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1.1 INTRODUCTION

Clustering is an unsupervised learning task that aims at decomposing a given set of objects into subgroups

or clusters based on similarity. The goal is to divide the data-set in such a way that objects (or example

cases) belonging to the same cluster are as similar as possible, whereas objects belonging to different

clusters are as dissimilar as possible. The motivation for finding and building classes in this way can be

manifold (Bock, 1974). Cluster analysis is primarily a tool for discovering previously hidden structure in a

set of unordered objects. In this case one assumes that a ‘true’ or natural grouping exists in the data.

However, the assignment of objects to the classes and the description of these classes are unknown. By

arranging similar objects into clusters one tries to reconstruct the unknown structure in the hope that every

cluster found represents an actual type or category of objects. Clustering methods can also be used for data

reduction purposes. Then it is merely aiming at a simplified representation of the set of objects which

allows for dealing with a manageable number of homogeneous groups instead of with a vast number of

single objects. Only some mathematical criteria can decide on the composition of clusters when classify-

ing data-sets automatically. Therefore clustering methods are endowed with distance functions that

measure the dissimilarity of presented example cases, which is equivalent to measuring their similarity.

As a result one yields a partition of the data-set into clusters regarding the chosen dissimilarity relation.

All clustering methods that we consider in this chapter are partitioning algorithms. Given a positive

integer c, they aim at finding the best partition of the data into c groups based on the given dissimilarity

measure and they regard the space of possible partitions into c subsets only. Therein partitioning clustering

methods are different from hierarchical techniques. The latter organize data in a nested sequence of

groups, which can be visualized in the form of a dendrogram or tree. Based on a dendrogram one can

decide on the number of clusters at which the data are best represented for a given purpose. Usually the

number of (true) clusters in the given data is unknown in advance. However, using the partitioning

methods one is usually required to specify the number of clusters c as an input parameter. Estimating the

actual number of clusters is thus an important issue that we do not leave untouched in this chapter.
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A common concept of all described clustering approaches is that they are prototype-based, i.e., the

clusters are represented by cluster prototypes Ci, i ¼ 1; . . . ; c. Prototypes are used to capture the structure

(distribution) of the data in each cluster. With this representation of the clusters we formally denote the set

of prototypes C ¼ fC1; . . . ;Ccg. Each prototype Ci is an n-tuple of parameters that consists of a cluster

center ci (location parameter) and maybe some additional parameters about the size and the shape of the

cluster. The cluster center ci is an instantiation of the attributes used to describe the domain, just as the data

points in the data-set to divide. The size and shape parameters of a prototype determine the extension of

the cluster in different directions of the underlying domain. The prototypes are constructed by the

clustering algorithms and serve as prototypical representations of the data points in each cluster.

The chapter is organized as follows: Section 1.2 introduces the basic approaches to hard, fuzzy, and

possibilistic clustering. The objective function they minimize is presented as well as the minimization

method, the alternating optimization (AO) scheme. The respective partition types are discussed and

special emphasis is put on a thorough comparison between them. Further, an intuitive understanding of

the general properties that distinguish their results is presented. Then a systematic overview of more

sophisticated fuzzy clustering methods is presented. In Section 1.3, the variants that modify the used

distance functions for detecting specific cluster shapes or geometrical contours are discussed. In

Section 1.4 variants that modify the optimized objective functions for improving the results regarding

specific requirements, e.g., dealing with noise, are reviewed. Lastly, in Section 1.5, the alternating cluster

estimation framework is considered. It is a generalization of the AO scheme for cluster model optimiza-

tion, which offers more modeling flexibility without deriving parameter update equations from opti-

mization constraints. Section 1.6 concludes the chapter pointing at related issues and selected

developements in the field.

1.2 BASIC CLUSTERING ALGORITHMS

In this section, we present the fuzzy C-means and possibilistic C-means, deriving them from the hard

c-means clustering algorithm. The latter one is better known as k-means, but here we call it (hard) C-

means to unify the notation and to emphasize that it served as a starting point for the fuzzy extensions. We

further restrict ourselves to the simplest form of cluster prototypes at first. That is, each prototype only

consists of the center vectors, Ci ¼ ðciÞ, such that the data points assigned to a cluster are represented by a

prototypical point in the data space. We consider as a distance measure d an inner product norm induced

distance as for instance the Euclidean distance. The description of the more complex prototypes and other

dissimilarity measures is postponed to Section 1.3, since they are extensions of the basic algorithms

discussed here.

All algorithms described in this section are based on objective functions J, which are mathematical

criteria that quantify the goodness of cluster models that comprise prototypes and data partition.

Objective functions serve as cost functions that have to be minimized to obtain optimal cluster solutions.

Thus, for each of the following cluster models the respective objective function expresses desired

properties of what should be regarded as ‘‘best’’ results of the cluster algorithm. Having defined such a

criterion of optimality, the clustering task can be formulated as a function optimization problem. That is,

the algorithms determine the best decomposition of a data-set into a predefined number of clusters by

minimizing their objective function. The steps of the algorithms follow from the optimization scheme that

they apply to approach the optimum of J. Thus, in our presentation of the hard, fuzzy, and possibilistic

c-means we discuss their respective objective functions first. Then we shed light on their specific

minimization scheme.

The idea of defining an objective function and have its minimization drive the clustering process is quite

universal. Aside from the basic algorithms many extensions and modifications have been proposed that

aim at improvements of the clustering results with respect to particular problems (e.g., noise, outliers).

Consequently, other objective functions have been tailored for these specific applications. We address the

most important of the proposed objective function variants in Section 1.4. However, regardless of the

specific objective function that an algorithm is based on, the objective function is a goodness measure.
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Thus it can be used to compare several clustering models of a data-set that have been obtained by the same

algorithm (holding the number of clusters, i.e., the value of c, fixed).

In their basic forms the hard, fuzzy, and possibilistic C-means algorithms look for a predefined number

of c clusters in a given data-set, where each of the clusters is represented by its center vector. However,

hard, fuzzy, and possibilistic C-means differ in the way they assign data to clusters, i.e., what type of data

partitions they form. In classical (hard) cluster analysis each datum is assigned to exactly one cluster.

Consequently, the hard C-means yield exhaustive partitions of the example set into non-empty and

pairwise disjoint subsets. Such hard (crisp) assignment of data to clusters can be inadequate in the

presence of data points that are almost equally distant from two or more clusters. Such special data points

can represent hybrid-type or mixture objects, which are (more or less) equally similar to two or more

types. A crisp partition arbitrarily forces the full assignment of such data points to one of the clusters,

although they should (almost) equally belong to all of them. For this purpose the fuzzy clustering

approaches presented in Sections 1.2.2 and 1.2.3 relax the requirement that data points have to be assigned

to one (and only one) cluster. Data points can belong to more than one cluster and even with different

degrees of membership to the different clusters. These gradual cluster assignments can reflect present

cluster structure in a more natural way, especially when clusters overlap. Then the memberships of data

points at the overlapping boundaries can express the ambiguity of the cluster assignment.

The shift from hard to gradual assignment of data to clusters for the purpose of more expressive data

partitions founded the field of fuzzy cluster analysis. We start our presentation with the hard C-means and

later on we point out the relatedness to the fuzzy approaches that is evident in many respects.

1.2.1 Hard c-means

In the classical C-means model each data point xj in the given data-set X ¼ fx1; . . . ; xng, X � Rp is

assigned to exactly one cluster. Each cluster �i is thus a subset of the given data-set, �i � X. The set of

clusters � ¼ f�1; . . . ;�cg is required to be an exhaustive partition of the data-set X into c non-empty and

pairwise disjoint subsets �i, 1 < c < n. In the C-means such a data partition is said to be optimal when the

sum of the squared distances between the cluster centers and the data points assigned to them is minimal

(Krishnapuram and Keller, 1996). This definition follows directly from the requirement that clusters

should be as homogeneous as possible. Hence the objective function of the hard C-means can be written as

follows:

JhðX;Uh;CÞ ¼
Xc

i¼1

Xn

j¼1

uijd
2
ij; ð1:1Þ

where C ¼ fC1; . . . ;Ccg is the set of cluster prototypes, dij is the distance between xj and cluster center ci,

U is a c� n binary matrix called partition matrix. The individual elements

uij 2 f0; 1g ð1:2Þ

indicate the assignment of data to clusters: uij ¼ 1 if the data point xj is assigned to prototype Ci, i.e.,

xj 2 �i; and uij ¼ 0 otherwise. To ensure that each data point is assigned exactly to one cluster, it is

required that: Xc

i¼1

uij ¼ 1; 8j 2 f1; . . . ; ng: ð1:3Þ

This constraint enforces exhaustive partitions and also serves the purpose to avoid the trivial solution

when minimizing Jh, which is that no data is assigned to any cluster: uij ¼ 0; 8i; j. Together with

uij 2 f0; 1g it is possible that data are assigned to one or more clusters while there are some remaining

clusters left empty. Since such a situation is undesirable, one usually requires that:

Xn

j¼1

uij > 0; 8i 2 f1; . . . ; cg: ð1:4Þ
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Jh depends on the two (disjoint) parameter sets, which are the cluster centers c and the assignment of data

points to clusters U. The problem of finding parameters that minimize the C-means objective function is

NP-hard (Drineas et al., 2004). Therefore, the hard C-means clustering algorithm, also known as

ISODATA algorithm (Ball and Hall, 1966; Krishnapuram and Keller, 1996), minimizes Jh using an

alternating optimization (AO) scheme.

Generally speaking, AO can be applied when a criterion function cannot be optimized directly, or when

it is impractical. The parameters to optimize are split into two (or even more) groups. Then one group of

parameters (e.g., the partition matrix) is optimized holding the other group(s) (e.g., the current cluster

centers) fixed (and vice versa). This iterative updating scheme is then repeated. The main advantage of

this method is that in each of the steps the optimum can be computed directly. By iterating the two (or

more) steps the joint optimum is approached, although it cannot be guaranteed that the global optimum

will be reached. The algorithm may get stuck in a local minimum of the applied objective function J.

However, alternating optimization is the commonly used parameter optimization method in clustering

algorithms. Thus for each of the algorithms in this chapter we present the corresponding parameter update

equations of their alternating optimization scheme.

In the case of the hard C-means the iterative optimization scheme works as follows: at first initial cluster

centers are chosen. This can be done randomly, i.e., by picking c random vectors that lie within the

smallest (hyper-)box that encloses all data; or by initializing cluster centers with randomly chosen data

points of the given data-set. Alternatively, more sophisticated initialization methods can be used as well,

e.g., Latin hypercube sampling (McKay, Beckman and Conover, 1979). Then the parameters C are held

fixed and cluster assignments U are determined that minimize the quantity of Jh. In this step each data

point is assigned to its closest cluster center:

uij ¼
1; if i ¼ argminc

l¼1dlj

0; otherwise :

�
ð1:5Þ

Any other assignment of a data point than to its closest cluster would not minimize Jh for fixed clusters.

