
CHAPTER

1

Introduction

New technologies have changed the ways in which people interact and collaborate
over a distance. Users can stay connected over a network and practice new ways
of collaborative working. Instead of working face-to-face most of the time, today
many people collaborate with remote peers via the Internet. In professional work
life, employees in distributed companies collaborate via distributed work groups,
workers in distant parts of a virtual organization can form dynamic ad-hoc teams
for a step in a production process, and people participate in virtual communities
to increase their professional capabilities. This process is also visible in private life,
where computer users increasingly participate in communities to make their lives
easier or more interesting.

As a result, more and more applications are designed for use by more than one
user. Domains in which this has become obvious are multi-player games, websites
that foster interaction among visitors, applications for interaction between mobile
users, systems that foster collaborative learning, interactive workspaces and smart
environments, or peer-to-peer applications, to name only a few. In such areas we
can see a shift in interest from human computer interaction to computer-mediated
human interaction.

1

CO
PYRIG

HTED
 M

ATERIA
L



2 Chapter 1 Introduction

This book discusses how applications for supporting computer-mediated inter-
action or groupware applications can be built. A groupware application is a
combination of software, hardware and social processes that supports groups in their
interaction. The groupware thus is what mediates interaction in computer-mediated
interaction.

We will use a pattern language to build such groupware systems. Pattern languages
combine patterns from a specific application domain, and consist of patterns and the
relations between these patterns. Patterns capture design knowledge and rationale
so that a novice can make design decisions in the same way that experts would. By
means of design patterns one can describe expert knowledge in the form of rules
of thumb that helps to solve a problem in the application domain of the pattern
language.

Depending on your role in the development process of a groupware system, you
would make use of a pattern language in different ways:

— As a software developer, you would find guidance on how to implement group-
ware applications. The patterns would outline different functional components
that need to be developed when approaching groupware-typical problems.

— As a user, the patterns would provide you with an idea on how the group-
ware applications might look and how social processes might change when
groupware comes into play. Your role would probably require you to identify
functional aspects of your envisioned groupware application and communicate
them to the software developers. This can raise your level of participation and
help to ensure that the solution fits into your context. In the case of high-level
patterns, you might also be able to implement the pattern on your own by
tailoring an existing groupware environment.

— Finally, as a student or researcher in the field of computer-supported collabo-
rative work, you might use patterns to frame your research: a pattern language
documents best practices that have evolved during recent years, and in the case
of most patterns, provides you with links to research literature in which such
practices have been discussed.

To complement the patterns, we will provide a common scenario that serves as
an example of how to apply the pattern approach in a concrete case of groupware
development. We have chosen the case of a distributed software development
team that wants to make use of groupware technology to support the distributed
development of a collaborative game engine better. We will tell the story of Paul
Smith, who is the project leader of the collaborative game engine project. The story
will tell you about how social interaction is intertwined with professional activities,
and how Paul interacts with a global network of people to achieve his project’s
goals.

The fact that we have selected collaborative software development does not,
however, mean that the application of this book is restricted to that domain. As you



Chapter 1 Introduction 3

will see in the scenarios, many of the issues that arise in the collaboration of
distributed software developers are to the same degree relevant in other application
domains such as distributed management, distributed product development, or
distributed learning. You can consider this in the same way as an architect would
understand the creation of houses: in our example we will build a metaphorical office
building for software developers. But the skills required to create such a building
can also be used to build a school or a building for car design engineers. It is you as
end user who will introduce the domain-specific context of your group, while this
book concentrates on groupware infrastructure.



4 Chapter 1 Introduction

1.1 Groupware: Systems that Support
Computer-Mediated Interaction

A famous definition of the term groupware defines groupware systems as ‘‘intentional
group processes plus software to support them’’ (Johnson-Lenz and Johnson-Lenz,
1981). This definition includes various aspects that we have to consider when
designing groupware solutions:

— The core of the definition is the group. A group of users wants to interact using
groupware. Naturally, the members of the group should play an important role
in the design of groupware. The groupware design has the purpose of creating
a solution that satisfies the user’s needs. End-user requirements therefore have
to be the central issue during groupware design.

