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1.1 INTRODUCTION

Optical properties of a material change or affect the characteristics of light passing through
it by modifying its propagation vector or intensity. Two of the most important optical prop-
erties are the refractive index n and the extinction coefficient K, which are generically called
optical constants; though some authors include other optical coefficients within this termi-
nology. The latter is related to the attenuation or absorption coefficient a. In this chapter
we present the complex refractive index, the frequency or wavelength dependence of n and
K, so-called dispersion relations, how n and K are interrelated, and how n and K can be
determined by studying the transmission as a function of wavelength through a thin film of
the material. Physical insights into n and K are provided in Chapter 2.
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The optical properties of various materials, with n and K being the most important, are
available in the literature in one form or another, either published in journals, books and
handbooks or posted on websites of various researchers, organizations (e.g., NIST) or com-
panies (e.g., Schott Glass). Nonetheless, the reader is referred to the works of Wolfe [1.1],
Klocek [1.2], Palik [1.3, 1.4], Ward [1.5], Efimov [1.6], Palik and Ghosh [1.7], Nikogosyan
[1.8], and Weaver and Frederikse [1.9] for the optical properties of a wide range of mate-
rials. Adachi’s books on the optical constants of semiconductors are highly recommended
[1.10–1.12] along with Madelung’s third edition of ‘Semiconductors: Data Handbook’
[1.13]. There are, of course, other books and handbooks that also contain optical constants
in various chapters; see, for example, references [1.14–1.17].

There are available a number of experimental techniques for measuring n and K, some
of which have been summarized by Simmons and Potter [1.18]. For example, ellipsome-
tery measures changes in the polarization of light incident on a sample to sensitively char-
acterize surfaces and thin films. The interaction of incident polarized light with the sample
causes a polarization change in the light, which may then be measured by analysing the
light reflected from the sample. Recently, Collins has provided an extensive in-depth review
of ellipsometery for optical measurements [1.19]. One of the most popular and convenient
optical measurements involves passing a monochromatic light through a thin sample, and
measuring the transmitted intensity as a function of wavelength, T(l), using a simple spec-
trophotometer. For thin samples on a thick transparent substrate, the transmission spectrum
shows oscillations in T(l) with the wavelength due to interferences within the thin film.
Swanepoel’s technique uses the T(l) measurement to determine n and K, as described in
Section 1.4.

1.2 OPTICAL CONSTANTS

One of the most important optical constants of a material is its refractive index, which in
general depends on the wavelength of the electromagnetic wave, through a relationship
called dispersion. In materials where an electromagnetic wave can lose its energy during
its propagation, the refractive index becomes complex. The real part is usually the refrac-
tive index, n, and the imaginary part is called the extinction coefficient, K. In this section,
the refractive index and extinction coefficient will be presented in detail along with some
common dispersion relations. A more practical and a semiquantitative approach is taken
along the lines in [1.18, 1.20, 1.21] rather than a full dedication to rigour and mathematical
derivations. More analytical approaches can be found in other texts, e.g. [1.22].

1.2.1 Refractive index and extinction coefficient

The refractive index of an optical or dielectric medium, n, is the ratio of the velocity of light
c in vacuum to its velocity v in the medium; n = c/v. Using this and Maxwell’s equations,
one obtains the well known Maxwell’s formula for the refractive index of a substance as

, where er is the static dielectric constant or relative permittivity and mr the

relative permeability. As mr = 1 for nonmagnetic substances, one gets , which is
very useful in relating the dielectric properties to optical properties of materials at any par-
ticular frequency of interest. As er depends on the wavelength of light, the refractive index

n r= e
n r r= e m
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also depends on the wavelength of light, and this dependence is called dispersion. In addi-
tion to dispersion, an electromagnetic wave propagating through a lossy medium expe-
riences attenuation, which means it loses its energy, due to various loss mechanisms such
as the generation of phonons (lattice waves), photogeneration, free carrier absorption, scat-
tering, etc. In such materials, the refractive index becomes a complex function of the fre-
quency of the light wave. The complex refractive index, denoted by n*, with real part n,
and imaginary part K, called the extinction coefficient, is related to the complex relative
permittivity, er = e ′r − jer″, by:

(1.1a)

where e′r and er″ are, respectively, the real and imaginary parts of er. Equation (1.1b) gives: 

(1.1b)

In explicit terms, n and K can be obtained as:

(1.2a)

(1.2b)

The optical constants n and K can be determined by measuring the reflectance from the
surface of a material as a function of polarization and the angle of incidence. For normal
incidence, the reflection coefficient, r, is obtained as

(1.3)

The reflectance R is then defined by:

(1.4)

Notice that whenever K is large, for example over a range of wavelengths, the absorp-
tion is strong, and the reflectance is almost unity. The light is then reflected, and any light
in the medium is highly attenuated. (Typical sample calculations and applications may be
found in ref. [1.20].)

