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Theory of Statistical

Process Control

The most important tool in statistical process control is the control chart.
Shewhart developed the first type of chart during the 1920s [1]. One of
the most commonly used Shewhart charts is the X chart. In the following
for illustration, we will use this chart. However, the principles reviewed
may be broadened without much effort to include control charts in
general.

Originally control charts were developed in order to solve industrial
problems. We will start with pharmaceutical examples followed by
applications within the health care sector. The analogies and differences
between industrial and healthcare problems are also discussed.

1.1 STATISTICAL FOUNDATION
OF CONTROL CHARTS

To characterise a process, products produced by the process may be
sampled. A process variable is a random variable which value is obtained
by observing or measuring a specified property of each product, pro-
duced by the process and reflecting its quality. A sample variable is also a
random variable. However, its value is calculated as a function of the
process variable values, measured in the sample.
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Sample values are used to construct a control chart. They are subse-
quently plotted on the chart to monitor the process.

1.1.1 Statistical Control

Statistical control is a concept fundamental to the theory of control
charts. It is based on a distinction between two types of variation: one
resulting from unavoidable causes, which one cannot identify (random
variation), and one resulting from causes, which may be identified
(assignable causes of variation). A process which sample values vary
due to random causes alone is said to be in a state of statistical control.
Additional variation caused by assignable causes may occur. If this is the
case, the process is said to be out of statistical control. Since these causes
may be identified, it is often possible to regulate and control them so that
the process may be brought back into a state of statistical control.

Although the causes of variation of sample values from a process
in statistical control cannot be identified, the type and extent of the variation
may be described using large volumes of data. In other words, the values
may be described approximately by a probability distribution. The para-
meters of this distribution characterise the state of the process. Information
about this probability distribution may be obtained from random samples
selected from the process while it is in statistical control.

1.1.2 Samples and Control Charts

Assume we are examining the production process for a pharmaceutical
product (e.g., tablets) that is in statistical control. The machine produ-
cing the tablets has been adjusted to produce tablets with a weight that
follows a Gaussian distribution with a mean of 63.000 mg and a stan-
dard deviation of 0.010 mg. Samples, each comprising one tablet, are
selected from the production batch and their weights measured. We
assume the error of measurement is negligible and that the machine is
functioning as anticipated. Therefore, the results of the measurements
follow a Gaussian distribution with mean 63.000 mg and standard
deviation 0.010 mg. In the long run, we expect 99.73 % of the results
to fall within an interval with its upper limit equal to the mean plus three
standard deviations and the lower one equal to the mean minus three
standard deviations, i.e., an interval between 62.970 mg and 63.030 mg
(see Appendix A, Example A.11). The distribution with these limits
entered is depicted in Figure 1.1 a.
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Had we selected samples comprising not one, but n (n > 1)
tablets, it would have been natural to calculate the mean of the n
measurement results if we wanted to follow the mean value of the
process. The distribution of the weight is Gaussian. The mean of the
results of n measurements generated by this distribution also follows
a Gaussian distribution with the same mean, but with a standard
deviation of sffiffi

n
p (see Appendix A, Equation (A.23)). We may, there-

fore, calculate an interval within which 99.73 % of the sample means
will fall in the long run. The lower limit of this interval is m� 3sffiffi

n
p , and

its upper limit is mþ 3sffiffi
n
p , i.e., 63:000� 3�0:010ffiffi

n
p mg and 63:000þ3�0:010ffiffi

n
p

mg, respectively.
Figure 1.1 (a) depicts the distribution with these limits calculated

for n ¼ 1, and Figure 1.1 (c) depicts the distribution with the limits
calculated for n ¼ 2. Both of the intervals include 99.73 % of all values.
However, the interval for the mean values (n ¼ 2) is slimmer than that
for the single values (n ¼ 1) because it has a smaller standard deviation.

Now, assume that the machine is adjusted so that the mean value of
the weight of tablets is increased by 0.030 mg. It will continue to pro-
duce tablets, the weights of which follow a Gaussian distribution with

(a) (b)

63.000 63.030

(c) (d)

63.000 63.030

Figure 1.1 The distribution of the sample mean of the weight of tablets before ((a) and
(c)) and after ((b) and (d)) the adjustment of a tablet-producing machine has been
changed by 0.030 mg. Figures (a) and (b) show the distributions for sample size¼ 1 and
figures (c) and (d) the distributions when the sample size¼ 2.
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standard deviation 0.010 mg. However, the mean has increased to
63.030 mg. The distribution of single values (see Figure 1.1 (b)) as
well as the distribution of sample means (see Figure 1.1 (d)) will change.
In both cases the distribution will be horizontally shifted towards the
right so that the mean value now will be 63.030 mg instead of 63.000
mg. After the mean value of the process has changed, a large proportion
of the sample values (single values for n ¼ 1 and mean values for n ¼ 2)
will fall outside the upper limit in both cases. However, some of them
will still fall within the two limits (the control limits). The proportion
falling within the control limits will be larger when the sample size is 1
than when it is 2. This is so because the two distributions before and after
the shift of the mean value of the process are slimmer and therefore better
separated when the sample size is 2 than when it is 1.

