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1
Nonlinear circuit design methods

This chapter presents the most commonly used design techniques for analysing nonlinear cir-
cuits, in particular, transistor oscillators. There are several approaches to analyse and design
nonlinear circuits, depending on their main specifications. This means an analysis both in the
time domain to determine transient circuit behaviour and in the frequency domain to improve
power and spectral performances when parasitic effects such as instability and spurious emis-
sion must be eliminated or minimized. Using the time-domain technique, it is relatively easy
to describe a nonlinear circuit with differential equations, which can be solved analytically
in explicit form for only a few simple cases. Under an assumption of slowly varying ampli-
tude and phase, it is possible to obtain separate truncated first-order differential equations for
the amplitude and phase of the oscillation process from the original second-order nonlinear
differential equation. However, generally it is required to use numerical methods. The time-
domain analysis is limited to its inability to operate with the circuit immittance (impedance
or admittance) parameters as well as the fact that it can be practically applied only for cir-
cuits with lumped parameters or ideal transmission lines. The frequency-domain analysis is
less ambiguous because a relatively complex circuit can often be reduced to one or more
sets of immittances at each harmonic component. For example, using a quasilinear approach,
the nonlinear circuit parameters averaged by fundamental component allow one to apply a
linear circuit analysis. Advanced modern CAD simulators incorporate both time-domain and
frequency-domain methods as well as optimization techniques to provide all necessary design
cycles.

This chapter also includes a brief introduction of simulator tools based on the Ansoft
Serenade circuit simulator. In addition, some practical equations, such as the Taylor and Fourier
series expansions, Bessel functions, trigonometric identities and the concept of the conduction
angle, which simplify the circuit design procedure, are given.

1.1 SPECTRAL-DOMAIN ANALYSIS

The best way to understand the oscillator electrical behaviour and the fastest way to calculate
its basic electrical characteristics such as output power, efficiency, phase noise, or harmonic
suppression, is to use a spectral-domain analysis. Generally, such an analysis is based on the
determination of the output response of the nonlinear active device when the multiharmonic
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2 NONLINEAR CIRCUIT DESIGN METHODS

signal is applied to its input port, which analytically can be written in the form

i(t) = f [v(t)] (1.1)

where i(t) is the output current, v(t) is the input voltage and f (v) is the nonlinear transfer
function of the device. Unlike the spectral-domain analysis, time-domain analysis establishes
the relationships between voltage and current in each circuit element in the time domain when
a system of nonlinear integrodifferential equations is obtained applying Kirchhoff’s law to the
circuit to be analysed.

The voltage v(t) in frequency domain generally represents the multiple frequency signal at
the device input in the form

v(t) = V0 +
N∑

k=1

Vk cos(ωk t + φk) (1.2)

where V0 is the constant voltage, Vk is the voltage amplitude and φk is the phase of the kth-order
harmonic component ωk, k = 1, 2, . . . , N , and N is the number of harmonics.

The spectral domain analysis based on substituting Equation (1.2) in Equation (1.1) for a
particular nonlinear transfer function of the active device determines an output spectrum as
a sum of the fundamental-frequency and higher-order harmonic components, the amplitudes
and phases of which will determine the output signal spectrum. Generally, this is a complicated
procedure which requires a harmonic balance technique to numerically calculate an accurate
nonlinear circuit response. However, the solution can be found analytically in a simple way
when it is necessary to estimate only the basic performance of on oscillator in the form of the
output power and efficiency. In this case, a technique based on a piecewise-linear approximation
of the device transfer function can provide a clear insight into the basic oscillator behaviour
and its operation modes. It can also serve as a good starting point for a final computer-aided
design and optimization procedure.

The result of the spectral-domain analysis is shown as a summation of the harmonic com-
ponents, the amplitudes and phases of which will determine the output signal spectrum. This
problem can be solved analytically by using trigonometric identities, piecewise-linear approx-
imation or Bessel functions.

1.1.1 Trigonometric identities

The use of trigonometric identities is very convenient when the transfer characteristic of the
nonlinear element can be represented by the power series

i = a0 + a1v + a2v
2 + . . . + anv

n (1.3)

If the effect of the input signal represents a single harmonic oscillation in the form

v = V cos(ωt + φ) (1.4)

then, by substituting Equation (1.4) into Equation (1.3), the power series can be written as

i = a0 + a1V cos(ωt + φ) + a2V 2 cos2(ωt + φ) + . . . + an V n cosn(ωt + φ) (1.5)

To represent the right-hand side of Equation (1.5) as a sum of first-order cosine components,
the following trigonometric identities, which replace the nth-order cosine components, can be
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used:

cos2 ψ = 1

2
(1 + cos 2ψ) (1.6)

cos3 ψ = 1

4
(3 cos ψ + cos 3ψ) (1.7)

cos4 ψ = 1

8
(3 + 4 cos 2ψ + cos 4ψ) (1.8)

cos5 ψ = 1

16
(10 cos ψ + 5 cos 3ψ + cos 5ψ) (1.9)

where ψ = ωt + φ.
By using the appropriate substitutions from Equations (1.6–1.9) and equating the signal

frequency component terms, Equation (1.5) can be rewritten as

i = I0 + I1 cos(ωt + φ) + I2 cos 2(ωt + φ) + I3 cos 3(ωt + φ) + . . . + In cos n(ωt + φ)

(1.10)

where

I0 = a0 + 1

2
a2V 2 + 3

8
a4V 4 + . . .

I1 = a1V + 3

4
a3V 3 + 5

8
a5V 5 + . . .

I2 = 1

2
a2V 2 + 1

2
a4V 4 + . . .

I3 = 1

4
a3V 3 + 5

16
a5V 5 + . . .

Comparing Equations (1.3) and (1.10), we find:� For nonlinear elements, the output spectrum contains frequency components which are
multiples of the input signal frequency. The number of the highest-frequency component
is equal to the maximum degree of the power series. Therefore, if it is necessary to know
the amplitude of n-harmonic response, the volt–ampere characteristic of nonlinear element
should be approximated by not less than an n-order power series.� The output dc and even-order harmonic components are determined only by the even voltage
degrees in the device transfer characteristic given by Equation (1.3). The odd-order harmonic
components are defined only by the odd voltage degrees for the single harmonic input signal
given by Equation (1.4).� The current phase ψk of the kth-order harmonic component ωk = kω is k times larger than
the input signal current phase ψ :

ψk = ωk t + φk = k(ωt + φ) (1.11)

that is also applied to their initial phases defined as

φk = kφ (1.12)
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Figure 1.1 Piecewise-linear approximation technique

1.1.2 Piecewise-linear approximation

The piecewise-linear approximation of the active device current–voltage transfer characteristic
is a result of replacing the actual nonlinear dependence i = f (vin), where vin the voltage applied
to the device input, by an approximate one that consists of straight lines tangential to the actual
dependence at the specified points. Such a piecewise-linear approximation for the case of two
straight lines is shown in Figure 1.1a.

