
1
Introduction

1.1 TYPOGRAPHICAL AND CODE CONVENTIONS USED
IN THIS BOOK

To distinguish between the text of the book, Visual Basic code, C/C++ code, and Excel
worksheet functions, formulae and cell references, the following fonts are used
throughout:

Excel functions and formulae

Windows application menus and control button text

Visual Basic code

C/C++ code

Directory paths, file names and file masks

Passages of source code appear as boxed text in the appropriate font.
The spelling and grammar used throughout this book are British Isles English, with the

occasional US variation such as dialog.
Examples of non-VB code are mostly in C++-flavoured C. That is, C written in C++

source modules so that some of the useful C++ features can be used including:

• the declaration of automatic variables anywhere in a function body;
• the use of the bool data type with associated true and false values;
• the use of call-by-reference arguments;
• C++ style comments.

C functions and variables are written in lower case with underscores to improve readabil-
ity, for example, c_thing. In the few places C++ classes are used, class and instance
names and member functions and variables are written in proper case, and in general,
without underscores, for example, CppThing. Class member variables are prefixed with
‘m_’ to clarify class body code. Beyond this, no coding standard or variable naming con-
vention is applied. Names of XLL functions, as registered with Excel, are generally in
proper case with no underlines, to distinguish them from Excel’s own uppercase function
names, for example, MyAddInFunction.

Where function names appear in the book text, they appear in the appropriate font
with trailing parentheses but, in general, without their arguments. For example, a C/C++
function is written as c_function() or CppFunction() and an Excel worksheet
function is written as Excel_Function(). VB functions may be written as VB_Function(),
or simply VB_Function where the function takes no arguments, consistent with VB
syntax.

CO
PYRIG

HTED
 M

ATERIA
L



2 Excel Add-in Development in C/C++

Code examples mostly rely on the Standard C Library functions rather than, say, the
C++ Standard Template Library or other C++ language artefacts. Memory allocation and
release use malloc(), calloc() and free(), rather than new and delete or the
Win32 global memory functions. (There are a few exceptions to this.) This is not because
the choice of the C functions is considered better, but because it is a simple common
denominator. It is assumed that any competent programmer can alter the examples given
to suit their own preferences. String manipulation is generally done with the standard
C library functions such as strchr(), rather than the C++ String class. (There is
some discussion of BSTR strings and the functions that handle them, where the topic is
interoperability of C/C++ DLLs and VB.)

The standard C library sprintf() function is used for formatted output to string
buffers, despite the fact that it is not type-safe and risks buffer overrun. (The book avoids
the use of any other standard input/output routines.)

The object oriented features of C++ have mostly been restricted to two classes. The
first is the cpp_xloper, which wraps the basic Excel storage unit (the xloper) and
greatly simplifies the use of the C API. The second is the xlName which simplifies
the use of named ranges. (Strictly speaking, defined names can refer to more than just
ranges of cells.) There are, of course, many places where an add-in programmer might
find object-abstraction useful, or the functionality of the classes provided in this book
lacking; the choice of how to code your add-in is entirely yours.

C++ throw and catch exception handling are not used or discussed, although it is
expected that any competent C++ programmer might, quite rightly, want to use these.
Their omission is intended to keep the Excel-related points as the main focus.

Many other C++ features are avoided in order to make the code examples accessible
to those with little C++ experience: namespaces, class inheritance and friends, streams
and templates. These are all things that an experienced C++ programmer will be able to
include in their own code with no problem, and are not needed in order to address the
issues of interfacing with Excel.

The C++ terms member variable and member function, and their VB analogues property
and method, are generally used in the appropriate context, except where readability is
improved.

Throughout the book, where information is Excel version-specific, the version to which
it applies is sometimes denoted as follows: [v11–] for versions up to and including 11
(Excel 2003); [v12+] for versions 12 (Excel 2007) and later; and so on. (See section 1.3
below).