Optical properties of materials are typically presented by showing the frequency depen-
dences (dispersion relations) of either n and K or e′r and er″. An intuitive guide to explain-
ing dispersion in insulators is based on a single-oscillator model in which the electric field
in the light induces forced dipole oscillations in the material (displaces the electron shells
to oscillate about the positive nucleus) with a single resonant frequency wo. The frequency
dependences of e′r and er″ are then obtained as:
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where Nat is the number of atoms per unit volume, eo is the vacuum permittivity, and a′e and
ae″ are the real and imaginary parts of the electronic polarizability, given respectively by:

(1.6a)

and

(1.6b)

where aeo is the DC polarizability corresponding to w = 0 and g is the loss coefficient that
characterizes the electromagnetic (EM) wave losses within the material system. Using Equa-
tions (1.1)–(1.2) and (1.5)–(1.6), the frequency dependence of n and K can be studied. Figure
1.1(a) shows the dependence of n and K on the normalized frequency w/wo for a simple
single electronic dipole oscillator of resonance frequency wo.

It is seen that n and K peak close to w = wo. If a material has a er″ >> e′r, then er ≈ −jer″
and is obtained from Equation (1.1b). Figure 1.1(b) shows the dependence
of the reflectance R on the frequency. It is observed that R reaches its maximum value at a
frequency slightly above w = wo, and then remains high until w reaches nearly 3wo; thus
the reflectance is substantial while absorption is strong. The normal dispersion region is 
the frequency range below wo where n falls as the frequency decreases, that is, n decreases
as the wavelength l increases. The anomalous dispersion region is the frequency range
above wo where n decreases as w increases. Below wo, K is small and if edc is er(0), then n
becomes:
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Figure 1.1 Refractive index, n and extinction coefficient K obtained from a single electronic dipole
oscillator model. (a) n and K versus normalized frequency and (b) Reflectance versus normalized fre-
quency [Reproduced from S.O. Kasap, Principles of Electronic Materials and Devices, 3rd Edition,
McGraw-Hill, Boston, 2005]



(1.7)

Since, l = 2pc/w, defining lo = 2pc/wo as the resonance wavelength, one gets:

(1.8)

While intuitively useful, the dispersion relation in Equation (1.8) is far too simple. More
rigorously, we have to consider the dipole oscillator quantum mechanically which means a
photon excites the oscillator to a higher energy level, see, for example, Fox [1.21] or
Simmons and Potter [1.18]. The result is that we would have a series of l2/(l2 − li

2) terms
with various weighting factors Ai that add to unity, where li represents different resonance
wavelengths. The weighting factors Ai involve quantum mechanical matrix elements.

Figure 1.2 shows the complex relative permittivity and the complex refractive index of
crystalline silicon in terms of photon energy h�. For photon energies below the bandgap
energy (1.1eV), both er″ and K are negligible and n is close to 3.7. Both er″ and K increase
and change strongly as the photon energy becomes greater than 3eV, far beyond the bandgap
energy. Notice that both e′r and n peak at h� ≈ 3.5eV, which corresponds to a direct 
photoexcitation process, electrons excited from the valence band to the conduction band,
as discussed later.

1.2.2 n and K, and Kramers–Kronig relations

If we know the frequency dependence of the real part, e′r, of the relative permittivity of a
material, then by using the Kramers–Kronig relations between the real and the imaginary
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Figure 1.2 (a) Complex relative permittivity of a silicon crystal as a function of photon energy
plotted in terms of real (e′r ) and imaginary (er″) parts. (b) Optical properties of a silicon crystal versus
photon energy in terms of real (n) and imaginary (K) parts of the complex refractive index [Data
extracted from D.E. Aspnes and A.A. Studna, Phys. Rev. B, 27, 985 (1983)].



parts we can determine the frequency dependence of the imaginary part er″, and vice versa.
The transform requires that we know the frequency dependence of either the real or imag-
inary part over as wide a range of frequencies as possible, ideally from zero (DC) to infin-
ity, and that the material has linear behaviour, i.e., it has a relative permittivity that is
independent of the applied field. The Kramers–Kronig relations for the real and imaginary
parts of the relative permittivity are given by [1.23, 1.24] (see also Appendix 1C in 
[1.18])

(1.9a)

and

(1.9b)

where w′ is the integration variable, P represents the Cauchy principal value of the integral,
and the singularity at w = w′ is avoided. 

Similarly one can relate the real and imaginary parts of the polarizability, a′(w) and
a″(w), and those of the complex refractive index, n(w) and K(w) as well. For n* = n(w) −
jK(w),

(1.10)

It should be emphasized that the optical constants n and K have to obey what are called
f-sum rules [1.25]. For example, the integration of [n(w) − 1] over all frequencies must be
zero, and the integration of wK(w) over all frequencies gives (p/2)wp

2, where wp =
h̄(4pNZe2/me)1/2 is the free-electron plasma frequency in which N is the atomic concentra-
tion, Z is the total number of electrons per atom, and e and me are the charge and mass of
the electron. The f-sum rules provide a consistency check and enable various constants to
be interrelated.