We will now construct a control chart. To do so we rotate Figure 1.1
(c) 90� counter clockwise and draw four horizontal lines passing through
zero, the lower control limit, the process mean, and the upper control
limit, respectively. The line passing through zero is used to indicate the
time or the order of the samples. The result is depicted in Figure 1.2.

The fraction of a Gaussian distribution, with mean m and standard
deviation s, that is delimited by the values m� 3s, is 99.73 % and the
remaining fraction located outside the interval is 100 % – 99.73 %¼
0.27 %. Therefore, the probability that a sample mean falls outside the
(m� 3sffiffi

n
p ) limits of a control chart is 0.27 %, as long as the process remains

in statistical control. Each time we select a sample, we test the null
hypothesis that the mean value of the process has not changed by checking
if the sample mean falls within or outside the control limits given above.
The level of significance of this test is 100 % – 99.73 %¼ 0.27 %. It
follows that the control chart may be used repeatedly to test the hypothesis
that the process is in statistical control. It is implicitly assumed that the
value of s never changes.

Example 1.1

A sample comprising five tablets is selected each day from a process
producing tablets, and the weight of each tablet is measured. The mean
value of the results of the measurements is calculated. The mean value and
standard deviation of the process are known to be 63.000 mg and 0.010
mg, respectively. We want to construct a control chart with control limits
equal to the mean�3 standard deviations of the sample mean. Because the
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sample size, n, is 5, the standard deviation of x (the sample mean) is:
0:010ffiffi

5
p ¼ 0:0045 mg (see Appendix A, Equation (A.23)). The mean of the

distribution of sample means is the same as that of the process, i.e., 63.000
mg. The centreline of the chart, therefore, is at 63.000 mg. The upper and
lower control limits are 63:000þ 3 � 0:0045 ¼ 63:035 mg and
63:000� 3 � 0:0045 ¼ 62:986 mg, respectively.

Figure 1.2 The construction of a control chart based on the distribution shown in
Figure 1.1 (c). The distribution has been rotated 90 degrees counter clockwise. The line
corresponding to the mean value is the centreline, and the lines corresponding to the
limits of the 99.73 % confidence interval are the control limits of the chart.
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In the above it has been assumed that the process has been so well
described that its parameters may be considered known. As a rule this is
not so, and we have to use estimates of the parameters when constructing
a control chart.

1.2 USE OF CONTROL CHARTS

Initially, when one constructs a control chart, it is usually not known if
the process is in statistical control. In the initial phase the goal is to
reduce the variation of the process until it reaches a state of statistical
control that is acceptable. To assess if a process is in statistical control,
one often uses 20 to 25 samples, each comprising 4 to 5 observations.
When the samples are collected, one should record those conditions that
might possibly create variation in addition to the random variation. This
could be, e.g., the temperature, the raw materials used, the identity of
operators, etc. The average of the individual sample means (m̂) is used as
an estimate of the mean of the process variable. It defines the location of
the centreline. An unbiased estimate of the process standard deviation (ŝ)
is calculated from the average of the standard deviations (si) of the
individual samples (s) divided by a factor (c4), which depends of the
sample size and is found using Table 1.1.

We have

m̂ ¼

Pk
i¼1

xi

k
ð1:1Þ

where k is the number of samples and

ŝ ¼ s

c4
¼

Pk
i¼1

si

k � c4
ð1:2Þ

The upper control limit (UCL) is calculated as

UCL ¼ m̂þ 3
ŝffiffiffi
n
p ð1:3Þ

and the lower control limit (LCL) as

LCL ¼ m̂� 3
ŝffiffiffi
n
p ð1:4Þ
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where n is the sample size. Finally, the individual sample mean values are
depicted on the chart. In the case where all points lie within the control
limits, the data are consistent with the hypothesis that the process is in
statistical control. If one or more points are located outside the limits, it
is an indication that the process is not in statistical control, and the
causes must be traced. In the cases where these causes are identified, the
corresponding values are eliminated from the calculations, and a revised
control chart is computed. It is now controlled if all of the remaining
points fall within the revised control limits. Since the revised control
limits are narrower than the original ones, data points that previously

Table 1.1 Factors used for X charts and/or S charts.

Sample
size Factors

n c4 B3 B4 B5 B6

2 0.7979 0.000 3.267 0.000 2.606
3 0.8862 0.000 2.568 0.000 2.276
4 0.9213 0.000 2.266 0.000 2.088
5 0.9400 0.000 2.089 0.000 1.964
6 0.9515 0.030 1.970 0.029 1.874
7 0.9594 0.118 1.882 0.113 1.806
8 0.9650 0.185 1.815 0.179 1.751
9 0.9693 0.239 1.761 0.232 1.707

10 0.9727 0.284 1.716 0.276 1.669
11 0.9754 0.321 1.679 0.313 1.637
12 0.9776 0.354 1.646 0.346 1.610
13 0.9794 0.382 1.618 0.374 1.585
14 0.9810 0.406 1.594 0.399 1.563
15 0.9823 0.428 1.572 0.421 1.544
16 0.9835 0.448 1.552 0.440 1.526
17 0.9845 0.466 1.534 0.458 1.511
18 0.9854 0.482 1.518 0.475 1.496
19 0.9862 0.497 1.503 0.490 1.483
20 0.9869 0.510 1.490 0.504 1.470
21 0.9876 0.523 1.477 0.516 1.459
22 0.9882 0.534 1.466 0.528 1.448
23 0.9887 0.545 1.455 0.539 1.438
24 0.9892 0.555 1.445 0.549 1.429
25 0.9896 0.565 1.435 0.559 1.420