— The group interacts in an intentional group process. The interaction between
people thus needs to play an important role in the design of any groupware
solution. It has to become clear who interacts with whom. How strict the
intentional group process is must be considered, ranging from unplanned
interaction in virtual communities up to formally structured workflows in a
distributed workgroup.

— The process is supported by software. The fact that software is mentioned
third here emphasizes that the software itself should be a supportive facility
to ease the interaction between people. The software should be adapted to
the users’ needs to best fulfill its supportive role. At this point the software
developer comes into play. As software supports the group process, the
software developer should support the users in adapting or creating software
that fits the process.

Compared to a focus on design, which has the goal of supporting the group in
the manipulation of content, support for social group interaction needs a broader
focus, that of the relationships between users. Tools for manipulation are in most
cases used by one user (even in collaborative systems), so they affect the relationship
between the user and shared artifacts. Social interaction, on the other hand, affects
the relationships between users and needs to address issues like trust and privacy. In
contrast to the design of tools for the manipulation of artifacts, which mainly affects
human-computer interaction, the focus should thus be on human-computer-human
interaction (HCHI). The design of tools therefore focuses on the interaction of the
user with the artifact, and considers the human-human interaction as a marginal
aspect.

To provide customized designs of groupware mechanisms, we have to make use
of a design process that is flexible enough to adapt to the group’s needs. Experiences
with the design of single user applications have already shown that many software
development projects fail because of requirements inadequacies (Dorfman, 1997).



1.1 Groupware 5

In such cases, the customer is typically involved in the early stages of the project as a
source of design requirements. This set of requirements is then implemented by the
software developers and subsequently the customer assesses the result. However, if
the requirements were not specified correctly, customers receive a product that does
not match their needs. This means that requirements in the context of computer-
mediated interaction must always address social aspects as well as technical aspects,
which is why they are called socio-technical requirements.

Unfortunately, these socio-technical requirements are often less clear to the
stakeholders involved in the development of groupware applications. Two factors
make this part of groupware development difficult:

— While in single user tasks, such as word processing or image editing, only one
actor interacts with an artifact, groupware needs to support the interaction
of many users with each other. An interaction partner is thus not a technical,
deterministic, artifact, but a non-deterministic human.

— Users are not as familiar with using these new opportunities for interaction
compared with single-user applications.

The theory of socio-technical design views a community from two perspectives:
the social system, including group processes, roles, and flow of information, and
the technical system, which includes tools used within the community, such as IT
infrastructure or buildings. From a socio-technical perspective these two systems
are highly interrelated. A socio-technical perspective on groupware design has to be
aware of three key aspects (Bikson and Eveland, 1996):

— It is difficult to predict the reciprocal effect of changes to either the social or
the technical system.

— The process used to create the socio-technical system will affect the acceptance
of the system.

— Both social and technical systems change over time.

The tools in the technical system, i.e. the software that supports intentional group
processes (Johnson-Lenz and Johnson-Lenz, 1981), can be classified in many different
ways. One popular way to classify groupware is to distinguish how it support groups.
Teufel et al. (1995) introduced such a model and distinguish between three different
main support functionalities:

1. Communication focuses on the information exchange between cooperating
group members.

2. Coordination concentrates on coordinating group tasks.

3. Cooperation adds the ability to accomplish group goals to the above support
functionalities.

As all main support functionalities start with the letter C, Borghoff and Schlichter
(2000) later on called this approach 3C-classification. In their initial proposal



6 Chapter 1 Introduction

Teufel et al. (1995) positioned the three main functionalities in a triangle to cluster
groupware applications in system classes of common functionality, i.e. commu-
nication systems, workflow management systems, shared information spaces, and
workgroup computing systems.