1.2 WHAT TOOLS AND RESOURCES ARE REQUIRED
TO WRITE ADD-INS

Licensed copies of a 32-bit version of Excel and a 32-bit Windows OS are both assumed.
(16-bit systems are not covered by this book). In addition, and depending on how and
what you want to develop, other software tools may be required, and are described in this
section. Table 1.1 summarises the resources needed for the various levels of capability,
starting with the simplest.



Introduction 3

Table 1.1 Resources required for add-in development

What you want
to develop

Required resources Where to get them

VBA macros and add-ins VBA (for Excel) Supplied with Excel

Win32 DLLs whose
functions can be
accessed via VB

VBA

A compiler capable of
building a Win32 DLL from
the chosen source language
(which does not have to be
C or C++)

Supplied with Excel

Various commercial and
shareware/freeware
sources

C/C++ Win32 DLLs
whose functions can be
accessed via VB and that
can control Excel using
OLE/COM Automation

VBA

A C/C++ compiler capable
of building Win32 DLLs,
and that has the necessary
library and header file
resources for OLE COM
Automation

Supplied with Excel

Various commercial and
shareware/freeware
sources. Microsoft IDEs
provide these resources.
(See below for details.)

C/C++ Win32 DLLs that
can access the Excel C
API whose functions can
be accessed directly by
Excel without the use of
VBA.

A C/C++ compiler capable
of building Win32 DLLs.

The C API library and
header files.

A copy of the XLM (Excel
4 macro language) help file.
(Not strictly required but a
very useful resource.)

Various commercial and
shareware/freeware
sources.

Downloadable free from
Microsoft at the time of
writing. (See below for
details.) Static library
also shipped with Excel.

.NET add-ins and
controllers.

Excel 2002 or later.

A C/C++/C# compiler
capable of building .NET
components for Microsoft
Office applications.

At the time of writing, a good starting point for locating Microsoft downloads is
www.microsoft.com/downloads/search.asp.

1.2.1 VBA macros and add-ins

VBA is supplied and installed as part of all 32-bit versions of Excel. If you only want
to write add-ins in VB, then that’s all you need. The fact that you are reading this book
already suggests you want to do more than just use VBA.



4 Excel Add-in Development in C/C++

1.2.2 C/C++ DLL add-ins

It is, of course, possible to create Win32 DLLs using a variety of languages other than C
and C++. You may, for example, be far more comfortable with Pascal. Provided that you
can create standard DLLs you can access the exposed functions in Excel via VB. If this
is all you want to be able to do, then all you need is a compiler for your chosen language
that can build DLLs.

Chapter 4 Creating a 32-bit Windows (Win32) DLL using Visual C++ 6.0 or Visual
Studio .NET, page 89, contains step-by-step examples of the use of Microsoft’s Visual
Studio C++ version 6.0 Standard Edition and Visual Studio C++ .NET 2003 integrated
development environments (IDEs). The examples demonstrate compiler and project set-
tings and show how to debug the DLL from within Excel. No prior knowledge of these
IDEs is required. (Standard Win32 DLLs are among the simplest things to create.) Other
IDEs, or even simple command-line compilers, could be used, although it is beyond the
scope of this book to provide examples or comparisons.

1.2.3 C/C++ DLLs that can access the C API and XLL add-ins

If you want your DLL to be able to access the C API, then you need a C or C++ compiler,
as well as the C API library and header file. The C API functions and the definitions of the
data types that Excel uses are contained in the library and header files xlcall32.lib
and xlcall.h. The pre-Excel 2007 versions of these files1 are contained in a sample
project, downloadable from Microsoft at the time of writing, free of charge, at download.
microsoft.com/download/platformsdk/sample27/1/NT4/EN-US/Frmwrk32.exe. It is also
possible to link Excel’s library in its DLL form, xlcall32.dll, in your DLL project,
removing the need to obtain the static .lib version. This file is created as part of a
standard Excel installation. Another approach is to create the .lib file from the .dll
file, as discussed in section 5.1.

