

ln[m(θ )] ≈ n ln(1 + 1
2
θ2�t)

Using the property, ln(1 + y) ≈ y for small y, gives

ln[m(θ )] ≈ n 1
2
θ2�t

and as �t = T/n

m(θ ) ≈ exp( 1
2
θ2T )

This is the moment generating function of a random variable, Z say,
which has a normal distribution with mean 0 and variance T , as can
be readily checked by using the well-known formula for E[exp(θ Z )].
Thus in the continuous-time limit of the discrete-time framework, the
probability density of the terminal position is

1√
T

√
2π

exp

[
−1

2

(
x√
T

)2
]

which is the same as that of a Brownian motion that has run an amount
of time T . The probability distribution of Sn = √

T Zn is then normal
with mean 0 and variance T .

The full proof of the convergence of the symmetric random walk to
Brownian motion requires more than what was shown. Donsker’s theo-
rem from advanced probability theory is required, but that is outside the
scope of this text; it is covered in Korn/Korn Excursion 7, and in Ca-
passo/Bakstein Appendix B. The construction of Brownian motion as
the limit of a symmetric random walk has the merit of being intuitive.
See also Kuo Section 1.2, and Shreve II Chapter 3. There are several
other constructions of Brownian motion in the literature, and they are
mathematically demanding; see, for example, Kuo Chapter 3. The most
accessible is Lėvy’s interpolation method, which is described in Kuo
Section 3.4.

Size of Increment Why the size of the random walk increment was
specified as

√
�t will now be explained. Let the increment over

time-step �t be denoted y. So Xk = y or −y, each with probability
1
2
, and

E[Xk] = 1
2

y + 1
2
(−y) = 0
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Var[Xk] = E[X2
k ] − {E[Xk]}2 = 1

2
y2 + 1

2
(−y)2 − 02 = y2

Then Var[Sn] = nVar[Xk] as the successive Xk are independent

Var[Sn] = ny2 = T

�t
y2 = T

y2

�t

Now let both �t → 0 and y → 0, in such a way that Var[Sn] stays

finite. This is achieved by choosing y2

�t = c, a positive constant, so
Var [Sn] = T c. As time units are arbitrary, there is no advantage in
using a c value other than 1.

So if one observes Brown’s experiment at equal time intervals, and
models this as a symmetric random walk with increment y, then the
continuous-time limit is what is called Brownian.

This motivates why Brownian motion has a variance equal to the
elapsed time. Many books introduce the variance property of Brownian
motion without any motivation.

Simulation of Symmetric Random Walk To simulate the symmetric
random walk, generate a succession of n random variables X with the
above specified two-point probabilities and multiply these by ±√

�t .
The initial position of the walk is set at zero. Three random walks over
the time period [0, 1] are shown in Figure 1.5.
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Figure 1.5 Simulated symmetric random walks
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Figure 1.6 Simulated versus exact

For a batch of 100 simulated symmetric walks of 512 steps, the cu-
mulative frequency of the terminal positions is shown in Figure 1.6,
together with the limiting standard normal probability distribution.

The larger the number of simulations, the closer the cumulative fre-
quency resembles the limiting distribution. For 10 000 simulated walks
the difference is not graphically distinguishable. The simulation statis-
tics for the position at time 1 are shown in Figure 1.7.

1.5 COVARIANCE OF BROWNIAN MOTION

A Gaussian process is a collection of normal random variables such
that any finite number of them have a multivariate normal distribution.
Thus Brownian motion increments are a Gaussian process. Consider the
covariance between Brownian motion positions at any times s and t ,
where s < t . This is the expected value of the product of the deviations

sample exact
mean 0.000495 0
variance 1.024860 1

Figure 1.7 Simulation statistics
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of these random variables from their respective means

Cov[B(s), B(t)] = E[{B(s) − E[B(s)]}{B(t) − E[B(t)]}]
As E[B(s)] and E[B(t)] are zero, Cov[B(s), B(t)] = E[B(s)B(t)].
Note that the corresponding time intervals [0, s] and [0, t] are overlap-
ping. Express B(t) as the sum of independent random variables B(s)
and the subsequent increment {B(t) − B(s)}, B(t) = B(s) + {B(t) −
B(s)}. Then