In contrast to the initial approach of Teufel et al. (1995), we propose a different
approach. Figure 1.1 places well-known groupware applications in two-dimensional

Multi-user
editors

C
oo

rd
in

at
io

n

Multi-player
games

Wikis

Workflow
management

systems

Shared
workspaces

Chat

E-mail
Audio/Video
conferencing

Forums

Community
systems

Group (decision)
support systems

Communication

Cooperation

Figure 1.1 Groupware applications in relation to their support of communication, coordi-
nation, and cooperation

space. The vertical axis denotes the application’s support for coordination, while the
horizontal axis is used to denote the degree of communication and cooperation that
an application supports. This is possible because a higher degree of communication
implies a lower degree of cooperation. By placing an application in this two-
dimensional space, the individual degree of communication, coordination, and
cooperation can be visualized much better for each of the application types.

In particular, we distinguish the following groupware applications in Figure 1.1:

— Audio/video conferencing tools allow users to communicate by various means,
so they have a high degree of communication and a low degree of coopera-
tion. Compared to workflow management systems, for example, they do not



1.1 Groupware 7

explicitly offer functionality for scheduling or organizing tasks. We thus see
them at a medium degree of coordination.

— Chat tools have a lower degree of communication than audio/video confer-
encing tools, as non-verbal information is omitted when communicating via a
chat application. For the same reason, the degree of coordination is reduced.

— Group Decision Support Systems (GDSS) are explicitly designed to support
groups in decision-making. For that purpose, they offer synchronous as well
as asynchronous communication tools, group votes, etc. They therefore have
a high degree of communication and coordination.

— E-mail is the most popular groupware application. E-mail can be used for
many purposes, but its main purpose is to support communication. As the
communication is asynchronous and text-based, the degree of communication
is reduced compared to chat tools. However, as users can structure their
information when using e-mails, the degree of coordination is increased.

— Forums allow users to discuss a topic in which they are interested. The
communicating group is therefore defined by the topic. Compared to e-mail,
communication is more public. However, if used in a company, forums allow
coordination of a group that is cooperating on a common task.

— Community Systems integrate a variety of tools and allow a large group of
users, i.e. a community, to communicate, to share information, or to coordinate
common activities. Often, these tools are web-based. Compared to the tools
listed above, community systems have better support for accomplishing and
coordinating group goals. However, the degree of communication possible
is lower, as there is no possibility of communicating directly with individual
community members.

— Wikis are web-based systems that allow users to change the content of the
web pages. Wikis have their origin in the design patterns community. The
first Wiki was the Portland Pattern Repository, which was created in 1995
by Ward Cunningham. As Wikis allow users to create and share content,
they have a high degree of cooperation, but as they do not explicitly support
communication or coordination, they are low in these respects.

— Shared workspaces such as BCSW (see Section 1.1) allow users to share
content. In the most cases, they also allow structuring of the shared content to
coordinate common tasks. For that reason, shared workspaces have a higher
degree of cooperation and coordination than Wikis.

— Multi-player games are becoming more and more popular. They allow users
to solve tasks or quests jointly, and support a number of coordination func-
tionalities for that purpose. Communication is mainly short and used only for
coordination, which explains the degree of communication, coordination, and
cooperation they exhibit.



8 Chapter 1 Introduction

— Workflow Management Systems (WfMS) are tools that allow modeling, coor-
dination, supervision, and evaluation of a workflow by a cooperating team.
For that reason they exhibit the highest degree of coordination of all tools.
As their main purpose is to coordinate users in accomplishing a group goal,
they have also a high degree of cooperation. WfMS only use communication
for coordination purposes, for example to pass on a task or to notify about a
completed task, so they show a quite low degree of communication.