The output current waveforms for the actual current–voltage dependence (dashed curve) and
its piecewise-linear approximation by two straight lines (solid curve) are plotted in Figure 1.1b.
Under large-signal operation mode, the waveforms corresponding to these two dependencies
are practically the same for the most part with negligible deviation for small values of the
output current close to the pinch-off region of the device operation and significant deviation
close to the saturation region of the device operation. However, the latter case results in a
significant nonlinear distortion and is used only for high-efficiency operation modes when the
active period of the device operation is minimized. Hence, at least two first output current
components, dc and fundamental, can be calculated through a Fourier series expansion with a
sufficient accuracy. Therefore, such a piecewise-linear approximation with two straight lines
can be effective for a quick estimate of the oscillator output power and efficiency.

In this case, the piecewise-linear active device transfer current–voltage characteristic is
defined by

i =
{

0 vin ≤ Vp

gm(vin − Vp) vin ≥ Vp
(1.13)

where gm is the device transconductance, Vp is the pinch-off voltage.
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Figure 1.2 Schematic definition of conduction angle

Let us assume the input signal to be of cosinusoidal form

vin = Vbias + Vin cos ωt (1.14)

where Vbias is the input dc bias voltage.
At the point on the plot when voltage vin(ωt) becomes equal to a pinch-off voltage Vp and

where ωt = θ , the output current i(θ ) has value zero. At this moment

Vp = Vbias + Vin cos θ (1.15)

and θ can be calculated from

cos θ = − Vbias − Vp

Vin
(1.16)

As a result, the output current represents a periodic pulsed waveform described by the
cosinusoidal pulses with the maximum amplitude Imax and width 2θ as

i =
{

Iq + I cos ωt −θ ≤ ωt < θ

0 θ ≤ ωt < 2π − θ
(1.17)

where the conduction angle 2θ indicates the part of the RF current cycle during which device
conduction occurs, as shown in Figure 1.2. When the output current i(ωt) has value zero, one
can write

i = Iq + I cos θ = 0 (1.18)

Taking into account that, for a piecewise-linear approximation, I = gmVin, Equation (1.17)
can be rewritten as

i = gmVin(cos ωt − cos θ ) (1.19)
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When ωt = 0, then i = Imax and

Imax = I (1 − cos θ ) (1.20)

The angle θ characterizes the class of the active device operation. If θ = π or 180◦, the
device operates in the active region during the entire period (class A operation). When θ = π/2
or 90◦, the device operates half a wave period in the active region and half a wave period in the
pinch-off region (class B operation). The values of θ > 90◦ correspond to class AB operation
with a certain value of the quiescent output current. Therefore, the double angle 2θ is called
the conduction angle, the value of which directly indicates the class of the active device
operation.

The Fourier series expansion of the even function when i(t) = i(−t) contains only even
component functions and can be written as

i(t) = I0 + I1 cos ωt + I2 cos 2ωt + I3 cos 3ωt + . . . (1.21)

where the dc, fundamental-frequency and nth-order harmonic components are calculated by

I0 = 1

2π

θ∫
−θ

gmVin(cos ωt − cos θ ) d(ωt) = γ0(θ )I (1.22)

I1 = 1

π

θ∫
−θ

gmVin(cos ωt − cos θ ) cos ωt d(ωt) = γ1(θ )I (1.23)

In = 1

π

θ∫
−θ

gmVin(cos ωt − cos θ ) cos(nωt) d(ωt) = γn(θ )I (1.24)

where γ n(θ ) are called the coefficients of expansion of the output current cosinusoidal pulse
or the current coefficients [1]. They can be analytically defined as

γ0(θ ) = 1

π
(sin θ − θ cos θ ) (1.25)

γ1(θ ) = 1

π

(
θ − sin 2θ

2

)
(1.26)

γn(θ ) = 1

π

[
sin(n − 1)θ

n(n − 1)
− sin(n + 1) θ

n(n + 1)

]
(1.27)

where n = 2, 3, . . . .

The dependencies of γn(θ ) for the dc, fundamental-frequency, second- and higher-order
current components are shown in Figure 1.3. The maximum value of γn(θ ) is achieved when
θ = 180◦/n. A special case is θ = 90◦, when odd current coefficients are equal to zero, i.e.,
γ3(θ ) = γ5(θ ) = . . . = 0. The ratio between the fundamental-frequency and dc components
γ1(θ )/γ0(θ ) varies from 1 to 2 for any values of the conduction angle, with a minimum value
of 1 for θ = 180◦ and a maximum value of 2 for θ = 0◦. It is necessary to pay attention to
the fact that, for example, the current coefficient γ3(θ ) becomes negative within the interval
of 90◦ < θ < 180◦. This implies appropriate phase changes of the third current harmonic
component when its values are negative. Consequently, if the harmonic components for which
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Figure 1.3 Dependencies of γn(θ ) for dc, fundamental- and higher-order current components

γn(θ ) > 0 achieve positive maximum values at times corresponding to the midpoints of the
current waveform, the harmonic components for which γn(θ ) < 0 can achieve negative max-
imum values at these times. As a result, combination of different harmonic components with
proper loading will result in flattening of the current or voltage waveforms, thus improving ef-
ficiency of the oscillator. The amplitude of corresponding current harmonic component can be
obtained as

In = γn(θ)gmVin = γn(θ )I (1.28)

Sometimes it is necessary for an active device to provide a constant value of Imax at any
value of θ . This requires an appropriate variation of the input voltage amplitude Vin. In this
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case, it is more convenient to use the other coefficients when the nth-order current harmonic
amplitude In is related to the maximum current waveform amplitude Imax, that is

αn = In

Imax
(1.29)

From Equations (1.20), (1.28) and (1.29) it follows that

αn = γn(θ )

1 − cos θ
(1.30)

and the maximum value of αn(θ ) is achieved when θ = 120◦/n.

1.1.3 Bessel functions

The Bessel functions are used to analyse the oscillator operation mode when a nonlinear
behaviour of the active device can be described by exponential functions. The transfer voltage–
ampere characteristic of the bipolar transistor is approximated by the simplified exponential
dependence neglecting reverse base–emitter current as

i(vin) = Isat

[
exp

(
vin

VT

)
− 1

]
(1.31)

where Isat is the minority carrier saturation current and VT is the temperature voltage. If the
effect of the input signal given by Equation (1.14) is considered, then Equation (1.31) can be
rewritten as

i(ωt) = Isat

[
exp

(
Vbias

VT

)
exp

(
Vin cos ωt

VT

)
− 1

]
(1.32)

The current i(ωt) in Equation (1.32) is the even function of ωt and, consequently, it can
be represented by the Fourier-series expansion given by Equation (1.21). To determine the
Fourier components, the following expression is used:

exp

(
Vin cos ωt

VT

)
= I0

(
Vin

VT

)
+ 2

∞∑
k=1

Ik

(
Vin

VT

)
cos(kωt) (1.33)

where Ik(Vin/VT ) are the kth-order modified Bessel functions of the first kind for an argument
of Vin/VT , shown in Figure 1.4 for the zeroth- and first-order components. It should be noted
that I0(0) = 1 and I1(0) = I2(0) = . . . = 0, and with an increase of the component number its
amplitude appropriately decreases.