An XLL add-in is a DLL that exports a set of interface functions to help Excel load and
manage the add-in directly. These functions, in turn, need to be able to access Excel’s
functionality via the C API, if only to be able to register the exported functions and
commands. Only when registered can they be accessed directly from the worksheet (if
functions) or via menus and toolbars (if commands). The C API is based on the XLM
(Excel 4 macro language). This book provides guidance on the most relevant C API
functions in Chapter 8. However, for a full description of all the C API’s XLM equivalents
you should ideally have a copy of the XLM help file, Macrofun.hlp. This is, at the time
of writing, downloadable in the form of a self-extracting executable from Microsoft at
download.microsoft.com/download/excel97win/utility4/1/WIN98/EN-US/Macrofun.exe.

1.2.4 C/C++/C# .NET add-ins

This book does not cover .NET and C#. These technologies are an important part of
Microsoft’s vision for the future. The resources required to apply these technologies are
Visual Studio .NET and a .NET-compatible version of Excel, i.e., Excel 2002 and later.

1 At the time of writing, Microsoft plan to release an updated Framework project, although details of where
and how this can be obtained are not known.



Introduction 5

The principle purpose of this book is to bring the power of compiled C and C++ to Excel
users, rather than to be a manual for implementing these technologies.

1.3 TO WHICH VERSIONS OF EXCEL DOES
THIS BOOK APPLY?

Table 1.2 shows the marketing names and the underlying version numbers to which this
book applies. Excel screenshots in this book (worksheets, dialogs, etc.) are mostly Excel
2000. Most of the interface differences between versions 2000 and 2003 are quite super-
ficial. In contrast, the interface changes introduced in Excel 2007 are significant. The
workbooks on the CD ROM are provided in both Excel 2000 and Excel 2007 format.
(Contact ccppaddin@eigensys.com if you require 97 format files.)

Table 1.2 Excel version numbers

Product name Version number

Excel 97 (SR-1, SR-2) 8

Excel 2000 9

Excel 2002 10

Excel 2003 11

Excel 2007 12

In some places, particularly in code examples, where information is Excel version-specific,
the version to which it applies is denoted as follows: v11– for versions up to and including
Excel 2003; v12+ for versions Excel 2007 and later; and so on.

1.4 THE FUTURE OF EXCEL: EXCEL 2007 (VERSION 12)

At the time of writing, Excel 2007 (version 12) had only been released in beta. Whilst
every effort has been made to ensure that what is written about it in this book is accurate,
it is possible that the way some things work might be changed between beta and final
release.

1.4.1 Summary of key workbook changes

The Excel team at Microsoft have made significant changes in many areas that are outside
the scope of this book. As far as the subject matter of this book is concerned, however,
the key changes are these:

• The size of the worksheet grid is expanded from 256 (28) to 16,384 (214) columns and
from 65,536 (216) to 1,048,576 (220) rows, so from 224 to 234 cells – over 1,000 times
as many.

• The maximum number of arguments a function can take is increased from 30 to 255.
• The level of function nesting in Excel worksheet formulae is increased from 7 to 64.

(The author has some reservations about this being a good thing.)



6 Excel Add-in Development in C/C++

• Multi-threaded workbook recalculation is supported on single- and multi-processor
machines.

• The C API, XLL add-ins are still fully supported and are, for the first time in a very
long while, upgraded to take advantage of some of the new features. In particular the
Excel 2007 C API supports:
◦ UNICODE strings up to 32Kbytes in length (in addition to byte-strings up to 255

bytes in length);
◦ Larger grids;
◦ More function arguments;
◦ Multi-threaded recalculation;
◦ Direct access to new worksheet functions.

• The user interface changes quite dramatically, providing applications developers and
ordinary users with a much richer set of tools to control the appearance and behaviour
of their workbooks, albeit at the expense of some familiarity.

• There are significant changes to the conditional-formatting capabilities. (See section
2.12.7 on page 40).

• Management of defined names is made much easier with improved interfaces.
• There are many new worksheet functions that should enable simplification of the more

cumbersome data management, error handling and lookup tasks, e.g., IFERROR().
• The Analysis Toolpak worksheet functions are fully integrated into Excel and are also

available directly via the C API.

Note that VBA and Automation add-ins will still not be able to take advantage of multi-
threaded recalculation.