Then the data partition U is held fixed and new cluster centers are computed as the mean of all data vectors

assigned to them, since the mean minimizes the sum of the square distances in Jh. The calculation of the

mean for each cluster (for which the algorithm got its name) is stated more formally:

ci ¼
Pn

j¼1 uijxjPn
j¼1 uij

: ð1:6Þ

The two steps (1.5) and (1.6) are iterated until no change in C or U can be observed. Then the hard C-

means terminates, yielding final cluster centers and data partition that are possibly locally optimal only.

Concluding the presentation of the hard C-means we want to mention its expressed tendency to become

stuck in local minima, which makes it necessary to conduct several runs of the algorithm with different

initializations (Duda and Hart, 1973). Then the best result out of many clusterings can be chosen based on

the values of Jh.

We now turn to the fuzzy approaches, that relax the requirement uij 2 f0; 1g that is placed on the cluster

assignments in classical clustering approaches. The extensions are based on the concepts of fuzzy sets

such that we arrive at gradual memberships. We will discuss two major types of gradual cluster assign-

ments and fuzzy data partitions altogether with their differentiated interpretations and standard algo-

rithms, which are the (probabilistic) fuzzy C-means (FCM) in the next section and the possibilistic fuzzy

C-means (PCM) in Section 1.2.3.

1.2.2 Fuzzy c-means

Fuzzy cluster analysis allows gradual memberships of data points to clusters measured as degrees in [0,1].

This gives the flexibility to express that data points can belong to more than one cluster. Furthermore,

these membership degrees offer a much finer degree of detail of the data model. Aside from assigning a

data point to clusters in shares, membership degrees can also express how ambiguously or definitely a data
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point should belong to a cluster. The concept of these membership degrees is substantiated by the

definition and interpretation of fuzzy sets (Zadeh, 1965). Thus, fuzzy clustering allows fine grained

solution spaces in the form of fuzzy partitions of the set of given examples X ¼ fx1; . . . ; xng. Whereas the

clusters �i of data partitions have been classical subsets so far, they are represented by the fuzzy sets��i
of

the data-set X in the following. Complying with fuzzy set theory, the cluster assignment uij is now the

membership degree of a datum xj to cluster �i, such that: uij ¼ ��i
ðxjÞ 2 ½0; 1�. Since memberships to

clusters are fuzzy, there is not a single label that is indicating to which cluster a data point belongs. Instead,

fuzzy clustering methods associate a fuzzy label vector to each data point xj that states its memberships to

the c clusters:

uj ¼ ðu1j; . . . ; ucjÞT : ð1:7Þ

The c� n matrix U ¼ ðuijÞ ¼ ðu1; . . . ; unÞ is then called a fuzzy partition matrix. Based on the fuzzy set

notion we are now better suited to handle ambiguity of cluster assignments when clusters are badly

delineated or overlapping.

So far, the general definition of fuzzy partition matrices leaves open how assignments of data to more

than one cluster should be expressed in form of membership values. Furthermore, it is still unclear what

degrees of belonging to clusters are allowed, i.e., the solution space (set of allowed fuzzy partitions) for

fuzzy clustering algorithms is not yet specified. In the field of fuzzy clustering two types of fuzzy cluster

partitions have evolved. They differ in the constraints they place on the membership degrees and how the

membership values should be interpreted. In our discussion we begin with the most widely used type, the

probabilistic partitions, since they have been proposed first. Notice, that in literature they are sometimes

just called fuzzy partitions (dropping the word ‘probabilistic’). We use the subscript f for the probabilis-

tic approaches and, in the next section, p for the possibilistic models. The latter constitute the second type

of fuzzy partitions.

Let X ¼ fx1; . . . ; xng be the set of given examples and let c be the number of clusters ð1 < c < nÞ
represented by the fuzzy sets ��i

, ði ¼ 1; . . . ; cÞ. Then we call Uf ¼ ðuijÞ ¼ ð��i
ðxjÞÞ a probabilistic

cluster partition of X if

Xn

j¼1

uij > 0; 8i 2 f1; . . . ; cg; and ð1:8Þ

Xc

i¼1

uij ¼ 1; 8j 2 f1; . . . ; ng ð1:9Þ

hold. The uij 2 ½0; 1� are interpreted as the membership degree of datum xj to cluster �i relative to all other

clusters.

Constraint (1.8) guarantees that no cluster is empty. This corresponds to the requirement in classical

cluster analysis that no cluster, represented as (classical) subset of X, is empty (see Equation (1.4)).

Condition (1.9) ensures that the sum of the membership degrees for each datum equals 1. This means that

each datum receives the same weight in comparison to all other data and, therefore, that all data are

(equally) included into the cluster partition. This is related to the requirement in classical clustering that

partitions are formed exhaustively (see Equation (1.3)). As a consequence of both constraints no cluster

can contain the full membership of all data points. Furthermore, condition (1.9) corresponds to a

normalization of the memberships per datum. Thus the membership degrees for a given datum formally

resemble the probabilities of its being a member of the corresponding cluster.

Example: Figure 1.1 shows a (probabilistic) fuzzy classification of a two-dimensional symmetric data-

set with two clusters. The grey scale indicates the strength of belonging to the clusters. The darker shading

in the image indicates a high degree of membership for data points close to the cluster centers, while

membership decreases for data points that lie further away from the clusters. The membership values of

the data points are shown in Table 1.1. They form a probabilistic cluster partition according to the

definition above. The following advantages over a conventional clustering representation can be noted:

points in the center of a cluster can have a degree equal to 1, while points close to boundaries can be
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identified as such, since their membership degree to the cluster they are closer to is considerably smaller

than 1. Points on class boundaries may be classified as undetermined with a degree of indeterminacy

proportional to their similarity to core points. The equidistant data point x5 in the middle of the figure

would have to be arbitrarily assigned with full weight to one of the clusters if only classical (‘crisp’)

partitions were allowed. In this fuzzy partition, however, it can be associated with the equimembership

vector ð0:5; 0:5ÞT to express the ambiguity of the assignment. Furthermore, crisp data partitions cannot

express the difference between data points in the center and those that are rather at the boundary of a

cluster. Both kinds of points would be fully assigned to the cluster they are most similar to. In a fuzzy

cluster partition they are assigned degrees of belonging depending on their closeness to the centers.

After defining probabilistic partitions we can turn to developing an objective function for the fuzzy

clustering task. Certainly, the closer a data point lies to the center of a cluster, the higher its degree of

membership should be to this cluster. Following this rationale, one can say that the distances between the

cluster centers and the data points (strongly) assigned to it should be minimal. Hence the problem to

divide a given data-set into c clusters can (again) be stated as the task to minimize the squared distances of

the data points to their cluster centers, since, of course, we want to maximize the degrees of membership.

The probabilistic fuzzy objective function Jf is thus based on the least sum of squared distances just as Jh

Figure 1.1 A symmetric data-set with two clusters.

Table 1.1 A fuzzy partition of the symmetric data-set.

j x y u0j u1j

0 
3 0 0.93 0.07

1 
2 0 0.99 0.01

2 
1 0 0.94 0.06

3 
2 1 0.69 0.31

4 
2 
1 0.69 0.31

5 0 0 0.50 0.50

6 1 0 0.06 0.94

7 2 0 0.01 0.99

8 3 0 0.07 0.93

9 2 1 0.31 0.69

10 2 
1 0.31 0.69
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of the hard C-means. More formally, a fuzzy cluster model of a given data-set X into c clusters is defined to

be optimal when it minimizes the objective function:

Jf ðX;Uf ;CÞ ¼
Xc

i¼1

Xn

j¼1

um
ij d2

ij; ð1:10Þ

under the constraints (1.8) and (1.9) that have to be satisfied for probabilistic membership degrees in Uf .

The condition (1.8) avoids the trivial solution of minimization problem, i.e., uij ¼ 0; 8i; j. The normal-

ization constraint (1.9) leads to a ‘distribution’ of the weight of each data point over the different clusters.

Since all data points have the same fixed amount of membership to share between clusters, the normal-

ization condition implements the known partitioning property of any probabilistic fuzzy clustering

algorithm. The parameter m;m > 1, is called the fuzzifier or weighting exponent. The exponentiation

of the memberships with m in Jf can be seen as a function g of the membership degrees, gðuijÞ ¼ um
ij , that

leads to a generalization of the well-known least squared error functional as it was applied in the hard

c-means (see Equation (1.1)). The actual value of m then determines the ‘fuzziness’ of the classification. It

has been shown for the case m ¼ 1 (when Jh and Jf become identical), that cluster assignments remain

hard when minimizing the target function, even though they are allowed to be fuzzy, i.e., they are not

constrained in {0, 1} (Dunn, 1974b). For achieving the desired fuzzification of the resulting probabilistic

data partition the function gðuijÞ ¼ u2
ij has been proposed first (Dunn, 1974b). The generalization for

exponents m > 1 that lead to fuzzy memberships has been proposed in (Bezdek, 1973). With higher

values for m the boundaries between clusters become softer, with lower values they get harder. Usually

m ¼ 2 is chosen. Aside from the standard weighting of the memberships with um
ij other functions g that

can serve as fuzzifiers have been explored. Their influence on the memberships will be discussed in

Section 1.4.2.

The objective function Jf is alternately optimized, i.e., first the membership degrees are optimized for

fixed cluster parameters, then the cluster prototypes are optimized for fixed membership degrees:

U� ¼ jUðC�
1Þ; � > 0 and ð1:11Þ
C� ¼ jCðU� Þ: ð1:12Þ

In each of the two steps the optimum can be computed directly using the parameter update equations jU
and jC for the membership degrees and the cluster centers, respectively. The update formulae are derived

by simply setting the derivative of the objective function Jf w.r.t. the parameters to optimize equal to zero

(taking into account the constraint (1.9)). The resulting equations for the two iterative steps form the fuzzy

C-means algorithm.

The membership degrees have to be chosen according to the following update formula that is

independent of the chosen distance measure (Bezdek, 1981; Pedrycz, 2005):

uij ¼
1

Pc
l¼1

d2
ij

d2
lj

� � 1
m
1

¼
d

 2

m
1

ijPc
l¼1 d


 2
m
1

lj

: ð1:13Þ

In this case there exists a cluster i with zero distance to a datum xj, uij ¼ 1 and ulj ¼ 0 for all other clusters

l 6¼ i. The above equation clearly shows the relative character of the probabilistic membership degree. It

depends not only on the distance of the datum xj to cluster i, but also on the distances between this data

point and other clusters.