According to Equation (1.33), the current i(ωt) defined by Equation (1.31) can be rewritten
as

i(ωt) = Isat

[
exp

(
Vbias

VT

)
I0

(
Vin

VT

)
− 1

]
+ 2Isat exp

(
Vbias

VT

)
I1

(
Vin

VT

)
cos(ωt)

+ 2Isat exp

(
Vbias

VT

)
I2

(
Vin

VT

)
cos(2ωt) + 2Isat exp

(
Vbias

VT

)
I3

(
Vin

VT

)
cos(3ωt) + . . .

(1.34)
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Figure 1.4 Zeroth- and first-order modified Bessel functions of the first kind

As a result, comparing Equations (1.34) and (1.21) allows the dc, fundamental-frequency
and nth-order Fourier current components to be determined as

I0 = Isat

[
exp

(
Vbias

VT

)
I0

(
Vin

VT

)
− 1

]
(1.35)

I1 = 2Isat exp

(
Vbias

VT

)
I1

(
Vin

VT

)
(1.36)

In = 2Isat exp

(
Vbias

VT

)
In

(
Vin

VT

)
(1.37)

where n = 2, 3, . . . .

When using the Bessel functions, the following relationships can be helpful:

2
dIn (Vin/VT )

d (Vin/VT )
= In+1

(
Vin

VT

)
+ In−1

(
Vin

VT

)
(1.38)

dI0 (Vin/VT )

d (Vin/VT )
= I1

(
Vin

VT

)
(1.39)

2n
(Vin/VT )

In

(
Vin

VT

)
= In−1

(
Vin

VT

)
− In+1

(
Vin

VT

)
(1.40)

In

(
− Vin

VT

)
= (−1)n In

(
Vin

VT

)
(1.41)

1.2 TIME-DOMAIN ANALYSIS

A time-domain analysis establishes the relationships between voltage and current in each circuit
element in the time domain when a system of equations is obtained, applying Kirchhoff’s law
to the circuit to be analysed. Normally, in a nonlinear circuit, such a system will be composed
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of nonlinear integrodifferential equations. The solution to this system can be found by applying
numerical integration methods. Therefore, the choices of the time interval and the initial point
are very important to provide a compromise between speed and accuracy of calculation; the
smaller the interval, the smaller the error, but the number of points to be calculated for each
period will be greater, which will make the calculation slower.

To analyse a nonlinear system in the time domain, it is necessary to know the voltage–
current relationships for all circuit elements. For example, for linear resistance R, when the
sinusoidal voltage applies and current are flowing through it, the voltage–current relationship
in the time domain is given by

V = RI (1.42)

where V is the voltage amplitude and I is the current amplitude.
For linear capacitance C

i(t) = dq(t)
dt

= dq
dv

dv

dt
= C

dv

dt
(1.43)

For linear inductance L

v(t) = dϕ(t)
dt

= dϕ

di
di
dt

= L
di
dt

(1.44)

where ϕ is the magnetic flux across the inductance.
Nonlinear dependencies, such as q(v) or ϕ(i), should each be expanded in a Taylor series by

subtracting the dc components and substituting into Equations (1.43) and (1.44) to obtain the
expressions for appropriate incremental capacitance and inductance. Then, for the quasilinear
case, the capacitance and inductance can be defined by

C(V0) = dq(v)

dv

∣∣∣∣
v=V0

(1.45)

and

L(I0) = dϕ(i)

di

∣∣∣∣
i=I0

(1.46)

where V0 is the dc bias voltage across the capacitor and I0 is the dc current flowing through
the inductor.

Figure 1.5 shows the simplified (without bias circuits) electrical schematic of a transformer-
coupled MOSFET oscillator with a parallel resonant circuit. To obtain the differential equations

Figure 1.5 Schematic of a transformer-coupled MOSFET oscillator
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for such an oscillator, the drain current i , the gate voltage v applied to the second winding of
the transformer, and the load voltage vR applied to the first winding of this transformer can be
defined by

i = iL + iC + iR (1.47)

vR = L
diL

dt
= 1

C

∫
iCdt = iR R (1.48)

v = M
diL

dt
= M

L
vR (1.49)

where M is the transformer coupling factor.
To simplify the calculation, two preliminary assumptions can be used:� the input current flowing to the gate terminal of the active device is negligible, enabling one

to consider its input impedance as infinite;� the effect of the output voltage vR on the drain current i is ignored, i.e.,

i = f (v). (1.50)

In this case, the derivative of current i(v) with respect to time is written as

di
dt

= di
dv

dv

dt
= gm(v)

dv

dt
(1.51)

where gm = di/dv is the small-signal transconductance of the device transfer characteristic
given by Equation (1.50).

Substituting Equations (1.48) and (1.50) into Equation (1.47) gives

1

L

∫
vRdt + C

dvR

dt
+ vR

R
= f (v) (1.52)

Then, by differentiating Equation (1.52) and using Equations (1.49) and (1.51), we can
write the second-order differential equation for the oscillator in the form

d2v

dt2
+ 1

C

[
1

R
− Mgm(v)

L

]
dv

dt
+ ω2

0v = 0 (1.53)

where

ω0 = 1√
LC

is the oscillator resonant frequency.
Equation (1.53) is a nonlinear equation because its second term depends on the unknown

variable v. This nonlinearity is a result of the active device nonlinearity. From Equation (1.53),
the start-up and steady-state oscillation conditions can be determined, as well as the particular
features of the steady-state oscillations and oscillator transient response. To determine the start-
up conditions, it is necessary to replace nonlinear Equation (1.53) by an appropriate linear one,
with the linear small-signal transconductance gm at the operating bias point. In this case, we
are interested only in the result of the small deviation from an equilibrium point, whether the
oscillations will grow or dissipate.
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Figure 1.6 Oscillations with (a) low and (b) strong feedback factors

The solution of such a linear second-order differential equation is

v = V exp(−δt) sin(ω1t + φ) (1.54)

where V and φ are the voltage amplitude and phase, respectively, depending on the initial
conditions,

δ = 1

2C

(
1

R
− Mgm

L

)
(1.55)

is the dissipation factor, and

ω1 =
√

ω2
0 − δ2 (1.56)

is the free-running oscillation frequency.
From Equation (1.54) it follows that the voltage v at the device input provided by the

feedback circuit creates current i at the device output, which delivers electrical energy to the
oscillation system to compensate for the losses in it. At the same time, the required value of
this energy is the result of the transformation of the energy of the dc current delivered from
the dc current source to the energy of the ac current. If the feedback factor is sufficiently
small when δ > 0, the delivered energy compensates for the dissipated energy only partly. As
a result, this leads to attenuation and dissipation of the oscillations, as shown in Figure 1.6a.
For strong feedback factor when δ < 0, the delivered energy exceeds the dissipated energy,
and the oscillations increase with time, as shown in Figure 1.6b.