For n > 25, c4 

4ðn� 1Þ
4n� 3
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fell within the original limits may now fall outside the revised limits. The
cause, why a point fell outside the limits, may not necessarily be found.
If this is the case for only one or few points, one may choose not to
remove the values immediately, but wait and see how the control chart
functions and eventually remove them later on. If a large number of
points are falling outside the limits for unknown reasons, the pattern
formed by the points should be inspected. By doing so, one may often be
able to identify a cause common to all points. After a while, hopefully,
the chart indicates that a state consistent with the hypothesis of statis-
tical control has been reached. If the level of the process and the variation
relative to this level are both acceptable, the chart specifies the objective
of the process.

At this stage, it is vitally important that a protocol is written specifying
how one should go about looking for special causes if a value falls
outside the control limits, and how the report resulting from such a
search should be made. The specifics of the protocol depend on the
process. For a good clinical example see [2]. The chart may, then, be
used to monitor regularly selected samples, the mean values of which
are depicted on the chart. As long as these values are located within
the control limits, one may assume that the process is in statistical
control. The data cumulated in this way may be used to calculate
relatively precise estimates of the parameters of the process. When
reliable estimates are available, one may determine if the process actually
meets the quality requirements. If this is not the case, it is advisable to
revise the process, i.e., to improve it, until it meets the demands. In this
phase statistical design of exploratory experiments is an important tool.
A review of these techniques, however, is outside the scope of this book.
The interested reader is referred to [3].

Example 1.2

At an outpatient clinic the management decided to take random samples
comprising 30 ambulatory patients on each weekday for four weeks to
study the patient waiting times and assess if the quality requirement for
patient waiting times was met. The employees at the clinic were not
aware of this investigation. The waiting time of each patient was
recorded. A patient’s waiting time is the period starting when the patient
arrives at the clinic and ending when a technologist sees the patient.
Thus, 20 samples each comprising 30 randomly selected waiting times
were recorded.
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Table 1.2 shows the 20 sample mean values and standard deviations.
The mean of the mean values (m̂ ¼ 15:93 minute) estimating the process
mean and the average of the standard deviations (s ¼ 4:905 minute) are
also shown. An unbiased estimate of the process standard deviation (ŝ) is
calculated by dividing s by c4. The latter quantity is calculated as
4ð30�1Þ
120�3 ¼ 0:9915 (see Table 1.1). Therefore, ŝ is 4:905

0:9915 ¼ 4:95 minute.
Using these data an X control chart may be constructed. The estimate of
the standard deviation of the sample mean values is 4:95ffiffi

3
p

0
¼ 0:90 minute

since the sample size is 30. The centreline of the X chart is at 15.9 minute
(m̂), the UCL is 15:9þ 3 � 0:90 ¼ 18:6 minute, and the LCL is
15:9� 3 � 0:90 ¼ 13:2 minute.

Figure 1.3 (a) shows the X chart. The sample means are depicted on
the chart. Since three of the values (samples # 5, # 10, and # 15) are
located above the UCL, the process is not in statistical control.

Figure 1.3 (b) shows a revised control chart after these three values
have been eliminated from the calculations. Now the last value is outside
the UCL. Figure 1.3 (c) shows the control chart calculated without using

Table 1.2 The mean and standard deviation of waiting
times (minutes from patient’s arrival at outpatient clinic until
seen by a technologist) recorded on each of 20 weekdays.

Sample # n x s

1 30 16.75 5.509
2 30 15.60 4.558
3 30 16.14 5.465
4 30 15.96 4.582
5 30 18.86 4.594
6 30 14.33 4.920
7 30 15.44 6.357
8 30 14.67 3.791
9 30 16.53 6.885

10 30 19.89 5.583
11 30 14.37 3.714
12 30 14.13 3.477
13 30 14.99 4.627
14 30 13.33 3.922
15 30 19.96 4.717
16 30 15.87 5.481
17 30 14.41 5.877
18 30 15.16 4.901
19 30 13.82 5.434
20 30 18.46 3.716

m̂ ¼ 15:93 s ¼ 4:905
ŝ ¼ 4:95
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this value. The chart is consistent with a process in statistical control.
The management now had two jobs. First the special cause of the excess
variation had to be found and removed and the process brought into a
state of statistical control. Then the estimated process parameters had to
be compared with the quality requirements for waiting times to assess the
quality of the process.
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Figure 1.3 (a) An X chart showing the mean waiting times (minute) on weekdays.
(b) The control chart shown in (a) after the results of samples # 5, # 10, and # 15 have
been removed and the chart calculated without using these values. The latter values are
depicted as crosses. (c) The control chart shown in (a), after the results of samples # 5, #
10, # 15, and # 20 have been removed and the chart calculated without using these
values. The latter values are depicted as crosses.
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Inspecting the pattern of values (# 5, # 10, # 15, and # 20) outside the
UCL, one notes that all values were collected on a Friday. It turned out
that on Fridays the patient mix differed from that of the other weekdays
in that an unusually large number of patients from the cardiology
department were scheduled for ECG recordings in addition to blood
specimen collection. These patients required more time than those not
scheduled for ECG recordings. A retrospective analysis revealed that
overtime was much more common on Fridays than on any other week-
day. To prepare the organisation for quality assessment and control on a
routine basis, the management purchased a system for automatic record-
ing of waiting times. The IDs of technologists doing venipunctures and
recording ECGs were already automatically captured by the current
clinical data processing system. We will return to this example in
Chapter 9.