E[B(s)B(t)] = E[B(s)2 + B(s){B(t) − B(s)}]
= E[B(s)2] + E[B(s){B(t) − B(s)}]

Due to independence, the second term can be written as the product of
Es, and

E[B(s)B(t)] = E[B(s)2] + E[B(s)]E[B(t) − B(s)]

= s + 0 0 = s

If the time notation was t < s then E[B(s)B(t)] = t. Generally for any
times s and t

E[B(s)B(t)] = min(s, t)

For increments during any two non-overlapping time intervals [t1, t2]
and [t3, t4], �B(t1) is independent of �B(t3), so the expected value
of the product of the Brownian increments over these non-overlapping
time intervals (Figure 1.8) equals the product of the expected values

E[{B(t2) − B(t1)}{B(t4) − B(t3)}]
= E[B(t2) − B(t1)]E[B(t4) − B(t3)] = 0 0 = 0

whereas E[B(t1)B(t3)] = t1 �= E[B(t1)]E[B(t3)].

B(t)

B(s+Δs) ΔB(t)

ΔB(s) B(t+Δt)
 B(s)

time-----> 
s s+Δs t t+Δt

ΔtΔs

Figure 1.8 Non-overlapping time intervals
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1.6 CORRELATED BROWNIAN MOTIONS

Let B and B∗ be two independent Brownian motions. Let −1 ≤ ρ ≤ 1
be a given number. For 0 ≤ t ≤ T define a new process

Z (t)
def= ρB(t) +

√
1 − ρ2 B∗(t)

At each t , this is a linear combination of independent normals, so Z (t) is
normally distributed. It will first be shown that Z is a Brownian motion
by verifying its expected value and variance at time t , and the variance
over an arbitrary time interval. It will then be shown that Z and B are
correlated.

The expected value of Z (t) is

E[Z (t)] = E[ρB(t) +
√

1 − ρ2 B∗(t)]

= ρE[B(t)] +
√

1 − ρ2 E[B∗(t)]

= ρ0 +
√

1 − ρ2 0 = 0

The variance of Z (t) is

Var[Z (t)] = Var[ρB(t) +
√

1 − ρ2 B∗(t)]

= Var[ρB(t)] + Var[
√

1 − ρ2 B∗(t)]

as the random variables ρB(t) and
√

1 − ρ2 B∗(t) are independent. This
can be written as

ρ2Var[B(t)] +
(√

1 − ρ2
)2

Var[B∗(t)] = ρ2t + (
1 − ρ2

)
t = t

Now consider the increment

Z (t + u) − Z (t) = [ρB(t + u) +
√

1 − ρ2 B∗(t + u)]

− [ρB(t) +
√

1 − ρ2 B∗(t)]

= ρ[B(t + u) − B(t)]

+
√

1 − ρ2 [B∗(t + u) − B∗(t)]

B(t + u) − B(t) is the random increment of Brownian motion B over
time interval u and B∗(t + u) − B∗(t) is the random increment of
Brownian motion B∗ over time interval u. These two random quanti-
ties are independent, also if multiplied by constants, so the Var of the
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sum is the sum of Var

Var[Z (t + u) − Z (t)] = Var{ρ[B(t + u) − B(t)]

+
√

1 − ρ2 [B∗(t + u) − B∗(t)]}
= Var{ρ[B(t + u) − B(t)]}

+ Var{
√

1 − ρ2 [B∗(t + u) − B∗(t)]}
= ρ2u +

(√
1 − ρ2

)2

u = u

This variance does not depend on the starting time t of the interval u,
and equals the length of the interval. Hence Z has the properties of a
Brownian motion. Note that since B(t + u) and B(t) are not indepen-
dent

Var[B(t +u) − B(t)] �= Var[B(t + u)] + Var[B(t)]

= t +u + t = 2t + u

but

Var[B(t + u) − B(t)] = Var[B(t + u)] + Var[B(t)]