1.4.2 Aspects of Excel 2007 not covered in this book

Outside the scope of this book are the other changes that Excel 2007 introduces, in
particular the radically different user interface through which built-in or custom commands
are made available. Customising the new UI presents very different problems and issues
than it did in previous versions, and where this book discusses these matters it does so
only in relation to earlier versions of Excel.

1.4.3 Excel 2007 file formats

While still supporting the older file binary file formats (BIFF5 and BIFF8) and version
11 XML formats, Excel 2007 introduces a number of new formats and extensions:

• .XLSX – the XML-based default for code-less workbooks;
• .XLSM – the XML-based format for workbooks with VBA or XLM code;
• .XLSB – the new binary format (BIFF12);
• .XLAM – the XML-based add-in format (analogous to the .XLM of previous versions).

1.4.4 Compatibility between Excel 2007 and earlier versions

As stated above, Excel 2007 supports earlier versions’ file formats for backwards compat-
ibility, and contains a Compatibility Checker, which can be configured to run whenever a
binary format file is saved, to check for elements not supported in earlier versions. VBA is



Introduction 7

still supported in Excel 2007 and the object model is largely unchanged so that most VBA
code in Excel 2003 and earlier workbooks should be expected to run without problems.

Compiled add-ins that are simply DLL’s accessed via VBA (see section 4.11 Accessing
DLL functions from VB on page 108) should run identically provided that they are not
calling back into Excel via the C API or COM, in which case there are some cross-
version compatibility issues covered in later parts of this book. XLL add-ins compiled
with the old Excel SDK will work with Excel 2007 but again there are some compatibility
issues, particularly where older add-ins customise the UI or call, say, Analysis Toolpak
functions using xlUDF. VBA and compiled add-in code should therefore be modified to
be version-sensing and -specific where these compatibility issues arise. XLL add-ins that
rely on availability of Excel 2007 data types and C API, so that they can take advantage of
larger grids and Unicode strings for example, will not be compatible with earlier versions
of Excel. Sections 8.6.12 Registering functions with dual interfaces for Excel 2007 and
earlier versions on page 263 and 9.13.3 Making add-in behaviour Excel version-sensitive
and backwards-compatible on page 432 describe how to create XLLs that will run happily
with Excel versions 11− and 12+.

1.5 ABOUT ADD-INS

An add-in is simply a code resource that can be attached to a standard application to
enhance its functionality. Excel is supplied with a number of add-ins that can be installed
according to the user’s preference and need. Some provide specialist functions not needed
by the average user, such as the Analysis ToolPak (sic) (whose functions are integrated
into Excel in Excel 2007), and some that provide complex additional functionality such
as the Solver add-in.

Add-ins come in two main flavours: interpreted macros and compiled code resources.
Version 4 of Excel introduced macro sheets which could contain macros written in the
Excel macro language (XLM). These comprised columns of instructions and calculations
that either led to a result being returned to the caller, if functions, or that performed
some action such as formatting a cell, if commands. Macro sheets could be part of a
workbook or saved and loaded separately so as to be accessible to any workbook. Despite
their flexibility they were relatively slow and did not promote sensible structured coding.
In fact they encouraged the exact opposite given that, for example, they could modify
themselves whilst executing.

Version 5 introduced Visual Basic worksheets. This enabled coding of functions and
commands as before but promoted better coding practices and made implementation of
algorithms from other languages easier. Excel 97 replaced these VB sheets with Visual
Basic for Applications and the Visual Basic Editor (VBE) – a comprehensive IDE com-
plete with context-sensitive object-oriented help, pre-compiler, debugger and so on.

Macros, be they XLM or VB, are interpreted. When run, the interpreter reads each
line one-by-one, makes sense of it while checking for errors in syntax, compiles it and
only then executes the instructions. Despite the fact that VBA does some of this work in
advance, this is a slow process. The VBA approach avoids the need for tools to create fully
pre-compiled code making the creation of add-ins possible for the non-expert programmer.
VBA makes Excel application objects accessible and is therefore the obvious choice for
a host of user-defined commands and functions where speed of development rather than
speed of execution is the prime concern. Until Excel 2007, Microsoft had not updated the



8 Excel Add-in Development in C/C++

C API since the release of Excel 97 and only support XLM for backwards compatibility.
Even within Excel 2007 most of the new functionality and objects added since Excel 97
are only available to applications that can access Excel’s COM-exposed objects. This is
not too serious as the type of functionality added is that which it is most appropriate to
access from VBA (or VB), rather than via the C API, anyway.