Table 1.3 shows the protocol they designed for the search for special
causes to be used when the process was brought into a state of statistical
control of a sufficiently high quality.

Table 1.3 Procedure for tracking special cause variation. Start at step 0 and pro-
ceed to the right.

Step Actions Questions and routing in table

0 Control data and data processing. Can error in data If yes, go to step 4.
explain variation? If no, go to step 1.

1 Compute ECG in number of Can increased
venipuncture equivalents. production or

Express production in number of decreased staffing If no go to step 2.
venipunctures. explain variation? If yes, go to step 4.

Control staffing of ambulatory.
2 Define productivity as Go to step 3.

venipuncture/technologist hour.
Compute
1) average productivity,
2) average productivity per 30

minute period,
3) average productivity per

technologist, and
4) average productivity per

technologist per 30 minute
period.
Identify significantly outlying
values.

3 Interview manager of ambulatory Go to step 4.
and technologists.

4 Write report and stop.

USE OF CONTROL CHARTS 21



1.3 DESIGN OF CONTROL CHARTS

When one constructs a control chart, it is necessary to decide which
control limits, sample size, and sampling frequency one wants to use.

1.3.1 Control Limits

Clearly, the position of the control limits has a bearing on the function of
a control chart. The further away from the centreline the limits are
located, the fewer sample means will fall outside the limits. This implies
that the probability that a type-1 error will be committed declines. A
type-1 error is committed when a sample mean value falls outside the
control limits even though the process is in statistical control. It is then
assumed that the process is out of statistical control, and a search for the
cause is initiated. The price of decreasing the expected number of type-1
errors, by widening the limits, is an increase in the expected number of
type-2 errors. A type-2 error is committed if a sample mean value falls
within the control limits and thereby prevents one from acknowledging
that the process is no longer in statistical control. If one narrows the
limits, the probability of committing a type-2 error declines, but at the
same time that of committing a type-1 error increases.

The choice of control limits depends on a weighing of the pros and
cons of the two types of errors. One approach is to decide initially how
large a fraction (a) of the sample means one is willing to let fall outside
the limits, while the process is in statistical control. The position of
the control limits is then calculated so that this condition is fulfilled. If
the fraction of values falling outside the limits is a, the fraction of values
falling within the limits must be (1� a). In the case of the X chart, the
problem may be stated as follows: We need to find a number, k, so that
the probability that a sample mean will fall inside the control limits is

P m� ksffiffiffi
n
p � X � mþ ksffiffiffi

n
p

� �
¼ 1� a ð1:5Þ

where m is the mean of the process, s its standard deviation, X the sample
mean, and n the sample size. It is not particularly difficult to find k in
Equation (1.5) when the distribution of X is Gaussian and m and s are
both known. When the value of k has been determined in this way, the
UCL is set equal to mþ ksffiffi

n
p , and the LCL is set equal to m� ksffiffi

n
p . Usually

k ¼ 3 is used. Inserting this value in Equation (1.5) the corresponding
value of a may be calculated. One finds that a ¼ 0:0027. Therefore, in the
long run, ð1� 0:0027Þ100 % ¼ 99:73 % of the sample mean values will
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fall within the limits, as long as the process remains in statistical control. In
the following we will use the factor 3, when calculating control limits. It is
assumed that the sample mean follows a Gaussian distribution and the
parameters are known. Due to the central limit theorem (see Appendix A,
Section A.3.4.1), the assumption of a Gaussian distribution is not neces-
sary when the sample size is large enough.

In addition to the control limits, two warning limits are sometimes
used, one on each side of the centreline usually at a distance of two
standard deviations from it. If a sample value falls between a warning
limit and the corresponding control limit, then it is a warning that the
process may be out of statistical control.

It is not always safe to assume that a sample variable follows a
Gaussian distribution, as we have done previously. However, the con-
sequences of erroneously making this assumption are limited. This
appears from an improvement on Tchebichev’s inequality [4], which
may be phrased as follows: If the statistical variable X follows a
unimodal distribution whose mode is equal to the mean, the probability
that its value deviates from the distribution’s mean value by more than k
times its standard deviation is equal to or less than 1

2:25k2. A unimodal
distribution is defined as a probability distribution which density func-
tion decreases monotonously to the left, as well as the right of its mode
(see Appendix A, Section A.2.3). Based on the inequality above, for
k ¼ 3 the probability that a sample mean falls outside the control limits
is 1

2:25�32 ¼ 0:049, or less, as long as the distribution of the sample mean is
unimodal, and its mode and mean coincide.