− 2Cov[B(t + u), B(t)]

= (t + u) + t − 2 min(t + u, t)

= (t + u) + t − 2t = u

Now analyze the correlation between the processes Z and B at time t .
This is defined as the covariance between Z (t) and B(t) scaled by the
product of the standard deviations of Z (t) and B(t):

Corr[Z (t), B(t)] = Cov[Z (t), B(t)]√
Var[Z (t)]

√
Var[B(t)]

The numerator evaluates to

Cov[Z (t), B(t)] = Cov[ρB(t) +
√

1 − ρ2 B∗(t), B(t)]

= Cov[ρB(t), B(t)] + Cov[
√

1−ρ2 B∗(t), B(t)]

due to independence

= ρCov[B(t), B(t)] +
√

1−ρ2 Cov[B∗(t), B(t)]

= ρVar[B(t), B(t)] +
√

1 − ρ2 0

= ρt
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Using the known standard deviations in the denominator gives

Corr[Z (t), B(t)] = ρt√
t
√

t
= ρ

Brownian motions B and Z have correlation ρ at all times t . Thus if two
correlated Brownian motions are needed, the first one can be B and the
second one Z , constructed as above. Brownian motion B∗ only serves
as an intermediary in this construction.

1.7 SUCCESSIVE BROWNIAN MOTION INCREMENTS

The increments over non-overlapping time intervals are independent
random variables. They all have a normal distribution, but because the
time intervals are not necessarily of equal lengths, their variances differ.
The joint probability distribution of the positions at times t1 and t2 is

P[B(t1) ≤ a1, B(t2) ≤ a2]

=
∫ a1

x1=−∞

∫ a2

x2=−∞

1√
t1

√
2π

exp

[
−1

2

(
x1 − 0√

t1

)2
]

× 1√
t2 − t1

√
2π

exp

[
−1

2

(
x2 − x1√

t2 − t1

)2
]

dx1 dx2

This expression is intuitive. The first increment is from position 0 to x1,

an increment of (x1 − 0) over time interval (t1 − 0). The second incre-
ment starts at x1 and ends at x2, an increment of (x2 − x1) over time
interval (t2 − t1). Because of independence, the integrand in the above
expression is the product of conditional probability densities. This gen-
eralizes to any number of intervals. Note the difference between the
increment of the motion and the position of the motion. The increment
over any time interval [tk−1, tk] has a normal distribution with mean
zero and variance equal to the interval length, (tk − tk−1). This distribu-
tion is not dependent on how the motion got to the starting position at
time tk−1. For a known position B(tk−1) = x , the position of the motion
at time tk , B(tk), has a normal density with mean x and variance as
above. While this distribution is not dependent on how the motion got
to the starting position, it is dependent on the position of the starting
point via its mean.
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1.7.1 Numerical Illustration

A further understanding of the theoretical expressions is obtained by
carrying out numerical computations. This was done in the mathemati-
cal software Mathematica. The probability density function of a incre-
ment was specified as

[f[u ,w ]: = (1/(Sqrt[u] * Sqrt[2 * Pi])) * Exp[−0.5 * (w/Sqrt[u]) ∧ 2]

A time interval of arbitrary length uNow = 2.3472 was specified. The
expectation of the increment over this time interval, starting at time 1,
was then specified as

NIntegrate[(x2−x1) * f[1, x1] * f[uNow, x2−x1],

{x1, −10, 10},{x2, −10, 10}]

Note that the joint density is multiplied by (x2−x1). The normal den-
sities were integrated from −10 to 10, as this contains nearly all the
probability mass under the two-dimensional density surface. The result
was 0, in accordance with the theory. The variance of the increment over
time interval uNow was computed as the expected value of the second
moment

NIntegrate[((x2−x1)∧ 2) * f[1, x1] * f[uNow, x2−x1],

{x1, −10, 10},{x2, −10, 10}]

Note that the joint density is multiplied by (x2−x1) ∧ 2. The result was
2.3472, exactly equal to the length of the time interval, in accordance
with the theory.