1.3 REFRACTIVE INDEX AND DISPERSION

There are several popular models describing the spectral dependence of refractive index n
in a material. Most of these are described below though some, such as the infrared refrac-
tive index, are covered under Reststrahlen absorption in Chapter 2 since it is closely related
to the coupling of the EM wave to lattice vibrations. The most popular dispersion relation
in optical materials is probably the Sellmeier relationship since one can sum any number
of resonance-type terms to get as wide a range of wavelength dependence as possible.
However, its main drawback is that it does not accurately represent the refractive index
when there is a contribution arising from free carriers in narrow-bandgap or doped 
semiconductors.
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1.3.1 Cauchy dispersion relation

In the Cauchy relationship, the dispersion relationship between the refractive index (n) and
wavelength of light (l) is commonly stated in the following form:

(1.11)

where A, B, and C are material-dependent specific constants. Equation (1.11) is known as
Cauchy’s formula and it is typically used in the visible spectrum region for various optical
glasses and is applies to normal dispersion, when n decreases with increasing l [1.26, 1.27].
The third term is sometimes dropped for a simpler representation of n versus l behaviour.
The original expression was a series in terms of the wavelength, l, or frequency, w, or
photon energy h̄w of light as:

(1.12a)

or

(1.12b)

where h̄w is the photon energy, h̄wth = hc/lth is the optical excitation threshold (e.g., bandgap
energy), a0, a2, . . . and n0, n2, . . . are constants. It has been found that a Cauchy relation in
the following form [1.28]:

(1.13)

can be used satisfactorily over a wide range of photon energies. The dispersion parameters
of Equation (1.13) are listed in Table 1 for a few selected materials over specific photon
energy ranges.

Cauchy’s dispersion relations given in Equations (1.11–1.13) were originally called the
elastic-ether theory of the refractive index. It has been widely used for many materials
although, in recent years, many researchers have preferred to use the Sellmeier equation
described below.

1.3.2 Sellmeier dispersion equation

The Sellmeier equation is an empirical relation between the refractive index n of a sub-
stance and wavelength l of light in the form of a series of single-dipole oscillator terms
each of which has the usual l2/(l2 − li

2) dependence as in

(1.14)

where li is a constant, and A1, A2, A3, l1, l2 and l3 are called Sellmeier coefficients, which
are determined by fitting this expression to the experimental data. The actual Sellmeier
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formula is more complicated. It has more terms of similar form, e.g., Ai l2/(l2 − li
2), where

i = 4, 5, . . . , but these can generally be neglected in representing n versus l behaviour over
typical wavelengths of interest and ensuring that three terms included in Equation (1.14)
correspond to the most important or relevant terms in the summation. Sellmeier coefficients
for some materials as examples, including pure silica (SiO2) and 86.5mol.% SiO2–13.5
mol.% GeO2, are given in Table 2.

There are two methods for determining the refractive index of silica–germania glass
(SiO2)1−x(GeO2)x: First is a simple, but approximate, linear interpolation of the refractive
index between known compositions, e.g., n(x) − n(0.135) = (x − 0.135)[n(0.135) −
n(0)]/0.135, where n(x) is for (SiO2)1−x(GeO2)x; n(0.135) is for 86.5mol.% SiO2–13.5mol.%
GeO2; n(0) is for SiO2. Second is an interpolation for coefficients Ai and li between SiO2

and GeO2 as reported in [1.29]:
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Table 1.1 Approximate Cauchy dispersion parameters of Equation (1.13) for a few materials from
various sources. n0 and ne denote, respectively, the ordinary and extraordinary refractive indices of
KDP

Material h-w(eV) Min h-w(eV) Max n−2(eV2) n0 n2(eV−2) n4(eV−4)

Diamond 0.0500 5.4700 −1.0700 × 10−5 2.3780 0.00801 0.0001
Si 0.0020 1.08 −2.0400 × 10−8 3.4189 0.0815 0.0125
Ge 0.0020 0.75 −1.0000 × 10−8 4.0030 0.2200 0.1400
AlSb 0.0620 1.24 −6.1490 × 10−4 3.1340 0.5225 0.2186
GaP 0.0571 3.60 −1.7817 × 10−3 3.0010 0.0784 0.0058
GaAs 0.0496 2.90 −5.9737 × 10−4 3.3270 0.0779 0.0151
InAs 0.0496 2.40 −6.1490 × 10−4 3.4899 0.0224 0.0284
InP 0.08 3.18 −3.0745 × 10−4 3.0704 0.1788 −0.0075
ZnSe 0.113 1.24 −4.6117 × 10−4 2.4365 0.0316 0.0026
KDP, (no) 0.62 6.2 −1.7364 × 10−2 1.5045 0.00181 0.000033
KDP, (ne) 0.62 6.2 −4.3557 × 10−3 1.4609 0.001859 0.000021

Table 1.2 Sellmeier coefficients of a few materials, where l1, l2, l3 are in µm. (From various sources
and approximate values)

Material A1 A2 A3 l1 l2 l3

SiO2 (fused silica) 0.696749 0.408218 0.890815 0.0690660 0.115662 9.900559
86.5%SiO2– 0.711040 0.451885 0.704048 0.0642700 0.129408 9.425478
13.5%GeO2