The update formulae jC for the cluster parameters depend, of course, on the parameters used to describe

a cluster (location, shape, size) and on the chosen distance measure. Therefore a general update formula

cannot be given. In the case of the basic fuzzy C-means model the cluster center vectors serve as

prototypes, while an inner product norm induced metric is applied as distance measure. Consequently the

derivations of Jf w.r.t. the centers yield (Bezdek, 1981):

ci ¼
Pn

j¼1 um
ij xjPn

j¼1 um
ij

: ð1:14Þ
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The choice of the optimal cluster center points for fixed memberships of the data to the clusters has the

form of a generalized mean value computation for which the fuzzy C-means algorithm has its name.

The general form of the AO scheme of coupled equations (1.11) and (1.12) starts with an update of the

membership matrix in the first iteration of the algorithm (� ¼ 1). The first calculation of memberships is

based on an initial set of prototypes C0. Even though the optimization of an objective function could

mathematically also start with an initial but valid membership matrix (i.e., fulfilling constraints (1.8) and

(1.9)), a C0 initialization is easier and therefore common practice in all fuzzy clustering methods.

Basically the fuzzy C-means can be initialized with cluster centers that have been randomly placed in

the input space. The repetitive updating in the AO scheme can be stopped if the number of iterations �
exceeds some predefined number of maximal iterations �max, or when the changes in the prototypes are

smaller than some termination accuracy. The (probabilistic) fuzzy C-means algorithm is known as a

stable and robust classification method. Compared with the hard C-means it is quite insensitive to its

initialization and it is not likely to get stuck in an undesired local minimum of its objective function in

practice (Klawonn, 2006). Due to its simplicity and low computational demands, the probabilistic fuzzy

C-means is a widely used initializer for other more sophisticated clustering methods. On the theoretical

side it has been proven that either the iteration sequence itself or any convergent subsequence of the

probabilistic FCM converges in a saddle point or a minimum – but not in a maximum – of the objective

function (Bezdek, 1981).

1.2.3 Possibilistic c-means

Although often desirable, the ‘relative’ character of the probabilistic membership degrees can be

misleading (Timm, Borgett, Döring and Kruse, 2004). Fairly high values for the membership of datum

in more than one cluster can lead to the impression that the data point is typical for the clusters, but this is

not always the case. Consider, for example, the simple case of two clusters shown in Figure 1.2. Datum x1

has the same distance to both clusters and thus it is assigned a membership degree of about 0.5. This is

plausible. However, the same degrees of membership are assigned to datum x2 even though this datum is

further away from both clusters and should be considered less typical. Because of the normalization,

however, the sum of the memberships has to be 1. Consequently x2 receives fairly high membership

degrees to both clusters. For a correct interpretation of these memberships one has to keep in mind that

they are rather degrees of sharing than of typicality, since the constant weight of 1 given to a datum must

be distributed over the clusters. A better reading of the memberships, avoiding misinterpretations, would

be (Höppner, Klawonn, Kruse and Runkler 1999): ‘If the datum xi has to be assigned to a cluster, then with

the probability uij to the cluster i’.

The normalization of memberships can further lead to undesired effects in the presence of noise and

outliers. The fixed data point weight may result in high membership of these points to clusters, even

though they are a large distance from the bulk of data. Their membership values consequently affect the

clustering results, since data point weight attracts cluster prototypes. By dropping the normalization

constraint (1.9) in the following definition one tries to achieve a more intuitive assignment of degrees of

membership and to avoid undesirable normalization effects.

Figure 1.2 A situation in which the probabilistic assignment of membership degrees is counterintuitive for datum x2.
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Let X ¼ fx1; . . . ; xng be the set of given examples and let c be the number of clusters ð1 < c < nÞ
represented by the fuzzy sets ��i

, ði ¼ 1; . . . ; cÞ. Then we call Up ¼ ðuijÞ ¼ ð��i
ðxjÞÞ a possibilistic

cluster partition of X if

Xn

j¼1

uij > 0; 8i 2 f1; . . . ; cg ð1:15Þ

holds. The uij 2 ½0; 1� are interpreted as the degree of representativity or typicality of the datum xj to

cluster �i.

The membership degrees for one datum now resemble the possibility (in the sense of possibility theory

(Dubois and Prade, 1988) of its being a member of the corresponding cluster (Davé and Krishnapuram,

1997; Krishnapuram and Keller, 1993).

The objective function Jf that just minimizes the squared distances between clusters and assigned data

points would not be appropriate for possibilistic fuzzy clustering. Dropping the normalization constraint

leads to the mathematical problem that the objective function would reach its minimum for uij ¼ 0 for all

i 2 f1; . . . ; cg and j 2 f1; . . . ; ng, i.e., data points are not assigned to any cluster and all clusters are

empty. In order to avoid this trivial solution (that is also forbidden by constraint (1.15)), a penalty term is

introduced, which forces the membership degrees away from zero. That is, the objective function Jf is

modified to

JpðX;Up;CÞ ¼
Xc

i¼1

Xn

j¼1

um
ij d2

ij þ
Xc

i¼1

�i

Xn

j¼1

ð1
 uijÞm; ð1:16Þ

where �i > 0 (i ¼ 1; . . . ; c) (Krishnapuram and Keller, 1993). The first term leads to a minimization of the

weighted distances. The second term suppresses the trivial solution since this sum rewards high member-

ships (close to 1) that make the expression ð1
 uijÞm become approximately 0. Thus the desire for

(strong) assignments of data to clusters is expressed in the objective function Jp. In tandem with the first

term the high membership can be expected especially for data that are close to their clusters, since with a

high degree of belonging the weighted distance to a closer cluster is smaller than to clusters further away.

The cluster specific constants �i are used balance the contrary objectives expressed in the two terms of Jp.

It is a reference value stating at what distance to a cluster a data point should receive higher membership to

it. These considerations mark the difference to probabilistic clustering approaches. While in probabilistic

clustering each data point has a constant weight of 1, possibilistic clustering methods have to learn the

weights of data points.

The formula for updating the membership degrees that is derived from Jp by setting its derivative to

zero is (Krishnapuram and Keller, 1993):

uij ¼
1

1þ
d2

ij

�i

 ! 1
m
1

: ð1:17Þ

First of all, this update equation clearly shows that the membership of a datum xj to cluster i depends only

on its distance dij to this cluster. Small distance corresponds to high degree of membership whereas larger

distances (i.e., strong dissimilarity) results in low membership degrees. Thus the uij have typicality

interpretation.

Equation (1.17) further helps to explain the parameters �i of the clusters. Considering the case m ¼ 2

and substituting �i for d2
ij yields uij ¼ 0:5. It becomes obvious that �i is a parameter that determines the

distance to the cluster i at which the membership degree should be 0.5. Since that value of membership

can be seen as definite assignment to a cluster, the permitted extension of the cluster can be controlled with

this parameter. Depending on the cluster’s shape the �i have different geometrical interpretation. If

hyperspherical clusters as in the possibilistic C-means are considered,
ffiffiffiffi
�i
p

is their mean diameter. In shell

clustering
ffiffiffiffi
�i
p

corresponds to the mean thickness of the contours described by the cluster prototype

information (Höoppner, Klawonn, Kruse and Runkler 1999) (see Section 1.3.2). If such properties of the
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clusters to search for are known prior to the analysis of the given data, �i can be set to the desired value. If

all clusters have the same properties, the same value can be chosen for all clusters. However, the

information on the actual shape property described by �i is often not known in advance. In that case

these parameters must be estimated. Good estimates can be found using a probabilistic clustering model

of the given data-set. The �i are then estimated by the fuzzy intra-cluster distance using the fuzzy

memberships matrix Uf as it has been determined by the probabilistic counterpart of the chosen

possibilistic algorithm (Krishnapuram and Keller, 1993). That is, for all clusters (i ¼ 1; . . . ; n):

�i ¼
Pn

j¼1 um
ij d2

ijPn
j¼1 um

ij

: ð1:18Þ

Update equations jC for the prototypes are as well derived by simply setting the derivative of the

objective function Jp w.r.t. the prototype parameters to optimize equal to zero (holding the membership

degrees Up fixed). Looking at both objective functions Jf and Jp it can be inferred that the update

equations for the cluster prototypes in the possibilistic algorithms must be identical to their probabilistic

counterparts. This is due to the fact that the second, additional term in Jp vanishes in the derivative for

fixed (constant) memberships uij. Thus the cluster centers in the possibilistic C-means algorithm are

re-estimated as in Equation (1.14).

1.2.4 Comparison and Respective Properties of Probabilistic and
Possibilistic Fuzzy c-means

Aside from the different interpretation of memberships, there are some general properties that distinguish

the behaviour and the results of the possibilistic and probabilistic fuzzy clustering approaches.

Example: Figures 1.3 and 1.4 illustrate a probabilistic and a possibilistic fuzzy C-means classification of

the Iris data-set into three clusters (Blake and Merz, 1998; Fisher, 1936). The displayed partitions of the

data-set are the result of alternatingly optimizing Jf and Jp, respectively (Timm, Borgelt, Döring and

Kruse, 2004). The grey scale indicates the membership to the closest cluster. While probabilistic

memberships rather divide the data space, possibilistic membership degrees only depend on the typicality

to the respective closest clusters. On the left, the data-set is divided into three clusters. On the right, the

possibilistic fuzzy C-means algorithm detects only two clusters, since two of the three clusters in the

upper right of Figure 1.4 are identical. Note that this behaviour is specific to the possibilistic approach. In

the probabilistic counterpart the cluster centers are driven apart, because a cluster, in a way, ‘seizes’ part

of the weight of a datum and thus leaves less that may attract other cluster centers. Hence sharing a datum

between clusters is disadvantageous. In the possibilistic approach there is nothing that corresponds to this

effect.

Figure 1.3 Iris data-set classified with probalistic fuzzy C-means algorithm. Attributes petal length and petal width.
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1.2.4.1 Cluster Coincidence

One of the major characteristics in which the approaches differ lies in the fact that probabilistic algorithms

are forced to partition the data exhaustively while the corresponding possibilistic approaches are not

compelled to do so. The former distribute the total membership of the data points (sums up to one)

whereas the latter are rather required to determine the data point weights by themselves. Probabilistic

algorithms attempt to cover all data points with clusters, since sharing data point weight is disadvanta-

geous. In the possibilistic case, there is no interaction between clusters. Thus the found clusters in

possibilistic models can be located much closer to each other than in a probabilistic clustering. Clusters

can even coincide, which has been widely observed (Barni, Cappellini and Mecocci, 1996; Krishnapuram

and Keller, 1996). This leads to solutions in which one cluster being actually present in a data-set can be

represented by two clusters in the possibilistic model. In worse cases there is data left in other regions of

the input space that has cluster structure, but which is not covered by clusters in the model. Then

possibilistic algorithms show the tendency to interpret data points in such left over regions as outliers by

assigning low memberships for these data to all clusters (close to 0) instead of further adjusting the

possibly non-optimal cluster set (Höppner, Klawonn, Jruse and Runkler, 1999).