Example 1.7.1 This example (based on Klebaner example 3.1) gives
the computation of P[B(1) ≤ 0, B(2) ≤ 0]. It is the probability that
both the position at time 1 and the position at time 2 are not positive.
The position at all other times does not matter. This was specified in
Mathematica as

NIntegrate[f[1, x1] * f[1, x2−x1],{x1, −10, 0},{x2, −10, 0}]

To visualize the joint density of the increment (Figure 1.9), a plot was
specified as

Plot3D[f[1, x1] * f[1, x2−x1],{x1, −4, 4},{x2, −4, 4}]

The section of the probability density surface pertaining to this ex-
ample is plotted in Figure 1.10.
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Figure 1.10 Joint density for example
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The result of the numerical integration was 0.375, which agrees with
Klebaner’s answer derived analytically. It is the volume under the joint
density surface shown below, for x1 ≤ 0 and x2 ≤ 0. P[B(1) ≤ 0] = 0.5
and P[B(2) ≤ 0] = 0.5. Multiplying these probabilities gives 0.25, but
that is not the required probability because random variables B(1) and
B(2) are not independent.

1.8 FEATURES OF A BROWNIAN MOTION PATH

The properties shown thus far are simply manipulations of a normal
random variable, and anyone with a knowledge of elementary probabil-
ity should feel comfortable. But now a highly unusual property comes
on the scene. In what follows, the time interval is again 0 ≤ t ≤ T , par-
titioned as before.

1.8.1 Simulation of Brownian Motion Paths

The path of a Brownian motion can be simulated by generating at each
time-point in the partition a normally distributed random variable with
mean zero and standard deviation

√
�t . The time grid is discrete but the

values of the position of the Brownian motion are now on a continuous
scale. Sample paths are shown in Figure 1.11.
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Figure 1.11 Simulated Brownian motion paths
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sample exact
mean 0.037785 0
variance 1.023773 1

Figure 1.12 Brownian motion path simulation statistics

A batch of 1000 simulations of a standard Brownian motion over
time period [0, 1] gave the statistics shown in Figure 1.12 for the po-
sition at time 1. The cumulative frequency of the sample path position
at time 1 is very close to the exact probability distribution, as shown in
Figure 1.13. For visual convenience cume freq is plotted as continuous.

1.8.2 Slope of Path

For the symmetric random walk, the magnitude of the slope of the path
is

|Sk+1 − Sk |
�t

=
√

�t

�t
= 1√

�t

This becomes infinite as �t → 0. As the symmetric random walk con-
verges to Brownian motion, this puts in question the differentiability
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Figure 1.13 Simulated frequency versus exact Brownian motion distribution
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of a Brownian motion path. It has already been seen that a simulated
Brownian motion path fluctuates very wildly due to the independence
of the increments over successive small time intervals. This will now be
discussed further.

1.8.3 Non-Differentiability of Brownian Motion Path

First, non-differentiability is illustrated in the absence of randomness.
In ordinary calculus, consider a continuous function f and the expres-
sion [ f (x + h) − f (x)]/h. Let h approach 0 from above and take the
limit limh↓0{[ f (x + h) − f (x)]/h}. Similarly take the limit when h ap-
proaches 0 from below, limh↑0{[ f (x + h) − f (x)]/h}. If both limits ex-
ist, and if they are equal, then function f is said to be differentiable at
x . This limit is called the derivative (or slope) at x , denoted f ′(x).

Example 1.8.1

f (x)
def= x2

f (x + h) − f (x)

h
= (x + h)2 − x2

h
= x2 + 2xh + h2 − x2

h
= 2xh + h2

h

Numerator and denominator can be divided by h, since h is not equal
to zero but approaches zero, giving (2x + h), and

lim
h↓0

(2x + h) = 2x lim
h↑0

(2x + h) = 2x

Both limits exist and are equal. The function is differentiable for all x ,
f ′(x) = 2x .