— Multiuser editors such as CoWord (see Section 1.2) allow cooperating users
to create a shared artifact synchronously, for example a text document,
drawing, or a spreadsheet, and thus accomplish group goals. This explains
the high degree of cooperation of such tools. Multiuser editors use a lot of
coordination functionalities as well, for example to avoid conflicting changes.
Communication is not explicitly supported, thus the degree of communication
is low.

Apart from the various main functionalities that are supported by a groupware
application, awareness plays an important role. Of the tools listed above, multiuser
editors, for example, make use of awareness widgets that show the working area of
other users, with the goal to avoid conflicting changes in a shared artifact. Awareness
can be seen as a mediator between these three main functionalities.

Group
awareness

Communication Coordination

Cooperation

fosters

fosters

fosters

mediatesmediates

mediates

generates commitments

that are managed by
ar

ra
ng

es
 ta

sk
s 

fo
r

dem
ands

Figure 1.2 Relationship between communication, coordination, cooperation, and mediat-
ing group awareness

Gerosa et al. (2004) describe this as shown in Figure 1.2. In this figure, coop-
erating users must be able to communicate and to coordinate themselves. When
communicating, users might generate commitments and define tasks that must be
completed to accomplish the common group goal. These tasks must be coordinated
so that they are accomplished in the correct order and at the correct time with
respect to possible external restrictions. To accomplish these tasks the users have



1.1 Groupware 9

to cooperate in a shared environment. However, while cooperating, unexpected
situations might emerge that demand new communication. In such communication
new commitments and tasks might be defined, which again must be coordinated
to be accomplished in cooperation. Apart from this cyclic aspect of cooperation,
Gerosa et al. place awareness in a central position in Figure 1.2. Every user action
that is performed during communication, coordination, or cooperation generates
information. Some of this information involves two or even more users, and should
be made available to all cooperating users so that they can become aware of each
other. This helps to mediate further communication, coordination, and cooperation.
Based on this information, users are able to build up a shared understanding of their
common group goals and to synchronize their cooperation.

Now that we have clarified our understanding of groupware, the following section
presents a scenario in the not too far distant future. This will serve as a running
scenario throughout the book. It will relate the patterns in the book to a practical
example and show how they can be applied in the scenario.



10 Chapter 1 Introduction

1.2 A Day with Paul Smith

Join us on a ride with a time machine. Our destination is a typical working day
in the life of Paul Smith. Paul is a software engineer and works in the software
development department of a leading entertainment device company in London.
Currently, Paul is the project leader in the COGE project in which a Cooperative
Game Engine is being developed.

Paul’s company has subsidiaries all over the world. The members of Paul’s team
are distributed as shown in Figure 1.3. One team of developers is located in Rio
de Janeiro, one in London, and a third in Hong Kong. The main customer is
a large game manufacturer located in Germany, which has the goal of building
an educational game that helps better understanding of water supply in African
countries. The game manufacturer has a group of African pilot users located in
Ethiopia and Malawi.

Figure 1.3 Distribution of the team members in Paul’s project

Most of the projects in Paul’s department are performed in teams to benefit from
the synergy of people with varied expertise. Currently, the following interaction
constellations are present in the COGE project: the developers from London continue
to work on the results that were created only hours before in Hong Kong. Both
software teams communicate to plan the internal architecture of the game engine.
In other meetings, the London team collaborates with the German customer, which
integrates the game engine in its project. The German customer also communicates
with some of the developers in Hong Kong or Rio if time shifts allow interaction.



1.2 A Day with Paul Smith 11

Finally, the German customer interacts with their pilot users and collects suggestions
from them on how the game could be improved.

For their common tasks, team members interact daily using their computing
devices. Let’s now take a look how Paul’s typical working day starts.