This described behaviour is exhibited, since Jp treats each cluster independently. Every cluster

contributes to some extent to the value of the objective function Jp regardless of other clusters. The

resulting behaviour has been regarded by stating that possibilistic clustering is a rather mode-seeking

technique, aimed at finding meaningful clusters (Krishnapuram and Keller, 1996). The number c of

known or desired clusters has been interpreted as an upper bound, since cluster coincidence in effect leads

to a smaller number of clusters in the model (Höppner, Klawonn, Kruse and Runkler, 1999). For reducing

the tendency of coinciding clusters and for a better coverage of the entire data space usually a probabilistic

analysis is carried out before (exploiting its partitional property). The result is used for the prototype

initialization of the first run of the possibilistic algorithm as well as for getting the initial guesses of the �i

(and c). After the first possibilistic analysis has been carried out, the values of the �i are re-estimated once

more using the first possibilistic fuzzy partition. The improved estimates are used for running the

possibilistic algorithm a second time yielding the final cluster solution (Höppner, Klawonn, Jruse and

Runkler, 1999).

1.2.4.2 Cluster Repulsion

Dealing with the characteristics of the possibilistic clustering techniques as above is a quite good

measure. However, there are theoretical results, which put forth other developments. We discovered

that the objective function Jp is, in general, truly minimized only if all cluster centers are identical (Timm,

Borgelt, Döring and Kruse, 2004). The possibilistic objective function can be decomposed into c

independent terms, one for each cluster. This is the amount by which each cluster contributes to the

value of Jp. If there is a single optimal point for a cluster center (as will usually be the case, since multiple

Figure 1.4 Iris data-set classifed with possibilistic fuzzy C-means algorithm. Attribtes petal length and petal width.
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optimal points would require a high symmetry in the data), all cluster centers moved to that point results in

the lowest value of Jp for a given data-set. Consequently other results than all cluster centers being

identical are achieved only because the algorithm gets stuck in a local minimum of the objective function.

In the example of the PCM model in Figure 1.4 the cluster on the lower left in the figure has been found,

because it is well separated and thus forms a local minimum of the objective function. This, of course, is

not a desirable situation. Good solutions w.r.t the minimization of Jp unexpectedly do not correspond to

what we regard as a good solution of the clustering problem. Hence the possibilistic algorithms can be

improved by modifying the objective function in such a way that the problematic property examined

above is removed (see Section 1.4.4). These modifications of Jp lead to better detection of the shape of

very close or overlapping clusters. Such closely located point accumulations have been problematic, since

possibilistic clusters ‘wander’ in the direction where most of the data can be found in their �i environment,

which easily leads to cluster coincidence. Nevertheless, the modified possibilistic techniques should also

be initialized with the corresponding probabilistic algorithms as described in the last paragraph. It is a

good measure for improving the chances that all data clouds will be regarded in the resulting possibilistic

model leaving no present cluster structure unclassified. Recent developments that try to alleviate the

problematic properties of the possibilistic clustering algorithms propose using a combination of both

fuzzy and possibilistic memberships (see Section 1.4.4).

1.2.4.3 Recognition of Positions and Shapes

The possibilistic models do not only carry problematic properties. Memberships that depend only on the

distance to a cluster while being totally independent from other clusters lead to prototypes that better

reflect human intuition. Calculated based on weights that reflect typicality, the centers of possibilistic

clusters as well as their shape and size better fit the data clouds compared to their probabilistic relatives.

The latter ones are known to be unable to recognize cluster shapes as perfectly as their possibilistic

counterparts. This is due to the following reasons: if clusters are located very close or are even over-

lapping, then they are separated well because sharing membership is disadvantageous (see upper right in

Figure 1.3). Higher memberships to data points will be assigned in directions pointing away from the

overlap. Thus the centers are repelling each other. If complex prototypes are used, detected cluster shapes

are likely to be slightly distorted compared to human intuition. Noise and outliers are another reason for

little prototype distortions. They have weight in probabilistic partitions and therefore attract clusters

which can result in small prototype deformations and less intuitive centers. Possibilistic techniques are

less sensitive to outliers and noise. Low memberships will be assigned due to greater distance. Due to this

property and the more intuitive determination of positions and shapes, possibilistic techniques are

attractive tools in image processing applications. In probabilistic fuzzy clustering, noise clustering

techniques are widely appreciated (see Section 1.4.1). In one of the noise handling approaches, the

objective function Jf is modified such that a virtual noise cluster ‘‘seizes’’ parts of the data point weight of

noise points and outliers. This leads to better detection of actual cluster structure in probabilistic models.

1.3 DISTANCE FUNCTION VARIANTS

In the previous section, we considered the case where the distance between cluster centers and data points

is computed using the Euclidean distance, leading to the standard versions of fuzzy C-means and

possibilistic C-means. This distance only makes it possible to identify spherical clusters. Several variants

have been proposed to relax this constraint, considering other distances between cluster centers and data

points. In this section, we review some of them, mentioning the fuzzy Gustafson–Kessel algorithm, fuzzy

shell clustering algorithms and kernel-based variants. All of them can be applied both in the fuzzy

probabilistic and possibilistic framework.

Please note that a more general algorithm is provided by the fuzzy relational clustering algorithm

(Hathaway and Bezdek, 1994) that takes as input a distance matrix. In this chapter, we consider the

variants that handle object data and do not present the relational approach.
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1.3.1 Gustafson–Kessel Algorithm

The Gustafson–Kessel algorithm (Gustafson and Kessel, 1979) replaces the Euclidean distance by a

cluster-specific Mahalanobis distance, so as to adapt to various sizes and forms of the clusters. For a

cluster i, its associated Mahalanobis distance is defined as

d2ðxj;CiÞ ¼ ðxj 
 ciÞT �
1
i ðxj 
 ciÞ; ð1:19Þ

where �i is the covariance matrix of the cluster. Using the Euclidean distance as in the algorithms

presented in the previous section is equivalent to assuming that 8i;�i ¼ I, i.e., all clusters have the same

covariance that equals the identity matrix. Thus it only makes it possible to detect spherical clusters, but it

cannot identify clusters having different forms or sizes.

The Gustafson–Kessel algorithm models each cluster �i by both its center ci and its covariance matrix

�i; i ¼ 1; . . . ; c. Thus cluster prototypes are tuples Ci ¼ ðci;�iÞ and both ci and �i are to be learned. The

eigenstructure of the positive definite p� p matrix �i represents the shape of cluster i. Specific constraints

can be taken into account, for instance restricting to axis-parallel cluster shapes, by considering only

diagonal matrices. This case is usually preferred when clustering is applied for the generation of fuzzy

rule systems (Höppner, Klawonn, Kruse, and Runkler, 1999). The sizes of the clusters, if known in

advance, can be controlled using the constants %i > 0 demanding that det ð�iÞ ¼ %i. Usually the clusters

are assumed to be of equal size setting detð�iÞ ¼ 1.

The objective function is then identical to the fuzzy C-means (see Equation (1.10)) or the possibilistic

one (see Equation (1.16)), using as distance the one represented above in Equation (1.19). The update

equations for the cluster centers ci are not modified and are identical to those indicated in Equation (1.14).

The update equations for the membership degrees are identical to those indicated in Equation (1.13) and

Equation (1.17) for the FCM and PCM variants respectively, replacing the Euclidean distance by the

cluster specific distance given above in Equation (1.19). The update equations for the covariance matrices

are

�i ¼
��i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð��i Þ

p ; where ��i ¼
Pn

j¼1 uijðxj 
 ciÞðxj 
 ciÞTPn
j¼1 uij

: ð1:20Þ

They are defined as the covariance of the data assigned to cluster i, modified to incorporate the fuzzy

assignment information.

The Gustafson–Kessel algorithm tries to extract much more information from the data than the

algorithms based on the Euclidean distance. It is more sensitive to initialization, therefore it is recom-

mended to initialize it using a few iterations of FCM or PCM depending on the considered partition type.

Compared with FCM or PCM, the Gustafson–Kessel algorithm exhibits higher computational demands

due to the matrix inversions. A restriction to axis-parallel cluster shapes reduces computational costs.

1.3.2 Fuzzy Shell Clustering

The clustering approaches mentioned up to now search for convex ‘‘cloud-like’’ clusters. The corre-

sponding algorithms are called solid clustering algorithms. They are ‘‘specially useful’’ in data analysis

applications. Another area of application of fuzzy clustering algorithms is image recognition and

analysis. Variants of FCM and PCM have been proposed to detect lines, circles or ellipses on the data-set,

corresponding to more complex data substructures; the so-called shell clustering algorithms (Klawonn,

Kruse, and Timm, 1997) extract prototypes that have a different nature than the data points. They need to

modify the definition of the distance between a data point and the prototype and replace the Euclidean by

other distances. For instance the fuzzy c-varieties (FCV) algorithm was developed for the recognition of

lines, planes, or hyperplanes; each cluster is an affine subspace characterized by a point and a set of
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orthogonal unit vectors, Ci ¼ ðci; ei1; . . . ; eiqÞ where q is the dimension of the affine subspace. The

distance between a data point xj and cluster i is then defined as

d2ðxj;CiÞ ¼ jjxj 
 cijj2 

Xq

l¼1

ðxj 
 ciÞT eil:

The fuzzy c-varieties (FCV) algorithm is able to recognize lines, planes or hyperplanes (see Figure 1.5).

These algorithms can also be used for the construction of locally linear models of data with underlying

functional interrelations.

Other similar FCM and PCM variants include the adaptive fuzzy c-elliptotypes algorithm (AFCE) that

assigns disjoint line segments to different clusters (see Figure 1.6). Circle contours can be detected by the

fuzzy c-shells and the fuzzy c-spherical shells algorithm. Since objects with circle-shaped boundaries in are

projected into the picture plane the recognition of ellipses can be necessary. The fuzzy c-ellipsoidal shells

algorithm is able to solve this problem. The fuzzy c-quadric shells algorithm (FCQS) is furthermore able

to recognize hyperbolas, parabolas, or linear clusters. Its flexibility can be observed in Figures 1.7 and 1.8.