1.3 NEWTON–RAPHSON ALGORITHM

To describe circuit behaviour, it is necessary to solve the nonlinear algebraic equation, or system
of equations, which do not generally admit a closed form solution analytically. One of the most
common numerical methods to solve such equations is a method based on the Newton–Raphson
algorithm [2]. The initial guess for this method is chosen using a Taylor series expansion of
the nonlinear function. Consider a practical case when the device is represented by a two-port
network where all nonlinear elements are functions of the two unknown voltages, input voltage
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vin and output voltage vout. As a result, after combining linear and nonlinear circuit elements,
a system of two equations can be written as

f1(vin, vout) = 0 (1.57)

f2(vin, vout) = 0 (1.58)

Assume that the variables vin0 and vout0 are the initial approximate solution of a system
of Equations (1.57) and (1.58). Then, the variables can be written as vin = vin0 + �vin and
vout = vout0 + �vout, where �vin and �vout are the linear increments of the variables. Applying
a Taylor series expansion to Equations (1.57) and (1.58) yields

f1(vin0 + �vin, vout0 + �vout) = f1(vin0, vout0) + ∂ f1

∂vin

∣∣∣∣
vin=vin0

vout=vout0

�vin

+ ∂ f1

∂vout

∣∣∣∣
vin=vin0

vout=vout0

�vout + o
(
�v2

in + �v2
out + . . .

) = 0 (1.59)

f2 (vin0 + �vin, vout0 + �vout) = f2 (vin0, vout0) + ∂ f2

∂vin

∣∣∣∣
vin=vin0

vout=vout0

�vin

+ ∂ f2

∂vout

∣∣∣∣
vin=vin0

vout=vout0

�vout + o
(
�v2

in + �v2
out + . . .

) = 0 (1.60)

where o(�v2
in + �v2

out + . . .) denotes the second- and higher-order components.
By neglecting the second- and higher-order components, Equations (1.59) and (1.60) can

be rewritten in matrix form

−
[

f1

f2

]
=

⎡⎢⎢⎣
∂ f1

∂vin

∂ f1

∂vout

∂ f2

∂vin

∂ f2

∂vout

⎤⎥⎥⎦ [
�vin

�vout

]
(1.61)

In the phasor form,

−F = J�v (1.62)

where J is the Jacobian matrix of a system of Equations (1.57) and (1.58).
The solution of Equation (1.62) for a nonsingular matrix J can be obtained by

�v = −J−1 F (1.63)

This means that if

v0 =
[

vin0

vout0

]
(1.64)

is the initial guess of this system of equation, then the next (more precise) solution can be
written as

v1 = v0 − J−1 F (1.65)

where

v1 =
[

vin1

vout1

]
(1.66)



JWBK153-01 JWBK153-Grebennikov March 13, 2007 23:50

14 NONLINEAR CIRCUIT DESIGN METHODS

Figure 1.7 Circuit schematic with resistor, diode, and voltage source

Thus, starting with initial guess v0, we compute v1 at the first iteration. For the iteration
n + 1, we can write

vn+1 = vn − J−1 F(vn) (1.67)

The iterative Equation (1.67) is given for a system of two equations; however it can be
directly extended to a system of k nonlinear equations with k unknown parameters. This
iterative procedure is terminated after (n + 1) iterations whenever

|xn+1 − xn| =
√√√√ K∑

k=1

(
xk

n+1 − xk
n

)2
< ε (1.68)

where ε is a small positive number depending on the desired accuracy. For a practical purpose,
it is desirable that the Newton–Raphson algorithm should converge in a few steps. Therefore,
the choice of an appropriate initial guess is crucial to the success of the algorithm.

Consider the circuit shown in Figure 1.7. According to Kirchhoff’s voltage law,

v = vR + vD (1.69)

where vR = i R.

The electrical behaviour of the diode is described by

i(vD) = Isat

[
exp

(
vD

VT

)
− 1

]
(1.70)

Rearranging Equation (1.70) gives the equation for vD in the form

vD = VT ln

(
i

Isat
+ 1

)
(1.71)

Thus, from Equations (1.60) and (1.61) it follows that

v = i R + VT ln

(
i

Isat
+ 1

)
(1.72)

This allows current i to be determined for a specified voltage v. However, because it is
impossible to solve this equation analytically for current i in explicit form, the solution must
be found numerically.

Consider a dc voltage source V with dc current I . For the sinusoidal voltage source, it is
necessary to calculate the Bessel functions for dc, fundamental-frequency and higher-order
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Table 1.1 Three-step iteration procedure

n In, A εn

0 0.05 0.899 371 786
1 0.878 469 005 0.070 902 781
2 0.948 955 229 0.000 416 557
3 0.949 371 786

harmonic current components. It is convenient to rewrite Equation (1.72) as

f (I ) = I R + VT ln

(
I

Isat
+ 1

)
− V = 0 (1.73)

from which

f ′(I ) = R + VT

I + Isat
(1.74)

Then, applying the iterative algorithm for a single variable, we can write

In = In−1 − f (In−1)

f ′ (In−1)
. (1.75)

Using Equations (1.73) and (1.74) finally yields

In = In−1 −
In−1 R + VT ln

(
In−1

Isat
+ 1

)
− V

R + VT
1

In−1 + Isat

(1.76)

The results of the numerical calculation of the currents In for each iteration for VT =
25.9 mA/V, R = 5 �, V = 5 V, Isat = 10 μA and initial current I0 = 50 mA are given in
Table 1.1. The calculation error εn = IN − In , where n = 0, 1, . . . , N , illustrates the fast con-
vergence to the solution for each iteration step. The error at each subsequent iteration step
is approximately proportional to the square one of error at the previous step. If the required
accuracy of ε < 0.1% is set in advance, the iteration procedure will be stopped at the third
iteration step.

1.4 QUASILINEAR METHOD

To simplify the analysis and design procedure of the oscillator, in some cases it is enough to
apply a quasilinear or Barkhausen–Moeller method based on the use of the ratios between the
fundamental-frequency components of currents and voltages [3]. In this case, it is assumed
that the self-oscillations must be close to sinusoidal. The derivation of equations for equivalent
linear elements of the active device in terms of voltages and currents is based on its static
voltage–ampere and voltage–capacitance characteristics.