The other main flavour of add-in is the pre-compiled code resource which has none
of the execution overhead of interpreted languages and is therefore extremely fast by
comparison. The cost is the need to use, and so understand, another development language
and another compiler or IDE. In essence, this is no harder than using VBA and the VB
editor. The additional requirement is to know what Excel expects from and provides to
anything calling itself an Excel add-in. In other words, you need to understand the Excel
interface. The two interfaces that have been available over recent years are the C API and
COM (the Common Object Model also known as Automation). COM provides access to
Excel’s exposed objects, their methods and properties. VBA itself is a COM Automation
application. Section 9.5 Accessing Excel functionality using COM/OLE automation using
C++, on page 376, discusses some very basic COM concepts.

VBA macros can be saved as Excel add-ins with very little effort but the resulting
code is still slower than, say, compiled C add-ins. (Some performance comparisons are
given in section 9.2 Relative performance of VB, C/C++: Tests and results on page 369).
Despite the rapid development and flexibility of VBA, it lacks some of the key language
concepts present in C and C++, in particular, pointers. These are sometimes critical to the
efficient implementation of certain algorithms. One example of where this is especially
true is with the manipulation of strings.

The advent of .NET changes a number of things. For example, VB code resources can
be compiled and the functions contained made accessible directly from a worksheet, at
least in Excel 2002 and later. C, C++ and C# resources can similarly be accessed directly
from a worksheet without the need to use the C API.

1.6 WHY IS THIS BOOK NEEDED?

For anyone who decides that VBA just isn’t up to the task for their application or who
wants to decide the best way to make an existing C or C++ code resource available
within Excel, just the task of weighing up all the options can at first seem daunting. At
the publication of the first edition of this book, there were no published texts written
specifically to help someone make this decision and then follow it through with practical
step-by-step guidance. There are a number of commercial products that enable developers
to access the power of Excel via the C API indirectly, through some sort of managed
environment and set of classes. These are beyond the scope of this book, but do make
sense for certain kinds of project.

The Excel C API is documented in Microsoft’s Excel 97 Developer’s Kit (1997,
Microsoft Press), out of print at the time of writing. This book tries to complement
that text as far as possible, providing information and guidance that it lacks. Where they
overlap, this book tries to present information in a way that makes the subject as easy as
possible to grasp. The Developer’s Kit is a revision of an earlier version written for the 16-
bit Excel 95, and contains much that was only relevant to developers making a transition
from 16-bit to 32-bit. It provides a very comprehensive reference to the Microsoft BIFF
(binary interchange file format) which is, however, of little use to most add-in writers.



Introduction 9

Writing Win32 DLLs is fairly straightforward, but it is easy to get the impression that
it is highly technical and complex. This is partly because available literature and articles
often contain much that is no longer current (say relating to 16-bit versions of Windows),
or because they concentrate heavily on 16- to 32-bit transition issues, or are simply badly
written. Having said that, there are a few complexities and these need to be understood
by anyone whose add-ins need to be robust and reliable. Overcoming the complexities
to speed up the creation of fast-execution add-ins in C and C++ is what this book is all
about.

1.7 HOW THIS BOOK IS ORGANISED

The book is organised into the following chapters:

Chapter 2 Excel Functionality
Basic things that you need to know about Excel, data types, terminology, recalculation
logic and so on. Knowing these things is an important prerequisite to understanding
subsequent chapters.

Chapter 3 Using VBA
Basic things about using VBA: creating commands and functions; accessing DLL func-
tions via VB; VB data types; arrays and user-defined data structures, and how to pass
them to DLLs and return them to Excel.