GeO2 0.80686642 0.71815848 0.85416831 0.068972606 0.15396605 11.841931
BaF2 0.63356 0.506762 3.8261 0.057789 0.109681 46.38642
Sapphire 1.023798 1.058264 5.280792 0.0614482 0.110700 17.92656
Diamond 0.3306 4.3356 0.175 0.106
Quartz, no 1.35400 0.010 0.9994 0.092612 10.700 9.8500
Quartz, ne 1.38100 0.0100 0.9992 0.093505 11.310 9.5280
KDP, no 1.2540 0.0100 0.0992 0.09646 6.9777 5.9848
KDP, ne 1.13000 0.0001 0.9999 0.09351 7.6710 12.170



(1.15)

where X is the mole fraction of germania, S and G in parentheses refer to silica and ger-
mania, respectively. The theoretical basis of the Sellmeier equation lies in representing the
solid as a sum of N lossless (frictionless) Lorentz oscillators such that each has the usual
form of l2/(l2 − li

2) with different li and each has different strengths, or weighting factors;
Ai, i = 1 to N [1.30, 1.31]. Such dispersion relationships are essential in designing photonic
devices such as waveguides. (Note that although Ai weight different Lorentz contributions,
they do not sum to 1 since they include other parameters besides the oscillator strength fi.)
The refractive indices of most optical glasses have been extensively modelled by the Sell-
meier equation. Various optical glass manufacturers such as Schott Glass normally provide
the Sellmeier coefficients for their glasses [1.32]. Optical dispersion relations for glasses
have been discussed by a number of authors [1.6, 1.18, 1.33]. The Sellmeier coefficients
normally depend on the temperature and pressure; their dependences for optical glasses have
been described by Ghosh [1.34–1.36].

There are other Sellmeier–Cauchy-like dispersion relationships that inherently take
account of various contributions to the optical properties, such as the electronic and ionic
polarization and interaction of photons with free electrons. For example, for many semi-
conductors and ionic crystals, two useful dispersion relations are:

(1.16)

and

(1.17)

where A, B, C, D, E, and l0 are constants particular to a given material. Table 3 provides a
few examples. Both the Cauchy and the Sellmeier equations are strictly applicable in wave-
length regions where the material is transparent, that is, the extinction coefficient is rela-
tively small. There are many application-based articles in the literature that provide
empirical dispersion relations for a variety of materials; a recent example on far-infrared
substrates (Ge, Si, ZnSe, ZnS, ZnTe) is given in reference [1.37].
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Table 1.3 Parameters of Equations (1.16) and (1.17) for some selected materials {Si data from D.F.
Edwards and E. Ochoa, Appl. Optics, 19, 4130 (1980); others from ref. [1.1]}

Material lo (µm) A B (µm)2 C (µm)−4 D (µm)−2 E (µm)−4

Silicon 0.167 3.41983 0.159906 −0.123109 1.269 × 10−6 −1.951 × 10−9

MgO 0.11951 2.95636 0.021958 0 −1.0624 × 10−2 −2.05 × 10−5

LiF 0.16733 1.38761 0.001796 −4.1 × 10−3 −2.3045 × 10−3 −5.57 × 10−6

AgCl 0.21413 4.00804 0.079009 0 −8.5111 × 10−4 −1.976 × 10−7



1.3.3 Refractive index of semiconductors

A. Refractive index of crystalline semiconductors

A particular interest in the case of semiconductors is in n and K for photons energies greater
than the bandgap Eg for optoelectronics applications. Owing to various features and singu-
larities in the E–k diagrams of crystalline semiconductors (where k is the electron’s wave
vector), the optical constants n and K for h̄w > Eg are not readily expressible in simple terms.
Various authors, for example, Forouhi and Bloomer [1.38, 1.39], Chen et al. [1.40] have
nonetheless provided useful and tractable expressions for modelling n and K in this regime.
In particular, Forouhi–Bloomer (FB) equations express n and K in terms of the photon
energy h̄w in a consistent way that obey the Kramers–Kronig relations [1.39], i.e.

(1.18)

where q is an integer that represents the number of terms needed to suitably model exper-
imental values of n and K, Eg is the bandgap, and Ai, Bi, Ci, Boi, Coi are constants, Boi and
Coi depending on Ai, Bi, Ci, and Eg; only the latter four are independent parameters, Boi =
(Ai/Qi)[−(1/2)Bi

2 + EgBi − Eg
2 + Ci]; Coi = (Ai/Qi)[(1/2)(Eg

2 + Ci)Bi
2 − 2EgCi]; Qi = (1/2)(4Ci −

Bi
2)1/2. Forouhi and Bloomer provide a table of FB coefficients, Ai, Bi, Ci, and Eg, for four

terms in the summation in Equation (1.18) [1.39] for a number of semiconductors; an
example that shows an excellent agreement between the FB dispersion relation and the
experimental data is shown in Figure 1.3. Table 4 provides the FB coefficients for a few
selected semiconductors. The reader is referred to Adachi’s recent book and his papers for
further discussions and other models on the refractive index of crystalline and amorphous
semiconductors [1.10, 1.11, 1.41–1.44]; the optical properties of amorphous semiconduc-
tors are treated in a later chapter of this book.
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Figure 1.3 n and K versus photon energy for crystalline SiC. The solid line is obtained from the FB
equation with four terms with appropriate parameters, and points represent the experimental data. See
original reference [1.39] for details [Reprinted with permission Fig. 2c, A.R. Forouhi and I. Bloomer,
Phys. Rev. B, 38, 1865. Copyright (1988) by the American Physical Society]



