
1

Introduction

Time is an illusion, lunchtime doubly so.
– Douglas Adams

Time plays a central role in our lives. In describing the world, or our activities within
it, we naturally invoke temporal descriptions. Some of these are explicit, such as ‘next
week’ or ‘in 5 minutes’, while others implicitly acknowledge the passing of time, for
example ‘during’, ‘did’ or ‘will do’. Not surprisingly, it is also important to be able
to describe temporal aspects within the world of Computer Science: computations nat-
urally proceed through time, and so have a history of activity; computational processes
take time to act; some processes must finish before others can start; and so on. Con-
sequently, being able to understand, and reason about, temporal concepts is central to
Computer Science.

In this book, we will explain how some of these temporal notions can be described
and manipulated. This, in turn, will allow us to carry out a temporal analysis of certain
aspects of computation. To be precise in our temporal descriptions, we will use formal
logic. These not only provide a concise and unambiguous basis for our descriptions, but
are supported by many well-developed tools, techniques and results that we can take
advantage of.

This book will provide an introduction to work concerned with formal logic for
capturing temporal notions, called temporal logic, together with some of its applications
in the formal development and analysis of computational systems. The name ‘temporal
logic’ may sound complex and daunting. Indeed, the subject can sometimes be difficult
because it essentially aims to capture the notion of time in a logical framework. However,
while describing potentially complex scenarios, temporal logic is often based on a few
simple, and fundamental, concepts. We aim to highlight these in this book.

An Introduction to Practical Formal Methods Using Temporal Logic, First Edition. Michael Fisher.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

CO
PYRIG

HTED
 M

ATERIA
L



2 INTRODUCTION

As we might expect, this combination of expressive power and conceptual simplicity
has led to the use of temporal logic in a range of subjects concerned with computation:
Computer Science, Electronic Engineering, Information Systems and Artificial Intelli-
gence. This representation of dynamic activity via temporal formalisms is used in a wide
variety of areas within these broad fields, for example Robotics [176, 452], Control Sys-
tems [317, 466], Dynamic Databases [62, 110, 467], Program Specification [339, 363],
System Verification [34, 122, 285], and Agent-Based Systems [207, 429]. Yet that is not
all. Temporal logic also has an important role to play in Philosophy, Linguistics and
Mathematics [222, 470], and is beginning to be used in areas as diverse as the Social
Sciences and Systems Biology.

But why is temporal logic so useful? And is it really so simple? And how can we
use practical tools based on temporal logic? This book aims to (at least begin to) answer
these questions.

1.1 Aims of the book

Our aims here are to

• provide the reader with some of the background to the development and use of
temporal logic;

• introduce the foundations (both informal and formal) of a simple temporal logic; and

• describe techniques and tools based on temporal logic and apply them to sample
applications.

This book is not deeply technical. It simply aims to provide sufficient introduction to a
number of areas surrounding temporal logic to enable either further, in-depth, study or
the use of some of the tools described. Consequently, we would expect the readership
to consist of those studying Computer Science, Information Systems or Artificial Intelli-
gence at either undergraduate or postgraduate level, or software professionals who wish
to expand their knowledge in this area. Since this is an introductory text, we aim to
provide references to additional papers, books and online resources that can be used for
further, and deeper, study. There are also several excellent, more advanced, textbooks and
monographs that provide much greater technical detail concerning some of the aspects
we cover, notably [34, 50, 122, 224, 299, 327, 339, 363, 364].

While there are very few proofs in this book, some of the elements are quite complex.
In order to support the reader in understanding these aspects, we have often provided both
exercises and pointers to further study in each chapter. We have interspersed exercises
throughout the text, and sometimes provide a further selection of exercises at the end of
each chapter, with answers in Appendix B. In addition, further resources can be found
on the Web pages associated with this book:

http://www.csc.liv.ac.uk/∼michael/TLBook

This URL provides links not only to additional material related to the book, but also
contains pointers to a range of systems that are, at least in part, based on temporal logic.



WHY TEMPORAL LOGIC? 3

1.2 Why temporal logic?

As computational systems become more complex, it is often important to be able to
describe, clearly and unambiguously, their behaviour. Formal languages with well-defined
semantics are increasingly used for this purpose, with formal logic being particularly
prominent. This logic not only presents a precise language in which computational
properties can be described, but also provides well-developed logical machinery for
manipulating and analysing such descriptions.