The shell clustering techniques have also been extended to non-smooth structures such as rectangles and

other polygons. Figures 1.9 and 1.10 illustrate results obtained with the fuzzy c-rectangular (FCRS) and

fuzzy c-2-rectangular shells (FC2RS) algorithm. The interested reader may be referred to Höppner,

Klawonn, Kruse, and Runkler (1999) and Bezdek, Keller, Krishnapuram, and Pal (1999) for a complete

discussion of this branch of methods.

Figure 1.5 FCV analysis. Figure 1.6 AFCE analysis. Figure 1.7 FCQS analysis.

Figure 1.8 FCQS analysis. Figure 1.9 FCRS analysis. Figure 1.10 FC2RS analysis.
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1.3.3 Kernel-based Fuzzy Clustering

The kernel variants of fuzzy clustering algorithms further modify the distance function to handle

non-vectorial data, such as sequences, trees, or graphs, without needing to modify completely the

algorithms themselves. Generally speaking, kernel learning methods (see e.g., Schölkopf and Smola

(2002); Vapnik (1995)) constitute a set of machine learning algorithms that make it possible to extend, in a

formal framework, classic linear algorithms. This extension addresses a double aim: on the one hand, it

makes it possible to address tasks that require a richer framework than the linear one, while still

preserving this generally simple formalism. On the other hand, it makes it possible to apply algorithms

to data that are not described in a vectorial form, but as more complex objects, such as sequences, trees or

graphs. More generally, kernel methods can be applied independently of the data nature, without needing

to adapt the algorithm. In this section, data points can be vectorial or not, therefore we denote them xj

instead of xj.

1.3.3.1 Principle

Kernel methods are based on an implicit data representation transformation 	 : X ! F whereX denotes

the input space and F is called the feature space. F is usually of high or even infinite dimension and is

only constrained to be a Hilbert space, i.e., to dispose of a scalar product. The second principle of kernel

methods is that data are not handled directly in the feature space, which could lead to expensive costs

given its dimension; they are only handled through their scalar products that are computed using the initial

representation. To that aim, the so-called kernel function is used: it is a function k : X � X ! R, such that

8x; y 2 X ; h	ðxÞ; 	ðyÞi ¼ kðx; yÞThus the function	 is not needed to be known explicitly, scalar products

in the feature space only depend on the initial representation.

In order to apply this kernel trick, kernel methods are algorithms written only in terms of scalar

products between the data. The data representation enrichment then comes from using a scalar product

based on an implicit transformation of the data, instead of being only the Euclidean one. The possibility to

apply the algorithm to non-vectorial data only depends on the availability of a function k : X � X ! R

having the properties of a scalar product (Schölkopf and Smola, 2002).

1.3.3.2 Kernel Fuzzy Clustering

The kernel framework has been applied to fuzzy clustering and makes it possible to consider other distances

than the Euclidean one. It is to be underlined that fuzzy shell clustering, discussed in Section 1.3.2,

also takes into account other metrics, but it has an intrinsic difference: it aims at extracting prototypes that

have a different nature than the data points, and thus it modifies the distance between points and cluster

prototypes. In the kernel approach, the similarity is computed between pairs of data points and does not

involve cluster centers; the kernel function influences more directly that points are to be grouped in the same

clusters, and does not express a comparison with a cluster representative. Usually, cluster representatives

have no explicit representation as they belong to the feature space. Thus the kernel approach can be applied

independently of the data nature whereas fuzzy shell algorithms must be specified for each desired

prototype nature. On the other hand, kernel methods do not have an explicit representative of the cluster

and cannot be seen as prototype-based clustering methods.

The kernel variant of fuzzy clustering (Wu, Xie, and Yu, 2003) consists of transposing the objective

function to the feature space, i.e., applying it to the transformed data	ðxÞ. The cluster centers then belong

to the feature space, we therefore denote them c
	
i ; i ¼ 1; . . . ; c (c

	
i 2 F ). They are looked for in the form

of linear combinations of the transformed data, as

c
	
i ¼

Xn

r¼1

air	ðxrÞ: ð1:21Þ
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This formulation is coherent with the solution obtained with standard FCM. Optimization must then

provide the air values, together with the membership degrees. Due to the previous form of the centers, the

Euclidean distance between points and centers in the feature space can be computed as

d	2
ir ¼ jj	ðxrÞ 
 c

	
i jj

2 ¼ krr 
 2
Xn

s¼1

aiskrs þ
Xn

s;t¼1

aisaitkst; ð1:22Þ

where we denote krs ¼ kðxr; xsÞ ¼ h	ðxrÞ; 	ðxsÞi. Thus, the objective function becomes

J	 ¼
Xc

i¼1

Xn

r¼1

um
ir krr 
 2

Xn

s¼1

aiskrs þ
Xn

s;t¼1

aisaitkst

 !
: ð1:23Þ

The minimization conditions then lead to the following update equations

uir ¼
1Pc

l¼1

d	2
ir

d	2
lr


 � 1
m
1

; air ¼
um

irPn
s¼1

um
is

; i:e:; c
	
i ¼

Pn
r¼1

um
ir	ðxrÞ

Pn
s¼1

um
is

: ð1:24Þ

Thus the update equations, as well as the objective function, can be expressed solely in terms of the kernel

function, i.e., in terms of scalar products. Equation (1.24) shows that membership degrees have the same

form as in the standard FCM (see Equation (1.13)), replacing the Euclidean distance by the distance in the

feature space, as defined in Equation (1.22). The expression of the cluster centers is comparable to the

standard case (see Equation (1.14)), as the weighted mean of the data. The difference is that cluster centers

belong to the feature space and have no explicit representation, only the weighting coefficients are known.

There exist other variants for the kernelization of the fuzzy C-means, as for instance the one proposed

by Zhang and Chen (2003a,b). The latter is specific insofar as it only considers the Gaussian kernel

kðx; yÞ ¼ expð
dðx; yÞ2=�2Þ and exploits its properties to simplify the algorithm. More precisely it makes

the hypothesis that cluster centers can be looked for explicitly in the input space (ci 2 X ), and considers

its transformation to the feature space 	ðciÞ. This differs from the general case, as presented above, where

cluster centers are only defined in the feature space. The objective function then becomes

J ¼
Xc

i¼1

Xn

r¼1

um
ir jj	ðciÞ 
 	ðxjÞjj2 ¼ 2

Xc

i¼1

Xn

r¼1

um
i ð1
 e
dðci;xjÞ2=�2Þ; ð1:25Þ

exploiting the fact that the Gaussian kernel leads to d	2ðx; yÞ ¼ kðx; xÞ þ kðy; yÞ 
 2kðx; yÞ ¼
2ð1
 kðx; yÞÞ. Thus this method constitutes a special case of the FCM kernelization and cannot be

applied to any type of data independently of their nature. It is to be noted that this objective function

(Equation (1.25)) is identical to the one proposed by Wu and Yang (2002) in the framework of robust

variants of FCM, as described in the next section.

It should be noticed that the application of a kernel method needs to select the kernel and its parameters,

which may be difficult. This task can be seen as similar to the problem of feature selection and data

representation choice in the case of non-kernel methods.

1.4 OBJECTIVE FUNCTION VARIANTS

The previous variants of fuzzy C-means are obtained when considering different distance functions that

lead to a rewrite of the objective functions and in some cases modify the update equations. In this section,

we consider other variants that are based on deeper modifications of the objective functions. The

modifications aim at improving the clustering results in specific cases, for instance when dealing with

noisy data. It is to be noticed that there exists a very high number of variants for fuzzy clustering

algorithms, we only mention some of them.
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We organized them in the following categories: some variants are explicitly aimed at handling noisy

data. Others study at a theoretical level the role of the fuzzifier m in the objective function (see notations in

Equation (1.10)) and propose some modifications. Other variants introduce new terms in the objective

function so as to optimize the cluster number instead of having it fixed at the beginning of the process.

Lastly, we mention some variants that are aimed at improving the possibilistic C-means, in particular with

respect to the coinciding cluster problem (see Section 1.2.4).

It is to be noted that the limits between these categories are not clear-cut and that for instance the

modification of the fuzzifier can influence the noise handling properties. We categorize the methods

according to their major characteristics and underline their other properties.

When giving update equations for cluster prototypes, we consider only the case where the Euclidean

distance is used and when prototypes are reduced to cluster centers. Most methods can be generalized to

other representations, in particular those including size and form parameters. The interested reader is

referred to the original papers.

1.4.1 Noise Handling Variants

The first variants of fuzzy C-means we consider aim at handling noisy data. It is to be noticed that PCM is a

solution to this problem, but it has difficulty of its own as mentioned in Section 1.2.4 (cluster coincidence

problem, sensitivity to initialization). Therefore other approaches take FCM as the starting point and

modify it so as to enable it to handle noisy data. When giving the considered objective functions, we do not

recall the constraints indicated in Equations (1.8) and (1.9) that apply in all cases.

The aim of these variants is then to define robust fuzzy clustering algorithms, i.e., algorithms whose

results do not depend on the presence or absence of noisy data points or outliers1 in the data-set. Three

approaches are mentioned here: the first one is based on the introduction of a specific cluster, the so-called

noise cluster that is used to represent noisy data points. The second method is based on the use of robust

estimators, and the third one reduces the influence of noisy data points by defining weights denoting the

point representativeness.

1.4.1.1 Noise Clustering

The noise clustering (NC) algorithm was initially proposed by Davé (1991) and was later extended (Davé

and Sen, 1997, 1998). It consists in adding, beside the c clusters to be found in a data-set, the so-called

noise cluster; the latter aims at grouping points that are badly represented by normal clusters, such as

noisy data points or outliers. It is not explicitly associated to a prototype, but directly to the distance

between an implicit prototype and the data points: the center of the noise cluster is considered to be at a

constant distance, �, from all data points. This means that all points have a priori the same ‘probability’ of

belonging to the noise cluster. During the optimization process, this ‘probability’ is then adapted as a

function of the probability according to which points belong to normal clusters. The noise cluster is then

introduced in the objective function, as any other cluster, leading to

J ¼
Xc

i¼1

Xn

j¼1

um
ij d2

ij þ
Xn

k¼1

�2 1

Xc

i¼1

uik

 !m

: ð1:26Þ

The added term is similar to the terms in the first sum: the distance to the cluster prototype is replaced by �
and the membership degree to this cluster is defined as the complement to 1 of the sum of all membership

degrees to the standard clusters. This in particular implies that outliers can have low membership degrees to

the standard clusters and high degree to the noise cluster, which makes it possible to reduce their influence

1Outliers correspond to atypical data points, that are very different from all other data, for instance located at a high
distance from the major part of the data. More formally, according to Hawkins (1980), an outlier is ‘an observation
that deviates so much from other observations as to arouse suspicion that it was generated by a different mechanism’.
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on the standard cluster: as PCM, the noise clustering approach relaxes the FCM normalization constraint

expressed in Equation (1.9) according to which membership degrees to good clusters must sum to 1.