1.3.2 Sample Size

If a process gets out of statistical control because its level is changing, the
probability that a sample mean assumes a value outside the limits
whereby the change will be acknowledged increases. The increase in
probability depends on the sample size, as illustrated in Figure 1.1 in
Section 1.1.2. The figure shows the distribution of the sample value
before and after the mean has changed for sample size equal to 1 (upper
frame) and for sample size equal to 2 (lower frame). When the sample
size is 1, a much smaller fraction of the horizontally shifted distribution
falls outside the control limits of the original distribution than in the case
when the sample size is 2. Therefore, the probability (the area outside the
control limits) that a specified change in the mean is acknowledged is
smaller with sample size of 1 than with 2.
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1.3.3 Sampling Frequency

The more frequently samples are selected, the sooner a change of the
level of the process will be acknowledged; but also, the more frequently a
sample mean value will fall outside the control limits while the process is
in statistical control.

1.4 RATIONAL SAMPLES

A key issue to the construction of control charts is the formation of
rational samples. Rational samples are composed so that assignable
causes of variation may influence the variation between samples, but
not the variation within samples. For instance, it will be inexpedient to
mix the blood smears from two different technologists in the same
sample because variation caused by differences between the two tech-
nologists will then not be acknowledged. The formation of rational
samples is crucial and often requires considerable knowledge about the
process in question.

If a process is in statistical control, all of the variation between the
sample mean values can be explained by the variation within the samples
because the process mean does not change. Therefore, the samples may
be pooled and all be used to calculate a single estimate of the standard
deviation. However, if the process is not in statistical control, the process
mean may change between samples. In this case the standard deviation
obtained by pooling the values will be larger than the standard deviation
that one would obtain by calculating the average of the within-samples
standard deviations. Since it is not known in advance whether a process
is in statistical control, the average of the sample standard deviations
should always be used. Otherwise the risk is that a lack of statistical
control may be masked.

1.5 ANALYSING THE PROPERTIES
OF A CONTROL CHART

Once a process is brought into a state of statistical control, a control
chart may be used to monitor it. The purpose is to recognise quickly
and in an objective way if the process gets out of statistical control. If
a sample value falls outside the control limits, it is a very strong
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indication that this has happened. However, the values may remain
within the control limits, while the process is out of control. A state of
statistical control is characterised by control values scattering at ran-
dom around the centreline. Therefore, if systematic sequences of values
begin to appear, it may be an indication that the process is out of
control, even though all values stay within the limits. A sequence of
values that all share the same quality is referred to as a run. Eight
consecutive sample mean values, each being larger than its predecessor,
or eight values all located on the same side of the centreline are
examples of runs.

To better characterise the values entered on the chart, it is customary
to enter two warning limits; a lower one and an upper one. As mentioned
previously, each of them is located at a distance of two standard devia-
tions from the centreline. The probability that a sample mean value falls
outside the warning limits is approximately 0.05 if the process is in
control. However, the probability that two mean values in a row fall
outside the upper warning limit is quite low. Therefore, this indicates
strongly that the mean value of the process has increased. The two
warning limits may be supplemented by an additional pair of warning
limits located on each side of the centreline, each at a distance of one
standard deviation from the line. In this way, the region defined by the
two control limits is divided into 6 zones. This makes it easier to
recognise interesting runs, e.g., a run characterised by values located
above the same inner warning limit.

1.5.1 Systematic Data Patterns

We may test statistically if it is improbable that a run is just a random
phenomenon. Then, it may be concluded that the process is out of
statistical control. However, if one applies several tests simultaneously,
i.e., pays attention to many different types of runs, the combined prob-
ability of committing a type-1 error may be quite high. Therefore, it is not
recommendable routinely to include tests based on various types of runs
when assessing whether a process is in statistical control or not. Small
changes of the mean level may certainly cause various types of runs to
appear while all data points are still falling within the control limits.
However, to identify small changes in the level, it is recommended instead
to apply a time-weighted control chart. These control charts are reviewed
in Chapter 3. This is not to say that one should not pay attention to
extreme patterns and utilise the information thus gained. When a value
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falls outside the control limits, statistically significant patterns of runs may
be valuable clues in the search for the cause of the loss of control.

1.5.2 In-Control Average Run Length (ARL)
and Out-of-Control ARL

In the following a process is considered to be in statistical control as long
as the sample mean value stays within the control limits and out of
control if a value falls outside the control limits. This usage of the chart
implies that one is currently testing the hypothesis that the process is in
control. Since the conclusions drawn on the basis of a statistical test
result are inherently uncertain, one will occasionally commit an error. It
is of practical interest to know how often one should expect a false alarm
and thereby be led to commit a type-1 error. It is furthermore of interest
to know the length of the period, from a loss of statistical control until
the loss is acknowledged. The last question cannot be answered unequi-
vocally unless it is specified how much out of control the process is in
terms of the magnitude of the change of its parameter values.