6:30 AM. The alarm-clock rings and Paul gets out of bed. After a shower and a
shave Paul prepares his breakfast. While eating his cereal and enjoying his freshly
brewed coffee, Paul has a look at his electronic newspaper (see Figure 1.4). The
electronic newspaper is connected to the Internet. According to the preferences
Paul has configured, the electronic newspaper shows Paul the latest news in specific
categories in which he is interested. Paul is an enthusiastic member of the pattern
community and participates in a online community that writes, discusses, and
shepherds patterns. He has therefore configured a special section in his electronic
newspaper that shows him the latest pattern community news and information about
his buddies. The daily report tells Paul what has happened in his online community
and allows him to keep track of interesting discussions. A sidebar in the newspaper
shows Paul’s buddy list. As some of Paul’s buddies are already awake, Paul has a
short chat with them and agrees to arrange a meeting in the evening.

Figure 1.4 Paul has his breakfast

To plan his working day, Paul checks his main tasks for the day and the
achievements of his colleagues during the night. In Hong Kong they have solved
one of the major problems with the network protocol for the new cooperative game
engine. However, the solution has raised some new problems in a module that is
developed by the team in Rio. Paul therefore decides to announce a meeting with
the colleagues in Rio for the afternoon. He enters the collaboration space and sends
invitations to those involved.



12 Chapter 1 Introduction

8:30 AM. Paul leaves his house in a small neighborhood in the London suburbs,
gets into his car, and sets off for his office in the city. In the car Paul recalls the
destination from his favorite destinations folder. The navigation system of the car
not only connects to GPS satellites, but also to the Internet to plan the best route into
the city. It uses GPS to detect Paul’s position and the Internet to avoid traffic jams.
Additionally, Paul sends his route to his office in an online travel portal that mediates
travel mates. Travel mates are selected not only according the destination but also
according to Paul’s topics of interest. The latter is quite important for Paul, as he
does not want to share a ride with someone with whom he has nothing to talk about.
In most cases, this allows Paul to pick up a travel mate on his way into the city.

Figure 1.5 Paul looks for a new travel mate

This morning the travel portal suggests a new travel mate (see Figure 1.5). Paul
does not know this person, but the portal uses a recommendation system, and the
travel mate is ranked as a trustworthy and interesting person. Paul has an additional
look at the user gallery and reads the introduction of the proposed travel mate. Paul
is satisfied with the suggestion and decides to stop on his way into the city and to
pick up the suggested travel mate. The car navigation system calculates the estimated
pick-up time and notifies the travel mate. It also keeps the travel mate aware of
probable changes so that she does not have to wait too long.

9:30 AM. After picking up the travel mate and dropping her at her destination,
Paul arrives in his office. A biometric security check at the entrance proves Paul’s
identity, and Paul moves to the project’s group room where he meets his colleagues.
Video screens show the offices of colleagues in Frankfurt, Hong Kong, and Rio
de Janeiro in a permanent video stream. One of the colleagues in London starts
a discussion about the project’s current problems. Paul suggests postponing the
discussion until the afternoon when colleagues from Brazil will also be available.
Currently, nobody is in the office in Rio, as it is not yet morning there.

As plenty of time is left before the general meeting, Paul joins a group that discusses
the software architecture of the current project (see Figure 1.6). This group meets in



1.2 A Day with Paul Smith 13

Figure 1.6 Paul participates in a virtual reality conference about the software architecture
of the current project

a special room that allows 3D projections. Currently, the group is discussing parts
of the architecture for the user interface. Luckily, this group is not affected by the
problem that was raised by the solution from China, and makes good progress.

When the meeting about the software architecture is over, Paul goes to his office
to start up his desktop computer. He enters the group’s collaboration space and is
pleased to see that everyone has accepted his invitation to discuss the new problems
with the network protocol. The collaboration space also notifies Paul about newly
received mails, who else is on line in the collaboration space, and open tasks. As
the group has decided to use an open awareness concept, Paul can also see what
everyone is currently doing by moving his mouse cursor over the images in his
buddy list. This information is often used to start a spontaneous collaboration and
discussion about ongoing problems. However, teammates who do not want to be
disturbed indicate this in the buddy list so that the collaboration space does not
allow direct communication.