B. Bandgap and temperature dependence

The refractive index of a semiconductor (typically for h̄w < Eg) typically decreases with
increasing energy bandgap Eg. There are various empirical and semi-empirical rules and
expressions that relate n to Eg. Based on an atomic model, Moss has suggested that n
and Eg are related by n4Eg = K = constant (K is about ∼100eV). In the Hervé–Vandamme
relationship [1.45],

(1.19)n
A

E Bg

2
2

1= +
+






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Table 1.4 FB coefficients for selected semiconductors [1.39] for
four terms i = 1 to 4. First entry in the box is for i = 1, and the fourth
is for i = 4

Ai Bi (eV) Ci (eV2) n(∞) Eg(eV)

Si 0.00405 6.885 11.864 1.950 1.06
0.01427 7.401 13.754
0.06830 8.634 18.812
0.17488 10.652 29.841

Ge 0.08556 4.589 5.382 2.046 0.60
0.21882 6.505 11.486
0.02563 8.712 19.126
0.07754 10.982 31.620

GaP 0.00652 7.469 13.958 2.070 2.17
0.14427 7.684 15.041
0.13969 10.237 26.567
0.00548 13.775 47.612

GaAs 0.00041 5.871 8.619 2.156 1.35
0.20049 6.154 9.784
0.09688 9.679 23.803
0.01008 13.232 44.119

GaSb 0.00268 4.127 4.267 1.914 0.65
0.34046 4.664 5.930
0.08611 8.162 17.031
0.02692 11.146 31.691

InP 0.20242 6.311 10.357 1.766 1.27
0.02339 9.662 23.472
0.03073 10.726 29.360
0.04404 13.604 47.602

InAs 0.18463 5.277 7.504 1.691 0.30
0.00941 9.130 20.934
0.05242 9.865 25.172
0.03467 13.956 50.062

InSb 0.00296 3.741 3.510 1.803 0.12
0.22174 4.429 5.447
0.06076 7.881 15.887
0.04537 10.765 30.119



where A and B are constants as A ≈ 13.6eV and B ≈ 3.4eV. The temperature dependence
of n arises from the variation of Eg with the temperature T and typically it increases with
increasing temperature. The temperature coefficient of refractive index (TCRI) of semi-
conductors can be found from the Hervé–Vandamme relationship as:

(1.20)

where dB/dT ≈ 2.5 × 10−5 eVK−1. TCRI is typically found to be in the range of 10−6 to 
10−4 K−1.

1.3.4 Gladstone–Dale formula and oxide glasses

The Gladstone–Dale formula is an empirical equation that allows the average refractive
index n of an oxide glass to be calculated from its density r and its constituents as:

(1.21)

where the summation is for various oxide components (each a simple oxide), pi is the weight
fraction of the i-th oxide in the compound, and ki is the refraction coefficient that represents
the polarizability of the i-th oxide. The right-hand side of Equation (1.21) is called the 
Gladstone–Dale coefficient CGD. In more general terms, as a mixture rule for the overall
refractive index, the Gladstone–Dale formula is frequently written as:

(1.22)

where n and r are the effective refractive index and effective density, respectively, of the
whole mixture, n1, n2, . . . are the refractive indices of the constituents, and r1, r2, . . .
represent the densities of each constituent. Gladstone–Dale equations for the polymorphs
of SiO2 and TiO2 give the average n, respectively, as [1.46, 1.47]:

(1.23)

1.3.5 Wemple–DiDomenico dispersion relation

Based on the single-oscillator model, the Wemple–DiDomenico is a semi-empirical disper-
sion relation for determining the refractive index at photon energies below the interband
absorption edge in a variety of materials. It is given by:
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where n is the frequency, h is the Planck constant, Eo is the single-oscillator energy, Ed is
the dispersion energy which is a measure of the average strength of interband optical tran-
sitions; Ed = bNcZaNe (eV), where Nc is the effective coordination number of the cation
nearest-neighbour to the anion (e.g., Nc = 6 in NaCl, Nc = 4 in Ge), Za is the formal chem-
ical valency of the anion (Za = 1 in NaCl; 2 in Te; and 3 in GaP), Ne is the effective number
of valence electrons per anion excluding the cores (Ne = 8 in NaCl, Ge; 10 in TlCl; 12 in
Te; 91/3 in As2Se3), and b is a constant that depends on whether the interatomic bond is ionic
(bi) or covalent (bc): bi = 0.26 ± 0.04eV for (e.g., halides NaCl, ThBr, etc. and most oxides,
Al2O3, etc.), bc = 0.37 ± 0.05eV for (e.g., tetrahedrally bonded ANB8−N zinc blende-and
diamond-type structures, GaP, ZnS, etc., and wurtzite crystals have a b-value that is inter-
mediate between bi and bc). Further, empirically, Eo = CEg(D), where Eg(D) is the lowest
direct bandgap and C is a constant; typically C ≈ 1.5. Eo has been associated with the main
peak in the er″(hn) versus hn spectrum. The parameters required for calculating n from Equa-
tion (1.24) are listed in Table 5 [1.48]. While it is apparent that the Wemple–DiDomenico
relation can only be approximate, it has nonetheless found wide acceptance among exper-
imentalists due to its straightforward simplicity.
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Table 1.5 Examples of parameters for Wemple–DiDomenico dispersion relationship [Equation
(1.24)] in various materials [1.48]