Further comparison between NC and PCM (see Equations (1.26) and (1.16) shows that the algorithms

are identical in the case of a single cluster, with �2 corresponding to h (Davé and Sen, 1997, 1998). In the

case c > 1, the difference is that PCM considers one �i per cluster, whereas a single parameter is defined

in the NC case. This means that PCM has the advantage of having one noise class per good cluster,

whereas NC has only one (the NC generalization described hereafter overcomes this drawback). As a

consequence, the membership degrees to the noise cluster differ for the two methods: in the PCM case,

they are, for each noise cluster, the complement to 1 to the membership to the associated good cluster. In

noise clustering, as there is a single noise cluster, the membership degree to it is the complement to the

sum of all other memberships.

Another difference between PCM and NC comes from the fact that the PCM cost function can be

decomposed into c independent terms (one per cluster), whereas in the noise clustering approach such a

decomposition is not possible. This decomposition is one of the reasons why PCM leads to coinciding

clusters. Thus Davé and Krishnapuram (1997) interpret NC as a robustified FCM, whereas PCM behaves

like c independent NC algorithms.

The objective function (1.26) requires the setting of parameter �. In the initial NC algorithm, it was

set to

�2 ¼ l
1

c � n
Xc

i¼1

Xn

j¼1

d2
ij

 !
; ð1:27Þ

i.e., its squared value is a proportion of the mean of the squared distances between points and other cluster

prototypes, with l a user-defined parameter determining the proportion: the smaller the l, the higher the

proportion of points that are considered as outliers.

Noise clustering has been generalized to allow the definition of several �, and to define a noise scale per

cluster. To that aim, each point is associated to a noise distance �j, j ¼ 1; . . . ; n, the latter being defined as

the size of the cluster the point maximally belongs to, as in PCM: �j ¼ �i� for i� ¼ arg maxl ulj (Davé and

Sen, 1997, 1998). In this case, the difference between PCM and NC about distance scale vanishes, the only

remaining difference is the independence of clusters in the PCM objective function that does not appear in

the noise clustering case.

1.4.1.2 Robust Estimators

Another approach to handle noisy data-sets is based on the exploitation of robust estimators: as indi-

cated in Section 1.2.2, the fuzzy C-means approach is based on a least square objective function. It is well

known that the least square approach is highly sensitive to aberrant points, which is why FCM gives

unsatisfactory results when applied to data-sets contaminated with noise and outliers. Therefore, it has

been proposed to introduce a robust estimator in the FCM classic objective function (see Equation (1.10)),

leading to consider

J ¼
Xc

i¼1

Xn

j¼1

um
ij riðdijÞ; ð1:28Þ

where ri are robust symmetric positive definite functions having their minimum in 0 (Frigui and

Krishnapuram, 1996). According to the robust M-estimator framework, r should be chosen such that

rðzÞ ¼ logðJðzÞ
1Þ represents the contribution of error z to the objective function and J the distribution of

these errors. Choosing rðzÞ ¼ z2 as it is usually the case is equivalent to assuming a normal distribution of

the errors z and leads to constant weighting functions. That is, big errors have the same weight as small

errors and play too important a role on the correction applied to the parameters, making the objective

function sensitive to outliers. Therefore it is proposed to use another r, whose weighting functions tend to

0 for big values of z. Frigui and Krishnapuram (1996) design their own robust estimator to adapt to the

desired behaviour, defining the robust c-prototypes (RCP) algorithm.
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In the case where clusters are represented only by centers and a probabilistic partition is looked for (i.e.,

with constraint (1.9)), the update equations for the membership degrees and cluster prototypes derived

from Equation (1.28) then become (Frigui and Krishnapuram, 1996)

ci ¼

Pn
j¼1

um
ij fijxj

Pn
j¼1

um
ij fij

; uij ¼
1

Pc
k¼1

rðd2
ijÞ

rðd2
kjÞ

" # 1
m
1

; ð1:29Þ

where fij ¼ f ðdijÞ and f ¼ drðzÞ
dz

. It is to be noted that outliers still have membership degrees uij ¼ 1=c for

all clusters. The difference and advantage as compared with FCM comes from their influence on the

center, which is reduced through the fij coefficient (see Frigui and Krishnapuram (1996) for the fij
expression).

Other robust clustering algorithms include the method proposed by Wu and Yang (2002) that consider

the modified objective function

J ¼
Xc

i¼1

Xn

j¼1

um
ij ð1
 e
bd2

ijÞ; ð1:30Þ

where b is a user-defined parameter that the authors propose to set to the inverse of the sample covariance

matrix. This function is first proposed as a replacement of the Euclidean distance by the more robust

exponential metric; yet, as pointed out by Zhang and Chen (2004), the mapping ðx; yÞ7! expð
bdðx; yÞÞ is
not a metric. Still, the analysis of the above objective function in the robust estimator framework holds and

shows that this function leads to a robust fuzzy clustering algorithm that can handle noisy data-sets Wu

and Yang (2002).

Davé and Krishnapuram (1996, 1997) show that PCM can be interpreted in this robust clustering

framework based on the M-estimator. They consider a slightly different formalization, where the

objective function for each cluster is written

J ¼
Xn

j¼1

rðxj 
 cÞ; leading to c ¼

Pn
j¼1

wðdijÞxj

Pn
j¼1

wðdijÞ
; where wðzÞ ¼ 1

z

dr
dz
: ð1:31Þ

Comparing with the update equations of PCM, this makes it possible to identify a weight function w and

by integration to deduce the associated estimator r. Davé and Krishnapuram (1996, 1997) show the

obtained r is indeed a robust function. This justifies at a formal level the qualities of PCM as regards noise

handling.

1.4.1.3 Weight Modeling

A third approach to handle outliers is exemplified by Keller (2000). It consists of associating each data

point a weight to control the influence it can have on the cluster parameters. The considered objective

function is

J ¼
Xc

i¼1

Xn

j¼1

um
ij

1

!q
j

d2
ij; under constraint

Xn

j¼1

!j ¼ !; ð1:32Þ

where the factor !j represents the weight for data point j, q a parameter to control the influence of the

weighting factor and ! a normalizing coefficient. The minimization conditions of this objective function

lead to the following update equations:

uij ¼
1

Pc
l¼1

d2
ij

d2
lj

 ! 1
m
1

; ci ¼

Pn
j¼1

um
ij

!q
j

xj

Pn
j¼1

um
ij

!q
j

; !j ¼

Pc
i¼1

um
ij d2

ij

� � 1
qþ1

Pn
l¼1

Pc
i¼1

um
il d2

il

� � 1
qþ1

!:
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Thus, the membership degrees are left unchanged, whereas the cluster centers take into account the

weights; points with high representativeness play a more important role than outliers. Representativeness

depends on the weighted average distance to cluster centers.

1.4.2 Fuzzifier Variants

Another class of FCM variants is based on the study of the fuzzifier, i.e., the exponent m in Equation

(1.10): as indicated in Section 1.2.2, FCM can be derived from the hard C-means algorithm by relaxing

the partition constraints, so that membership degrees belong to [0,1] and not {0,1}. To prevent member-

ship degrees from being restricted to the two values 0 and 1, the objective function must be modified and

the m fuzzifier is introduced.

Now as can be observed and proved (Klawonn and Höppner, 2003b; Rousseeuw, Trauwaert, and

Kautman, 1995), actually membership degrees do not exactly cover the range [0,1]: they never equal 0 or

1 (except in the special case where a data point coincides with a cluster center), i.e., in fact they belong to

]0,1[. In other words, membership functions have a core reduced to a single point (the cluster center) and

unbounded support. This is a drawback in the case of noisy data-sets, as in the case of clusters with

different densities (Klawonn and Höppner, 2003b; Rousseeuw, Trauwaert and Kautman, 1995): high

density clusters tend to influence or completely attract other prototypes (note that this problem can be

handled by using other distances than the Euclidean one).

To overcome this problem, Rousseeuw, Trauwaert and Kaufman, (1995) proposed replacing the

objective function by

J ¼
Xc

i¼1

Xn

j¼1

½auij þ ð1
 aÞu2
ij�d2

ij; ð1:33Þ

where a is a user-defined weight determining the influence of each component. When a ¼ 1, the objective

function reduces to the hard C-means function (see Equation (1.1)), leading to a maximal contrast

partition (membership degrees take only values 0 or 1). On the contrary, a ¼ 0 leads to the fuzzy C-means

with m ¼ 2 and a low contrast partition (outliers for instance have the same membership degree as all

clusters). a makes it possible to obtain a compromise situation, where membership degrees in ]0,1[ are

reserved for points whose assignment is indeed unclear, whereas the others, and in particular outliers,

have degrees 0 or 1.

Klawonn and Höppner, (2003a,b) also take as their starting point the observation that membership

degrees actually never take the values 0 and 1. They perform the analysis in a more formal framework that

allows more general solutions: they proposed considering as objective function

J ¼
Xc

i¼1

Xn

j¼1

gðuijÞd2
ij: ð1:34Þ

Note that robust approaches proposed applying a transformation to the distances, whereas here a

transformation is applied to the membership degrees. Taking into account the constraints on uij normal-

ization (see Equation (1.9)), and setting the derivative to 0, the partial derivative of the associated

Lagrangian leads to

g0ðuijÞd2
ij 
 lj ¼ 0; ð1:35Þ

where lj is the Lagrange multiplier associated with the normalization constraint concerning xj. As it is

independent of i, this equation implies g0ðuijÞd2
ij ¼ g0ðukjÞd2

kj for all i; k. This explains why zero member-

ship degrees can never occur: the standard function gðuÞ ¼ um yields g0ð0Þ ¼ 0. Thus, in order to balance

the two terms, no matter how large d2
ij and how small d2

kj are, uij cannot be 0.

Therefore, they proposed replaceing the standard g function with other ones. The conditions g must

satisfy are gð0Þ ¼ 0 and gð1Þ ¼ 1, increasing and differentiable. Further, the derivative g0 must be
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increasing and must satisfy g0ð0Þ 6¼ 0. Klawonn and Höppner, (2003b) consider the same function as

Rousseeuw, Trauwaert, and Kautman (1995), i.e., gðuÞ ¼ au2 þ ð1
 aÞu. Gaussian functions

gðuÞ ¼ ðeau 
 1Þ=ðea 
 1Þ were also suggested, since the parameter a has a similar effect to the fuzzifier

m in the standard fuzzy clustering: the smaller the a, the crisper the partition tends to be (Klawonn and

Höppner, 2003a). Klawonn (2004) proposesd dropping the differentiability condition and considering a

piecewise linear transformation to obtain more flexibility than with a single parameter a. For instance,

non-increasing functions that are flatter around 0.5 make it possible to avoid ambiguous membership

degrees forcing them to tend to 0 or 1.