Chapter 4 Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0
How to create a simple Win32 DLL, in VC or VC++ .NET, and export the functions
so they can be accessed by VB, for example. Lays the foundation for the creation of
XLLs – DLLs whose functions can be accessed directly by Excel.

Chapter 5 Turning DLLs into XLLs: The Add-in Manager Interface
How to turn a DLL into an add-in that Excel can load using the add-in manager: an
XLL. The functions that Excel needs to find in the DLL. How to make DLL functions
accessible directly from the worksheet.

Chapter 6 Passing Data between Excel and the DLL
The data structures used by the Excel C API. Converting between these data structures
and C/C++ data types. Getting data from and returning data to Excel.

Chapter 7 Memory Management
Stack limitations and how to avoid memory leaks and crashes. Communication between
Excel and the DLL regarding responsibility for memory release.

Chapter 8 Accessing Excel Functionality Using the C API
The C interface equivalent of the XLM macro language and how to use it in a DLL.
Information about some of the more useful functions and their parameters. Working with
named ranges, menus, toolbars and C API dialogs. Trapping events within a DLL.

Chapter 9 Miscellaneous Topics
Timing function execution speed. A brief look at how to access Excel’s objects and their
methods and properties using IDispatch and COM. Keeping track of cells. Multi-tasking,



10 Excel Add-in Development in C/C++

multi-threading and asynchronous calls into a DLL add-in. Setting up timed calls to
commands. Add-in design. Performance optimisation.

Chapter 10 Example Add-ins and Financial Applications
Examples that show how the previous chapters can be applied to financial applications
such as, for example, Monte Carlo simulation, a stochastic volatility model, and constant
maturity swap (CMS) derivative pricing.

1.8 SCOPE AND LIMITATIONS

The early chapters are intended to give just enough Excel and VBA background for the
later chapters. There are literally dozens of books about Excel and VBA ranging from
those whose titles are intended to coerce even the most timid out of the shadows, to
those with titles designed to make them a must-buy for MBA students, such as ‘Essential
Power Excel Tips For Captains Of Industry And Entrepreneurs’. (At the time of writing,
this was a fictitious book title.) There are, of course, many well-written and comprehensive
reference books on Excel and VBA. There are also a number of good specialist books
for people who need to know how best to use Excel for a specific discipline, such as
statistical analysis, for example.

The book is primarily focused on writing add-in worksheet functions. The reasons for
this are gone into in later sections, such as section 2.9 Commands versus functions in
Excel on page 27. One reason is that commands often rely on the creation of user-defined
dialogs, which is a task far better suited to VBA. Even if the functionality that your
command needs is already written in C/C++ code in a DLL, it can still easily be accessed
from VB. Another reason is that, in general, commands do not have the same speed
of execution requirements as worksheet functions – one of the main reasons for using a
C/C++ DLL for functions.

Commands are covered to a certain extent, nevertheless. They can be a useful part
of a well planned interface to a DLL. Knowing how to create and access them without
the use of VBA is therefore important. Knowing how to create menus and menu items
is important if you want DLL commands to be accessed in a seamless way. Chapter 8
Accessing Excel Functionality Using the C API on page 223 covers these topics.

The Excel COM interface is largely beyond the scope of this book, mainly to keep the
book focused on the writing of high performance worksheet functions which COM does
not help with. The other main reason is that if you need functionality that COM provides
and the C API does not, for example, access to certain Excel objects, you are probably
better off using VBA. That said, there are examples given in Chapter 9 of the use of
COM from an XLL or DLL.

This book is not intended to be industry-specific or profession-specific except in the final
chapter where applications of particular interest in certain areas of finance are discussed.
It should be noted that the book is not intended to be a finance text book and deliberately
avoids laborious explanations of things that finance professionals will know perfectly well.
Nor are examples intended to necessarily cover all of what is a very broad field. It is hoped
that readers will see enough parallel with their own field to be able to apply earlier sections
of the book to their own problems without too much consternation. There are two new key
sections in this second edition that contain applications with a little analytical background
as well as a discussion of how they can be implemented in Excel. These are the stochastic
volatility model SABR, and constant maturity swap (CMS) derivative pricing.