Example 1.8.2 (see Figure 1.14)

f (x)
def= |x |

For x > 0, f (x) = x and if h is also > 0 then f (x + h) = x + h

lim
h↓0

f (x + h) − f (x)

h
= x + h − x

h
= 1

For x < 0, f (x) = −x , and if h is also < 0, then f (x + h) = −(x + h)

lim
h↑0

f (x + h) − f (x)

h
= −(x + h) − (−x)

h
= −1
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Figure 1.14 Function modulus x

Here both limits exist but they are not equal, so f ′(x) does not exist.
This function is not differentiable at x = 0. There is not one single slope
at x = 0.

Example 1.8.3 (see Figure 1.15)

f (x) = c1 | x − x1 | +c2 | x − x2 | +c3 | x − x3 |

This function is not differentiable at x1, x2, x3, a finite number of points.
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Figure 1.15 Linear combination of functions modulus x
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Figure 1.16 Approximation of non-differentiable function

Example 1.8.4

f (x) =
∞∑

i=0

sin(3i x)

2i

It can be shown that this function is non-differentiable at any point x .
This, of course, cannot be shown for i = ∞, so the variability is illus-
trated for

∑10
i=0 in Figure 1.16.

Brownian Motion Now use the same framework for analyzing differ-
entiability of a Brownian motion path. Consider a time interval of length
�t = 1/n starting at t . The rate of change over time interval [t, t + �t]
is

Xn
def= B(t + �t) − B(t)

�t
= B(t + 1/n) − B(t)

1/n

which can be rewritten as Xn = n[B(t + 1/n) − B(t)]. So Xn is a nor-
mally distributed random variable with parameters

E[Xn] = n2

[
B

(
t + 1

n

)
− B(t)

]
= n0 = 0

Var[Xn] = n2Var

[
B

(
t + 1

n

)
− B(t)

]
= n2 1

n
= n

Stdev[Xn] = √
n
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Xn has the same probability distribution as
√

n Z , where Z is standard
normal. Differentiability is about what happens to Xn as �t → 0, that
is, as n → ∞. Take any positive number K and write Xn as

√
n Z . Then

P[|Xn| > K ] = P[|√nZ | > K ] = P[
√

n|Z | > K ] = P
[
|Z | > K√

n

]
As n → ∞, K/

√
n → 0 so

P[|Xn| > K ] = P
[
|Z | >

K√
n

]
→ P[|Z | > 0]

which equals 1. As K can be chosen arbitrarily large, the rate of change
at time t is not finite, and the Brownian motion path is not differentiable
at t . Since t is an arbitrary time, the Brownian motion path is nowhere
differentiable. It is impossible to say at any time t in which direction
the path is heading.

The above method is based on the expositions in Epps and Klebaner.
This is more intuitive than the ‘standard proof’ of which a version is
given in Capasso/Bakstein.

1.8.4 Measuring Variability

The variability of Brownian motion will now be quantified. From tk to
tk+1 the absolute Brownian motion increment is |B(tk+1) − B(tk)|. The
sum over the entire Brownian motion path is

∑n−1
k=0 |B(tk+1) − B(tk)|.

This is a random variable which is known as the first variation of
Brownian motion. It measures the length of the Brownian motion path,
and thus its variability. Another measure is the sum of the square
increments,

∑n−1
k=0[B(tk+1) − B(tk)]2. This random second-order quan-

tity is known as the quadratic variation (or second variation). Now con-
sider successive refinements of the partition. This keeps the original
time-points and creates additional ones. Since for each partition the
corresponding variation is a random variable, a sequence of random
variables is produced. The question is then whether this sequence con-
verges to a limit in some sense. There are several types of convergence
of sequences of random variables that can be considered.3 As the time
intervals in the composition of the variation get smaller and smaller,
one may be inclined to think that the variation will tend to zero. But it
turns out that regardless of the size of an interval, the increment over

3 See Annex E, Convergence Concepts.
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steps dt
2000 0.00050000 16.01369606 0.2016280759 0.0031830910
4000 0.00025000 19.39443203 0.1480559146 0.0014367543
8000 0.00012500 25.84539243 0.1298319380 0.0008117586