For example, for a bipolar transistor, the simplified equivalent circuit of which is shown
in Figure 1.8, all elements of its equivalent circuit are nonlinear, depending significantly
on operation mode, especially the transconductance gm and base-emitter capacitance Cπ .
The base-emitter capacitance Cπ consists of the diffusion and junctions capacitances and, at
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Figure 1.8 Bipolar transistor simplified equivalent circuit

high frequencies, its reactance is sufficiently high to shunt the base–emitter forward-biased
diode. Taking into account that the transition frequency is obtained by ωT = gm/Cπ , it is
sufficient to consider the only nonlinear elements gm, ωT and collector capacitance Cc, since
the base resistance rb poorly depends on a bias mode. The fundamentally averaged large-signal
transconductance (or average transconductance) can be easily determined from Equation (1.36)
by

gm1(Vin) = I1

Vin
= 2Isat

Vin
exp

(
Vbias

VT

)
I1

(
Vin

VT

)
(1.77)

The collector capacitance Cc represents a junction capacitance and can be approximated by

Cc = Cc0(
1 + vc

ϕ

)γ (1.78)

where ϕ is the built-in junction potential, γ is the junction sensitivity and Cc0 is the initial
capacitance when vc = 0.

If our interest is restricted to the fundamental frequency, and vc = Vcc + Vc sin ωt , where
Vcc is the collector dc supply voltage, then the following current flows through the collector
capacitance which is defined for the quasilinear case as

ic = Cc(vc)
dvc

dt
= ωCc0Vc cos ωt(

1 + Vcc

ϕ
+ Vc

ϕ
sin ωt

)γ

= ωCc(Vcc)Vc cos ωt
(1 + ξ sin ωt)γ

(1.79)

where Cc(Vcc) is the small-signal capacitance in the operating point and ξ = Vc/(Vcc + ϕ).
As a result, the average large-signal collector capacitance Cc1 can be calculated through the

fundamental Fourier series component as

Cc1(Vc) = Ic1

ωVc
= Cc (Vcc)

π

2π∫
0

cos2 ωt
(1 + ξ sin ωt)γ

d(ωt) (1.80)
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Figure 1.9 Large-signal behaviour of collector capacitance

Figure 1.9 shows the voltage dependencies of the average collector capacitance. Within
a range of ξ < 1, the maximum large-signal value of Cc1(Vc) deviates from the small-signal
value of Cc(Vcc) by not more than 20% for an abrupt junction with γ = 1/2.

For a MESFET device with the simplified equivalent circuit shown in Figure 1.10, the drain
current id is a function of the gate–source voltage vgs and the drain–source voltage vds, which
can be expanded in a two-dimensional Taylor series

id
(
vgs, vds

) = I0 + ∂ f
∂vgs

∣∣∣∣
vgs=Vs
vds=Vdd

(vgs − Vg) + ∂ f
∂vds

∣∣∣∣
vgs=Vg
vds=Vdd

(vds − Vdd)

+ 1

2

⎡⎣ ∂2 f
∂v2

gs

∣∣∣∣∣
vgs=Vg
vds=Vdd

(vgs − Vg)2 + 2
∂2 f

∂vgs∂vds

∣∣∣∣
vgs=Vg
vds=Vdd

(vgs − Vg)(vds − Vdd)

+ ∂2 f
∂v2

ds

∣∣∣∣
vgs=Vg
vds=Vdd

(vds − Vdd)2 + . . .

⎤⎦ (1.81)

where Vg is the gate dc bias voltage and Vdd is the drain dc supply voltage.
In the small-signal quasilinear case, the high-degree terms are neglected and

id(vgs, vds) = I0 + ∂ f
∂vgs

∣∣∣∣
vgs=Vg
vds=Vdd

(vgs − Vg) + ∂ f
∂vds

∣∣∣∣
vgs=Vg
vds=Vdd

(vds − Vdd) (1.82)

Figure 1.10 MESFET simplified equivalent circuit
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The gate–source and drain–source instantaneous voltages can respectively be written as

vgs = Vg + Vgs cos(ωt + φ) (1.83)

vds = Vdd + Vds cos ωt (1.84)

where Vgs and Vds are the gate–source and drain–source voltage amplitudes and φ is the phase
difference between these voltages.

Consequently, the instantaneous drain current given by Equation (1.81) can be rewritten as

id (ωt) = I0 + gm1Vgs cos(ωt + φ) + Gds1Vds cos ωt (1.85)

where

gm1 = Id

Vgs

∣∣∣∣
Vds=0

(1.86)

is the linearized large-signal transconductance,

Gds1 = Id

Vds

∣∣∣∣
Vgs=0

(1.87)

is the differential output conductance, I0 is the dc drain current, Id is the fundamental drain
current amplitude, and Gds1 = 1/Rds1 [4].

Multiplying the right- and left-hand sides of Equation (1.85) by sin ωt and integrating over
the entire period of the oscillation result in the average transconductance gm1 obtained by

gm1 = − 1

πVgs sin φ

2π∫
0

id(ωt) sin ωt d(ωt) (1.88)

Similarly, multiplying by sin(ωt + φ) results in the average output conductance

Gds1 = 1

πVds sin φ

2π∫
0

id(ωt) sin(ωt + φ) d(ωt) (1.89)

The average large-signal gate–source capacitance Cgs1 can be calculated similarly to that
of for the abrupt collector capacitance Cc1 of the bipolar transistor with γ = 1/2. The average
large-signal gate forward conductance Ggf1 is defined by

Ggf1 = 2Isat

Vgs
I1

(
Vgs

VT

)
exp

(
Vg

VT

)
(1.90)

where Isat is the saturation current of the Schottky barrier, I1(Vgs/VT ) is the first-order modified
Bessel function of first kind.

The gate charging resistance Rgs varies with the gate–source capacitance Cgs in such a way
that the charging time constant τg = RgsCgs varies insignificantly and it can be treated as a
constant in a quasilinear approximation.

Now consider the transient response which can be obtained using the quasilinear method
on the example of the MOSFET oscillator, the simplified schematic of which is shown in
Figure 1.5. For a quasilinear approximation, the appropriate ratios can be obtained directly
from the nonlinear differential Equation (1.53) by substituting voltage v and current i by their
fundamental-frequency components. The average transconductance gm1 is considered as a
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function of the slowly varying fundamental voltage amplitude and, for a high quality factor of
the oscillator resonant circuit, can be treated constant during the natural oscillation period. As
a result, the nonlinear differential Equation (1.53) can be considered as linear written in the
form of

d2v

dt2
+ 1

C

[
1

R
− Mgm1 (V )

L

]
dv

dt
+ ω2

0v = 0 (1.91)

where V is the fundamental-frequency voltage amplitude.
From Equation (1.54) it follows that the amplitude of the oscillations varies according to

dV
dt

= −δ(V )V (1.92)

where

δ(V ) = 1

2C

(
1

R
− Mgm1 (V )