1.4.3 Cluster Number Determination Variants

Partitioning clustering algorithms consist of searching for the optimal fuzzy partition of the data-set into c

clusters, where c is given as input to the algorithm. In most real data mining cases, this parameter is not

known in advance and must be determined. Due to the cluster merging phenomenon, the definition of an

appropriate c value for PCM is not so important as for FCM. Yet, as mentioned earlier, at a theoretical

level, PCM relies on an ill-posed optimization problem and other approaches should be considered. They

usually consist of testing several c values and comparing the quality of the obtained partition using

so-called validity criteria (see for instance Halkidi, Batistakis, and Vazirgiannis (2002); this solution is

computationally expensive. Other approaches, presented in this section, consist of considering the c value

as a parameter to be optimized.

Now with this respect the FCM objective function is minimal when c ¼ n, i.e., each cluster contains a

single point as in this case dij ¼ 0. Thus a regularization term is added, that is minimal when all points

belong to the same cluster, so as to penalize high c values. Then the combination of terms in the objective

function makes it possible to find the optimal partition in the smallest possible number of clusters.

Following this principle, Frigui and Krishnapuram (1997) proposed the competitive agglomeration

(CA) algorithm based on the objective function

J ¼
Xc

i¼1

Xn

j¼1

um
ij d2

ij 
 a
Xc

i¼1

Xn

j¼1

uij

 !2

: ð1:36Þ

The additional term is the sum of squares of cardinalities of the clusters, which is indeed minimal when all

points are assigned to a single cluster and all others are empty. The optimization process for this function

does not exactly follow the AO scheme and involves competition between clusters, based on their sizes

and distances to the points. Small clusters are progressively eliminated. A robust extension to CA has been

proposed in Frigui and Krishnapuram (1999): the first term in Equation (1.36) is then replaced by the term

provided in Equation (1.28) to exploit the robust estimator properties.

Sahbi amd Boujemaa (2005) proposed using as regularizer an entropy term, leading to

J ¼
Xc

i¼1

Xn

j¼1

um
ij d2

ij 
 a
1

n

Xn

j¼1



Xc

i¼1

uij log2ðuijÞ:

To verify the constraints on the memberships uij 2 ½0; 1�, they proposed considering Gaussian member-

ship functions in the form uij ¼ expð
�ijÞ and estimating the �ij parameters. a then intervenes in the

parameter of the exponential and is to be interpreted as a scaling factor: when it is underestimated, each

point is a cluster; when it is overestimated, the membership functions are approximately constant, and one

gets a single big cluster. The number of clusters is then indirectly determined.

1.4.4 Possibilistic c-means Variants

As indicated in Section 1.24, the possibilistic C-means may lead to unsatisfactory results, insofar as the

obtained clusters may be coincident. This is due to the optimized objective function, whose global
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minimum is obtained when all clusters are identical (see Section 1.2.4). Hence the possibilistic C-means

can be improved by modifying its objective function. We mention here two PCM variants, based on the

adjunction of a penalization term in the objective function and the combination of PCM with FCM.

1.4.4.1 Cluster Repulsion

In order to hinder cluster merging, Timm and Kruse (2002) and Timm, Borgelt, Döreing, and Kruse

(2004) proposed including in the objective function a term expressing repulsion between clusters, so as to

force them to be distinct: the considered objective function is written

J ¼
Xc

i¼1

Xn

j¼1

um
ij d2

ij þ
Xc

i¼1

�i

Xn

i¼1

ð1
 uijÞm þ
Xc

i¼1

gi

Xc

k¼1;k 6¼i

1

�dðci; cjÞ2
: ð1:37Þ

The first two terms constitute the PCM objective function (see Equation (1.16)), the last one expresses the

repulsion between clusters: it is all the bigger as the distance between clusters is small. gi is a parameter

that controls the strength of the cluster repulsion: it balances the two clustering objectives, namely the fact

that clusters should be both compact and distinct. This coefficient depends on clusters so that repulsion

can get stronger when the number of points associated with cluster i increases (Timm, Borgelt, Döring,

and Kruse, 2004). Parameter � makes repulsion independent of the normalization of data attributes. The

minimization conditions lead to the update equation

ci ¼

Pn
j¼1

um
ij xj 
 gi

Pc
k¼1;k 6¼i

1

dðci;ckÞ4
ck

Pn
j¼1

um
ij 
 gi

Pc
k¼1;k 6¼i

1

dðci;ckÞ4

ð1:38Þ

(the update equation for the membership degrees is not modified and is identical to Equation (1.17)).

Equation (1.38) shows the effect of repulsion between clusters: a cluster is attracted by the data assigned

to it and it is simultaneously repelled by the other clusters.

1.4.4.2 PCM Variants Based on Combination with FCM

Pal, Pal, and Bezdek (1997) and Pal, Pal, Keller, and Bezdek (2004) proposed another approach to

overcome the problems encountered with the possibilistic C-means: they argued that both possibilistic

degrees and membership degrees are necessary to perform clustering. Indeed, possibilistic degrees make

it possible to reduce the influence of outliers whereas membership degrees are necessary to assign points.

Likewise, Davé and Sen (1998) underlined that a good clustering result requires both the partitioning

property of FCM and the modeseeking robust property of PCM.

In Pal, Pal, and Bezdek (1997) the combination of FCM and PCM is performed through the optimiza-

tion of the following objective function:

J ¼
Xc

i¼1

Xn

j¼1

ðum
ij þ t

�
ijÞd2

ij; under the constraints

8j
Pc
i¼1

uij ¼ 1

8i
Pn
j¼1

tij ¼ 1
:

8>><
>>: ð1:39Þ

This means that uij is a membership degree, whereas tij corresponds to a possibilistic coefficient. Indeed, it

is not submitted to the normalization constraint on the sum across the clusters. The normalization

constraint it must hold aims at preventing the trivial result where tij ¼ 0 for all i; j. As pointed out in

several papers (Davé and Sen, 1998; Pal, Pal, Keller, and Bezdek, 2004) the problem is that the relative

scales of probabilistic and possibilistic coefficients are then different and the membership degrees

dominate the equations. Moreover, the possibilistic coefficients take very small values in the case of

big data-sets.
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Therefore Pal, Pal, Keller and Bezdek (2004) proposed another combination method, in the form

J ¼
Xc

i¼1

Xn

j¼1

ðaum
ij þ bt

�
ijÞd2

ij þ
Xc

i¼1

�i

Xn

j¼1

ð1
 tijÞ�; ð1:40Þ

which uses the same constraint for tij as in the standard PCM (second term in J), and combines

possibilistic and membership degrees. a and b are user-defined parameters that rule the importance the

two terms must play. In the case where the Euclidean distance is used, the update equations are then

uij ¼
1

Pc
l¼1

d2
ij

d2
lj

� � 1
m
1

; tij ¼
1

1þ b
�i

d2
ij


 � 1
�
1

; ci ¼

Pn
j¼1

ðaum
ij þ bt

�
ijÞxj

Pn
j¼1

ðaum
ij þ bt

�
ijÞ

:

Thus uij are similar to the membership degrees of FCM (see Equation (1.13)), and tij to the possibilistic

coefficients of PCM when replacing �i with �i=b (see Equation (1.17)). Cluster centers then depend on

both coefficients, parameters a, b, m; and � rule their relative influence. This shows that if b is higher than a

the centers will be more influenced by the possibilistic coefficients than the membership degrees. Thus, to

reduce the influence of outliers, a bigger value for b than a should be used. Still, it is to be noticed that

these four parameters are to be defined by the user and that their influence is correlated, making it

somewhat difficult to determine their optimal value. Furthermore the problem of this method is that it

loses the interpretation of the obtained coefficients; in particular, due to their interaction, tij cannot be

interpreted as typicality anymore.

1.5 UPDATE EQUATION VARIANTS: ALTERNATING CLUSTER
ESTIMATION

In this section, we study the fuzzy clustering variants that generalize the alternating optimization scheme

used by the methods presented up to now. The notion alternating cluster estimation (ACE) stands for a

distinguished methodology to approach clustering tasks with the aim of having the flexibility to tailor new

clustering algorithms that better satisfy application-specific needs. Instead of reformulating the clustering

task as a minimization problem by defining objective functions, the data analyst chooses cluster

prototypes that satisfy some desirable properties as well as cluster membership functions that have better

suited shapes for particular applications. This is possible, since the ACE framework generalizes the

iterative updating scheme for cluster models that stems from the alternating optimization approaches

(Equation (1.11 and 1.12)). However, the purpose of minimizing objective functions with expressions for

jU and jC is abandoned. Instead, the user chooses heuristic equations to re-estimate partitions and cluster

parameters by which the resulting algorithm iteratively refines the cluster model. Thus the classification

task is directly described by the chosen update equations, which do not necessarily reflect the minimiza-

tion of some criterion anymore.

Alternating cluster estimation is justified by the observation that convergence is seldom a problem in

practical examples (local minima or saddle points can be avoided). The ACE framework is particularly

useful when cluster models become too complex to minimize them analytically or when the objective

function lacks differentiability (Höppner, Klawonn, Kruse, and Runkler 1999). However, it is to be noted

that the ACE framework also encompasses all those algorithms that follow from the minimization of

objective functions as long as their respective update equations are chosen (which follow from the

necessary conditions for a minimum).

When clustering is applied to the construction of fuzzy rule-based systems, the flexibility of ACE

framework in choosing among different update equations is of particular interest. In such applications the

fuzzy sets carry semantic meaning, e.g., they are assigned linguistic labels like ‘‘low’’, ‘‘approximately

zero’’ or ‘‘high’’. Consequently the fuzzy sets, in fuzzy controllers for instance, are required to be convex,

or even monotonous (Zadeh, 1965). Furthermore, they have to have limited support, i.e., membership
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degrees different from zero are allowed only within a small interval of their universe. ACE provides the

flexibility to define fuzzy clustering algorithms that produce clusters �i whose corresponding fuzzy sets

��i
fulfil these requirements. The clusters and membership degrees ��i

ðxjÞ ¼ uij obtained with the

objective function-based clustering techniques contrarily do not carry the desired properties. The uij

obtained by AO as in the previous section can be interpreted as discrete samples of continuous member-

ship functions �i : Rp ! ½0; 1� for each cluster. The actual shape that is taken on by these membership

functions results from the respective update equations for the membership degrees. For the probabilistic

fuzzy AO algorithms the continuous membership function follows from Equation (1.13), with dij being

the Euclidian distance jj � jj:

�iðxÞ ¼
jjx
 cijj


2
m
1Pc

l¼1

jjx
 cljj

2

m
1

: ð1:41Þ

Figure 1.11 shows the membership functions that would result from the probabilistic FCM algorithm for

two clusters. Obviously, the membership functions �i are not convex (i ¼ f1; 2g). The membership for

data points at first decreases the closer they are located to the other cluster center, but beyond the other

center membership to the first cluster increases again due to normalization constraint. Possibilistic

membership functions that result from a continuous extension according to Equation (1.17) are convex,

but they are not restricted to local environments around their centers (i.e., the memberships will never

reach zero for larger distances). Thus, if fuzzy sets with limited support as in fuzzy controllers are desired,

possibilistic membership functions are inadequate as well. The transformation of the membership

functions of the objective function-based techniques into the desired forms for the particular application

is possible, but often leads to approximation errors and less accurate models.