16000 0.00006250 32.61941799 0.1055395009 0.0004334750
32000 0.00003125 40.56883140 0.0795839944 0.0001946600
64000 0.00001563 43.36481866 0.0448674991 0.0000574874

128000 0.00000781 44.12445062 0.0231364852 0.0000149981
256000 0.00000391 44.31454677 0.0116583498 0.0000037899
512000 0.00000195 44.36273548 0.0058405102 0.0000009500

1024000 0.00000098 44.37481932 0.0029216742 0.0000002377

limit about 44.3 0 0

first_var quadr_var third_var

Figure 1.17 Variation of function which has a continuous derivative

that interval can still be infinite. It is shown in Annex C that as n tends
to infinity, the first variation is not finite, and the quadratic variation
is positive. This has fundamental consequences for the way in which a
stochastic integral may be constructed, as will be explained in Chap-
ter 3. In contrast to Brownian motion, a function in ordinary calculus
which has a derivative that is continuous, has positive first variation
and zero quadratic variation. This is shown in Shreve II. To support the
derivation in Annex C, variability can be verified numerically. This is
the object of Exercise [1.9.12] of which the results are shown in Figure
1.17 and 1.18.

Time period [0,1]

2000 0.00050000 36.33550078 1.0448863386 0.0388983241
4000 0.00025000 50.47005112 1.0002651290 0.0253513781
8000 0.00012500 71.85800329 1.0190467736 0.0184259646

16000 0.00006250 101.65329098 1.0155967391 0.0129358213
32000 0.00003125 142.19694118 0.9987482348 0.0089475369
64000 0.00001563 202.67088291 1.0085537303 0.0063915246

128000 0.00000781 285.91679729 1.0043769437 0.0045014163
256000 0.00000391 403.18920472 0.9969064552 0.0031386827
512000 0.00000195 571.17487195 1.0005573262 0.0022306000

1024000 0.00000098 807.41653827 1.0006685086 0.0015800861

limit not finite time period 0

steps dt first_var quadr_var third_var

Figure 1.18 Variation of Brownian motion
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1.9 EXERCISES

The numerical exercises can be carried out in Excel/VBA, Mathemat-
ica, MatLab, or any other mathematical software or programming lan-
guage.

[1.9.1] Scaled Brownian motion Consider the process X (t)
def=√

γ B(t/γ ) where B denotes standard Brownian motion, and
γ is an arbitrary positive constant. This process is known
as scaled Brownian motion. The time scale of the Brownian
motion is reduced by a factor γ , and the magnitude of the
Brownian motion is multiplied by a factor

√
γ . This can be

interpreted as taking snapshots of the position of a Brownian
motion with a shutter speed that is γ times as fast as that used
for recording a standard Brownian motion, and magnifying the
results by a factor

√
γ .

(a) Derive the expected value of X (t)
(b) Derive the variance of X (t)
(c) Derive the probability distribution of X (t)
(d) Derive the probability density of X (t)
(e) Derive Var[X (t + u) − X (t)], where u is an arbitrary pos-

itive constant
(f) Argue whether X (t) is a Brownian motion

Note: By employing the properties of the distribution of Brow-
nian motion this exercise can be done without elaborate inte-
grations.

[1.9.2] Seemingly Brownian motion Consider the process X (t)
def=√

t Z , where Z ∼ N (0, 1).

(a) Derive the expected value of X (t)
(b) Derive the variance of X (t)
(c) Derive the probability distribution of X (t)
(d) Derive the probability density of X (t)
(e) Derive Var[X (t + u) − X (t)] where u is an arbitrary posi-

tive constant
(f) Argue whether X (t) is a Brownian motion

[1.9.3] Combination of Brownian motions The random process Z (t)

is defined as Z (t)
def= αB(t) − √

β B∗(t), where B and B∗ are
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independent standard Brownian motions, and α and β are
arbitrary positive constants. Determine the relationship be-
tween α and β for which Z (t) is a Brownian motion.