L

)
Then, Equation (1.92) can be rewritten as

2

ω0

dV
dt

= 1

Q

(
gm1

g0
m1

− 1

)
V (1.93)

where Q = ω0 RC is the oscillator quality factor at the resonant frequency ω0, and

g0
m1 = L

M R
(1.94)

is the average transconductance in the steady-state oscillation mode.
The device voltage–ampere characteristic can be represented by a third-order power series

given by Equation (1.3). Then, from Equation (1.10) it follows that

gm1(V ) = I1

V
= gm − 3

4
gm3V 2 (1.95)

where gm = a1 is the small-signal transconductance at the operating bias point, gm3 = −a3

and a1 > 0, a3 < 0 to provide soft start-up conditions.
Multiplying by V , separating variables and integrating the both parts of Equation (1.93)

result in the amplitude transient response in the form

V = V0

/√
1 +

[
V 2

0

V 2 (0)
− 1

]
exp[−2|δ(0)|t] (1.96)

where V (0) is the amplitude V at t = 0, and

V0 = 2√
3gm3

√
gm − g0

m1 (1.97)

is the voltage amplitude in the steady-state operation mode.
For the specified small-signal value of δ(0), the settling time of the oscillations will be

defined by the ratio between the initial and steady state amplitudes. If V (0) < V0, then the
amplitude V increases monotonically, beginning with a small value V (0) and nears the am-
plitude V0, as shown in Figure 1.11. In this case, taking into account that at the beginning
V0/V (0) 	 1 and neglecting the unit component in Equation (1.96), the amplitude increase
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Figure 1.11 Transient response of transformer-coupled MOSFET oscillator

yields to an exponential law according to

V = V (0) exp[|δ(0)|t] (1.98)

which gives, theoretically, an infinitely long settling time ts.
Defining ts as the time when the amplitude V increases up to 0.9V0, from Equation (1.96)

we can obtain

ts = 1

|δ (0)| ln

[
2V0

V (0)

]
(1.99)

which means that an increase of the coupling factor M or small-signal transconductance gm

results in a shortening of the settling time. Hence, the settling time depends strongly on the
initial amplitude V (0) which is determined by the fluctuation process.

1.5 VAN DER POL METHOD

To illustrate a van der Pol method for analysing the behaviour of the oscillation systems
described by the nonlinear second-order differential equations, let us consider once again the
schematic of the transformer-coupled MOSFET oscillator shown in Figure 1.5. In this case, it is
advisable to rewrite the nonlinear second-order differential equation given by Equation (1.53)
in the form

d2v

dt2
+ 2δ

dv

dt
+ ω2

0v = 2δR
M
L

di
dt

(1.100)

where the dissipation factor δ = 1/2RC includes only losses in the resonant circuit. Now we can
use the method of slowly varying amplitudes (the van der Pol method) when Equation (1.100)
is replaced by the corresponding truncated first-order differential equations for slowly varying
amplitude and phase, respectively [3, 5, 6].

We shall seek a solution of Equation (1.100) in the form of the periodic oscillations of

v = V (t) cos[ω0t + ϕ(t)] (1.101)
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where V (t) and ϕ(t) are the slowly varying amplitude and phase, respectively. The term ‘slowly
varying’ means that the relative variations of the amplitude and phase during the natural
oscillation period are substantially smaller than unity. This means that the time derivatives
of the amplitude and phase can be replaced by their average velocities during the oscillation
period, i.e.,

dV
dt

= �V
T

= ω0

2π
�V (1.102)

dϕ

dt
= �ϕ

T
= ω0

�ϕ

2π
(1.103)

Then, under an assumption of slowly varying amplitude when �V/V 
 1, we can write

dV
dt


 ω0V (1.104)

Accordingly, for higher-order derivatives of the voltage amplitudes, it is also assumed that

d2V
dt2


 ω0
dV
dt

d3V
dt3


 ω0
d2V
dt2

. . . (1.105)

Similarly, for the slowly varying phase when �ϕ/2π 
 1 and its higher-order derivatives,
we can write

dϕ

dt

 ω0 (1.106)

d2ϕ

dt2

 ω0

dϕ

dt
d3ϕ

dt3

 ω0

d2ϕ

dt2
. . . (1.107)

The current i(v) where v is defined by Equation (1.101) can be represented by a Fourier
series

i(v) = I0(V ) + I1c(V ) cos(ω0t + ϕ) − I1s(V ) sin(ω0t + ϕ) + . . . (1.108)

where

I1c(V ) = 1

π

π∫
−π

i(V cos ψ) cos ψ dψ (1.109)

I1s(V ) = − 1

π

π∫
−π

i(V cos ψ) sin ψ dψ (1.110)

The first and second derivatives of Equation (1.101) can be calculated as

dv

dt
= dV

dt
cos(ω0t + ϕ) − V

(
ω0 + dϕ

dt

)
sin(ω0t + ϕ) (1.111)

d2v

dt2
= d2V

dt2
cos(ω0t + ϕ) − 2

dV
dt

(
ω0 + dϕ

dt

)
sin(ω0t + ϕ)

+ V
d2ϕ

dt2
sin(ω0t + ϕ) − V

[
ω2

0 + 2ω0
dϕ

dt
+

(
dϕ

dt

)2
]

cos(ω0t + ϕ) (1.112)
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Equation (1.112) can be simplified by neglecting the terms with second derivatives and
square of the first derivative to

d2v

dt2
= −2ω0

dV
dt

sin(ω0t + ϕ) −
(

ω2
0 + 2ω0

dϕ

dt

)
V cos(ω0t + ϕ) (1.113)

Similarly, by taking into account only linear terms in Equation (1.108), the current derivative
di(v)/dt can be obtained as

di(v)

dt
= −I1c(V )

(
ω0 + dϕ

dt

)
sin(ω0t + ϕ) − dI1c(V )

dt
cos(ω0t + ϕ)

− I1s(V )

(
ω0 + dϕ

dt

)
cos(ω0t + ϕ) − dI1s(V )

dt
sin(ω0t + ϕ) (1.114)

As a result, for small values of the dissipation factor and derivatives of the slowly varying
functions, Equation (1.100) can be rewritten using Equations (1.111), (1.113) and (1.114) as

−2ω0
dV
dt

sin(ω0t + ϕ) − 2δω0V sin(ω0t + ϕ) − 2ω0V
dϕ

dt
cos(ω0t + ϕ)

= −2δω0
M
L

RI1c(V ) sin(ω0t + ϕ) − 2δω0
M
L

RI1s(V ) cos(ω0t + ϕ) (1.115)

Finally, equating the terms with sinusoidal and cosinusoidal components in Equation (1.115)
results in separate equations for the time-varying amplitude V (t) and phase ϕ(t) in the form

1

δ

dV
dt

+ V = M
L

RI1c (V ) (1.116)

1

δ
V

dϕ

dt
= M

L
RI1s (V ) (1.117)

For the algebraic transfer function i(v) and cosinusoidal input voltage v in Equation (1.101),
the integral for I1s(V ) given by Equation (1.110) is equal to zero. Physically this means
that the active device has no reactive elements and the oscillator resonant frequency is fully
defined by the resonant frequency ω0 of the parallel LC circuit. Therefore, as follows from
Equation (1.117), the phase ϕ(t) of the oscillations given by Equation (1.101) is constant and no
longer a function of time. At the same time, the amplitude of the oscillations, which behaviour
is described by Equation (1.116), varies exponentially, depending on the dissipation factor δ.
The similar result obtained by a quasilinear method is presented by Equation (1.92).