The probability distribution of the sample means after the mean value
of the process has changed is Gaussian with a mean equal to the new
process mean value and a standard deviation equal to that characterising
the distribution prior to the change. Using this information, one may
calculate the fraction of the distribution delimited by the control limits
(see Figure 1.1). This fraction is equal to the probability (b) that a sample
mean will fall within the control limits and thereby prevent the change
from being acknowledged. The probability that the mean value of the
first sample selected – subsequent to a specified change of the process
mean – falls outside the control limits is 1� b. This follows because b is
the probability that it falls within the limits. The probability that the
change will be acknowledged when the second sample is selected, is the
probability (b) that it will not be acknowledged when the first sample is
selected multiplied by the probability (1� b) that it will be when the
second sample is selected, i.e., bð1� b). It is assumed that the sample
values are statistically independent. The probability that the change will
be acknowledged when the fifth sample is selected is b4ð1� bÞ, etc. In
general we have, that the probability that the change will be acknowl-
edged at the kth trial is bk�1ð1� bÞ. In the first example, it was necessary
to obtain 2 samples before the change was acknowledged, and in the
second example it was necessary to obtain 5 samples. To calculate the
average number of samples necessary to select before a specified change
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is acknowledged, each possible outcome should be weighted by its
probability of taking place and the resulting products added. In principle,
there are an infinite number of possible outcomes, and the sum, there-
fore, includes an infinite number of terms. It may be shown that the sum
is 1

1�b
. We have

X1
k¼1

kbk�1ð1� bÞ ¼ 1

1� b
ð1:6Þ

In the special case when the process mean has not changed, ð1� bÞ, the
probability that a value falls outside the control limits is equal to a, the
risk of committing a type-1 error. The average number of samples
collected (ARL, the average run length) between type-1 errors is called
the in-control ARL. According to Equation (1.6) it is calculated as

ARLa ¼
1

a
ð1:7Þ

Example 1.3

Using the conventional control limits equal to the process mean �3
standard deviations implies that a ¼ 0:0027. Therefore, the ARL0.0027

between type-1 errors is 1
0:0027 ¼ 370:37, according to Equation (1.7).

When b is known, Equation (1.6) may be used to calculate the average
number of samples selected subsequent to a specified change of the
process mean and before the first value falls outside the limits and the
change thereby is acknowledged. We have

ARLb ¼
1

1� b
ð1:8Þ

1.6 CHECKLISTS AND PARETO CHARTS

Two helpful instruments may supplement a control chart: a checklist and
a Pareto chart. A checklist is used to list in a chronological order the
problems that one has come across so far while monitoring the process. It
should include information about how often the various flaws and
defects have been observed and who took care of them. A Pareto chart
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is in many ways similar to a histogram. The ordinate of a Pareto chart
is the same, i.e., frequency. The abscissa, however, is qualitative
instead of quantitative. It shows the type of problems one has come
across. The chart gives a graphical representation of qualitative
data, with the frequencies sorted according to size. The checklist may
be used as input for the Pareto chart. The chart may be used to identify
frequently occurring problems. However, it does not acknowledge the
seriousness of the various problems. If some problems are serious and
other problems are trivial ones, one might weigh the frequencies of the
various problems according to their seriousness before drawing the
Pareto chart.

Example 1.4

In each of 102 surgical patients the complications arising during
the operation were noted. Figure 1.4 shows a Pareto chart of the fre-
quencies of the various types of medical complications. It appears that
heart failure and infection of the lungs are the predominant medical
complications.

1.7 CLINICAL APPLICATIONS OF CONTROL CHARTS

The clinical applications of control charts are often less straightforward
than the industrial ones. We will discuss the problems arising. Some of
the issues will be further elaborated in Chapter 6.
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Figure 1.4 A Pareto chart showing the occurrence of postoperative medical compli-
cations in 102 surgical patients. BP stands for blood pressure, and Resp. stands for
respiratory.

28 THEORY OF STATISTICAL PROCESS CONTROL



1.7.1 Input/Output of Clinical Processes

In principle control charts may be used in clinical work in the same way
as they are used in industrial work. The values of quality measures or
quality indicators are measured as mentioned in the introduction and
used to construct control charts. The quality may then be assessed and
monitored using the charts.

The input to industrial processes may be controlled. However, this is
not always the case for medical processes. In clinical medicine the patients
vary considerably. Some patients may be so sick that they will not survive
even if the clinical process, i.e., treatment and care, is optimal, while other
patients whose diseases are less severe may survive even though the
treatment and care they receive is of a poor quality. An industrial concern
is able to standardise the input to its various processes. Therefore, one may
safely assume that variation of the output (the products) mirrors the
quality of the processes. By contrast, a hospital department or a practice
cannot control the input (the number and types of patients received).
Therefore, in this case, it is necessary to separate the variation of the
output into two components: one that is caused by variation of the input
(variation of severity of the patients’ diseases, their co-morbidities, etc.)
and one that is caused by the process (treatment and care). The problem
may be dealt with in various ways as will be explained in Chapters 5, 6,
and 7.

1.7.2 Samples

If possible, the samples formed should be rational. Therefore, assignable
causes of variation should not be allowed to influence the within sample
variation, and the selection of samples should be organised so that
rational hypotheses of interest may be tested. Assume, e.g., that there
are reasons to believe that the waiting-time between the arrival of a test
request to a laboratory and the reporting of the corresponding result is
not the same during working hours, as it is outside working hours. To
assess this hypothesis, it is necessary to select ‘waiting-time samples’ so
that a sample is either selected during working hours or outside working
hours and not just at random times round the clock.