Therefore ACE allows you to choose other membership functions aside from those that stem from an

objective function-based AO scheme. Desired membership function properties can easily be incorporated

in ACE. The user can choose from parameterized Gaussian, trapezoidal, Cauchy, and triangular functions

(Höppner, Klawonn, Kruse, and Runkler, 1999). We present the triangular shaped fuzzy set as an example

in Figure 1.12, since it has all the desired properties considered above:

�iðxÞ ¼ 1
 jjx
cijj
ri


 �a
if jjx
 cijj � ri

0 otherwise;

(
ð1:42Þ

Figure 1.11 The membership functions obtained by probabilistic AO for two clusters at 
0:5 and 0:5.

Figure 1.12 The parameterized triangular fuzzy set.
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where ri are the radii of the clusters, a 2 R>0. In an ACE algorithm using hypercone shaped clusters

(a ¼ 1) the memberships of data to fixed clusters are estimated using the above equation, such that

uij ¼ �iðxiÞ.
Deviating from alternating optimization of objective functions the user can also choose between

alternative update equations for the cluster prototypes. In ACE, a large variety of parameterized equations

stemming from defuzzification methods are offered for the re-estimation of cluster centers for fixed

memberships. The reference to defuzzification techniques arises, since a ‘‘crisp’’ center is computed from

fuzzily weighted data points. Also higher-order prototypes like lines, line segments, and elliptotypes have

been proposed for the ACE scheme (Höppner, Klawonn, Kruse, and Runkler, 1999). In the simplest case,

however, when clusters are represented by their centers only, new centers vectors could be calculated as

the weighted mean of data points assigned to them (like in the FCM; see Equation (1.14)).

After the user has chosen the update equations for U and C, memberships and cluster parameters are

alternatingly estimated (or updated, but not necessarily optimized w.r.t. some criterion function) as

defined. This leads to a sequence fðU1;C1Þ; ðU2;C2Þ; . . .g that is terminated after a predefined number of

iterations tmax or when the Ct have stabilized. Some instances of the ACE might be sensitive to the

initialization of the cluster centers. Thus determining C0 with some iterations of the probabilistic FCM

might be recommended. Notice that all conventional objective function-based algorithms can be

represented as instances of the more general ACE framework by selecting their membership functions

as well as their prototype update equations. An experimental comparison between ‘real’ ACE algorithms

that do not reflect the minimization of an objective function and classical AO algorithms as presented

above can be found in (Höppner, Klawonn, Kruse, and Runkler, 1999).

1.6 CONCLUDING REMARKS

In this chapter we attempted to give a systematic overview of the fundamentals of fuzzy clustering,

starting from the basic algorithms and underlining the difference between the probabilistic and possibi-

listic paradigms. We then described variants of the basic algorithms, adapted to specific constraints or

expectations. We further pointed out major research directions associated with fuzzy clustering. The field

is so broad that it is not possible to mention all of them. In this conclusion we briefly point out further

research directions that we could not address in the main part of the chapter due to length constraints.

1.6.1 Clustering Evaluation

An important topic related to clustering is that of cluster evaluation, i.e., the assessment of the obtained

clusters quality: clustering is an unsupervised learning task, which means data points are not associated

with labels or targets that indicate the desired output. Thus no reference is provided to which the obtained

results can be compared. Major cluster validity approaches include the evaluation of the trade off between

cluster compactness and cluster separability (Dunn 1974a; Rezaee, Lehieveldt and Reiber, 1998; Xie and

Beni, 1991) and stability based approaches (see e.g., Ben-Hur, Elisseeff, and Guyon (2002)).

Some criteria are specifically dedicated to fuzzy clustering: the partition entropy criterion for instance

computes the entropy of the obtained membership degrees,

PE ¼ 

X

i;j

uij log uij;

and must be minimized (Bezdek, 1975). Indeed, it takes into account that the fuzzy membership degrees

are degrees of freedom that simplify the optimization of the objective function, but that the desired

clustering output is still a crisp partition. A data partition that is too fuzzy rather indicates a bad adequacy

between the cluster number and the considered data-set and it should be penalized. Other fuzzy clustering

dedicated criteria can be found in Bezder (1974) or Windham (1981).

Such criteria can be used to evaluate quantitatively the clustering quality and to compare algorithms

one with another. They can also be applied to compare the results obtained with a single algorithm, when
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the parameter values are changed. In particular they can be used in order to select the optimal number of

clusters: applying the algorithm for several c values, the value c� leading to the optimal decomposition

according to the considered criterion is selected.

1.6.2 Shape and Size Regularization

As presented in Section 1.3.1, some fuzzy clustering algorithms make it possible to identify clusters of

ellipsoidal shapes and with various sizes. This flexibility implies that numerous cluster parameters are to

be adjusted by the algorithms. The more parameters are involved the more sensitive the methods get to

their initialization. Furthermore, the additional degrees of freedom lead to a lack of robustness.

Lately, a new approach has been proposed (Borgelt and Kruse, 2005) that relies on regularization to

introduce shape and size constraints to handle the higher degrees of freedom effectively. With a time-

dependent shape regularization parameter, this method makes it possible to perform a soft transition from

the fuzzy C-means (spherical clusters) to the Gustafson–Kessel algorithm (general ellipsoidal clusters).

1.6.3 Co-clustering

Co-clustering, also called bi-clustering, two mode clustering, two way clustering or subspace clustering,

has the specific aim of simultaneously identifying relevant subgroups in the data and relevant attributes

for each subgroup: it aims at performing both clustering and local attribute selection. It is in particular

applied in the bio-informatics domain, so as to detect groups of similar genes and simultaneously groups

of experimental conditions that justify the gene grouping. Other applications include text mining, e.g., for

the identification of both document clusters and their characteristic keywords (Kummamuru, Dhawale,

and Krishnapuram, 2003). Many dedicated clustering algorithms have been proposed, including fuzzy

clustering methods as for instance Frigui and Nasraoui (2000).

1.6.4 Relational Clustering

The methods described in this chapter apply to object data, i.e., consider the case where a description is

provided for each data point individually. In other cases, this information is not available, the algorithm

input takes the form of a pairwise dissimilarity matrix. The latter has size n� n, each of its elements

indicates the dissimilarity between point couples. Relational clustering aims at identifying clusters

exploiting this input. There exists a large variety of fuzzy clustering techniques for such settings (Bezdek,

Keller, Krishnapuram, and Pal, 1999; Hathaway and Bezdek, 1994) that are also based on objective

function optimization or the ACE scheme (runkler and Bezdek, 2003). The interested reader is also

referred to the respective chapter in Bezdek, Keller, Krishnapuram, and Pal (1999).

1.6.5 Semisupervised Clustering

Clustering is an unsupervised learning task. Yet it may be the case that the user has some a priori knowledge

about couples of points that should belong to the same cluster. Semisupervised clustering is concerned with

this learning framework, where some partial information is available : the clustering results must then

verify additional constraints, implied by these pieces of information. Specific clustering algorithms have

been proposed to handle these cases; the interested reader is referred to chapter 7 in this book.
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Davé, R. and Krishnapuram, R. (1997) ‘Robust clustering methods: a unified view’. IEEE Transactions on Fuzzy

Systems 5, 270–293.

Davé, R. and Sen, S. (1997) ‘On generalising the noise clustering algorithms’ Proc. of the 7th IFSA World Congress,

IFSA’97, pp. 205–210.

Davé, R. and Sen, S. (1998) ‘Generalized noise clustering as a robust fuzzy c-m-estimators model’ Proc. of the 17th Int.

Conference of the North American Fuzzy Information Processing Society: NAFIPS’98, pp. 256–260.

Drineas, P., et al. (2004) ‘Clustering large graphs via the singular value decomposition’. Machine Learning 56, 933.

Dubois, D. and Prade, H. (1988) Possibility Theory. Plenum Press, New York, NY, USA.

Duda, R. and Hart, P. (1973) Pattern Classification and Scene Analysis. J. Wiley & Sons, Inc., New York, NY, USA.

Dunn, J. (1974a) ‘Well separated clusters and optimal fuzzy partitions’. Journal of Cybernetics 4, 95–104.

Dunn, J. C. (1974b) ‘A fuzzy relative of the isodata process and its use in detecting compact, well separated clusters’.

Journal of Cybernetics 3, 95–104.

Fisher, R. A. (1936) ‘The use of multiple measurements in taxonomic problems’. Annals of Eugenics 7(2), 179–188.

Frigui, H. and Krishnapuram, R. (1996) ‘A robust algorithm for automatic extraction of an unknown number of clusters

from noisy data’. Pattern Recognition Letters 17, 1223–1232.

Frigui, H. and Krishnapuram, R. (1997) ‘Clustering by competitive agglomeration’. Pattern Recognition 30(7), 1109–

1119.

Frigui, H. and Krishnapuram, R. (1999) ‘A robust competitive clustering algorithm with applications in computer

vision’. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(5), 450–465.

Frigui, H. and Nasraoui, O. (2000) ‘Simultaneous clustering and attribute discrimination’ Proc. of the 9th IEEE Int.

Conf. on Fuzzy Systems, Fuzz-IEEE’00, pp. 158–163.

Gustafson, E. E. and Kessel , W. C. (1979) ‘Fuzzy clustering with a fuzzy covariance matrix’ Proc. of the IEEE

Conference on Decision and Control, San Diego, Californien, pp. 761–766. IEEE Press, Piscataway, NJ.

Halkidi, M., Batistakis, Y. and Vazirgiannis, M. (2002) ‘Cluster validity methods: Part I and part II’. SIGMOD Record

31(2), 19–27 and 40–45.

Hathaway, R. and Bezdek, J. (1994) ‘Nerf c-means: Non-euclidean relational fuzzy clustering’. Pattern Recognition

27(3), 429–437.

Hawkins, D. (1980) Identification of Outliers. Chapman and Hall, London.
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