For example, it is increasingly important to verify that a computational system behaves
as required. These requirements can be captured as a formal specification in an appro-
priately chosen formal logic, with this specification then providing the basis for formal
verification . While a system can be tested on many different inputs, formal verifica-
tion provides a comprehensive approach to potentially establishing the correctness of the
system in all possible situations. Verification within formal logic is aided by a logic’s
machinery, such as proof rules, normal form and decision procedures. Alternatively, we
may wish to use the logical specification of a system in other ways, such as treating it as
a program and directly executing it. Again, the well-developed logical machinery helps
us with this.

Though logical specifications are clearly an important area to develop, the increased
complexity of contemporary computational systems has meant that specifications in terms
of traditional logic can become inappropriate and cumbersome. Consequently, much of the
recent work concerning the use of formal logic in Computer Science has concentrated on
developing logic that provides an appropriate level of abstraction for representing complex
dynamic properties. It is precisely for this reason that temporal logic has been developed.
Temporal logic has been used in Linguistics since the 1960s. In particular, temporal logic
was originally used to represent tense in natural language [420]. However, in the late
1970s, temporal logic began to achieve a significant role in the formal specification and
verification of concurrent and distributed systems [411, 412]. This logic is now at the
heart of many specification, analysis and implementation approaches.

1.2.1 Motivation: evolution of computational systems

The way computational systems are designed and programmed has evolved considerably
over the last 40 years. Correspondingly, the abstractions used to characterize such systems
have changed during that time. When formal approaches to program development were
initially envisaged, the key abstraction was that of a transformational system [260].
Transformational systems are essentially those whose behaviour can be described in
terms of each component’s input/output behaviour:

Input OutputTRANSFORMATIONAL
COMPONENT

In other words, each component in a system receives some input, carries out some oper-
ation (typically on data structures), and terminates having produced some output. The



4 INTRODUCTION

Formal Methods that have been developed for such systems describe the data structures
and the behaviour of operations (via pre- and post-conditions) on these structures. Spec-
ification notations particularly relevant to this type of system were developed in the late
1960s and came to prominence in the 1970s. Typical examples include Floyd-Hoare
Logics [214, 274, 418], weakest precondition semantics [146], VDM [304], Z [135], and
(more recently) B [7, 340, 446], as well as the functional programming metaphor.

While the use of Formal Methods for transformational systems has been very effective
in many areas, it became clear in the 1970s that an increasing number of systems could
not easily be categorized as ‘transformational’. Typically, this was because the compo-
nents were either non-terminating, continuously reading input (not just at the beginning
of computation), continuously producing output (not just at the end), or regularly inter-
acting with other concurrent or distributed components. These have been termed reactive
systems [260] and can be visualized in a more complex way, for example:

Request Sensor

Request

Trigger

Test

REACTIVE
COMPONENT

Request

Update

Report

This diagram highlights the fact that multiple inputs can be received, and multiple outputs
can be generated, by reactive systems. Such systems are typically interacting, evolving,
non-terminating systems.

Formal Methods for reactive systems often require more sophisticated techniques than
the pre- and post-conditions provided in notations such as VDM or Z. In particular, in
the late 1970s, temporal logic was applied to the specification of reactive systems, with
this approach coming to prominence in the 1980s [363, 414]. It is widely recognized that
reactive systems [260], as described above, represent one of the most important classes
of systems in Computer Science and, although the analysis of such systems is difficult,
it has been successfully tackled using temporal representations [168, 411, 460], where
a number of useful concepts, such as safety , liveness and fairness properties can be
formally, and concisely, specified [363]. Such a logical representation of a system then
permits the analysis of the system’s properties via logical methods, such as logical proof .
A specific proof method for deciding whether a temporal formula is true or false is one
of the aspects that we will examine later in this book.