Material Nc Za Ne Eo Ed b b Comment
(eV) (eV) (eV)

NaCl 6 1 8 10.3 13.6 0.28 βi Halides, LiF, NaF, etc
CsCl 8 1 8 10.6 17.1 0.27 βi CsBr, CsI, etc
TlCl 8 1 10 5.8 20.6 0.26 βi TlBr
CaF2 8 1 8 15.7 15.9 0.25 βi BaF2, etc
CaO 6 2 8 9.9 22.6 0.24 βi Oxides, MgO, TeO2, etc
Al2O3 6 2 8 13.4 27.5 0.29 βi

LiNbO3 6 2 8 6.65 25.9 0.27 βi

TiO2 6 2 8 5.24 25.7 0.27 βi

ZnO 4 2 8 6.4 17.1 0.27 βi

ZnSe 4 2 8 5.54 27.0 0.42 βc II–VI, Zinc blende, ZnS,
ZnTe,CdTe

GaAs 4 3 8 3.55 33.5 0.35 βc III–V, Zinc blende, GaP,
etc

Si (Crystal) 4 4 8 4.0 44.4 0.35 βc Diamond, covalent
bonding; C (diamond),
Ge, β-SiC etc

SiO2 (Crystal) 4 2 8 13.33 18.10 0.28 βi Average crystalline form
SiO2 4 2 8 13.38 14.71 0.23 βi Fused silica
(Amorphous)
CdSe 4 2 8 4.0 20.6 0.32 βi–βc Wurtzite



1.3.6 Group index

Group index is a factor by which the group velocity of a group of waves in a dielectric
medium is reduced with respect to propagation in free space. It is denoted by Ng and defined
by Ng = vg/c, where vg is the group velocity, defined by vg = dw/dk where k is the wave
vector or the propagation constant. The group index can be determined from the ordinary
refractive index n through:

(1.25)

where l is the wavelength of light. Figure 1.4 illustrates the relation between Ng and n in
SiO2. The group index Ng is the quantity that is normally used in calculating dispersion in
optical fibers since it is Ng that determines the group velocity of a propagating light pulse
in a glass or transparent medium. It should be remarked that although n versus l can
decrease monotonically with l over a range of wavelengths, Ng can exhibit a minimum in
the same range where the dispersion, dNg/dl, becomes zero. The point dNg /dl = 0 is called
the zero-material dispersion wavelength, which is around 1300nm for silica as is apparent
in Figure 1.4.

1.4 THE SWANEPEL TECHNIQUE: MEASUREMENT OF
n AND a

1.4.1 Uniform-thickness films

In many instances, the optical constants are conveniently measured by examining the trans-
mission through a thin film of the material deposited on a transparent glass or other (e.g.,

N n
n

g = − λ
λ

d

d
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Figure 1.4 Refractive index n and the group index Ng of pure SiO2 (silica) glass as a function of
wavelength [Reproduced with permission from S.O. Kasap, Principles of Electronic Materials and
Devices, 3rd Edition, McGraw-Hill, Boston, 2005]



sapphire) substrate. The classic reference on the optical properties of thin films has been
the book by Heavens [1.49]; the book is still useful in clearly describing what experiments
can be carried out, and has a number of useful derivations such as the reflectance and trans-
mittance through thin films in the presence of multiple reflections. Since then numerous
research articles and reviews have been published. Poelmen and Smet [1.50] have critically
reviewed how a single transmission spectrum measurement can be used to extract the optical
constants of a thin film. In general, the amount of light that gets transmitted through a thin
film material depends on the amount of reflection and absorption that takes place along the
light path. If the material is a thin film with a moderate absorption coefficient a then 
there will be multiple interferences at the transmitted side of the sample, as illustrated in
Figure 1.5.

In this case, some interference fringes will be evident in the transmission spectrum
obtained from a spectrophotometer, as shown in Figure 1.6. One very useful method that
makes use of these interference fringes to determine the optical properties of the material
is called the Swanepoel method [1.51].