Two principles may be applied to form rational samples. According to
one principle a sample should only include products that are produced at
the same time (or as close together in time as possible). This principle
is applied when the primary purpose is to be able to acknowledge a
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change in the process mean since the likelihood that such a change will
affect the within-sample variation is very small. According to the other
principle, the sampling period is extended. At the end of one sampling
period, the next one is initiated, etc. Each sample consists of products
representative of those produced since the last sample was selected. This
principle is usually applied when a decision has to be made as to whether
or not the products produced during the sampling period should be
accepted. Supporters of the last principle often emphasise that a shift
in the level, away from the control level and back again, in between
sampling will not be acknowledged if the first principle is applied.
However, if the process mean value fluctuates among different levels
during the sampling period, the variation within the sample might be
quite large. Therefore, it is possible to make any process look as if it were
in control simply by lengthening the sampling period. In medicine all
information about each patient is kept. Therefore, it makes sense to
inspect all of the production. This implies that the second principle
should be applied. Consequently, the samples should be as small as
possible so that the conditions during the sampling are reasonably uni-
form. This also allows the search for the reason why a process is out of
control to be conducted, while the trail is ‘still hot’. Furthermore, actions
necessary to remove the cause of a lack of statistical control will not be
unduly delayed. For example we would want to detect an increase in the
occurrence of Methicillin resistant Staphylococcus aureus infections as
soon as possible to take the necessary precautions. On the other hand,
the event one monitors (e.g., that a patient dies) may be a rare one. This
requires the sample of patients to be made sufficiently large so that at
least a few dead patients are included in each patient group. There are
several considerations that one has to balance relative to each other
before the sample size is decided.

Instead of using equally sized samples, it may be more practical to use
equally sized samplingperiods, e.g., a week, a month, or a quarter of a year.
This implies that the sample size will vary. The above considerations then
have to be balanced when the length of the sampling period is decided.

1.8 INAPPROPRIATE CHANGES OF A PROCESS

If the quality of a clinical process is not good enough for its purpose it has
to be improved. To improve the quality of a process one has to change it.
However, it is important to know when it is appropriate to change a
process and when it is not. A process in statistical control may be
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changed if its quality is deemed insufficient for its purpose on the basis of
an assessment of its parameter values. However, it should not be changed
on the basis of an assessment of a sample obtained from it. If the system is
not in statistical control it should not be changed. The reason is that the
results of a change cannot usually be interpreted. Instead, the process
should be brought into a state of statistical control and then changed if
deemed necessary.

We will present an example illustrating the effect of using sample values
as a basis for changing a system that is in statistical control and examples
showing the effect of changing a system that is not in statistical control.

1.8.1 Changing a Process in Statistical Control
Guided by Samples

Example 1.5

Table 1.4 (column 2) shows a series of 15 numbers drawn at random from
a Gaussian distribution with mean 10.00 and standard deviation 1.00.

Table 1.4 Simulation of a treatment where the dose of a drug is adjusted when the
plasma concentration falls outside specified limits (8.50 to 11.50) even though the
concentration without active adjustment would have remained in statistical control
during the whole period.

Value with
dose adjustment

Value Random YðtÞ ¼ Yðt � 1Þþ
without dose change RðtÞþ Effect of dose

Time adjustment RðtÞ ¼ ADJ�effectðtÞ adjustment
(t) X(t) XðtÞ � Xðt � 1Þ ðt > 1Þ ADJ–effect(t)

1 9.45 9.45
2 7.99 �1.46 7.99 0.00
3 9.29 1.30 9.80 0.51
4 11.66 2.37 12.68 0.51
5 12.16 0.50 12.00 �1.18
6 10.18 �1.98 8.84 �1.18
7 8.04 �2.14 5.52 �1.18
8 11.46 3.42 11.92 2.98
9 9.20 �2.26 9.24 �0.42

10 10.34 1.14 9.96 �0.42
11 9.03 �1.31 8.23 �0.42
12 11.47 2.44 10.94 0.27
13 10.51 �0.96 10.25 0.27
14 9.40 �1.11 9.41 0.27
15 10.08 0.68 10.36 0.27
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Figure 1.5 shows an X chart for n ¼ 1, (see Chapter 2) constructed from
these data and with the 15 values entered. As expected, the chart shows
the picture one would expect when monitoring a process in statistical
control the results of which follow a Gaussian distribution. The data
points are all within the control limits.

Assume that the numbers represent the results of weekly measurements
of the plasma concentration of a drug measured in the same patient who
is taking this drug daily, without changing the dose (the basic dose).
We want to calculate what would have happened if the dose, instead
of having been kept constant, had been controlled by two limits, 11.50
and 8.50, as follows: when the concentration exceeds the upper limit of
11.50, the basic dose is reduced. The aim is to reduce the concentration
by a quantity equal to the observed deviation from the 11.50 upper
limit. In the same way, the basic dose is increased when the lower limit
is exceeded.