1.3 What is temporal logic?

Temporal logic is an extension of classical logic1, specifically adding operators relating to
time [168, 196, 210, 224, 225, 279, 433, 460, 478]. Modal logic [67, 68, 109, 226, 291]

1 A very brief review of classical logic is provided in Appendix A.



WHAT IS TEMPORAL LOGIC? 5

provides some of the formal foundations of temporal logic, and many of the techniques
used in temporal logic are derived from their modal counterparts. In addition to the
operators of classical logic, temporal logic often contains operators such as ‘ �’, meaning
in the next moment in time, ‘ ’, meaning at every future moment , and ‘♦’, meaning at
some future moment . These additional operators allow us to construct formulae such as

(try_to_print ⇒ ♦¬try_to_print)

to characterize the statement that

“whenever we try to print a document then at some future moment we will
not try to print it”.

The flexibility of temporal logic allows us also to provide formulae such as

(try_to_print ⇒ �(printed ∨ try_to_print))

meant to characterize

“whenever we try to print a document then, at the next moment in time,
either the document will be printed or we again try to print it”

and
(printed ⇒ � ¬try_to_print)

meaning

“whenever the document has been printed, the system will never try to print
it (ever again)”.

Given the above formulae then, if we try to print a document, i.e.

try_to_print

we should be able to show that, eventually, it will stop trying to print the document.
Specifically, the statement

♦ ¬try_to_print

can be inferred from the above formulae. We will see later how to establish automatically
that this is, indeed, the case.

Although there are many different temporal logics [168, 196, 279], we will mainly
concentrate on one very popular variety that is:

• propositional , with no explicit first-order quantification;

• discrete, with the underlying model of time being isomorphic to the Natural Num-
bers (i.e. an infinite, discrete sequence with distinguished initial point); and

• linear , with each moment in time having at most one successor.



6 INTRODUCTION

Note that the infinite and linear constraints ensure that each moment in time has exactly
one successor, hence the use of just one form of ‘ �’ operator. If we allow several
immediate successors, then we typically require other operators. (More details concerning
such logics will be provided in Chapter 2.)

1.4 Structure of the book

The book comprises four parts, of very different sizes.

• In the first part, we introduce temporal logic (Chapter 2), and show how it can be
used to specify a variety of computational systems (Chapter 3).

• In the second part, we then describe techniques that use these temporal specifi-
cations, namely deductive verification (proof; Chapter 4), algorithmic verification
(model checking; Chapter 5), and model building (direct execution; Chapter 6).

• In the third part (Chapter 7), we provide an overview of some of the areas where
temporal-based formal techniques are being used, not only in Computer Science,
but also in Artificial Intelligence and Engineering.

• Finally, in Appendices A and B, we provide a review of classical logic and sample
answers to exercises, respectively.

In the first part, we essentially introduce the basic concepts of temporal logic and temporal
specification. Throughout the chapters in this first part we provide a range of examples
and exercises to reinforce the topics. In the second part, comprising chapters describing
verification and execution approaches, we split each chapter into:

• an introductory section conveying the motivation for, and principles of, the
approach being tackled;

• details of a particular technique epitomizing the approach;

• an overview of a particular system implementing the technique described; and

• a selection of advanced topics concerning this area and an overview of alternative
systems tackling this problem.

Again, within this structure, examples and (some) exercises will be provided.
To give an idea of the substructure of Chapters 4, 5 and 6, we can give the following

broad distribution of topics.

• Chapter 4 (Deduction)

Introductory: the idea behind deductive verification and temporal
proof.

Technique: clausal temporal resolution.
System: TSPASS.
Advanced: including alternative approaches, such as tableaux and

extensions.



STRUCTURE OF THE BOOK 7

• Chapter 5 (Model Checking)

Introductory: the idea behind algorithmic temporal verification and
model checking.

Technique: the automata-theoretic view of model checking.
System: Spin.
Advanced: including alternative approaches, such as extended,

bounded, or abstracted model checking.

• Chapter 6 (Execution)

Introductory: model construction through direct execution.
Technique: MetateM execution algorithm.
System: Concurrent MetateM.
Advanced: including alternative approaches, such as temporal

logic programming and interval-based execution.

Finally, in Chapter 7, we provide an overview of selected applications where temporal-
based formal methods have been, or are being, used. Some use the techniques described
in the book, others use alternative temporal approaches, but all help to highlight the wide
applicability of temporal methods.