Generally, a procedure of the derivation of the truncated lower-order differential equations
from the original nonlinear differential equations is very complicated and time-consuming,
even for the simple cases. However, using a symbolic representation of the nonlinear oscillation
behaviour and following a Evtyanov approach make it possible to speed up the procedure of
obtaining the truncated equations [6, 7].

According to a Evtyanov approach, the oscillator can generally be represented by the ideal
current source i(v) and linear two-port network Z (p), where p ≡ d/dt is the differential
operator, as shown in Figure 1.12. A symbolic equation to describe the behaviour of the
oscillator is written as

v = Z (p) i(v) (1.118)
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Figure 1.12 General oscillator model

where

Z (p) = δP(p,δ)

Q(p,δ)
(1.119)

P(p, δ) and Q(p, δ) are the polynomial functions of p and δ is the small parameter. For
the oscillation systems with high quality factors, the small parameter δ usually represents a
dissipation factor for one of its natural frequencies. The differential equation corresponding to
a symbolic Equation (1.118) can be obtained by

Q(p,δ) v = δP(p,δ) i(v) (1.120)

A solution of the differential Equation (1.120) is seeking a sum of the oscillations with the
slowly varying amplitudes and phases according to

v = V0(t) +
K∑

k=1

Vk(t) cos[ω0k t + ϕk(t)] (1.121)

where k = 1, 2, . . . , K .
The complex voltage and current amplitudes can be written as

V k = Vk exp( jϕk) (1.122)

Ik = Ik exp( jϕk) (1.123)

Then, using a two-dimensional Maclaurin series expansion about p = 0, δ = 0 and neglect-
ing the terms of order δ2, the following system of truncated differential equations in a complex
form can be obtained:{(

∂ Q(p,δ)

∂p

]
k

p +
(

∂ Q(p,δ)

∂δ

]
k
δ

}
V k = δ(P(p, δ)]k Ik (1.124)

Dividing both sides of Equation (1.124) by(
∂ Q(p,δ)

∂δ

]
k
δ

allows us to rewrite Equation (1.124) in the final form

(Tk p + 1) V k = Zk Ik (1.125)
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where

Tk =
(

∂ Q(p,δ)

∂p

]
k

/
δ

(
∂ Q(p,δ)

∂δ

]
k

(1.126)

Zk = (P(p,δ)]k

/ (
∂ Q(p,δ)

∂δ

]
k

(1.127)

Substituting the complex voltage and current amplitudes from Equations (1.122) and (1.123)
into Equation (1.125) and equating the real and imaginary parts after its differentiating result
in two separate differential equations for amplitude and phase, respectively:

(Tk p + 1)Vk = Rk Ik(V0, V1, . . . , VK ) (1.128)

Tk Vk pϕk = Xk Ik(V0, V1, . . . , VK ) (1.129)

where Rk = ReZk , Xk = ImZk , k = 1, 2, . . . , K .
Comparison of a system of Equations (1.128) and (1.129) with a system of Equations (1.116)

and (1.117) shows that these truncated differential equations for the slowly varying amplitude
and phase are identical when k = 1, V0 = 0 and T1 = 1/δ.

1.6 COMPUTER-AIDED ANALYSIS AND DESIGN

To analyse the nonlinear oscillator circuit, it is necessary to provide its frequency-domain
and time-domain simulations giving the device, time, spectral or sweep presentations of the
electrical characteristics and optimization of the circuit parameters to realize the optimum
solution depending on customer requirements. The algorithm for nonlinear oscillator analysis
used in Microwave Harmonica, which is a part of the Ansoft circuit simulator Serenade, is a
modified harmonic balance method and can be divided into two steps: search and analysis [8, 9].
In the search mode, an external test source is added to an oscillator circuit to inject ac power,
and forces the system away from the degenerate solutions when all ac currents are equal to zero
is also a solution of Kirchhoff’s current law. This approach includes the Kurokawa oscillation
condition, which ensures that the degenerate solution is not obtained. The final steady-state
solution of the search mode is treated as the initial estimate for the analysis mode. In the
analysis mode, the system equation is solved using the modified harmonic balance method, in
which oscillating frequency is used as an independent variable.

The search method includes the injection of an external ac source into the oscillator circuit
and finding the steady-state operation mode using harmonic balance conditions and the Newton
iteration scheme to solve a set of the system equations expressed in the frequency domain. By
sweeping the injected frequency and power and examining both the magnitude and phase of the
injected current, the oscillating condition of the circuit can be determined. The free-running
oscillator is treated as a one-port network, as shown in Figure 1.13, where Y is the input
admittance of overall one-port network including the load admittance YL, Yin is the equivalent
input admittance of the oscillator resonant circuit with the active device.

The steady-state condition for a single-oscillation frequency ω can be written as

Y = Yin + YL = 0 (1.130)
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Figure 1.13 Application of the modified harmonic balance method to a free-running oscillator

which can be applied to each frequency component. Therefore, if K different frequency com-
ponents ωk are present, the oscillation conditions are determined by

Yk = Yin,k + YL,k = ReYk + jImYk = 0 (1.131)

where k = 1, 2, . . . , K indicates that the admittance Yk is evaluated at each frequency ωk .
As a result, if current i(t) and voltage v(t) are represented in the time domain by

i(t) =
K∑

k=0

ik(t) =
K∑

k=0

Ik cos(ωk t + φk) (1.132)

v(t) =
K∑

k=0

vk(t) =
K∑

k=0

Vk cos(ωk t + θk) (1.133)

where Ik and φk are the current amplitude and phase, Vk and θk are the voltage amplitude and
phase, then the input admittance Yk can be determined by phasor voltage V k and phasor current
Ik as

Yk = Ik

V k
(1.134)

By separating the real and imaginary parts of Yk in Equation (1.131), we can obtain

ReYk = Re(Ik/V k) = 0 (1.135)

and

ImYk = Im(Ik/V k) = 0 (1.136)

which implies

ReIk = ImIk = 0 (1.137)

and

Vk �= 0 (1.138)

The results obtained by Equations (1.135–1.138) show that, if the voltage amplitude of
the injected test source in Figure 1.13 is large enough and the current amplitude of the test
source under the harmonic balance condition is zero, the circuit is in oscillation condition.
After changing the frequency and power of the external source and monitoring the injected
current value, the oscillation condition of the test circuit can be determined. For an efficient



JWBK153-01 JWBK153-Grebennikov March 13, 2007 23:50

26 NONLINEAR CIRCUIT DESIGN METHODS

search of the frequency and power of the external source when k = 1, the following algorithm
has been used:� the external power is set to be constant and at a low level;� the frequency of the external source is swept until ImI1 is close to zero and ReI1 is negative;� the power of the external source is increased stepwise and tracks the frequency until both

ReI1 and ImI1 are close to zero.