When the dose is not adjusted, each new value is equal to the previous
value plus the random biological variation that takes place between the
measurements. When the dose is adjusted, the effect of the adjustmentof the
dose has to be added to the random biological variation. The random
variation in the drug level, between measurements, is calculated as the
difference between the measurements obtained when no adjustment is
made. These random variations are shown in column 3 of Table 1.4. For
example, the random variation from the first to the second value is
7:99� 9:45 ¼ �1:46. Column 5 shows the change in the level, intended
by adjustment of the basic dose according to the strategy. The values
obtained when the strategy is applied and works as intended are shown
in column 4. The initial value is 9.45. This is within the limits (8.50 and
11.50). So the dose is not adjusted. The second value is equal to the previous
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Figure 1.5 X chart, calculated from 15 random numbers generated by a Gaussian
distribution with mean 10.00 and standard deviation 1.00, simulating the time course
of the drug concentration measured in a patient receiving constant daily doses.
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value (9.45) plus the random variation that is�1.46 and the effect of adjust-
ment that is 0. Therefore, the second value is 7.99. This value is 0.51 below the
lower limit of 8.50. Consequently, the basic dose is adjusted to increase the
concentrationby0.51.So it isassumedthateverythingelsebeingequal thedose
adjustment increases the concentration by 0.51 until the next time where the
dose is changed relative to the basic dose. The third value is equal to 7.99 plus
the random variation that is 1.30, plus the effect of the adjustment of the dose
that is 0.51. Therefore, the third value is 9.80. Since the value is within the
limits, the current dose is not changed. The fourth value becomes equal to
9:80þ 2:37 (the random change)þ 0:51 ¼ 12:68. Now the basic dose has to
be adjusted again to achieve a change of 11:50� 12:68 ¼ �1:18, etc.

Calculating the mean and standard deviation of the two series, we get
mean¼ 10.02 and standard deviation¼ 1.28 for the series without dose
adjustment and mean¼ 9.77 and standard deviation¼ 1.79 for the series
resulting from dose adjustment. Without adjustment, the mean is 0.2% away
from the intended value of 10 and the standard deviation is 28% larger than
1. With active adjustment the values are 2.3% and 79% respectively. In other
words, the quality of the treatment has declined considerably.

Clearly, the example is invented and rather simple-minded. However, it
illustrates a phenomenon that is well known within the field of statistical
process control, namely that the quality of a process that is in a state of
statistical control deteriorates if one tries to adjust it on the basis of sample
values. It is necessary to assess if the process is satisfactory or not, on the
basisof its parameter values. Ifnot, itmust beadjusted. One thenhas towait
until a new state of statistical control has been reached. Then a decision has
to be made if the quality of the revised process is satisfactory, etc.

1.8.2 Changing a Process That is Not in Statistical Control

RG Carey [5] reports some very interesting examples. Using somewhat
modified data, but without changing the basic ideas, we present these
examples. They illustrate that the interpretation of the effect of an
adjustment of a process may be very difficult if the process is not in a
state of statistical control.

Example 1.6

The annual death rate of coronary artery bypass graft operations at a
hospital was 5 % in 1994. The protocol for the operation was changed in
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January 1995, and in January 1996 the annual death rate of 1995
was calculated and found to be 4 %. A statistical analysis comparing
the annual death rates showed that this improvement was statistically
significant.

Figure 1.6 shows the monthly death rates recorded during 1994 and
1995. It is obvious that for some unknown reason (perhaps improvement
of the surgeons’ skill to operate) the death rate has been declining
throughout 1994, whereupon the trend has turned. In the beginning of
1995 the death rate dropped to 2 %, but at the end of the year it was as
high as 6 %. Without examining whether the process is stable or not one
may reach the conclusion that the change of protocol had a beneficial
effect on the death rate. However, by examining the process, one realises
that it is inappropriate to compare the annual rates because the process
examined is not in a state of statistical control. In fact, inspection of the
monthly rates leaves one with the impression that the change in protocol
had a harmful effect.

Example 1.7

At two departments, A and B, the protocol for open-heart surgery was
changed to reduce the transport time from the operating theatre to the
intensive care department. The transport time is finished when the
patient has stabilised and the monitoring of the patient begins. After
the change in protocol had been instituted, the annual mean value of
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Figure 1.6 Percent of patients who died during coronary artery bypass graft opera-
tion as measured monthly during 1994 and 1995. The protocol for the operation was
changed on January first 1995.
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the transport times decreased from 39 minute to 26 minute in both
departments.

Figure 1.7 (a) depicts the monthly average transport times in depart-
ment A prior to and subsequent to the change in protocol. The transport
time is in statistical control before as well as after the change has been
introduced (only the control limits of the second period are shown in the
figure). Further, the mean transport time has been reduced significantly
as a result of the change. Looking at the corresponding figure for
Department B, Figure 1.7 (b), one notes that the picture is completely
different. Neither before nor after the introduction of the change is the
process in statistical control. Furthermore, it is doubtful if the change in
the protocol has had any appreciable effect on the steady decline of the
monthly average transport time that started in 1995 and continued
throughout 1996.
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Figure 1.7 (a) The average transport time from the operating theatre to the intensive
care unit as measured monthly during 1995 and 1996 in department A. The protocol
for open-heart surgery was changed on January 1 1996. Only the control limits of the
1996 data are shown in the figure. (b) Data from Department B corresponding to those
shown in Figure 1.7 (a) for Department A.
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