[1.9.4] Correlation Derive the correlation coefficient between B(t)
and B(t + u).

[1.9.5] Successive Brownian motions Consider a standard Brownian
motion which runs from time t = 0 to time t = 4.

(a) Give the expression for the probability that its path posi-
tion is positive at time 4. Give the numerical value of this
probability

(b) For the Brownian motion described above, give the expres-
sion for the joint probability that its path position is posi-
tive at time 1 as well as positive at time 4. No numerical
answer is requested.

(c) Give the expression for the expected value at time 4 of the
position of the path described in (a). No numerical answer
is requested.

[1.9.6] Brownian motion through gates Consider a Brownian motion
path that passes through two gates situated at times t1 and t2.

(a) Derive the expected value of B(t1) of all paths that pass
through gate 1.

(b) Derive the expected value of B(t2) of all paths that pass
through gate 1 and gate 2.

(c) Derive an expression for the expected value of the incre-
ment over time interval [t1, t2] for paths that pass through
both gates.

(d) Design a simulation program for Brownian motion
through gates, and verify the answers to (a), (b), and (c)
by simulation.

[1.9.7] Simulation of symmetric random walk

(a) Construct the simulation of three symmetric random walks
for t ∈ [0, 1] on a spreadsheet.

(b) Design a program for simulating the terminal position of
thousands of symmetric random walks. Compare the mean
and the variance of this sample with the theoretical values.



JWBK142-01 JWBK142-Wiersema March 18, 2008 18:55 Char Count= 0

28 Brownian Motion Calculus

(c) Derive the probability distribution of the terminal posi-
tion. Construct a frequency distribution of the terminal
positions of the paths in (b) and compare this with the
probability distribution.

[1.9.8] Simulation of Brownian motion

(a) Construct the simulation of three Brownian motion paths
for t ∈ [0, 1] on a spreadsheet.

(b) Construct a simulation of two Brownian motion paths that
have a user specified correlation for t ∈ [0, 1] on a spread-
sheet, and display them in a chart.

[1.9.9] Brownian bridge Random process X is specified on t ∈ [0, 1]

as X (t)
def= B(t) − t B(1). This process is known as a Brownian

bridge.

(a) Verify that the terminal position of X equals the initial po-
sition.

(b) Derive the covariance between X (t) and X (t + u).
(c) Construct the simulation of two paths of X on a spread-

sheet.

[1.9.10] First passage of a barrier Annex A gives the expression for
the probability distribution and the probability density of the
time of first passage, TL . Design a simulation program for this,
and simulate E[TL ].

[1.9.11] Reflected Brownian motion Construct a simulation of a re-
flected Brownian motion on a spreadsheet, and show this in
a chart together with the path of the corresponding Brownian
motion.

[1.9.12] Brownian motion variation

(a) Design a program to compute the first variation, quadratic
variation, and third variation of the differentiable ordinary
function in Figure 1.16 over x ∈ [0, 1], initially partitioned
into n = 2000 steps, with successive doubling to 1024000
steps

(b) Copy the program of (a) and save it under another name.
Adapt it to simulate the first variation, quadratic variation,
and third variation of Brownian motion
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1.10 SUMMARY

Brownian motion is the most widely used process for modelling ran-
domness in the world of finance. This chapter gave the mathematical
specification, motivated by a symmetric random walk. While this looks
innocent enough as first sight, it turns out that Brownian motion has
highly unusual properties. The independence of subsequent increments
produces a path that does not have the smoothness of functions in or-
dinary calculus, and is not differentiable at any point. This feature is
difficult to comprehend coming from an ordinary calculus culture. It
leads to the definition of the stochastic integral in Chapter 3 and its
corresponding calculus in Chapter 4.

More on Robert Brown is in the Dictionary of Scientific Biography,
Vol. II, pp. 516–522. An overview of the life and work of Bachelier can
be found in the conference proceedings Mathematical Finance Bache-
lier Congress 2000, and on the Internet, for example in Wikipedia. Also
on the Internet is the original thesis of Bachelier, and a file named
Bachelier 100 Years.
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