1:00 PM. After a few more hours of work and a good lunch in the company’s
canteen, it is time for the group meeting to discuss the new problems with the
network protocol. The video screens show that the necessary people are available
at all locations. Paul contacts them and announces the start of the meeting, and all
his colleagues move to the group meeting room. This room is equipped with the
3D projector Paul used in the morning. This projector displays video streams for
each participant from the various locations (see Figure 1.7), the virtual room for
the meeting in the team’s collaboration space, and the current shared documents
containing the description of the network protocol. This allows everyone to see each
other and the material for discussion.



14 Chapter 1 Introduction

Figure 1.7 Paul participates in a conference to discuss problems with his colleagues
overseas

Paul opens the meeting by passing the floor to his colleague Gwan in Hong
Kong. Gwan explains how they have solved one of the major problems with the
network protocol. To do this, Gwan uses a virtual pointer that allows him to point
to the corresponding lines in the source code. Other colleagues can discuss Gwan’s
presentation using synchronous textual chat so that Gwan is not disturbed. They
can also annotate the source code and post questions to a blackboard that will be
discussed after Gwan’s explanation.

Everyone is impressed with Gwan’s presentation, although they know that his
solution raises a new problem. After the open questions have been answered, Paul
hands the moderation over to Rio de Janeiro and Ana explains the new problem.
Ana’s presentation raises a lot of open questions on the shared blackboard. The
group clusters the open questions and splits into subgroups to address these question
clusters. The subgroups create new virtual rooms in the team’s collaboration
space to discuss the open questions. Before the groups retreat to their new virtual
rooms, Paul schedules a new meeting for tomorrow for the groups to present their
results.

4:00 PM. Paul has his last meeting for the day. David, a colleague from Detroit,
visits the lab. After giving David a short guided tour of the office, Paul tells him about
the new problems with the network protocol. David starts smiling, as he knows
how to solve part of the problem. Paul and David therefore enter the collaboration
space and knock at the virtual door of the subgroup that formed this afternoon



1.2 A Day with Paul Smith 15

and whose questions David can answer. David offers himself as a mentor and to
explain the technology that can solve part of the problem. Soon, David and the
other colleagues are in deep discussion and Paul leaves to do other work in his
office. Two hours later, David leaves the lab to catch his flight back to Detroit. The
subgroup tells Paul that they have nominated David as an expert for specific topics
in the collaboration space. This might help David with his next evaluation and wage
bargaining.

8:00 PM. Paul has finally finished his most important tasks for the day. He uses
his MDA1 to connect to his online community. As soon as he is on line his friends
contact him. They had thought that Paul had forgotten about their appointment.
Paul had, and excuses himself for being late. Paul’s friends suggest watching a movie
in one of the new cinemas downtown. A quick vote shows that all agree. They run
a recommender system for movies, and after a short discussion agree on what to
see (see Figure 1.8). Adriana offers to buy the tickets and reserve the seats in the
cinema’s online booking system.

So a long working day finally ends, and Paul leaves his office to watch a movie
with his friends. We can step back into our time machine and go on a short ride
back to the present.

Figure 1.8 Paul uses the recommender system

1MDA is an abbreviation for mobile digital assistant which is a combination of a mobile phone and a
personal digital assistant (PDA).



16 Chapter 1 Introduction

1.3 Outline

The scenario of Paul Smith shows one vision of the future. Our main prediction
is that in future people will interact more and more using computing devices. In
combination with software these computing devices will mediate interaction among
people.

As the overview of groupware approaches shows, the scenario is not too far in the
future, as most of the computer-mediated interaction it describes already happens
in our lives, although not as an integral part of daily life. To mention a few, Paul’s
day starts with a look at the Periodic Report of his favorite online community,
then at his Buddy List to see who else is already on line. The team is using a
collaboration space that is based on virtual Rooms, Paul’s colleague David acts as a
Mentor, and finally Paul and his friends use a recommender system with Letters
of Recommendation to select a movie for the evening.