When both ReI1 and ImI1 are reduced to very small values, highly accurate analysis results
may be obtained. Furthermore, in order to avoid a large number of computations, a near target
solution of about 0.1% error provides a good initial estimate for the analysis mode.

In the analysis mode, the external injected source is excluded and a modified harmonic
balance technique is used to obtain a true and rigorous oscillator circuit analysis result. For a
nonautonomous circuit analysis, the state variable vector X is composed of the state variables,
including device port voltages, and error vector E is composed of the elements of the system
errors, including corresponding port current errors. However, for the oscillator analysis, the
structure of vector X is modified with the oscillating frequency f1 as an additional variable,
so the phases of the harmonic state variable voltages are referred to the phase of the voltage
of the first state variable. In the same manner, to eliminate the degenerate solution, the error
function vector E is reconstructed by replacing the error function elements at the fundamental
frequency by a function designed to avoid the degenerate solution.

One of the main concerns in the oscillator circuit analysis is to improve the convergence
property of the oscillator circuit simulation, especially when it is designed with high-Q res-
onant tank circuit. In this case, the system error near the oscillation frequency can be very
large. Therefore, two techniques, (1) initial frequency setting and (2) fundamental frequency
searching, have been used in the circuit simulator [8]:

1. All the node voltages and edge currents can be randomly initialized within a certain range that
can reflect the practical level of the oscillator output power Pout. The oscillating frequency
f1 should be initialized as sufficiently close to the actual value of the fundamental frequency
f , for example, within 0.1 f ≤ f1 ≤ 10 f .

2. Another way to improve the convergence ability is to first decrease the number of harmonics
in order to simplify the error surface and gradually restore it to the desired value. This means
a consecutive consideration of the analysis at the fundamental frequency, and then repeating
it with the second-harmonic signal present. After obtaining the convergence with the third-
harmonic signal present, the number of harmonics is then increased to the maximum number
specified by user. This is very important to avoid aliasing when a small number of frequency
components are taken into account.

The optimization procedure, which is crucial to provide fast and accurate circuit design by
adjusting the values of certain circuit parameters, is based on an iterative process, in which
the circuit is simulated to ascertain its electrical responses as compared with the optimization
goals. Circuit parameters are adjusted to produce improved circuit responses. The optimization
process continues until the selected number of iterations is completed or the optimization goal
is achieved. Each goal gives rise to an error value that represents the discrepancy between the
simulated circuit response and the appropriate goal limit. If the response satisfies the limits, then
the error value is zero. Otherwise, the error value depends on the magnitude of the difference
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between the simulated response and the appropriate goal limit. In this case, the error function
serves as a figure of merit during optimization procedure to select the best optimizable values.
This error function value is a sum of the individual goal errors, which are weighted measures
of the difference between the simulated circuit response and the desired response, as specified
in the goal values. Weights are associated with each goal in order to allow the emphasis of
certain goals over others. In a common case, the error function EF is defined by

EF =
∑

phrases

∑
groups

∑
f

[∑
i (wi ei ) /N f

]
(1.139)

where ei is the error function contribution from the i th goal at one frequency, wi is the weighting
factor associated with the i th goal, N f is the number of frequencies for the goal group containing
ei ,

∑
i means the summation over all optimization goals in a group,

∑
f means the summation

over all frequencies for which a group of goals is specified,
∑

groups means the summation
over all groups and

∑
phrases means the summation over all optimization phrases [9]. Each line

of goals is considered as a group and may contain only one frequency range, at which all the
goals in the group are evaluated, whereas a number of goal groups may be defined within each
optimization phrase.

The optimization procedure may include different optimization methods, for example, sev-
eral such methods as random search, gradient search and minimax search are used in Ansoft
circuit simulator Serenade. The gradient search is based on a quasi-Newton algorithm, which
uses the exact gradient and approximate inverse of the Hessian matrix of the error function to
find a direction of improvement for each optimization value. The first search direction is in
the direction of the gradient vector along a line in n-dimensional space where n is the number
of optimized values. Once a minimum is found in the first direction, a second search along
another line in the same n-dimensional space is performed. In the second and subsequent
iterations, the direction of search depends on the gradient vector, which is not the same as the
overall gradient. The direction of search is modified to accelerate convergence as a minimum is
approached. However, the gradient search is susceptible to local minimum points when, once
a local minimum region of the error function is reached, the gradient search method may have
difficulty in selecting optimizable values outside that minimal region.

The random search selects new optimizable values following a Monte Carlo approach.
Starting from an initial set of optimizable values, for which the error function value is known,
a new set of values is obtained using a random-number generator within the applicable optimiz-
able value ranges. The error function is re-evaluated and these optimizable values are retained
if a decrease in its value is identified. This is a trial-and-error process, in which random search,
step-by-step, finds at least minimum of the error function. The random search repeats this
procedure for as many times as the number of iterations specified before the optimization is
started in order to approximate to the global minimum of the error function as close as possible.
Initially, new optimizable values are drawn according to a uniform Gaussian distribution for
each optimizable value and these optimizable variables are treated as independent Gaussian
variables. After each iteration, whether it is successive or not, the distribution is modified
and becomes non-Gaussian to its skewing towards lower error function values and away from
higher ones. The random search tends to proceed in the direction of error function reduction,
but it is not restricted to such areas completely, allowing improvement of the search efficiency
without the risk of trapping the search in local minimum.

The minimax method provides the minimization of the largest weighted goal errors, i.e.,
the minimization of the maximum contributions to the error function value. The minimax
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error function always represents only the worst case violation of the optimization goals, where
the desired circuit response specifications are either most severely violated when EF > 0, or
satisfied with the smallest margin when EF < 0. In this case, the error function to be minimized
may be defined in general as

EF = MAXphrases MAXgroups MAX f MAXgoals(wi ei ) (1.140)

where ei is the discrete error function associated with a phrase at one frequency, wi is the
weighting factor associated with ei , MAXgoals means maximum value in the set over all goals
of a phrase, MAX f means maximum value in the set over all frequencies of a group, MAXgroups

means maximum value over all goal groups and MAXphrases means maximum value over all
optimization phrases. A minimax solution means that the goal specifications are met in an
optimal, typically equal-ripple manner. The sophisticated minimax search method proceeds
in two stages. In the first stage of the search, the minimax problem is solved using a linear
programming technique and, in the second stage, the search employs a quasi-Newton algorithm
with second-order derivatives. A minimax iteration requires one evaluation of the objective
function and its gradient and therefore is less time-consuming than an iteration of the gradient
search.
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