Swanepoel has shown that the optical properties of a uniform thin film of thickness d,
refractive index n, and absorption coefficient a, deposited on a substrate with a refractive
index s, as shown in Figure 1.5, can be obtained from the transmittance T given by:

(1.26)

where A = 16n2s, B = (n + 1)3(n + s2), C = 2(n2 − 1)(n2 − s2), D = (n2 − 1)3(n − s2), j =
4pnd/l, x = exp(−ad) is the absorbance, and n, s, and a are all function of wavelength, l.
What is very striking and useful is that all the important optical properties can be deter-
mined from the application of this equation; these will be introduced in the subsequent para-
graphs. Before optical properties of any thin films can be extracted, the refractive index of

T
Ax

B Cx Dx
=

− +cosϕ 2
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nsubstrate = s

Incident
monochromatic
wave

nfilm = n

nair = 1

d
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Thin film

Monochromatic
light

Glass
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Thin film

Detector

α = 0

n* = n − jK
α > 0

T

T = 1

Figure 1.5 Schematic sketch of the typical behavior of light passing through a thin film on a 
substrate. On the left, oblique incidence is shown to demonstrate the multiple reflections. In most 
measurements, the incident beam is nearly normal to the film as shown on the right



their substrate must first be calculated. For a glass substrate with very negligible absorp-
tion, K ≤ 0.1 and a ≤ 10−2 cm−1, in the range of the operating wavelengths, the refractive
index s is:

(1.27)

where Ts is the transmittance value measured from a spectrophotometer. This expression
can be derived from the transmittance equation for a bulk sample with little attenuation.
With this refractive index s, the next step is to construct two envelopes around the maxima
and minima of the interference fringes in the transmission spectrum as indicated in Figure
1.7.

There will altogether be two envelopes that have to be constructed before any of the
expressions derived from Equation (1.26) can be used to extract the optical properties. This
can be done by locating all the extreme points of the interference fringes in the transmis-
sion spectrum and then making sure that the respective envelopes, TM(l) for the maxima
and Tm(l) for the minima, pass through these extremes, the maxima and minima, of T(l)
tangentially. From Equation (1.26), it is not difficult to see that at j = ±1, the expressions
that describe the two envelopes are:

(1.28a)T
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Figure 1.6 An example of a typical transmission spectrum of a 0.969 µm thick amorphous Se thin
film that has been vacuum coated onto a glass substrate held at a substrate temperature of 50 °C during
the deposition



(1.28b)

Figure 1.7 shows two envelopes constructed for a transmission spectrum of an amorphous
Se thin film. It can also be seen that the transmission spectrum has been divided into three
special regions according to their transmittance values: (i) the transparent region, where
T(l) ≥ 99.99% of the substrate’s transmittance value of Ts(l), (ii) the strong-absorption
region, where T(l) is typical smaller than 20% of Ts(l), and (iii) the absorption region, in
between the two latter regions as shown in Figure 1.7:

The refractive index of the thin film can be calculated from the two envelopes, TM(l) and
Tm(l), and the refractive index of the substrate s through

(1.29)

where N is defined by the second equation above. Since the equation is not valid in the
strong-absorption region, where there are no maxima and minima, the calculated refractive
index has to be fitted to a well established dispersion model for extrapolation to shorter
wavelengths before it can be used to obtain other optical constants. Usually either the 
Sellmeier or the Cauchy dispersion equation is used to fit n versus l experimental data in
this range. Figure 1.8 shows the refractive indices extracted from the envelopes and a fitted
Sellmeier dispersion model with two terms.
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Figure 1.7 The construction of envelopes in the transmission spectrum of the thin amorphous Se
film in Figure 1.5



With the refractive index of the thin film corresponding to two adjacent maxima (or
minima) at points 1 and 2 given as n1 at l1 and n2 at l1, the thickness can be easily calcu-
lated from the basic interference equation of waves as follows:

(1.30)

where dcrude refers to the thickness obtained from the maxima (minima) at points 1, 2. As
other adjacent pairs of maxima or minima points are used, more thickness values can be
deduced, and hence an average value calculated. It is assumed the film has an ideal uniform
thickness.

The absorption coefficient a can be obtained once the absorbance x is extracted from the
transmission spectrum. This can be done as follows:

(1.31)

where and dave is the

average thickness of dcrude.
The accuracy of the thickness, the refractive index, and the absorption coefficient can all

be further improved in the following manner. The first step is to determine a new set of
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interference orders number, m′, for the interference fringes from the basic interference equa-
tion of waves, that is:

(1.32a)

where ne and le are values taken at any extreme points, and m′ is an integer if the extremes
taken are maxima, or a half-integer if the extremes taken are minima.

The second step is to get a new corresponding set of thickness, d′, from this new set of
order numbers m′, by rearranging Equation (1.32a) as:

(1.32b)

From this new set of thicknesses, d′, a new average thickness, dnew, must be calculated
before it can applied to improve the refractive index. With this new average thickness, a
more accurate refractive index can be obtained from the same equation:

(1.32c)

This new refractive index can then be fitted to the previous dispersion model again so
that an improved absorption coefficient a can be calculated from Equation (1.31). All these
parameters can then be used in Equation (1.26) to regenerate a transmission spectrum Tcal(l)
so that the root mean square error (RMSE) can be determined from the experimental spec-
trum Texp. The RMSE is calculated as follows:

(1.33)

where Texp is the transmittance of the experimental or measured spectrum, Tcal is the trans-
mittance of the regenerated spectrum using the Swanepoel calculation method, and q is the
range of the measurement. Figure 1.9 shows the regenerated transmission spectrum of the
amorphous Se thin film that appeared in Figure 1.6 using the optical constants calculated
from the envelopes.