The terms set in Small Caps are patterns that are part of our pattern language for
computer-mediated interaction. These and other patterns can be found in different
chapters of this book, which is structured as follows:

— Chapter 2 From Patterns to a Pattern-oriented Development Process introduces
the reader to the theory of patterns. It looks at the original and more recent
publications by Christopher Alexander. Using an end-user centered view, we
transfer ideas to the domain of computer-mediated interaction. This results in
a pattern form that is different than the pattern forms used in more technical
pattern languages. While technical pattern languages use design diagrams or
code fragments to illustrate solutions, we prefer a narrative way of presenting
the patterns. This ensures that both end users and developers will be able to
read the solution.

In the remaining part of this chapter, we will introduce OSDP, a pattern-
oriented process for groupware development, which is based on piecemeal
growth via short design and development iterations, as well as frequent
diagnosis and reflection on working practices and how the application supports
them.

— Chapter 3 Community Support describes patterns at a high level of abstraction.
The patterns in this chapter describe group processes and the use of computer
technology to support such processes. Its main focus lies on the early phases
of the group process. It answers questions such as:

How to arrive in the community
How to find out what is interesting in the community
How to protect users

— Chapter 4 Group Support provides patterns at the user interface level of a
collaborative application. The patterns are both technical (describing how to



1.3 Outline 17

design group interfaces) and social (elaborating on successful application of
groupware technology). Problems solved are:

How to modify shared material together
How to shape places for collaboration
How to organize textual communication
How to become aware of other user’s actions
How to notice absent participants

— Chapter 5 Base Technology discusses the technical layer of groupware appli-
cations. The patterns are mainly technical and answer the questions:

How systems bootstrap for collaboration
How systems manage shared data
How systems ensure data consistency

— Chapter 6 Examples of Applying the Pattern Language presents two case
studies, one on BCSW and another on CoWord. These case studies show how
group interaction can be supported by HCHI technology. The goal of this
chapter is to put the patterns together and to illustrate how they are used by
two well-known groupware applications.



18 Chapter 1 Introduction

1.4 Acknowledgments

The patterns in this book have evolved over the last five years with the help of many
brilliant practitioners in the areas of groupware development, human computer
interaction, software development, and social practice design. We would like to
express our deepest thanks to all of them and hope that we have not forgotten too
many of the colleagues who crossed our paths in the last years.

When we made our first steps towards a groupware pattern language, we had
discussions with Alejandro Fernandez, Torsten Holmer (who also contributed the
pictures of Paul in the introduction), Jessica Rubart, and Robert Slagter. These
discussions were the seed for the idea of a comprehensive groupware pattern
language, although we did not anticipate that we would finally manage to write all
the patterns in these days.

Our first attempt to write patterns was made in the publication of three initial
awareness patterns that were discussed at EuroPLoP 2002. When we look back at
the results of this attempt, those patterns look rather naïve now. However, getting in
touch with the pattern culture of the EuroPLoP community was probably the most
important step towards this book. In endless discussions with shepherds and other
authors in writer’s workshops we learned to express our patterns in a hopefully
clear way that is useful to the book’s audience. We are indebted to the EuroPLoP
community for being both open to novice pattern authors and at the same time
showing a high level of professionalism in the craft of pattern writing.

The following people invested many hours of their time by acting as shepherds
for patterns in this book and providing numerous suggestions for improvement:
Antonio Rito Silva (EuroPLoP 2002), Kristian Elof Soerensen (EuroPLoP 2003),
Joseph Bergin (EuroPLoP 2004), Andreas Rüping (EuroPLoP 2004), Uwe Zdun
(CHI2004), Alan O’Callaghan (EuroPLoP 2005), Lise B. Hvatum (EuroPLoP 2005),
Ofra Homsky (EuroPLoP 2006), and Munawar Hafiz (PLoP 2006). Uwe Zdun in
addition helped us as a shepherd for the whole book. His critical comments forced
us to concentrate on the core patterns of the language and bring them to the shape
you see today.

Almost seventy pattern authors commented our patterns in writer’s workshops at
EuroPLoP and PLoP, as well as in pattern workshops at the CSCW conference, the
European CSCW conference (ECSCW), and the CHI conference. They are, in alpha-
betic order: Juan I. Asensio, Paris Avgeriou, Pippin Barr, Joseph Bergin, Bettina Biel,
Diethelm Bienhaus, Jan Borchers, Andrea Botero Cabrera, Lynwood Brown, Mishka
Bugajska, Frank Buschmann, Jens Coldeway, Andy Crabtree, Catalina Danis, Jutta
Eckstein, Amr Elssamadisy, Tom Erickson, Karl Flieder, Richard Gabriel, Ian
Graham, Sharon Greene, Tom Gross, Liz Guy, Darren Hayes, Fabian Hermann,
Thomas Herrmann, Rod Holland, Torsten Holmer, Stefan Holtel, Ofra Homsky,
Lise Hvatum, Mads Ingstrup, Jim Kile, Daniel Kluender, Kari-Hans Kommonen,
Gabriele Kunau, Greg Laudemen, Jouni Linkola, Donald Little, Rui Lopes, Michael



1.4 Acknowledgments 19

Lyons, Mary Lynn Manns, Mika Myller, Mark Prince, Amir Raveh, Simos Retalis,
Rebecca Rikner, Judy Roell, Andreas Rüping, Andy Schneider, Dirk Schnelle, Wol-
fram Schobert, Didi Schütz, Helen Sharp, Marianna Sipos, Guy Steele, Winfried
Tautges, Lucia Terrenghi, John C. Thomas, Markus Völter, Aake Walldius, Charles
Weir, Michael Weiss, Leon Welicki, Dave West, Elizabeth Whitworth, Michael
Wissen, Mary Zajicek, Uwe Zdun, and Jürgen Ziegler.

Several colleagues in the research field of Computer-Supported Collaborative
Work (CSCW) provided us with interesting insights into research prototypes, par-
ticipated in discussions on the nature of collaborative applications, or helped us to
find known uses for the patterns in this book. To name only the most important
contributors, we would like to thank Christian Schuckmann, Jan Schümmer, Hol-
ger Kleinsorgen, Hans Scholz, Andrea Kienle, Peter Tandler, Michael Koch, and
Carl Gutwin. Special thanks are due to Elke Hinrichs (Fraunhofer FIT), Wolfgang
Graether (Fraunhofer FIT), and Thomas Koch (OrbiTeam) for giving us a guided
tour through the visual and invisible parts of BSCW. Their input greatly helped to
document the BSCW case study. Similarly, special thanks are due to Chengzheng
Sun and Steven Xia, of the School of Computer Engineering, Nanyang Technological
University, Singapore, for their help and input for the CoWord case study.

Jörg and Anja Haake encouraged us to use the book in our classes on designing
collaborative systems. We hope that many classes of future students will benefit from
this decision. In this context, we would also like to thank our students, who started
using the pattern language from the winter term 2004. Observing their use of the
pattern language to design collaborative applications helped us to see the language
from a student’s point of view.

We thank all the people who have actively participated in the production of the
book. These are the series editor Frank Buschmann, Gaynor Redvers-Mutton, Sally
Tickner, Rosie Kemp, Andrew Kennerley, Hannah Clement, and everyone else at
John Wiley & Sons. Special thanks are due to our copy-editor Steve Rickaby, who
showed patience even on a very tight schedule. It was a pleasure to discuss the
nuances of the English language with Steve.

Above all, we would like to express our gratitude to our families. Without their
support, a book like this would not have been possible.

And finally, we thank you for your interest in this book. We hope that our pattern
language will prove useful to you and become a tool in your daily work when
shaping better computer-mediated interaction.