1.4.2 Thin films with nonuniform thickness

For a film with a wedge-like cross-section as shown in Figure 1.10, Equation (1.26) must
be integrated over the thickness of the film in order for it to more accurately describe the
transmission spectrum [1.52]. The transmittance then becomes
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with where A = 16n2s, B = (n + 1)3(n + s2),

C = 2(n2 − 1)(n2 − s2), D = (n − 1)3(n − s2), x = exp(−ad) is the absorbance, n and s are the
refractive index of the film and substrate respectively, a the absorption coefficient, d̄ is the
average thickness of the film, and ∆d is the thickness variation throughout the illumination
area, which has been called the roughness of the film. (This nomenclature is actually con-
fusing since the film may not be truly ‘rough’ but may just have a continuously increasing
thickness as in a wedge from one end to the other.)

The first parameter to be extracted before the rest of the optical properties is ∆d. Since
the integration in Equation (1.34) cannot be carried out from one branch of the tangent to
another, it cannot be used directly in this form. The equation was thus modified by consid-
ering the maxima and minima, which are both continuous function of l, in a case-by-case
basis. In this way, we have

Maxima: (1.35a)

Minima: (1.35b)

where As long as 0 < ∆d < l/4n, the refractive index, n, and

∆d can both be obtained simultaneously by solving Equation (1.35a) and (1.35b) numerically.
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Full spectrum of S293-16 computed by Swanepoel method
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Figure 1.9 Regenerated transmission spectrum of the sample in Figure 1.6



Since Equations (1.35a) and (1.35b) are only valid in the region of zero absorption, the
refractive index outside the transparent region must be obtained in another way. Theoreti-
cally, a direct integration of Equation (1.34) over both ∆d and x can be performed, though
this would be analytically too difficult; nevertheless, an approximation to the integration is
also possible as follows:

Maxima: (1.36a)

Minima: (1.36b)

where As long as 0 < x ≤ 1, numerically, there will only

be one unique solution. Therefore the two desired optical properties, refractive index, n, and
the absorbance, x, can both be obtained when Equations (1.36a) and (1.36b) are solved
simultaneously using the calculated average ∆d.

As before, the calculated refractive index can be fitted to a well established dispersion
model, such as the Cauchy or Sellmeier equation, for extrapolation to shorter wavelengths
and the thickness is calculated from any two adjacent maxima (or minima) using Equation
(1.30). Given that the absorbance, from Equations (1.36a) and (1.36b) is not valid in the
strong-absorption region, the absorption coefficient outside this region is calculated differ-
ently from those in the strong region as:
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where xout is the absorbance obtained from Equations (1.36a) and (1.36b) and dave is the
average thickness.

According to Swanepoel, in the region of strong absorption, the interference fringes are
smaller and the spectrum approaches the interference-free transmission sooner. Since the
transmission spectra in this region are the same for any film with the same average thick-
ness, regardless of its uniformity, the absorption coefficient in the strong region will thus be

(1.38)

where and TM and Tm are the envelopes

constructed from the measured spectrum.
The accuracy of the thickness and refractive index can be further improved in exactly the

same way as for a uniform thickness film and used for the computation of the new refrac-
tive index and absorption coefficient using Equations (1.36a) and (1.36b). Figure 1.11 shows
the regenerated transmission spectrum of a simulated sample with nonuniform thickness
using the optical constants calculated from the envelopes. Marquez et al. [1.53] have dis-
cussed the application of the Swanepoel technique to wedge-shaped As2S3 thin films and
made use of the fact that a nonuniform wedge-shaped thin film has a compressed trans-
mission spectrum.

Various computer algorithms that can be used to obtain n and K based on the Swanepoel
technique are available in the literature [1.54]. Further discussions and enhancements are
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Transmission spectrum of a simulated sample with non-uniform thickness
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Figure 1.11 A regenerated transmission spectrum of a sample with an average thickness of 1 µm,
average ∆d of 30nm, and a refractive index fitted to a Cauchy equation in Figure 1.12



also available in the literature [l.50, 1.55, 1.56]. There are numerous useful applications of
the Swanepoel technique for extracting the optical constants of thin films; some selected
recent examples are given in [1.57–1.67].

1.5 CONCLUSIONS

This chapter has provided a semiquantitative explanation and discussion of the complex
refractive index n* = n − jK, the relationship between the real n and imaginary part K through
the Kramers–Kronig relationships, various common dispersion (n versus l) relationships
such as the Cauchy, Sellmeier, Wemple–DiDomenico dispersion relations, and the deter-
mination of the optical constants of a material in thin film form using the popular Swanepoel
technique. Examples are given to highlight the concepts and provide applications. Optical
constants of various selected materials have also been provided in tables to illustrate typical
values and enable comparisons to be made.
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